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Abstract 
Mutations are the source of genetic variation and a prerequisite for evolution. Despite their 
fundamental importance, however, their rarity makes them expensive and difficult to detect, 
which has limited our ability to measure the extent to which mutational processes vary within 
and between species. Here, we use the 1011 Saccharomyces cerevisiae  collection to measure 
variation of mutation rates and spectra among strains isolated from a variety of natural and 
human-related environments. The mutation spectra of variants segregating in different S. 
cerevisiae  populations exhibit differences in the relative numbers of specific transition and 
transversion types, a pattern reminiscent of previously observed mutation spectrum differences 
between populations of humans, great apes, and mice. Such natural variation is thought to 
reveal historical differences in the activity of particular mutational processes, but is also 
potentially complicated by other forces such as admixture, genetic drift, and selection. In order 
to directly test how much of the observed mutation spectrum variation is caused by heritable 
differences between extant strains of S. cerevisiae , we developed an experimental pipeline to 
assay de novo  mutation rates and spectra of individual strains, using the reporter gene CAN1 . 
We found a 10-fold range of mutation rate variation among 16 haploid strains surveyed. While 
many strains exhibit similar mutation spectra, two related strains from the panel’s “Mosaic beer” 
clade, known as AEQ and AAR, share a distinctive mutation spectrum enrichment for C>A 
mutations. This C>A enrichment found through our experimental pipeline mirrors an enrichment 
of C>A mutations in rare variants segregating throughout the genomes of AEQ and AAR as well 
as additional Mosaic beer strains. We deduce that a major axis of S. cerevisiae  mutation 
spectrum variation is likely driven by one or more naturally occurring mutator alleles whose 
action is measurable in a controlled laboratory environment. 

Introduction 
Mutations are a double-edged sword. At the molecular level, they usually arise as a 
spontaneous consequence of DNA replication errors or damage and are the ultimate cause of 
genetic diseases (Nei, 1983; Crow, 1997; Antonarakis and Beckmann, 2006; Sebat et al., 2007; 
Iossifov et al., 2014). All organisms have evolved complex mechanisms for keeping mutation 
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rates low and safeguarding their genetic information as it is passed from generation to 
generation (Beckman and Loeb, 1993; Eisen and Hanawalt, 1999); in multicellular organisms, 
these mechanisms also safeguard somatic tissues from mutations that can cause cancer and 
age-related decline (Alexandrov et al., 2013; Loeb, 2016; Risques and Kennedy, 2018). A low 
mutation rate is essential for long-term population survival, and the larger and more complex a 
genome is, the lower the mutation rate must be to prevent deleterious mutations from arising 
faster than natural selection can eliminate them (Eigen, 1971; Drake, 1991; Sung, Ackerman, et 
al., 2012; Acosta et al., 2015). Over long time scales, however, mutations also serve as the raw 
material for evolution. Although beneficial mutations are rare occurrences, they are essential for 
the acquisition of novel phenotypes and adaptations (Gompel et al., 2005; McGregor et al., 
2007).  
 
A large body of theory has been written to describe how natural selection might act on the 
mutation rate to balance these beneficial and deleterious effects (Sturtevant, 1937; Kimura, 
1967; Leigh, 1970; Johnson, 1999; André and Godelle, 2006; Sung, Ackerman, et al., 2012). 
One prediction is that organisms living in more changeable environments might evolve higher 
mutation rates than organisms living in more stable environments, assuming that the 
environment determines whether a higher rate of beneficial mutations is likely to counterbalance 
a higher rate of deleterious mutations. This prediction has been borne out in laboratory evolution 
experiments, where mutator phenotypes sometimes emerge in populations that are forced to 
tolerate challenging conditions (Tenaillon et al., 2016; Good et al., 2017) and mutator strains are 
often observed to take over chemostat populations by producing beneficial mutations at a higher 
rate than competing non-mutator strains (Chao and Cox, 1983). However, it is less clear how 
much mutation rate variation exists within and between natural populations, and if such variation 
exists, whether it is maintained by natural selection. The “drift barrier hypothesis” predicts that 
mutator alleles will usually be deleterious because they produce more damaging mutations than 
beneficial ones, but that mutator alleles with relatively small effects may persist in populations 
because they are not deleterious enough to be efficiently eliminated (Lynch et al., 2016). 
 
Although next-generation sequencing has rapidly increased our ability to measure the genetic 
variation that currently exists within populations, the extent of mutation rate variation is still more 
difficult and expensive to measure. One of the original methods for measuring mutation rates is 
the Luria-Delbrück fluctuation assay (Luria and Delbrück, 1943; Lang and Murray, 2008; Gou, 
Bloom and Kruglyak, 2019), in which a population of microorganisms is allowed to grow clonally 
for a controlled length of time, then challenged with a form of artificial selection that kills most 
cells except for those that have happened to acquire specific resistance mutations. The 
mutation rate can then be calculated from the number of colonies that manage to grow after this 
artificial selection is imposed.  
 
Though fluctuation assays are an elegant and efficient way for measuring the mutation rates of 
specific reporter genes, the results are potentially sensitive to the reporter gene being used and 
where it is located within the genome (Lang and Murray, 2008, 2011); in addition, they are not 
applicable to multicellular organisms. These drawbacks have motivated the development of 
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newer methods that take advantage of high-throughput sequencing, such as mutation 
accumulation (MA) assays in which a laboratory population is serially bottlenecked for many 
generations, eliminating most effects of natural selection and allowing mutations to be directly 
counted by sequencing at the end of the experiment. MA studies have been used to estimate 
mutation rates in a wide variety of organisms (Lynch et al., 2008; Keightley et al., 2009; Zhu et 
al., 2014; Farlow et al., 2015; Sharp et al., 2018; Wang et al., 2019). However, it is 
labor-intensive to maintain MA lineages for enough generations to measure a low mutation rate 
accurately, which has limited the feasibility of measuring variability of mutation rates within 
species. 
 
An alternative source of information about mutational processes is genetic variation among 
related individuals who share common ancestors. Polymorphic sites are easier and cheaper to 
discover than new mutations, since they are present at a higher density within the genome and 
often shared among several individuals. Mining polymorphisms for information about mutation 
rates can be difficult since their abundance is affected by genetic drift and natural selection 
(Scally and Durbin, 2012; Ségurel, Wyman and Przeworski, 2014; Zhu, Sherlock and Petrov, 
2017), but despite these limitations, they have provided surprisingly strong evidence for the 
existence of historical changes to the mutation spectrum, meaning the tendency of mutations to 
occur most often in certain nucleotide contexts (Hwang and Green, 2004). In humans, for 
example, Europeans and South Asians have a significantly higher proportion of TCC>TTC 
mutations than other human groups (Harris, 2015; Harris and Pritchard, 2017), a pattern that is 
difficult to explain without a recent population-specific increase in the rate of this type of 
mutation. This pattern might have been caused by either a genetic mutator or an environmental 
mutagen, but is not explicable by the action of selection or drift or any other process that 
modulates the retention or loss of genetic variation. 
 
Polymorphism data has revealed that each human population and great ape species appears to 
have a distinctive triplet mutation spectrum, which implies that genetic and/or environmental 
mutators likely emerge relatively often and act within localized populations to increase mutation 
rates in specific sequence contexts (Harris and Pritchard, 2017; Goldberg and Harris, 2019). 
However, identifying these hypothetical mutators is a challenging proposition, not least because 
some population-specific signatures such as the human TCC>TTC enrichment appear to be 
relics of mutators that are no longer active. A recent study of de novo  mutations in diverse 
human families found some evidence of mutation rate variation between human populations 
(Kessler et al., 2020), but argued that most of this variation was driven by the environment 
rather than genetics. Given that humans from different populations tend to be born and raised in 
different environments, it is extremely challenging to determine the degree to which genetics 
and/or the environment are responsible for variation of the rates and spectrum of de novo 
mutations accumulating within human populations today. 
 
More is known about the genetic architecture of mutagenesis in model organisms, including the 
single-celled organism Saccharomyces cerevisiae, where it is tractable to disentangle genetic 
mutator effects from environmental ones by accumulating mutations on different genetic 
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backgrounds in controlled laboratory environments (Huang et al., 2003; Herr et al., 2011; Lang, 
Parsons and Gammie, 2013; Serero et al., 2014; Stirling et al., 2014). Many S. cerevisiae 
mutator alleles have been discovered using genetic screens, which involve creating libraries of 
artificial mutants in the lab and determining which ones have high mutation rates (Stirling et al., 
2014). Mutation rates can be elevated by up to a thousand-fold in lines where DNA proofreading 
and repair capabilities are artificially knocked out (Herr et al., 2011; Lang, Parsons and 
Gammie, 2013; Serero et al., 2014), and quantitative trait loci with more modest effects have 
been found to underlie a five-fold range of mutation rate variation among a few natural S. 
cerevisiae strains (Gou, Bloom and Kruglyak, 2019). A more complex mutator phenotype has 
been observed as a result of epistasis between two incompatible alleles found as natural 
variation in the mismatch repair genes MLH1 and PMS1 , although the natural isolates in which 
these alleles are found appear to have acquired compensatory variants that suppress this 
mutator phenotype (Argueso et al., 2003; Heck et al., 2006; Bui et al., 2017; Raghavan et al., 
2018). 
 
Mild environmental stressors, such as high salt and ethanol, can also alter the mutation rate of 
S. cerevisiae  laboratory strains (Liu and Zhang, 2019; Voordeckers et al., 2020). The same 
environmental perturbations can cause detectable changes to the S. cerevisiae mutation 
spectrum. The mutation spectrum has also been observed to depend on whether S. cerevisiae 
is replicating in a haploid or diploid state (Sharp et al., 2018). In addition environmental 
mutagens, more complex ploidy, and genetic mutation rate modifiers could all conceivably affect 
the mutation spectrum of natural variation as it accumulates. However, no study to our 
knowledge has looked at whether any mutational signatures measured in the laboratory are 
capable of explaining natural mutation spectrum variation observed in polymorphism data from 
a model species.  
 
Recently, comprehensive sampling efforts have produced a collection of 1011 natural isolates of 
S. cerevisiae  (Peter et al., 2018). This is a uniquely powerful system containing abundant 
natural variation that accumulated within natural environments during the recent and ancient 
evolution of S. cerevisiae , and the panel is also amenable for experimental accumulation of 
mutations over laboratory growth. Many genetic polymorphisms differentiate these strains, and 
these are relics of mutations that accumulated over many generations on divergent genetic 
backgrounds adapted to diverse environmental conditions, ranging from forests to beverage 
fermentation pipelines. Both environmental mutagens and genetic mutators may have created 
differences among the mutation spectra of these 1011 strains, but only genetically determined 
mutation spectrum differences should have the potential to be reproduced in the spectra of 
mutations accumulated in a controlled lab environment.  
 
We hypothesized that yeast strains with outlying spectra of natural polymorphisms are more 
likely to have distinct de novo  mutation spectra than strains whose polymorphisms have 
indistinguishable mutation spectra. The same hypothesis underlies previous inferences of de 
novo  mutation spectrum variation from polymorphism data (Harris, 2015; Harris and Pritchard, 
2017; Dumont, 2019; Goldberg and Harris, 2019), but was not directly testable in any previously 
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analyzed species. Mutation accumulation experiments have shown that ascomycete and 
basidiomycete yeast have distinct mutation spectra despite having similar overall mutation rates 
(Long et al., 2016), but such comparisons have not been performed on more closely related 
yeast strains. To enable such direct testing for the first time at higher throughput in S. 
cerevisiae, we describe a new Luria-Delbrück-based assay that efficiently measures the spectra 
of de novo  mutations in haploid strains using pooled amplicon sequencing. We then use this 
assay to identify strains with reproducibly measurable mutator phenotypes that explain the 
spectrum biases of these strains’ polymorphisms. Some proportion of natural mutation spectrum 
variation might not be reproducible in the lab if it is driven by environmental mutagens, 
bioinformatic artifacts, or extinct genetic mutators, but our assay has the potential to identify 
which gradients of mutation spectrum variance are driven by extant genotypic differences. 

Results 

The mutation spectrum of natural variation in S. cerevisiae 

To measure the mutation spectrum of genetic variation present in the 1011 S. cerevisiae  natural 
isolates (Peter et al., 2018), we polarized single nucleotide polymorphisms using the outgroup 
S. paradoxus (Yue et al., 2017), then classified them into two transition types and four 
transversion types based on their ancestral and derived alleles. Closely related strains were 
excluded to avoid overrepresentation of certain groups (Materials and Methods). We calculated 
the proportion of each mutation type among the derived alleles present in each individual strain, 
utilizing all derived variants present below 50% frequency. In order to minimize bias from 
ancestral allele misidentification, we excluded strains with extensive, pre-documented 
introgression from S. paradoxus (Peter et al., 2018). Principal component analysis (PCA) on 
these individual mutation spectra reveals that strains from the same population tend to have 
more similar mutation spectra than more distantly related strains (Figure 1A, Supplementary 
Table S1). Some of this structure disappears when SNPs are subsampled to eliminate 
double-counting of variants that are shared among multiple strains (Supplementary Figure S1), 
but several clades appear as consistent outliers in both analyses, including the African beer and 
European wine strains. The compact architecture of the yeast genome makes it infeasible to 
exclude coding regions and conserved regions, but a PCA constructed using only synonymous 
protein-coding variants recapitulates similar PC structures inferred using all polymorphisms 
passing quality filters (Supplementary Figure S2).  
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Figure 1. Mutation spectra of natural isolates of S. cerevisiae 

Principal component analysis of segregating mutation spectrum variation from a subset of the 1011 yeast strains. A .                 
Mutation spectrum PCA of all natural variants under 50% derived allele frequency. Each strain’s mutation spectrum                
histogram is projected as a single point, colored to indicate its population of origin (Peter et al., 2018). The inset                    
summarizes the loadings of the first and second principal component vectors. B . Mutation spectrum PCA of rare                 
variants (derived allele count 2-4). Singleton variants are excluded to minimize the impact of sequencing error.                
Strains appearing more than 1.8 standard deviations from the origin along both PC1 and PC2 are labeled with their                   
strain names.  
 
Figure 1A shows that the Taiwanese and African beer populations are outliers along PC1. As 
seen from the principal component loadings, these two groups mainly differ from the rest in the 
relative proportions of the two transition types (A>G and C>T): Taiwanese strains are enriched 
for C>T mutations while African beer strains are enriched for A>G mutations. In contrast, PC2 
separates the majority of other populations, such as human-associated strains isolated from 
wine, dairy, and bioethanol production, along a gradient of varying transition/transversion ratio.  
 
Although strains from the same population tend to cluster together, this trend is less pronounced 
in the 1011 S. cerevisiae  genomes than in previously reported mutation spectrum PCAs of 
humans, great apes, and mice (Harris and Pritchard, 2017; Dumont, 2019; Goldberg and Harris, 
2019). That being said, one methodological difference from these previous studies is that we 
only partition the yeast mutation spectra into six basic types (A>C, A>G, etc.) rather than the 96 
trinucleotide-based types used in analyses of vertebrate mutation spectra, a concession to the 
small size of the yeast genome. We found that the trinucleotide mutation spectra of yeast exhibit 
similar PCA structure (Supplementary Figure S3), but that the sparsity of yeast triplet spectra 
appears to limit their utility.  
 
Figure 1B shows a PCA of rare variant mutation spectra from the same collection of strains 
used in 1A. We define rare variants as those with derived allele counts of 2, 3, and 4 and 
exclude singletons to minimize the impact of sequencing error. These spectra are noisier than 
the spectra computed from variants up to 50% frequency, but are potentially more likely to 
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reflect recently active mutational processes. While these noisier spectra exhibit less clustering 
by population than those in Figure 1A, a subset of strains from several groups appear as 
outliers. For example, a few Mixed origin and Mosaic beer strains are outliers along a C>A 
mutation gradient, and African beer and French dairy strains separate out along an A>G 
mutation gradient. For completeness, we also examined mutation spectra of singleton variants 
alone (Materials and Methods), which are the youngest mutations among polymorphisms 
(Supplementary Figure S4). It resembles the PCA of non-singleton rare variants, except that 
C>A mutation variation explains a larger variation and becomes the PC1 axis.  
 
Several previous studies have found a puzzling discrepancy between the spectra of de novo 
mutations and polymorphisms in S. cerevisiae : polymorphisms have a transition-to-transversion 
(ts/tv) ratio around 3, compared to only 1 for de novo  mutations (Agier and Fischer, 2012; Zhu, 
Sherlock and Petrov, 2017). Our analysis of the 1011 strain collection replicates this finding 
(Supplementary Figure S5). We also replicate the prior finding that singletons and higher 
frequency variants have nearly identical ts/tv ratios, but that singletons inferred to be young 
based on their presence on long shared haplotypes have a lower ts/tv ratio somewhat closer to 
that of new mutations (Supplementary Figure S5).  

A scalable experimental pipeline for measuring mutation rates and spectra 

In order to test whether any of the mutation spectrum differences evident from natural variation 
in different S. cerevisiae  strains are driven by extant genetic mechanisms that increase the rates 
of specific mutation types, we set out to measure several strains’ de  novo mutation spectra and 
rates experimentally. To this end, we developed an experimental pipeline using the reporter 
gene CAN1 . Traditional reporter gene fluctuation assays only estimate the overall rate of 
mutations, but we introduced an extra step that utilizes Illumina sequencing of pooled amplicons 
derived from CAN1  mutants to estimate each strain’s mutation spectrum as well.  
 
The gene CAN1  encodes a transport protein that imports arginine and arginine analogs into 
yeast cells from the surrounding growth media. This means that strains with a functional CAN1 
transporter are sensitive to poisoning by the arginine analog canavanine, while a single 
loss-of-function mutation can render such cells able to survive on canavanine media (Whelan, 
Gocke and Manney, 1979). Poisoning a culture with canavanine is thus a very efficient method 
to select for cells with point mutations in CAN1 . A limitation of this method is that it only works 
on genomes that contain exactly one functional copy of CAN1 , since canavanine resistance is 
recessive. This means that it cannot be used to measure mutation rates in diploid or polyploid 
strains directly, which unfortunately include the Taiwanese strains and African beer strains that 
are PCA outliers in Figure 1A. However, 133 of the 1011 strains are haploid, leaving many 
strains of interest that are amenable to the assay, including several outliers in the rare variant 
PCA (Figure 1B). 
 
A schematic overview of our experimental setup is shown in Figure 2. First, we estimated 
mutation rates using established fluctuation assay methodology (Lang and Murray, 2008; Gou, 
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Bloom and Kruglyak, 2019), which involves plating multiple independent cultures from each 
strain being investigated. We then picked a single colony from each plated culture and grew it to 
saturation in canavanine-containing media. We then selected mutants observed to grow in 
culture to similar saturation density and pooled them in equal proportions to give each mutant a 
roughly equal frequency in the pool. Individual pools of mutants from each strain were then 
subjected to PCR amplification of CAN1  followed by Illumina sequencing. Individual mutants 
were called from the sequencing pools using a customized pipeline (Materials and Methods). 
Mutations collected from different pools of the same strain were combined to calculate the 
strain’s mutation spectrum. We aimed to collect roughly 300 mutants per strain, enough to 
detect mutation spectrum differences of the magnitude estimated from polymorphism data in 
several of the 1011 genomes populations.  
 
 

 
Figure 2. Schematic overview of the experimental pipeline 

Overview of the experimental pipeline used to estimate the mutation rate and spectrum for each strain using the                  
reporter gene CAN1 . First, mutation rates were estimated using fluctuation assays. Independent mutants were then               
pooled and sequenced to estimate the mutation spectrum of each strain.  
 
Pooling mutants across canavanine media cultures before sequencing allowed us to efficiently 
estimate mutation spectra at scale, yielding measurements of many individual mutations per 
library prep. However, pooling too many mutants during this step could have the potential to 
compromise the pipeline’s accuracy by putting the frequency of each mutation too close to the 
expected frequency of Illumina sequencing errors. To test for this failure mode, we 
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Sanger-sequenced 38 independent mutants generated using the lab strain LCTL1 
(SEY6211-MATɑ). After pooling these 38 mutants, we performed two replicate library preps and 
Illumina-sequenced both using our standard procedure. Sanger sequencing identified 37 
mutants with single nucleotide mutations plus one containing two adjacent mutations 
(Supplementary Table S3). We expect each of these mutations, which should be present at a 
frequency of about 1/38 in the pooled culture, to be easily distinguishable from Illumina 
sequencing errors that occur at a rate of less than 1% per base.  
 
To identify bona fide  mutations from each Illumina sequencing pool, we developed a pipeline 
designed to call mutations present at or above an expected frequency that is inversely 
proportional to the number of mutants being pooled. In order to minimize false positive mutation 
calls introduced by sequencing errors, we excluded low coverage regions located at the ends of 
the amplicons (Materials and Methods). We also identified multinucleotide mutations (MNMs) 
based on the co-occurrence of variation on the same reads (Averof et al., 2000; Schrider, 
Hourmozdi and Hahn, 2011), separating these complex mutations from single base 
substitutions and small indels. When we tested this Illumina sequencing pipeline on the same 
mutant pool that we previously Sanger sequenced, we detected 37 of the 38 mutations 
identified by Sanger sequencing, missing only one mutation that occurred at the end of the 
amplicon located outside our pipeline’s callable region. A second Illumina sequencing replicate 
measured only 36 of these mutations, missing one additional true mutation. Neither Illumina 
replicate produced any false positives, verifying that the pipeline is accurate enough to permit 
pooling of up to 40 CAN1 mutants before each library prep.  

Mutation rate variation among haploid natural isolates 

We used our pipeline to measure mutation rates and spectra in 16 haploid strains from a wide 
variety of environments (Supplementary Table S2). Wherever possible, we selected two euploid 
strains per clade without any copy number variation at the scale of whole chromosome arms. 
We also selected two lab strains, LCTL1 and LCTL2, to use as controls, since their mutation 
rates were previously measured. The mutation rate of LCTL1 was measured using a 
genome-wide mutation accumulation assay by Sharp et al. (2018), while the mutation rate of 
LCTL2 (GIL 104, a derivative of W303) was measured by Lang et al. (2008) using a CAN1 
fluctuation assay. Two additional strains from the 1011 collection, AAA and ACS, were selected 
because their mutation rates had been previously measured in another study (Gou, Bloom and 
Kruglyak, 2019).  
 
We observed a ten-fold range of mutation rate variation in CAN1  among the strains we 
surveyed: from 2.1⨉10 -7 to 2.1⨉10 -6 canavanine resistance mutations per gene per cell division 
(Figure 3). This range of variation is larger than the five-fold range of mutation rate variation 
found among six S. cerevisiae  strains in a recent study (Gou, Bloom and Kruglyak, 2019). All 
estimates from different replicates of the same strain were generally consistent with each other, 
though three strains (ACS, LCTR2, and AAR) showed close to a 2-fold difference between our 
highest and lowest mutation rate measurements. This is within the margin of error observed in 
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previously published fluctuation assays performed at large scale (Gou, Bloom and Kruglyak, 
2019). Among the three strains (LCTL2, AAA, and ACS) with previously published mutation rate 
measurements, our results fall within a 1.5-fold range of those estimates, with no particular 
trend of upward or downward bias.  
 
We noticed that AAR and AEQ, the two strains with the highest mutation rates, formed larger 
colonies during the fixed duration of the experimental growth period compared to many of the 
other strains tested. This suggests that AAR and AEQ have either unusually high growth rates 
or unusually large cell sizes. This motivated us to test for correlation between the mutation rates 
we measured and strain-specific growth rates reported in the literature (Peter et al., 2018), but 
overall, we found no significant correlation between these attributes (R2<0.001; p =0.95) 
(Supplementary Figure S6). 
 
We observed that strains from the Mosaic beer, Sake, African palm wine, and Asian 
fermentation clades exhibited higher mutation rates than have been previously reported for any 
natural S. cerevisiae  strains. The two strains with the highest mutation rates, roughly 10-fold 
higher than that of the control strain LCTL1, were AAR and AEQ, both from the Mosaic beer 
clade. While this is milder than some mutator phenotypes that have been artificially generated in 
the lab, to our knowledge, no comparably high mutation rate has been previously reported in a 
natural isolate of S. cerevisiae , with the exception of the spore derivatives of the incompatible 
cMLH1-kPMS1  diploid natural isolate (Raghavan et al., 2018).  
 

 
 

Figure 3. Haploid natural isolates exhibit a 10-fold range of mutation rate variation 
Mutation rate variation measured among haploid natural isolates using our CAN1 reporter gene Luria-Delbrück              
fluctuation assays. Strains are shown ordered by their mean mutation rates. Mutation rates for each strain were                 
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estimated using at least two replicates, each estimate represented here by a dot. A standard boxplot spans the                  
interquartile confidence interval of possible mutation rates for each strain.  

A natural mutator phenotype with a distinctive mutation spectrum  

We identified a total of 5571 CAN1 mutations across all strains, including 4561 point mutations, 
837 indels (Supplementary Table S4), and 173 multinucleotide mutations (MNMs) 
(Supplementary Table S5-S6). 90% of the observed indels are single base-pair indels (754 out 
of 837), and for simplicity we included only single base-pair indels along with point mutations 
when reporting each strain’s mutation spectrum.  
 
Two of the 4561 point mutations occurred at strain-specific non-reference sites. The remaining 
4559 mutations consisted of repeated observations of only 727 unique mutations at 476 
positions in CAN1 . Given that each mutation was observed an average of 6.2 times, it is likely 
that our dataset contains every possible mutation that causes CAN1  to lose functionality. We 
observed 2676 missense mutations, 1866 nonsense mutations and only 17 synonymous 
mutations. These synonymous mutations made up less than 0.37% of the total point mutations 
observed; since these are unlikely to have caused CAN1  to lose functionality, they are likely 
sequencing errors or hitchhikers that occurred in cells containing other inactivating mutations in 
CAN1 . This low synonymous mutation rate further demonstrates the accuracy of our pipeline.  
 
To our knowledge, the largest previous CAN1  fluctuation assay in S. cerevisiae  observed point 
mutations at just 102 distinct positions (Lang and Murray 2008). We observed 100 of these 
mutant sites in addition to 376 additional mutant sites not previously known to abrogate CAN1 
function . Among the two mutations observed by Lang and Murray that are missing from our 
dataset, one is located near the end of the CAN1 amplicon in a region we exclude due to 
insufficient sequencing coverage in most strains. The other site is the location of a mutation 
changing the anticodon “CTA” to “TTA,” which is synonymous and thus not likely to have 
affected CAN1  function.  
 
MNMs are complex mutation events that create multiple nearby substitutions or indels at once, 
likely as a result of error-prone lesion bypass (Averof et al., 2000; Schrider, Hourmozdi and 
Hahn, 2011; Stone et al., 2012; Harris and Nielsen, 2014), and we were able to distinguish them 
from independent sets of point mutations by looking for the presence of multiple mutations on 
the same Illumina reads (Materials and Methods). We estimate that 3.1% of all mutations are 
MNMs, similar to the 2.6% reported in a single strain background (Lang and Murray, 2008). 
Most of our strains have similar ratios of MNMs to single base-pair mutations, except for a few 
outliers (Figure 4A). For example, AAB has disproportionately more MNMs (Figure 4A and 
Supplementary Figure S7) while AAR and AEQ have lower ratios of MNMs to single base-pair 
mutations.  
 
We performed hypergeometric tests to determine whether the mutation spectra we measured 
from the two control lab strains LCTL1 and LCTL2 were distinct from those measured from 
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haploid natural isolates and from the spectrum measured from the same LCTL2 strain by Lang 
et al. (2008) (Materials and Methods). We found the spectra of point mutations we measured 
from the lab strains LCTL1 and LCTL2 to be statistically indistinguishable from the spectra 
Lang, et al. (2008) obtained using Sanger sequencing of canavanine-resistant mutants (p = 0.82 
for LCTL1 and p = 0.087 for LCTL2). With indels included, our LCTL1 spectrum appears 
significantly different from that of Lang et al. (2008) (p = 0.0012, Bonferroni corrected p -value: 
0.042), but the LCTL2 spectra remain indistinguishable with indels included (p = 0.0054, 
Bonferroni corrected p -value: 0.189).  
 

 
Figure 4. de novo mutation rate and spectra in natural isolates 

A . Single nucleotide mutation rates plotted against MNM rates across strains. These rates were calculated by 
multiplying the mean mutation rate estimated using CAN1  by the proportion of mutations in each strain measured to 
be either single-nucleotide mutations or MNMs. Here, single nucleotide mutations include both single base pair 
substitutions and indels. B . Mutation spectra in AEQ and AAR show significant enrichment of C>A mutations 
compared to the control lab strain LCTL1. Only single base-pair indels were used to generate these counts. C . A PCA 
of the same strains’ de novo mutation spectra compared to the mutation spectrum reported in (Lang and Murray, 
2008).  
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The lab strain LCTL1 appears to have a mutation spectrum that is representative of most 
natural isolates (Figure 4C, Supplementary Figure S8-S9). Using Bonferroni corrected p -values 
to determine significance, we found the strains AAA, ACS, AGM, AHH, AHC, AEF, ADF, ACM, 
AGR, AAI, and AAB to have mutation spectra that are statistically indistinguishable from that of 
LCTL1. We found that CEV and AFH are distinguished only by their high proportions of 
insertions. ADN showed significant but subtle divergence from LCTL1 in the spectrum of single 
nucleotide variants (Supplementary Figure S8-S9). In contrast, we measured strikingly divergent 
mutation spectra from AEQ (p  < 1e-4) and AAR (p  < 1e-4), the two strains with 10-fold higher 
mutation rates than LCTL1. Both strains appear highly enriched for C>A mutations compared to 
LCTL1 (Figure 4B). The strain AAR’s mutation rate estimates appear somewhat bimodal (Figure 
3), but C>A mutations are consistently enriched in replicate pools with both lower and higher 
estimated mutation rates. The main spectrum difference between the two mutation rate modes 
appears to be a small difference in the C>G mutation proportion (Supplementary Figure S10).  

Concordance of the C>A mutator phenotype between inherited variation and de novo 
mutation spectra 

In both AEQ and AAR, the proportion of C>A mutations was measured to be elevated nearly 
3-fold above the proportion of C>A mutations in LCTL1 and similar strains (Figure 4B). 
Remarkably, this C>A enrichment appears sufficient to explain the placement of AEQ and AAR 
as rare variant mutation spectrum outliers that we previously saw in Figure 1B, which was 
computed from polymorphisms sampled genome-wide, not just within CAN1 . Both strains have 
rare variant spectra that are displaced from the population norm along a principal component 
vector pointing in the direction of increased C>A enrichment. These strains’ high mutation rate, 
C>A-heavy de novo  mutation spectrum, and concordant C>A-heavy rare variant spectrum all 
point to the conclusion that these Mosaic beer strains display a naturally-occurring genetically 
encoded mutator phenotype. 
 
To assess whether the C>A enrichment phenotype observed in AAR and AEQ is likely shared 
with any of the 1011 strains for which we lack mutation spectrum measurements, we ranked all 
1011 strains (excluding close relatives) according to the C>A enrichment of their rare variants 
(global allele count less than 5). We found that SACE_YAG and BRM, the two strains closest to 
AAR and AEQ in the global, neighbor-joining phylogeny, clustered with AAR and AEQ in having 
high C>A fractions within the top 5% in the dataset. The rest of the top-ranking 5% of the strains 
exhibit some phylogenetic clustering, but no others fall within the Mosaic beer clade (Figure 5C). 
Instead, they are somewhat dispersed across two large, diverse clades known as “Mosaic 
region 3” and the “Mixed origin” clade. We also used a bootstrapping method to find strains with 
enriched C>A fractions, using an empirical p -value threshold of 0.05. Many of the same strains 
are outliers in both tests, including the four Mosaic beer strains (Supplementary Figure S11). 
The phylogenetic clustering of C>A rare variant enrichment suggests that multiple clades may 
be genetically predisposed toward accumulating relatively higher rates of this mutation type.  
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Based on the pattern of C>A enrichment observed in the rare polymorphism data, we 
hypothesized that a shared mutator allele was responsible for the pattern of C>A enrichment 
present in the four-strain clade consisting of AAR, AEQ, BRM, and SACE_YAG (Figure 5A,B). 
In these strains, rarer variants are notably C>A-enriched, but higher frequency variants exhibit 
weaker enrichment that declines toward the C>A fraction more typical of other strains. In 
contrast, the four strains most closely related to AAR, AEQ, BRM, and SACE_YAG in the 
phylogeny exhibit a consistently lower C>A fraction that does not vary with allele frequency 
(Figure 5B). The concordant enrichment of C>A mutations in rare polymorphisms and de novo 
mutations from the same strains suggests that this C>A enrichment is genetically determined 
and is not specific to the CAN1  locus but has affected the entire genome during the recent 
history of this clade.  
 
Three of the four C>A-enriched mosaic beer strains, AAR, AEQ, and SACE_YAG, are all 
haploid derivatives of the diploid Saccharomyces cerevisiae  var diastaticus strain  CBS 1782, 
which was isolated in 1952  from super-attenuated beer (Andrews and Gilliland, 1952). AEQ and 
AAR differ at roughly 14,000 variant sites (the median pairwise genetic distance in the 1011 
strains is 64,000) and SACE_YAG differs from AEQ and AAR at about 11,000 sites each, due to 
the high level of heterozygosity in the parental diploid strain. The fourth strain with an elevated 
C>A mutation fraction, BRM, is derived from an independent source: it was isolated in 1988 
from a cassava flour factory in Brazil (Laluce et al., 1988). BRM differs at 14,000-17,000 sites 
from the above mentioned three strains. 
 
Although definitively identifying the genetic variants responsible for C>A enrichment in AEQ and 
AAR is beyond the scope of this work, we scanned for nonsense and missense mutations in a 
list of 158 candidate genes. To formulate this list, we combined genes known to play roles in 
DNA replication and repair with genes that were previously identified to harbor mutator alleles 
through genetic screens (Supplementary Table S7) (Boiteux and Jinks-Robertson, 2013; Stirling 
et al., 2014). No candidate premature stop codons were found to be both present in AAR and 
AEQ and rare (MAF<0.05) in the total population. However, we identified 40 sites with at least 
one rare non-synonymous allele (MAF<0.05) shared between both AEQ and AAR and absent 
from the other haploid strains that we experimentally found to have normal mutation spectra 
(Supplementary Table S8).  
 
One of these missense variants falls within OGG1 , a gene encoding a glycosylase key to the 
oxidative stress response that specifically excises 8-oxo-G. OGG1  null mutants are known to 
experience high C>A mutation rates (Shockley et al., 2013) and a ten-fold overall increase in 
mutation rate compared to standard lab strains (Ni, Marsischky and Kolodner, 1999). However, 
the natural variant we identified in OGG1 is present not only in the four Mosaic beer strains 
enriched for C>A rare variants, but is also present in two other strains, AQH and AAQ, whose 
rare variants are not C>A-enriched. A close examination of mutation spectrum from rare 
variants revealed that AQH may have a C>A enrichment phenotype that is masked by a high 
rate of C>T mutations (Supplementary Figure S12). No evidence of C>A enrichment was found 
in AAQ. This could imply that either the candidate variant in OGG1  is masked by one or more 
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additional epistatic variants in the other two strains or that it is not responsible for the observed 
mutator phenotype. Further study will be required to determine the genetic architecture of the 
observed mutator phenotype, which might be caused by variation at multiple loci.  
 

 
 

Figure 5. Enrichment of C>A mutations in rare natural variants 
A. Phylogeny of AEQ, AAR, and closely related Mosaic beer strains B. Top panel: The C>A ratio as a function of 
minor allele count in Mosaic beer strains that are closely related to AEQ and AAR. C>A ratios in polymorphisms are 
calculated across allele count (AC) bins with cutoffs of 2, 4, 6, and 8. When computing allele counts, closely-related 
strains are excluded, and each strain is represented as a diploid in genotype. Bottom panel: total number of variants 
in each AC bin. C. Phylogeny of the 1011 collection with strains in the top 5% of C>A fraction shown in red.  
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Discussion 
To our knowledge, this is one of the first studies to systematically explore the rates and spectra 
of mutational processes among S. cerevisiae natural isolates. Using polymorphism data, we find 
that the mutation spectrum of S. cerevisiae  exhibits rich, multidimensional variation. By 
measuring de novo mutation spectra in a representative set of haploid natural strains, we 
identify a naturally occurring genetically encoded mutator phenotype that appears to be driving 
at least one dimension of the mutation spectrum variation present in the polymorphism data.  
 
Although the mutation spectrum variation we report here is reminiscent of observed mutation 
spectrum variation among humans, great apes, and laboratory mouse strains, we note that 
mutation spectrum divergence among subpopulations of S. cerevisiae appears noisier than the 
separation previously observed among populations and species of vertebrates. While it is 
possible to infer a human genome’s continental group of origin using its mutation spectrum 
alone, the same is not true of an S. cerevisiae genome. Several factors, which are not mutually 
exclusive, might underlie this difference. One is the presence of pervasive gene flow between S. 
cerevisiae  clades (Liti et al., 2009; Schacherer et al., 2009; Peter et al., 2018). Another factor is 
the small size of the S. cerevisiae  genome; each strain has two orders of magnitude fewer 
derived alleles than most vertebrate genomes have. This data sparsity renders individual 
mutation spectrum measurements relatively noisy and limits our ability to detect how flanking 
base pairs affect the mutation rate of each site in the genome.  
 
While gene flow and data sparsity might be responsible for the relatively modest magnitude of 
mutation spectrum divergence between most strains of S. cerevisiae , it is also possible that 
DNA replication and repair are intrinsically more uniform in S. cerevisiae  than in vertebrates, 
perhaps because of the greater efficiency of selection against weakly deleterious mutator alleles 
in a unicellular organism that exists at large effective population sizes and often reproduces 
asexually. Asexual reproduction should theoretically increase the efficiency of selection against 
mutator alleles because deleterious variants created by the mutator cannot recombine onto 
other genetic backgrounds; on the other hand, it can also limit the efficiency of selection against 
individual deleterious mutations by permamently tethering them to particular genetic 
backgrounds. Further measurements of mutation spectrum variation within other species will be 
needed to determine whether the stability observed here is indeed characteristic of unicellular 
eukaryotes. If mutation spectra tend to be stable within species that have low mutation rates 
and strong selection against mutation rate modifiers, we might expect to see even less mutation 
spectrum variation among populations of ciliates like Paramecium and Tetrahymena , whose 
mutation rates are substantially lower than that of S. cerevisiae  (Sung, Tucker, et al., 2012; 
Long et al., 2016). 
 
Many questions about mutation spectrum variation with S. cerevisiae  and other species remain 
unresolved and present important avenues for future work. One obvious unknown is the identity 
of the gene or genes responsible for the mutator phenotype detected in AEQ and AAR. It is also 
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unclear whether rare polymorphisms in the Mixed origin and Mosaic region 3 clades are 
enriched for C>A mutations due to the same genetic mechanisms active in AEQ and AAR. 
Other genes might underlie the mutation spectrum differences observed among other strains, 
though our analyses suggest that some mutation spectrum gradients that dominate the common 
variation PCA are unlikely to be explained by extant mutators. One such gradient is the A>G 
enrichment in the African beer yeast clade, which is less pronounced in our rare variant PCA 
(Figure 1B) compared to our PCA extracted from variation of all frequencies (Figure 1A). This is 
somewhat reminiscent of the frequency distribution of the TCC>TTC mutation “pulse” that 
distinguishes Europeans and South Asians from other human populations, and may suggest 
that the African beer A>G enrichment was caused by an extinct mutator allele or a mutagen 
found in a past environment.  
 
Natural selection might contribute to the mutation spectrum variation within S. cerevisiae  if 
certain mutation types are more often beneficial than others and if such asymmetries vary 
between populations. However, we note that most of the gradient structure observed in our 
analyses can be reproduced with synonymous mutations alone, meaning that selection is 
unlikely to explain much of the natural yeast mutation spectrum variation we observe. 
 
The C>A mutations enriched in AEQ, AAR, and their relatives might be a signature of oxidative 
stress damage; such mutations are a known signature of the repair of 8-oxoguanine lesions, 
which is consistent with a causal role for these strains’ missense substitution in the oxidative 
stress response gene OGG1 . At the same time, C>A mutations do not comprise all of the 
10-fold excess of mutations measured in AEQ and AAR compared to standard lab strains. 
Compared to LCTL1, the ratio of C>A mutations to C>T mutations is elevated 3.61-fold in AEQ 
and 3.33-fold in AAR, which is less than the 10-fold overall elevation of the mutation rate in 
these strains. These mutation data imply that all mutation types have higher rates in AEQ and 
AAR compared to other S. cerevisiae  strains, not just C>A. Further work will be required to test 
this claim and verify whether the C>A enrichment and broad-spectrum mutation rate increase 
are driven by the same biochemical mechanism. 
 
A potential limitation of our assay is that we measure mutation spectra using only missense or 
nonsense mutations that disrupt functionality of CAN1 , which might accumulate differently than 
mutations of the same types in other regions of the genome. That being said, the 2676 and 
1866 missense and nonsense mutations in our dataset contain numerous instances of all six 
mutation types that comprise our summary mutation spectrum. Moreover, mutation spectra 
ascertained from CAN1 are consistently similar to the spectra measured in MA experiments, 
with just a slight enrichment of mutations at GC sites (Supplementary Figure S13).  
 
In summary, the results presented in this paper provide the most direct evidence to date that 
eukaryotic mutation spectra are variable within species (Harris, 2015; Harris and Pritchard, 
2017; Dumont, 2019; Goldberg and Harris, 2019). It has been proposed that the best 
explanation for such mutation spectrum heterogeneity is the frequent emergence of nearly 
neutral mutator alleles that turn over rapidly as a consequence of weak purifying selection on 
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the mutation rate. Our de novo  mutation spectrum measurements provide the first experimental 
verification of this claim, showing that at least one mutational signature whose activity varies 
among natural yeast strains is likely caused by an extant mutator allele.  
 
Although our results show that the mutation spectrum bias shared by certain Mosaic beer yeast 
is genetically encoded, it is worth noting that this C>A gradient is not the principal axis of 
mutation spectrum variation in the 1011 yeast genomes that we computed from all variants 
(Figure 1A). It remains to be seen how many other mutator or antimutator alleles might exist 
within this strain collection and to what extent they can explain the mutation spectrum variation 
observed among strains from different environments. A broader question still is whether the 
forces that created S. cerevisiae ’s mutation spectrum variation are similar to the forces that 
shaped the distinctive mutation spectra of different human populations and great ape species. If 
we can identify the genes that underlie natural yeast mutator phenotypes such as the one 
described in this study, it will likely be more straightforward to test these genes for mutator 
activity in humans and other species than to discover mutator alleles via any kind of agnostic 
genome scan.  
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Materials and Methods 

Variant filtering and mutation PCA analysis 

We filtered the original variants from the 1011 S. cerevisiae  collection (Peter et al., 2018) by 
including biallelic SNPs with less than 20% missing genotypes. We restricted to regions in the 
genomes where reads can be uniquely mapped (“mregions_100_annot_2011.bed” from (Jubin 
et al., 2014)) and excluded repeat-masked regions. Closely related strains (pairwise genetic 
distance less than 8000) are excluded from the 1011 dataset. Singletons were excluded when 
counting individual mutations in Figure 1 to minimize the impact of sequencing errors. Strains 
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with extensive introgression from S. paradoxus (clade 2, 9, 10 from (Peter et al., 2018)) were 
excluded in order to minimize bias from errors in the inference of ancestral and derived alleles. 
Ancestral states of mutations were inferred using five S. paradoxus sequences (Yue et al., 
2017), aligned to the S. cerevisiae reference genome R64-1-1 using lastz v1.04.00 (Harris, 
2007). Only sites that are fixed in four out of five strains were inferred to be the ancestral alleles, 
and other sites were ignored. When computing the mutation spectra of strains from variants for 
Figure 1A, each individual strain was assumed to be diploid, with homozygous derived alleles 
counted with twice the weight as heterozygous derived alleles. When counting rare variants, 
homozygous derived alleles were given the same weights as heterozygous derived alleles.  
 
To further minimize confounding of the mutation spectrum by ancestral allele misidentification, 
only variants with derived allele frequency less than 0.5 were used. Variants that passed all 
filtering criteria were used to compute a normalized mutation spectrum histogram for each 
individual strain. When performing PCAs, no more than 30 strains from each population were 
randomly sampled to minimize bias from uneven sampling. The same strains were used to 
generate PCA plots in Supplementary Figures S1-S4 (Supplementary Table S1), except that 
strains with fewer than 8 singletons or rare variants were further excluded when generating 
Supplementary Figure S4 and Figure 1B. Our definition of singletons varied as a function of 
ploidy (Supplementary Figure S4-S5): In haploids and homozygous diploids (as defined in 
(Peter et al., 2018)), a singleton will be fixed in the strain where it occurs (represented as 
homozygous), but in other types of strains, a singleton is required to be heterozygous. In all 
cases, a singleton is a variant present in only a single strain. 

Fluctuation assays and sequencing  

We performed fluctuation assays according to an established protocol (Lang, 2018) with the 
following modifications: 4𝜇l of overnight inoculant was diluted in 40ml SC-Arginine+2% Glucose 
media. 50𝜇l of the diluted cultures were distributed in 96-well round-bottom plates (Costar 3788) 
for each strain. Plates were sealed with Breathe-Easy sealing membrane (Sigma Z380059). 
SC-Arginine-Serine+Canavanine (60 mg/liter L-canavanine) Omni plates (Nunc OmniTray 
242811) were used and dried for 2-4 days in a 30℃ incubator before using. Depending on the 
strains, 50𝜇l of culture were diluted one- to four-fold when plating on the Omni plates, either to 
reduce the background or to avoid growth of too many mutant colonies. After plating, the plates 
were dried and then incubated at 30℃ for 48 hours. Independent mutants from separate 
cultures were inoculated into 200𝜇l SC-Arginine-Serine+60mg/Liter Canavanine+2% Glucose 
media, and then grown to saturation over ~43 hours at 30℃ with shaking. Optical densities 
(ODs) were measured after incubation, and only mutants that reached similar saturation ODs 
were pooled (150ul each) to achieve equal proportions. Genomic DNA from each pool was 
extracted using the Hoffman Winston protocol (Hoffman and Winston, 1987). CAN1 was then 
PCR amplified using published primers (Lang and Murray, 2008) with 15 cycles. Two 
independent 25𝜇l PCR reactions were then pooled and cleaned up with a Zymo Clean & 
Concentrator Kit (D4004). Sequencing libraries were prepared using the Nextera XT DNA 
Library Preparation Kit with customized indices. Sequencing runs with 75 or 150 bp paired-end 
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reads were performed using an Illumina NextSeq 550 sequencer (Raw reads uploaded to SRA 
are pending).  

Calculation of mutation rates  

The rSalvador package (Zheng, 2017) was used to estimate the number of mutation events (m) 
in each fluctuation assay using maximum likelihood under the Lea-Coulson model (Luria and 
Delbrück, 1943; Lea and Coulson, 1949; Ma, G. Vh. Sandri and Sarkar, 1992). The total number 
of cells (Nt) was measured by counting colonies seeded with dilutions of cells on YPD plates 
with dilutions ranging from 1:10,000 to 1:40,000. The rate of loss-of-function mutations per 
CAN1  gene per cell division was estimated to be m/Nt.  

Mutation calling 

Sequencing reads were first mapped using bowtie v2.2.3 (Langmead and Salzberg, 2012) to the 
Scer3 S288C reference CAN1  PCR fragment sequence using primers designed by Lang et al 
(2008). Mutation coordinates were therefore called relative to the start of the CAN1 amplicon. 
Adapters were trimmed using the program trim_galore v0.6.6 (Krueger, no date) and paired-end 
reads were merged using pear v0.9.11 (Zhang et al., 2014). The command `fastq_quality_filter 
-q 20 -p 94` was used to remove low quality reads before running bowtie. A MAPQ cutoff of 40 
was used for SNPs and a cutoff of 20 was used for indels. Pysamstats v1.1.2  (Miles, no date) 
was used to compute the frequencies of all possible alleles at each base pair. Sites with read 
depth less than 200 or with less than 40% coverage of the amplicon were excluded. After the 
first round of mapping, sites that were fixed in each strain were called and compared to the 
SNPs in the 1011 collection to confirm strain identity. We then performed a second round of 
read mapping using the same pipeline except that each strain’s reads were mapped to a 
strain-specific CAN1  reference sequence. 
 
For each sequencing pool, we let N be the number of mutants that were pooled prior to 
sequencing. Non-reference alleles with frequencies between 0.65 ⨉ 1/N and 0.95 were included 
as evidence of mutations, discarding alleles below this frequency range as likely to be 
sequencing errors and alleles above this frequency range as likely to be strain-specific SNPs. 
Adjacent indels were merged if their frequencies differed by less than 10%). MNMs were 
identified in each pool by first flagging pairs of mutations occurring at similar frequencies (plus 
or minus 9%) within 10bp of one another and then verifying the coexistence of the two 
mutations on at least 70% of the paired-end reads where at least one of the two mutations 
appears. Complex MNMs containing three or more variants were identified by merging MNMs 
that share a SNP in common. To obtain single nucleotide mutation counts and indel counts, 
mutations that are part of MNMs were first excluded from each pool. The coordinates of each 
mutation were converted back from CAN1-specific coordinates to genomic positions. Point 
mutations were further annotated using VEP (McLaren et al., 2016) to further categorize into 
missense, nonsense or synonymous mutation types.  
 

20 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2021. ; https://doi.org/10.1101/2021.01.11.425955doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.425955
http://creativecommons.org/licenses/by-nd/4.0/


Allele frequencies were used to estimate the multiplicity of each mutant as follows: First, the 
mean and standard deviation of all mutant allele frequencies were calculated from each pool. 
Each allele frequency more than two standard deviations above the mean was then translated 
into a mutation count by dividing it by the mean allele frequency and then rounding to the 
nearest integer. Mutations with frequencies less than two standard deviations above the mean 
are assumed to be mutations with count 1.  

Statistically quantifying mutation spectrum differentiation 

To compare the mutation spectra between strains, mutations were first classified as one of the 6 
general classes of base-substitutions (A>C, A>G, A>T, C>A, C>G, C>T) or as single base-pair 
insertions or deletions. We then compared the mutation spectra of the two control strains LCTL1 
and LCTL2 to all other haploid isolates as well as one spectrum published by Lang et al (2008) 
(a total of 35 tests) using a pairwise hypergeometric test (Adams and Skopek, 1987), a custom 
python script (Tracy et al., 2020). In the first round of this test, the paired mutation counts were 
arranged in a 2 x 8 contingency table. To test the null hypothesis that the two mutation spectra 
are the same, the hypergeometric probability of the observed table was calculated and 
compared to the hypergeometric probabilities of 10,000 random tables with the same row and 
column totals. The number of random tables with a higher hypergeometric probability than the 
observed provides an estimate of the p-value. We used the conservative Bonferroni correction 
to compute the significance cutoff (0.05/35=0.001429). A second set of Bonferroni-corrected 
p-values was calculated after excluding indels to form a 2 x 6 contingency table. These p-values 
were used to determine how many of the significant mutation spectrum differences were driven 
by the indel category (Supplementary Figure S8, S9).  
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