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ABSTRACT  29 

  30 

Reconstruction of heterogeneity through single-cell transcriptional profiling has greatly 31 

advanced our understanding of the spatial liver transcriptome in recent years. However, global 32 

transcriptional differences across lobular units remain elusive in physical space. Here, we 33 

implement Spatial Transcriptomics to perform transcriptomic analysis across sectioned liver 34 

tissue. We confirm that the heterogeneity in this complex tissue is predominantly determined by 35 

lobular zonation. By introducing novel computational approaches, we enable transcriptional 36 

gradient measurements between tissue structures, including several lobules in a variety of 37 

orientations. Further, our data suggests the presence of previously transcriptionally 38 

uncharacterized structures within liver tissue, contributing to the overall spatial heterogeneity of 39 

the organ. This study demonstrates how comprehensive spatial transcriptomic technologies can 40 

be used to delineate extensive spatial gene expression patterns in the liver, indicating its future 41 

impact for studies of liver function, development and regeneration as well as its potential in pre-42 

clinical and clinical pathology. 43 

 44 

INTRODUCTION 45 

The mammalian liver is a pivotal organ for essential metabolic homeostasis and detoxification. It 46 

has been ascribed a central role for the generation, exchange and degradation of essential 47 

biomolecules such as ammonium, fatty acids, amino acids and glucose as well as the 48 

conversion and eradication of various xenobiotic compounds and toxins1. 49 

Depending on the species, the liver is divided into a specific number of lobes. In mice, the liver 50 

can be divided into four lobes: medial, left (largest), right (bisected) and caudate2. The mature 51 

liver architecture is arranged in repetitive units, termed liver lobules. In brief, the lobule, 52 

classically represented as a hexagon, has a portal vein (PV) at each junction to the neighboring 53 
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lobules, through which blood rich in nutrients from the intestine enters into the liver. Eventually, 54 

the nutrient- and oxygen-exhausted blood is eventually drained in the central vein (CV) 3–5.  55 

By area, the majority of liver resident cells (80%) are parenchymal cells, i.e. hepatocytes. The 56 

remaining 20% of the tissue consists of liver non-parenchymal cells (NPCs) including; liver 57 

endothelial cells (LECs), liver resident macrophages (Kupffer cells) and other immune cells, 58 

hepatic stellate cells (HSCs) and other stromal cells, biliary epithelial cells (cholangiocytes) and 59 

smooth muscle cells, which together make up the heterogeneous functional lobular liver 60 

environment 6. Hepatocytes execute distinct functions along the lobular axis based on their 61 

proximity to the CV or the PV 7–10. In mice, this spatial division in metabolic functions, known as 62 

zonation, is primarily based on the differential expression profiles of hepatocytes along the 63 

lobular axis and is classically divided into three zones, with zone 1 at portal veins, intermediate 64 

zone 2 and zone 3 at central veins 10.  Recent findings from single-cell spatial reconstruction 65 

approaches suggest that smaller and less abundant NPCs also follow distinct spatial expression 66 

profiles based on their position along the lobular axis 11,12. These reconstruction approaches (1) 67 

provide an intricate image of the metabolic division of labor within the microenvironment of the 68 

liver lobule, (2)  identify defining factors of zonation based on DGE along the lobular axis 12–15 69 

and (3) represent a fundamental resource for the extensively studied concept of liver zonation 6. 70 

However, all previous studies either performed laser capture microdissection (LCM)15 or 71 

perfusion techniques 12,14, ultimately requiring tissue dissociation prior to sequencing, which is 72 

known to alter the physiological transcriptional landscape 16–18.  73 

Further, previous studies focused on identifying factors underlying zonation exclusively in the 74 

microenvironment of the liver lobule. Investigation of individual liver sections shows that the 75 

theoretical organization of the repetitive liver lobules is challenging, due to the 3-dimensional 76 

organization and the overall complexity of the complete organ. Lobules across the tissue are 77 

organized in a highly irregular manner and differ greatly in size and axial orientation within the 78 
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tissue. In addition, lobules are situated in varying proximities to the main sources of blood 79 

supply, namely the hepatic artery and the portal vein.  80 

An additional layer of complexity studying liver tissues is created by their organization into 81 

several lobes 19,20. The reason for this partitioning is not yet fully understood, however, certain 82 

functional differences have been suggested 21,22. Gene expression profiles may also vary 83 

between regions, defined by their distance to other lobes. Therefore, DGE patterns among liver 84 

cells beyond their organization in individual lobules and in the extended tissue context are 85 

poorly studied and are vital for our full understanding of liver function in homeostasis and 86 

disease. 87 

Spatial Transcriptomics (ST) enables high resolution assessment of spatial gene expression 88 

across tissue sections, overcoming the limitations associated with tissue dissociation 16–18. 89 

Hence, the generation of spatial transcriptomics data from liver sections in their bona fide tissue 90 

context, together with pre-existing knowledge of liver zonation enables spatial annotation of 91 

structures in the liver microenvironment (lobule) and liver macroenvironment (tissue section). 92 

Moreover, performing ST across liver tissue sections has the capacity to reveal novel structures, 93 

which may be lost when using protocols that do not allow analysis in a spatial context - 94 

structures that may play crucial roles for the overall architecture of the liver.  95 

Here, we perform ST on mouse liver tissue sections, assessing spatial factors contributing to 96 

spatial liver heterogeneity at the transcriptional level. By designing and implementing a variety 97 

of computational methods, this study aims to resolve the spatial relationships of vascular 98 

components involved in liver zonation and explore novel, previously uncharacterized structures 99 

based on their transcriptional profile and in their original tissue context. Our results support the 100 

concept that zonation represents the most prominent factor contributing to spatial heterogeneity. 101 

Computationally tracing the expression levels of genetic markers linked to zonation along the 102 

lobular axis allows us to study zonation gradients in physical space, and to infer the identity of 103 

vascular structures based on their expression profile.  We anticipate that our results, combined 104 
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with previous findings of different cell types constituting the overall transcriptional landscape of 105 

liver tissue, can enhance our current understanding of liver tissue organization.  106 

  107 

RESULTS 108 

Unsupervised clustering defines spatial distribution of expression across liver tissues 109 

We used a total of 8 sections of wild type adult mouse livers from the caudate or right liver lobe 110 

for histological staining, library preparation and sequencing. After mapping, filtering, annotation 111 

and normalization we obtained expression data consisting of 19,017 genes across 4,863 112 

individual capture locations (spots) on the ST array (summarized over all sections) and subjected 113 

the data to downstream computational analysis (see methods). Spots under the tissue section 114 

were considered for analysis and visualization (Figure 1a). Each spot is covered by a small 115 

mixture of liver cells. From the hematoxylin-stained nuclei, we estimate that each spot contains 116 

between 5-10 hepatocytes and up to 30 cells in total per spot. Subsequently, we embedded the 117 

data into low-dimensional space via non-negative matrix factorization and clustered it in an 118 

unsupervised manner using a graph-based approach, which identified 6 clusters (Figure 1b, top 119 

panel, see methods for details). To put the clusters into context and assess their spatial 120 

organization, spots were projected on the brightfield image of Hematoxylin- and Eosin (H&E) 121 

stained tissue. 122 

 123 

The projection showed a clear spatial segregation between spots belonging to certain clusters. At 124 

a first glance, cluster 5 was localized to an exclusive region of the tissue section, while spots 125 

belonging to cluster 1 and cluster 2 visually seemed to align with the vascular structures in the 126 

liver tissue  (Figure 1b, lower panel, Supplementary figure 1). To further describe the identified 127 

clusters, we performed DGE analysis between them. In fact, differentially expressed genes (DEG) 128 

in cluster 1 support periportal gene expression from previous studies while genes previously 129 

associated with pericentral gene expression are enriched in cluster 2, proposing that cluster 1 130 
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and cluster 2 denote regions around portal and central veins, respectively 10,11,15,16. Cluster 3 131 

shows enrichment for genes associated with hemoglobin, whereas cluster 4 shows enriched 132 

expression of genes involved in immune-related processes 23,24. Cluster 5 displays enrichment for 133 

mesenchymal genes 25–27  (Figure 1c, Supplementary table 1).  134 

 135 

Spots of cluster 3, cluster 4 and cluster 5 are mainly surrounded by spots of different clusters, 136 

while cluster 0, 1 and 2 form more cohesive groups of spots. Interestingly, spots of cluster 0, 3 137 

and 4 seem to adjoin spots of cluster 0, 1 and 2 in descending order, implicating transcriptional 138 

profiles of most clusters are commonly surrounded by periportal rather than to pericentral areas 139 

(Supplementary figure 2).The scattered spatial distribution of cluster 3 across sections can most 140 

likely be explained by the fact that the tissue was not perfused prior to freezing and sectioning, 141 

allowing us to detect blood cell populations throughout the liver. To approximate the replicability 142 

and the sensitivity of the method to detect the expected transcriptome of liver cells per spot, we 143 

examined the expression of genes, reported to be markers for common cell types in liver across 144 

spots under the tissue.  145 

 146 

In alignment with the histological evaluation of the tissue, expression of the hepatocyte marker 147 

Alb (expression value > 1) in all 4863 spots (100%) indicates all spots contain hepatocytes. For 148 

LECs, 1972 spots showed expression of Cdh5 28,29 (~8%). Lymphatic liver endothelial cell marker 149 

Lyve1 30–32 showed expression in a small fraction of only 80 spots (0.02%). Kupffer cell marker 150 

Clecf4 33–35 showed expression in 526 spots (~11%) while stellate cell marker Reln 36 was 151 

expressed in 568 spots (12%). Spp1 is a marker for Cholangiocytes 37, expected to only be 152 

present in bile ducts, next to portal veins and is expressed in 452 spots (~9%) (Figure 1d). These 153 

results demonstrate that cells with larger volumes and higher abundance in the liver are 154 

represented as such in the data, whereas smaller and rarer cell-types are found more scattered 155 

across the tissue, as would be expected. 156 
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While characteristic marker gene expression is a common way to extrapolate the presence of 157 

certain cell types, we wanted to include a larger set of genes constituting the expression signature 158 

of a specific cell type and compare it to our spatial data. Stereoscope, developed by Andersson 159 

et al. 38 enables cell types from single cell RNA sequencing (scRNA-seq) data to be mapped 160 

spatially onto the tissue, by using a probabilistic negative binomial model. Using this method, we 161 

were able to spatially map 20 cell types annotated by the Mouse Cell Atlas (MCA) 39 on liver tissue 162 

sections (Supplementary figure 3.1 - 3.3). Notably, high proportion values are estimated for 163 

periportal as well as pericentral hepatocytes in the MCA (Supplementary figure 3.1 - 3.3). Pearson 164 

correlation scores between cell type proportions across the spots show positive correlation, to be 165 

interpreted as spatial co-localization of non-parenchymal cells like LECs, epithelial cells and most 166 

immune-cells, as well as stromal cells (Figure 2a). For cell types related to immunity, only 167 

neutrophils display slight positive correlation to periportal hepatocytes and Fabp1-enriched 168 

hepatocytes, simultaneously exhibiting negative correlation to pericentral hepatocytes, indicating 169 

spatial segregation. Interestingly, periportal and pericentral hepatocytes not only exhibit negative 170 

correlation between each other, but also to most other cell types (Figure 2a). A large portion of 171 

spots is assigned to cluster 1 and cluster 2, and 100% of the spots contain hepatocyte markers, 172 

showing that - spatially - the liver is predominantly constituted by zonated hepatocytes, while 173 

these cells only represent a very small fraction of the MCA data. This discrepancy illustrates the 174 

power of complementing single cell trancriptome data with spatial gene expression data to 175 

thoroughly delineate liver architecture and the transcriptional landscape of liver tissue, while 176 

simultaneously demonstrating the limits of scRNA-seq data integration. Importantly, correlations 177 

between periportal and pericentral hepatocytes and portal and central clusters show similar trends 178 

as observed for spatial data, advocating for a reliable integration of cell type annotations from 179 

scRNA-seq data and our ST data (Figure 2a, Supplementary figure 4, Supplementary table 3.2). 180 

  181 
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Heterogeneous spatial gene expression linked to pericentral and periportal zonation  182 

 183 
Spatial mapping of common marker genes of periportal or pericentral zonation as well as 184 

periportal and pericentral hepatocytes from single-cell integration imply co-localization of cluster 185 

1 and cluster 2 with portal and central veins respectively. To support this observation, venous 186 

structures in our sections were annotated as a portal vein, central vein or vein of unknown type 187 

(ambiguous) based on the presence of bile ducts and portal vein mesenchyme (PV) or lack 188 

thereof (CV). Comparison of the histological annotations and the corresponding clusters sustain 189 

the observation that cluster 1 denotes periportal areas and cluster 2 signifies pericentral areas 190 

in the tissue sections (Figure 2b).  191 

Pearson correlations between genes enriched in periportal cluster 1 (PPC) and genes enriched 192 

in pericentral cluster 2 (PCC) show a negative trend, interpreted as spatial segregation (Figure 193 

2c, Supplementary table 2). PCC genes exhibit positive correlations to all other marker genes 194 

present in the PCC, and PPC marker genes show positive correlations to other PPC markers, 195 

interpreted as spatial correlation (Figure 2c). None or lower correlations can be observed 196 

between PPC or PCC marker genes and the remaining 4 clusters (cluster 0, cluster 3, cluster 4 197 

and cluster 5) (Supplementary Figure 5, Supplementary table 2). The observed heterogeneity of 198 

spatial gene expression across liver tissue sections based on portal or central vein-identity is 199 

further supported by spatial autocorrelations of marker genes, where values higher than 0.2 200 

were considered to exhibit autocorrelation. Higher values indicate stronger positive correlation 201 

of gene expression and tissue localization, while lower values (<0.2) suggest independence of 202 

gene expression and space (Supplementary Figure 6, supplementary table 3). 203 

Visualization of spots with expression of representative pericentral (Glul) and periportal (Sds) 204 

markers in the UMAP embedding further demonstrate highest expression values of Glul or Sds 205 

in the pericentral or periportal cluster, respectively. Thereafter, the expression values decrease 206 

exhibiting the lowest values for spots in the cluster representing the opposite vein-type. When 207 
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displaying expression of Glul and Sds on spots in their spatial context, these genes show 208 

highest expression in areas annotated as central or portal veins. In addition, no expression of 209 

Sds can be found in areas of high Glul expression and vice versa, indicating expression of 210 

genes present in the pericentral cluster 1 and periportal cluster 2 are spatially distinct and 211 

negatively correlated with each other (Figure 2d). 212 

  213 

Transcriptional profiling of pericentral and periportal marker genes across tissue space 214 

enable computational annotation of liver veins  215 

 216 
To further investigate zonation in physical space, we first superimposed the spots under tissue 217 

showing expression for two representative markers of central veins (Glul, Cyp2e1) and portal 218 

veins (Sds, Cyp2f2), on histologically annotated veins (Figure 3a). Glul is responsible for the 219 

expression of glutamine synthase, the main enzyme for glutamine synthesis 13, while serine 220 

dehydratase (Sds) is a key factor for gluconeogenesis 40. Cyp2e1 and Cypf2 both belong to the 221 

cytochrome p450 family involved in xenobiotic metabolism 41–43. Pericentral expression of Glul is 222 

restricted to spots in very close proximity to an annotated central vein, while Cyp2e1 is more 223 

evenly distributed across spots, with both genes not detectable around a nearby annotated portal 224 

vein. Similar observations are made for the expression of Sds and Cyp2f2 around the portal vein. 225 

Including all marker genes of the PCC and the PPC and creating module scores of expressions 226 

of all DEG of the respective cluster in the spots under tissue, we visualize the common expression 227 

gradient along the lobular axis (Figure 3a, Supplementary figure 7).  228 

Next, we wanted to assess whether gene expression was influenced by spatial proximity to the 229 

different vein types, as would be expected based on the study by Halpern et al., describing 230 

expression gradients over a total of 9 layers along the lobular axis 14. For this purpose, we 231 

generated what will be referred to as expression by distance plots; which portray the normalized 232 

gene expression as a function of the distance to respective vein type. To construct these plots, 233 
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for each spot and gene, we pair the observed expression value with the distance from the spot’s 234 

center to the nearest vein border. Finally, to better capture the relationship between distance and 235 

expression, we smooth our observations with the loess method (see methods). Expression by 236 

distance plots were compiled for a select set of five periportal and pericentral marker genes with 237 

the highest positive logFC in the PPC and PCC (Supplementary table 1, Supplementary figure 238 

14). Upon inspection of the plots, a clear dependency between distance and expression become 239 

apparent. Portal markers exhibit a gradual decline upon increased distance from a portal vein. 240 

For central veins, certain genes (e.g. Glul, Slc1a2 and Oat) exhibit a steep decrease in expression 241 

as the distance from a central vein increased, while others (e.g., Cyp2e1 and Cyp2a5) display a 242 

more gradual decline (Figure 3b). These results are in agreement with the observed expression 243 

gradients in spatially reconstructed layers in Halpern et al 14 (Supplementary figure 8). 244 

Additionally, we aligned the mapped proportion-values of the annotated periportal- and pericentral 245 

hepatocytes in the MCA single-cell data along the lobular axis, and observed the same inverse 246 

relationship with the distance of their associated vein types as was observed for the marker genes. 247 

(Supplementary figure 9).  248 

 249 

While the expression by distance plots disclose the influence of one vein type on gene expression 250 

in physical distance, we wanted to account for the eventual proximity to both vein types 251 

simultaneously. Hence, we developed expression by distance-ratio plots, where the logged ratio 252 

between the distance of both vein types is used. Using these proportion values of the physical 253 

distance of the expression by distance plots, we can account for the presence of both vein types, 254 

investigating their impact on the spatial expression landscape. We observed an almost linear 255 

relationship for portal genes along the lobular axis, exhibiting the lowest values closest to central 256 

veins and highest marker gene expression closest to portal veins. Meanwhile, expression of 257 

central markers exhibits a steep negative slope in very close proximity to central veins with a less 258 

steep decline towards portal vein vicinity (Figure 3b). The observed differences in expression 259 
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along the lobular axis of different central and portal vein markers agree with early concepts of 260 

“dynamically” expressed genes along the lobular axis of the “gradient” type and “stable” gene 261 

expression of genes of the “compartment” type directly at the central or portal vein borders 8,44,45. 262 

Spatially stable expression of compartment type genes is exemplified by Glul, and glutamate 263 

transporter Slc1a2, important for glutamine transport at central veins 13. Expression of Sds, and 264 

the histidine ammonia lyase (Hal), involved in ammonium production are distinctive for stable 265 

gene expression at portal veins 46. The dynamic expression of gradient type genes is illustrated 266 

by Cyp2e1 (pericentral) and Cyp2f2 (periportal). 267 

 268 

Given the strong association between the DEGs in the PPC and PCC, as well as the convincing 269 

demonstration of co-localization with histologically annotated central and portal veins, we aimed 270 

to explore the potential to annotate central and portal veins computationally, solely based on gene 271 

expression (Figure 3c). Computational annotation of veins as a complement to manual annotation 272 

is of relevance for multiple reasons. First, visual annotations sometimes prove to be difficult when 273 

only histological images of suboptimal quality or without immunohistological staining are available. 274 

Secondly, it is a labour intensive process that requires thorough histology training, which is not 275 

always available. Thus, a computational model not only provides the possibility to support visual 276 

vein annotations but also to predict the type of unannotated veins based on their surrounding 277 

gene expression profiles. The model constructed in this study (see methods) corresponds 278 

convincingly to visually annotated central and portal veins based on the expression profile of their 279 

respective neighborhood across all sections from different biological origin (caudate- and right 280 

liver lobe). Based on the confident attestation of overlapping visual- and computational vein 281 

annotation, we continued to computationally annotate veins with uncertain identity. Our results 282 

show estimated vein-assignment of 72 ambiguous veins to either central- or portal veins, inferred 283 

from the expression by distance of a subset of 5 central- or portal vein markers along the 284 

neighborhood of each vein (Figure 3d, Supplementary table 5). The deduction of vein-types based 285 
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on the spatial expression profile of surrounding spots demonstrates the potential to use spatial 286 

gene expression data for a variety of annotation-based applications. 287 

  288 

Exploration of components contributing to spatial heterogeneity across liver tissues  289 

Projecting the spot coordinates assigned to cluster 5 on the stained images demonstrates 290 

exclusive spatial organization in one or two distinct regions across the tissue (Figure 4a, 291 

Supplementary figure 10). Therefore, we asked how this cluster fits into the spatial liver 292 

organization based on its expression profile. Additionally, we wanted to assess whether the spatial 293 

organization of this cluster can give indications regarding the function of the underlying distinct 294 

morphological structure in this region of the tissue, which is characterized by morphologies 295 

resembling potential tissue partitioning.  296 

DGEA identified Gsn, Col1a2, Col1a3 and Vim, as highly upregulated marker genes of cluster 5 297 

(Supplementary table 1). Spots outside cluster 5 identity, show no expression or low expression 298 

of these genes is observed (Figure 4b, Supplementary figure 11). Of the four genes, Col1a2 and 299 

Col3a1 indicate the highest expression upon visual inspection. In fact, pathway analysis of the 300 

cluster 5 marker genes demonstrates the strongest enrichment of genes belonging to the 301 

“collagen and fibril organization” gene ontology (Figure 4c, Supplementary table 6). Apart from 302 

Col1a2 and Col3a1 four more marker genes in cluster 5 belong to this biological process (Dpt, 303 

Col1a1, Lum and Col14a1). Collagen-fibrils have been reported to be the main component of the 304 

irregular connective tissue composing the Glisson’s capsule in several animals, including rodents 305 

47, giving first indications for a structural function of cluster 5. In addition, processes contributing 306 

to structural formation and development, such as “extracellular matrix organization” and 307 

“extracellular structure organization” and pathways related to innate immunity, namely “response 308 

to cytokine”, “antigen processing and presentation of peptide or polysaccharide antigen via MHC 309 

class II” show enrichment within cluster 5 (Figure 4c, Supplementary table 6). 310 

 311 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426100doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426100
http://creativecommons.org/licenses/by-nc-nd/4.0/


Expression scores of markers involved in “collagen and fibril organization” are highest in spots in 312 

spots of cluster 5 and in their direct proximity in the tissue and show low scores for the remaining 313 

tissue. In contrast, expression scores of marker genes involved in the response to cytokines (H2-314 

Eb1, Timp2, Timp3, H2-Aa, Cd74, H2Ab1, Spp1, Gsn, Col3a1, Vim) are more evenly distributed 315 

across the tissue (Figure 4d, Supplementary figure 12). This result supports the higher 316 

significance of processes involved in structural formation and development of the tissue area at 317 

and around cluster 5.  318 

Moreover, Pearson correlations between marker genes of all clusters demonstrate that most 319 

cluster 5 markers show no correlation between genes of cluster 1 or cluster 2 (Supplementary 320 

figure 5) and a majority of cluster 5 markers shows significant spatial autocorrelation. Taken 321 

together, correlation analysis of cluster 5 markers and histological morphology in the respective 322 

tissue area advocates for the spatial organization of cluster 5, independent of liver zonation 323 

(Supplementary figure 6, Supplementary table 3).  324 

 325 

DISCUSSION 326 

 327 
Applying Spatial Transcriptomics on the mammalian liver represents a novel, compelling venue 328 

to explore its transcriptional and functional heterogeneity while also complementing previous 329 

data 6,17. Recent scRNA-seq studies including spatial integration by reconstruction provide high 330 

resolution information of single cell transcriptomes 13,14,14,15, but the spatial composition of these 331 

cells within the tissue is lost due to tissue dissociation, which additionally increases the risk of 332 

undesirable transcriptional changes 17,18 . In contrast, ST preserves the spatial information of 333 

gene expression in their true tissue context, thus categorically complementing single cell 334 

transcriptomic approaches. The emerging possibilities of combining spatial transcriptomic data 335 

with de-novo and existing single cell and other omics data of the same tissue offer 336 

unprecedented levels of insight into the biology of the tissue 38,48. 337 
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Here, we incorporated cell type information in the spatial data in two different ways. First, we 338 

assessed expression of characteristic marker genes within a wide range of expression levels. 339 

One example of a gene, expected to be sparsely present, is the lymphatic vessel endothelial 340 

hyaluronan receptor (Lyve1). In contrast to these rare cell types, liver tissue is reported to 341 

consist of up to 80% of hepatocytes, by area 6. Accordingly, Alb transcripts were detected at 342 

high frequency in all spots under the tissue. A recent study suggests predominant localisation of 343 

Kupffer cells in the periportal area of the liver lobule and Neutrophil recruitment upon bacterial 344 

infection 49. While, our data does not indicate significant enrichment of Kupffer cell markers in 345 

the periportal cluster of our data, colocalization of neutrophils and periportal hepatocytes, 346 

suggests periportal localization of neutrophils already in unperturbed conditions supporting 347 

implications of a proposed immune zonation 49. The liver is constantly exposed to toxic and 348 

microbial threats from the periportal blood, requiring an efficient balance between immune 349 

hyporesponsiveness and effective clearance of pathogens 50. Therefore, it will be of high 350 

interest to perform spatial transcriptomics to study the effect of infection and inflammation on the 351 

proposed immune zonation. 352 

Secondly, deconvolution of mixed cell expression profiles using stereoscope shows higher 353 

proportion values for pericentral and periportal hepatocytes than all other cell types, potentially 354 

explaining the predominant spatial segregation between pericentral and periportal hepatocytes 355 

and most other cell types in our data. The observed discrepancies between hepatocyte 356 

numbers in our and the MCA data may result from the different technical limitations that scRNA-357 

seql as well as spatial data generation face, emphasizing the current limits of scRNA-seq data 358 

integration. Transcripts from transcriptionally highly active or physically large cells might mask 359 

cell types with moderate to low transcriptional levels. Therefore, technical and computational 360 

advances to enhance resolution may benefit transcriptional profiling of rare cell types within a 361 

tissue. Nevertheless, comparisons to scRNA-seq data confirm general trends observed in our 362 

ST data, highlighting the importance of combining spatial transcriptomics with scRNA-seq data. 363 
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We annotated two clusters with anti-correlating spatial distributions and characteristic marker 364 

gene expression that align well with visually annotated portal or central veins in the H&E image 365 

as periportal (PPC) and pericentral (PCC) clusters. Overall, the spatial data generated in this 366 

study supports the hypothesis that the main source of spatial heterogeneity across liver tissue 367 

are transcriptional differences between zones along the lobular axis between portal and central 368 

veins 13,12,14. 369 

Further, exemplary expression of “compartment” type zonation central markers Glul and Slc1a2 370 

and portal markers Sds and Hal illustrate that compartmentalization of gene expression for 371 

genes performing opposing tasks like glutamine and ammonium synthesis is necessary to 372 

prevent futile cycles 51 and illustrates one example of the relevance of biochemical zonation 373 

along the porto-central axis, which is thoroughly reviewed 5,6,8,10,12–15,52,53. Our data introduces 374 

distance thresholds for “compartment” and “dynamic” markers and traces expression gradients 375 

from outer vein borders and across physical space. 376 

In addition, we investigate the relationships between marker gene expression of both portal and 377 

central veins simultaneously. Veins annotated as being central in the tissue depict a convincing 378 

inverse relationship between expression and distance to the portal vein type. Marker gene 379 

expression across all visually annotated veins in the tissue is insufficient to confirm the 380 

proposed schematic organization of the liver lobe of one central vein surrounded by six portal 381 

nodes. Nevertheless, the results implicate that the overall relationships of zonation markers 382 

between central and portal veins are comparable between porto-central axes across the tissue, 383 

independent of the schematic organization of lobules in physical space. 384 

 385 

Based on the compelling evidence for robust expression profiles of central and portal veins 386 

across the tissue we were able to generate a computational model to predict the vein-type in 387 

cases where visual annotations were ambiguous, based on the expression profiles of 388 

neighboring spots. This computational model demonstrates the great potential of spatial 389 
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transcriptomics to assist morphological annotations, providing probability values for the certainty 390 

of the computational annotation of morphological structures at their natural tissue location by 391 

transcriptional profiling. We anticipate that this method will provide a multitude of applications in 392 

future spatial transcriptomics studies, e.g. linked to pathology or infection.  393 

Cluster 5 consists of a small number of spots with distinct spatial localization. As a 394 

consequence, if the transcriptional profile of this cluster results from the presence of one or 395 

multiple distinct cell types, these might be at risk of being lost due to technical limitations of 396 

scRNA-seq experiments of the liver. Cluster 5 spots show expression of mesenchymal cell 397 

makers and are associated with  “collagen fibril organization” pathways. We propose that cluster 398 

5 might represent parts of the Glisson’s capsule, composed of collagen fibrils together with its 399 

underlying mesothelium, representing the connective tissue encapsulating the liver and regions 400 

with thicker, hilar periportal mesenchyme. The capsule preserves the structural integrity of the 401 

loosely constructed liver and enables the division into lobes 47.  402 

The mesenchymal cell-marker Vim is reported to maintain mesenchymal cell structure and 403 

serves as an indicator for cell proliferative activity in liver cells 25,54 and Gsn, encoding the actin-404 

binding protein GELSOLIN has an anti-apoptotic role in the liver 55. Anti-apoptotic effects and 405 

enrichment of connective tissue, possibly from the Glisson’s capsule, might be crucial in fragile 406 

positions of the organ or close to connection positions of liver lobes. The two additional 407 

pathways involved in structural integrity in cluster 5, namely “extracellular matrix organization” 408 

and “extracellular structure organization", further advocate for a structural function of cells in this 409 

cluster. Enrichment of gene ontologies associated with response to cytokines are observed in, 410 

but not limited to, cluster 5; hence they are contributing rather than defining components of the 411 

cluster’s expression profile and function of the structure. 412 

  413 

Knowledge about the functional reason for division of the liver into multiple lobes, and the 414 

maintenance of structural integrity in the organ, is still incomplete 19,56. Considering the sample 415 
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size used in this study, we can provide first indications rather than general claims of the function 416 

of this proposed structure. On top of capturing and supporting previously observed trends of 417 

tissue heterogeneity in the mammalian liver, our study serves as a valuable resource to further 418 

investigate the spatial expression of structural components and gene candidates involved in the 419 

aforementioned processes. 420 

 421 

In summary, this study presents a novel approach to investigate the transcriptional landscape of 422 

liver tissue through spatial transcriptomics and innovative computational approaches. We 423 

designed and implemented computational tools allowing physical distance measurements and 424 

predictions of veins. In addition, we are proposing the presence of transcriptionally distinct 425 

structures in liver tissues that previously have not been reported using transcriptomic analyses, 426 

likely due to the rarity of cells contributing to these structures. 427 

With anticipated future advances in the spatial genomics field, increased resolution will promote 428 

detailed investigations of rare cell types in tissue space. This study constitutes a compelling 429 

initial exploration of the benefits that spatial transcriptomics provides for studies of the liver and 430 

consider it a valuable data resource for the hepatology field. We further anticipate that ST will be 431 

highly beneficial for future studies addressing liver development, immunity and general 432 

pathology. 433 

  434 

 435 

 436 

 437 

 438 

 439 

 440 
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METHODS 441 

 442 

Ethical statement 443 

The Regional Animal Research Ethical Board, Stockholm, Sweden, approved experimental 444 

procedures and protocols involving extraction of organs from mice (N135/15, N78/16 and 9707-445 

2018), following proceedings described in EU legislation (Council Directive 2010/63/EU). 446 

 447 

Total RNA extraction 448 

To test for the RNA quality of the tissue for further downstream analysis, the tissue was sectioned 449 

and up to 8 sections of 10 µm sections were placed in Lysing Matrix D tubes (MPBiomedicals, 450 

cat.no.: 116913050-CF) containing Buffer RLT Plus (Quiagen, cat.no.: 1053393) and ß-451 

Mercaptoethanol (Thermofisher, cat.no.: 31350010) and homogenized in a Fastprep instrument 452 

(ThermoSavant). The flowthrough was collected through a gDNA Eliminator column and 250 ul 453 

of pure ethanol was added. Total RNA was further extracted using the RNAeasy mini kit (Quiagen, 454 

cat.no.: 74104) according to manufacturer’s instructions. The RNA integrity number (RIN) for each 455 

sample was assessed performing Bioanalyzer High Sensitivity RNA Analysis (Agilent cat.no.: 456 

5067-1535). 457 

 458 

Collection and preparation of liver samples 459 

Female C57BL/6 mice (Charles River), housed under specific pathogen-free conditions at the 460 

Experimental Core Facility, Stockholm University,were euthanized between week 8 and 12, 461 

livers were collected, and four lobes were separated. Each lobe was segmented so cryosections 462 

would fit on the 6,200 x 6,400 µm areas of the Codelink-activated microscope slides and frozen 463 

in -30°C 2-Methylbutane (Merck, cat.no.: M32631-1L). The frozen liver samples were embedded 464 

in cryomolds (10x10 mm, TissueTek) filled with pre-chilled (4°C) OCT embedding matrix and 465 

frozen (CellPath, cat.no.: 00411243). For downstream experiments, the frozen samples were 466 
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sectioned at 10 µm thickness with a cryostat (Cryostar NX70, ThermoFisher). Each subarray on 467 

the slide is covered with 1934 spots with a 100 µm diameter, containing approximately 200 468 

million uniquely barcoded oligonucleotides with poly-T20 VN capture regions per spot (Barcoded 469 

slides were manufactured by 10X Genomics Inc, probes were manufactured by IDT). The full 470 

protocol, including sequencing and computational analysis was performed for 8 sections across 471 

3 samples. Sample 1 and sample 3 each include 3 sections of the caudate lobe. Sample 2 472 

includes 2 sections of a liver piece of the right liver lobe. All sections of all samples have 473 

undergone the same treatment. 474 

 475 

Histological staining and annotations 476 

We performed the spatial transcriptomics workflow according to Ståhl et al. and Vickovic et al. , 477 

respectively 57,58. After 10 minutes of formalin fixation of the tissue on the slides they were dried 478 

with isopropanol and stained with Mayer's hematoxylin (Dako, cat.no.:  S330930-2) and bluing 479 

buffer (Dako, cat.no.: CS70230-2) followed by Eosin (Sigma-Aldrich, cat.no.: HT110216-500ML), 480 

diluted in Tris/acetic acid (pH 6.0). The stained sections were mounted with 85% glycerol (Merck 481 

Millipore, cat.no.: 8187091000) and covered with a coverslip. Bright field images were acquired 482 

at 20x magnification, using Zeiss AxioImager 2Z microscope and the Metafer Slide Scanning 483 

System (Metasystems). The liver images were assessed by a liver expert (NVH) who annotated 484 

the portal (blue) and central (red) veins, based on the presence of bile ducts and portal vein 485 

mesenchyme (PV) or lack thereof (CV). When the quality of the sample did not allow for 486 

annotation, “ambiguous vein” (green) was reported.  487 

 488 

Permeabilization, cDNA synthesis, tissue removal and probe release 489 

Next, the slides were put in mask holders (ArrayIT) to enable separated on-array reactions in 490 

each chamber as described previously 58. Each tissue section was pre-permeabilized using 491 

Collagenase I for 20 minutes at 37°C. Permeabilization was performed using 0.1% pepsin in 0.1 492 
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M HCl for 10 minutes at 37°C. cDNA synthesis was performed overnight at 42°C. Tissue 493 

removal from the arrays prior to probe release was performed using Proteinase K in PKD buffer 494 

at a 1:7 ratio at 56°C for 1 hour. Lastly, the surface probes were released and cDNA library 495 

preparation followed by sequencing was performed. 496 

  497 

cDNA library preparation and sequencing 498 

Released mRNA-DNA hybrids were further processed to generate cDNA libraries for sequencing. 499 

The sequencing libraries were prepared as described in Jemt et al. 59. In short, the 2nd strand 500 

synthesis, cDNA purification, in vitro transcription, amplified RNA purification, adapter ligation, 501 

post-ligation purification, a second 2nd strand synthesis and purification were done using an 502 

automated MBS 8000+ system. To determine the number of PCR cycles needed for optimal 503 

indexing conditions, using qPCR as described previously 58. After determination of the optimal 504 

cycle number for each sample, the remaining cDNA was indexed and amplified. The indexed 505 

libraries were then purified using an automated system as previously described 60. The average 506 

length of the indexed cDNA libraries was determined with a 2100 Bioanalyzer using the 507 

Bioanalyzer High Sensitivity DNA kit (Agilent, cat.no.:5067-4626), concentrations were measured 508 

using a Qubit dsDNA HS Assay Kit (Thermofisher, cat.no:Q32851) and libraries were diluted to 509 

4nM. Paired-end sequencing was performed on the Illumina NextSeq500 platform, with 31 bases 510 

from read 1 and 46 bases from read 2 resulting in the generation between 15 and 32.1 million raw 511 

reads per sample. To assess the quality of the reads fastqc (v 0.11.8) reports were generated for 512 

all samples.  513 

 514 

Spot visualization and image alignment 515 

The staining, visualization and imaging acquisition of spots printed on the ST slides were 516 

performed as previously described 57. Briefly, spots were hybridized with fluorescently labeled 517 

probes for staining and subsequently imaged on the Metafer Slide Scanning system, similar to 518 
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the previous acquisition of the HE images. The previously obtained brightfield of the tissue 519 

slides and the fluorescent spot image were then loaded in the web-based ST Spot Detector tool 520 

61. Using the tool, the images were aligned and the spots under the tissue were recognized by 521 

the built-in recognition tool. Spots under the tissue were slightly adjusted and spots under the 522 

tissue were extracted.  523 

  524 

Computational analysis  525 

 526 

Mapping, gene counting and demultiplexing 527 

Processing of raw reads was performed using the open source ST Pipeline (v 1.7.6) 62. In short, 528 

quality trimming was performed and homopolymer stretches longer than 15 bp were removed. 529 

The reads were subsequently mapped to the annotated reference genome (GRCm38 v86 and 530 

corresponding GENCODE annotation file) using STAR (v 2.6.1e) 63. The trimmed and filtered 531 

reads were demultiplexed according to their respective 18 nucleotides spatial barcode using 532 

TagGD demultiplexing 64 . After filtering, PCR duplicates were removed and gene count matrices 533 

were generated.  534 

 535 

 536 

Dimensionality reduction and clustering 537 

Main computational analysis of spatial read-count matrices was performed using the STUtility 538 

package (v 0.1.0) 65 in R (v 4.0.2). The complete R workflow can be assessed and reproduced in 539 

R markdown (see code availability section). First, count matrices and metadata were loaded, 540 

translating Ensembl IDs to gene symbols simultaneously. Reads of individual samples were 541 

filtered to keep only protein-coding genes and subsequently normalized using the “SCTransform” 542 

function in Seurat. The created objects were then integrated using the canonical correlation 543 

analysis (CCA) with the MultiCCA function provided in https://github.com/almaan/ST-mLiver. 544 
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Normalization of integrated data was performed, regressing out sample identities using the 545 

“SCTransform” function in Seurat. Thereafter, the CCA vectors were subjected to shared-nearest-546 

neighbor (SNN) inspired graph-based clustering via the “FindNeighbors” and “FindClusters” 547 

functions. For modularity optimization, the louvain algorithm was used and clustering was 548 

performed at a resolution of 0.3 for clustering granularity.  549 

 550 

Visualization and spatial annotation of clusters 551 

To visualize the clusters in low-dimensional space and on the spot coordinates under the tissue, 552 

non-linear dimensionality reduction was performed using UMAP with the CCA vectors as input. 553 

Visualization and annotation of identified clusters in UMAP space, on spot coordinates as well as 554 

superimposed on the Hematoxylin- and Eosin images was performed using the Seurat and 555 

STUtility package. 556 

 557 

Differential gene expression analysis (DGEA) and expression programs 558 

Differential gene expression analysis of genes in identified clusters was performed using the 559 

function “FindAllMarkers” from the Seurat package. Following the default option of the method, 560 

differentially expressed genes for each cluster were identified using the non-parametric Wilcoxon 561 

rank sum test. Initial thresholds were set to a logarithmic fold-change of 0.25 to be considered 562 

differentially expressed in a cluster and to be present in at least 10% of the spots belonging to the 563 

same cluster. Representative markers for each cluster were further selected, by choosing genes 564 

with a positive logarithmic threshold above 0.5 and an adjusted p-value below 0.05. P-value 565 

adjustments are based on bonferroni correction using all genes in the dataset.  566 

 567 

After the identification of marker genes of the individual clusters, we identified expression 568 

programs of genes for clusters we identified to have spatial distribution in our data. These were 569 

cluster 1 (periportal cluster), cluster 2 (pericentral cluster) and cluster 5. Creation of expression 570 
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programs was performed using the “AddModuleScore” function in Seurat. In brief, we stored the 571 

marker genes of each cluster in a list to serve as input for the function. From this input, the average 572 

expression of each program (list of markers) was calculated for each spot under the tissue and 573 

subtracted by the aggregated expression of a control gene set. Here the control gene set included 574 

all genes present in our data. All analyzed genes were then binned based on averaged expression 575 

and with the default number of 24 bins for the function, and 100 control genes of the control feature 576 

set were randomly selected from each bin. Higher scores indicate more marker genes of the program 577 

to be highly expressed in a spot, while lower scores indicate that no or only a small number of genes 578 

is expressed at low levels in the spot.  579 

 580 

Spatial autocorrelation  581 

To explore the correlation between spatial distribution and expression of all genes in our data we 582 

performed spatial autocorrelations using the CorSpatialGenes of the STUtility package. The 583 

method is based on building a connection network from the spot-coordinates for each spot and 584 

the four surrounding neighbors at a maximum distance of 150µm. Thereafter, individual 585 

connection networks are combined to a tissue-wide connection network to compute 586 

autocorrelations for the whole dataset. Based on the neighbor groups of each spot, lag vectors 587 

for all input features are calculated, essentially being the sum expression of the respective feature 588 

in the neighbor spots. This considered, neighbouring spots with high spatial autocorrelation of 589 

features demonstrate similar expression levels. This allowed us to compute the correlation score 590 

between the lag vector and the actual expression vector to estimate spatial autocorrelations.  591 

 592 

scRNA-seq data  593 

Publicly available scRNA-seq data was analyzed to compare and complement the spatial data 594 

in our studies. Two datasets were downloaded for this purpose, the scRNA-seq data set of cells 595 

originating from liver tissue from the Mouse Cell Atlas (accessed 2020-10-06) 39 and differential 596 
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gene expression data from the single cell spatial reconstruction of mouse liver 14. For 597 

comparative analysis and visualization, scRNA-seq data of the Mouse Cell Atlas was analyzed 598 

using the Seurat package (v 3.2.2). The count-data was first filtered for mitochondrial genes and 599 

normalized using the “SCTransform” function. Dimensionality reduction was performed using 600 

PCA and graph-based clustering was performed using the “FindNeighbors” and “FindClusters” 601 

function with a resolution of 0.8 for clustering granularity. Visualization of the clusters in low-602 

dimensional space was performed using non-linear dimensionality reduction (UMAP). Clusters 603 

were grouped by the cell type annotations provided by the metadata of the single cell data set. 604 

The second data-set used for comparative analysis was extracted from single cell spatial 605 

reconstruction data 14. Differential gene expression data between layers of zonation was 606 

compared to markers for pericentral or periportal zonation in our data set using R (v 4.0.2).  607 

 608 

Correlation analysis 609 

Correlation analyses between genes of clusters were performed using Pearson correlation, 610 

establishing linear correlations between differentially expressed genes of the clusters in base R. 611 

Visualization of correlation values was carried out using the corrplot package (v 0.84). The 612 

correlation coefficients of the matrix were ordered using the method “FPC”, describing the first 613 

principal component order of the correlation coefficients. 614 

To explore the correlation relationship between single cells (assigned to the classes “pericentral 615 

hepatocytes” and “periportal hepatocytes”) and the spatial transcriptomics “pericentral (cluster2)” 616 

and “periportal (cluster1)” clusters, spearman rank correlation coefficients were calculated. First 617 

module scores of genes assigned to each cluster were calculated for each set of data: spatial 618 

transcriptomics and single cell data of the Mouse Cell Atlas. Notably, not all genes present in one 619 

data-set were present in the other, therefore only genes present in the respective dataset were 620 

considered. Thereafter, spearman rank correlation between the scores for all groups (“pericentral 621 
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hepatocytes”, “periportal (cluster1)”, “pericentral (cluster2)”) were performed. The relationships 622 

were visualized using the corrplot package, with values ordered in the original input order.  623 

 624 

Pathway analysis  625 

Functional enrichment analysis of marker genes of clusters was performed using gprofiler2 (v 626 

0.1.0). For the analysis we extracted the gene symbols of each cluster and stored them in a list. 627 

The function “gost” of the gprofiler2 package was then used to perform gene set enrichment 628 

analysis, on input marker gene lists. In short, the function maps genes to known functional 629 

information sources and detects statistically significantly enriched terms. Since our data consists 630 

of murine liver sections, the organism was set to mus musculus and the source was set to Gene 631 

Ontology (GO) biological processes. Visualization of the 5 most significantly enriched processes 632 

for cluster 5 was performed using ggplot2 (v 3.3.2). Significance was adjusted using g:SCS (Set 633 

Counts and Sizes), as originally described by the authors of the gprofiler package 66. Enrichment 634 

scores are represented as the negative log10 algorithm of the corrected p-value. For visualization 635 

of functional enrichment on the tissue coordinates, marker genes of cluster 5 were referenced 636 

against all genes belonging to the go-terms for “collagen fibril organization (GO_0030199)” and 637 

“response to cytokine (GO_0034097)” , extracted from the gene ontology browser of the Mouse 638 

Genome Informatics database. Gene expression programs were generated for genes belonging 639 

to each gene ontology term as described before and visualized on the spots.  640 

 641 

Single cell data integration (stereoscope)  642 

The spatial data was integrated with the MCA dataset using stereoscope, a probabilistic method 643 

designed for spatial mapping of cell types 38. In short, stereoscope models both single cell and 644 

spatial data as negative binomial distributed, learns the cell type specific parameters from the 645 

(annotated) scRNA-seq data, and uses these to deconvolve the gene expression in each spot 646 

into proportion values associated with respective cell type. stereoscope uses a stochastic gradient 647 
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descent approach, leveraging the PyTorch framework, to obtain the maximum 648 

likelihood/maximum a priori estimates of both the parameter estimates and proportion values. In 649 

both steps (parameter estimation and proportion inference) a batch size of 2048 and 50000 650 

epochs were used, a custom list of highly variable genes - see next section for details - was used 651 

rather than the full expression profiles; default values were used for all other parameters. 652 

stereoscope can be accessed at https://github.com/almaan/stereoscope, where more detailed 653 

documentation regarding the parameter values is provided. The stereoscope version used in the 654 

study was v.0.3 (commit: aacd5f775b73b138e504c35ff0cb3ffafbfc78ff) 655 

 656 

The cell type proportion values were overlaid on the tissue section images by using the 657 

“FeatureOverlay” function in the STUtility package. To make our visualization more robust to 658 

outliers, we scaled all the proportion values using what we refer to as quantile scaling. Here, this 659 

procedure was performed in two steps: First, all values larger than the 0.95 quantile are changed 660 

to this quantile value (i.e., the data is clipped); then, within every cell type and section we divide 661 

the clipped values by their maximum, effectively mapping them to the unit interval [0,1]. 662 

Thereafter, the proportion values for all 20 cell types in the single cell dataset were plotted on the 663 

spot coordinated and overlaid on the Hematoxylin and Eosin stained tissue sections.  664 

 665 

Selection of highly variable genes for stereoscope 666 

Seurat (v 3.2.2) was used to extract a set of highly variable genes from the MCA single cell data, 667 

following the procedure recommended in the online Seurat Clustering Tutorial 668 

(https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html). To elaborate, the following two steps were 669 

applied to the MCA single cell data set in sequential order: data normalization (NormalizeData, 670 

default parameters), and identification of highly variable genes (FindVariableFeatures, 671 

selection.method = "vst", features = 5000). The complete set of extracted genes was used in the 672 

stereoscope analysis (Supplementary table 7). 673 
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Cluster Interaction Analysis 674 

To gauge the extent to which the expression-based clusters interacted in the spatial data, we 675 

constructed a simple interaction analysis based on a nearest neighbor approach. First, for every 676 

spot within each cluster, the cluster identity of the four nearest neighbors within a distance 677 

threshold are registered. To avoid confusion, note how these distances refer to separation of 678 

spots in the ST array and not in gene expression-space. The distance threshold is used to ensure 679 

that only spots in the actual physical neighborhood are included in the count, as might not be the 680 

case for spots near the edge otherwise. Second, once neighbor identities have been registered 681 

for all members of a cluster, we convert these integer values to a fraction by dividing them with 682 

the total number of neighbors associated with the cluster. Thus, for any given cluster we have a 683 

set of n_cluster values representing the total fraction of neighbors that belong to each one of the 684 

clusters. Since spots need to be positioned somewhere in space, clusters with a large member 685 

count will by default neighbor more spots than a cluster with low member count. Hence, to assess 686 

whether an interaction seems to be present or not, one must account for cluster size and spatial 687 

organization of the spots; here done by random permutation of the cluster labels (100 times) 688 

followed by re-calculation of the same neighborhood fraction values. This allows us to put the 689 

observed neighborhood fractions into context, to what might be expected by random chance given 690 

the cluster cardinalities and spot organization. It is by this approach that Supplementary Figure 2 691 

was generated, where each bar represents the observed values, the dashed black line the 692 

empirical mean value from the permutation analysis, and the magenta envelopes filling the area 693 

of two standard deviations from the mean. 694 

 695 

Features as a function of distance 696 

To examine how certain features of interest (e.g., gene expression or proportion values) were 697 

influenced by the physical proximity to morphological structures (e.g., central and portal veins) 698 

in the tissue samples, an approach to model these values as a function of the distance to said 699 
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structure was devised. This procedure is described in detail below: 700 

 701 

Using the brightfield HE-images, a mask was created for each morphological structure. These 702 

masks covered all pixels considered to belong to the structure. Each structure was assigned an 703 

individual (numerical) id, and one or more class attributes related to it (e.g., “vein type”). As the 704 

spots’ (capture locations) positions relate to pixel coordinates in the HE-image, it was possible 705 

to - computationally - measure the distance from a spot to each of these structures. 706 

 707 

The distance (d(s,t))) from a spot s to a structure t was here defined as the minimal (euclidean) 708 

distance from the center of spot s to any pixel p belonging to the mask of t”. In other words, if Mt 709 

is the set of all pixels in the mask belonging to structure t then: 710 

 711 

 712 

The same procedure was used when determining the distance to a specific class attribute (e.g., 713 

vein type), except that the union of all masks associated with a structure of said class was used 714 

instead of only a single mask. That is, if MC is the set of all pixels belonging to any structure of 715 

class C, then the distance ( d(s,C) ) between spot s and class C is:  716 

 717 

 718 

Next, once distances were determined, for a feature x of interest (e.g., expression value) and a 719 

structure t, a tuple (d(s,t),xs) was formed for each spot s; i.e. the distance for every spot was 720 

associated with the value of the feature. This set of distance-feature tuples could then be 721 

visualized in graphs, in order to depict the feature values’ dependence on their distance to the 722 

structure.  723 

 724 
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To better capture general trends in the data, scatterplot smoothing (using the loess function 725 

from the scikit-misc package, v 0.1.3, default values for all parameters), was applied to generate 726 

smoothed estimates. The smoothed values would then serve as an approximation of a function f 727 

such that xs = f(d(s,t)), to be interpreted as if the feature value is a function of the distance to the 728 

structure. Plotting the smoothed values against their associated distances results in a 729 

visualization of the function approximation over the distance domain, these plots are referred to 730 

as “feature by distance” plots; where the feature for example could be expression or proportion.  731 

 732 

To better account for synergies between structures of various classes, a variant of the feature 733 

by distance plots was implemented. Rather than considering features as a function of the 734 

distances between spots and structures of one specific class C ( d(s,C) ), the logged ratio 735 

between distances to two classes of interest (e.g., C1 and C2) was used, more specifically: 736 

 737 

Negative values of the log-ratio represent positions in the domain (the tissue) where the 738 

distance to the second class (C2) is larger than to the first class (C1) Positive log-ratio values 739 

have the opposite interpretation. The same smoothing procedure as described above was used 740 

to approximate this function. Plotting the smoothed values against their associated log-ratio 741 

values produces the visualizations referred to as “feature by distance-ratio” plots. The two 742 

classes used in this study were central veins and portal veins, but the concept is generalizable 743 

to any pair of classes. 744 

 745 

Unless otherwise stated, feature-distance tuples across all sections were aggregated when 746 

generating features by distance/distance-ratio plots. The envelopes encapsulating the smoothed 747 

approximation represent one standard error (SE) as given by the loess algorithm. 748 
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Expression-based classifier   749 

 750 
To assess whether the gene expression of a structure’s (e.g., central or portal vein) 751 

neighborhood held sufficient information to infer its class, we constructed a classifier designed 752 

to predict structure-class based on gene expression data. The steps of data processing and 753 

explicit details for the classification procedure are described below: 754 

First, neighborhood expression profiles (NEPs) for each structure were created, representing a 755 

weighted (by distance) average expression of a set of features (here genes) in the 756 

neighborhood of a structure. The neighborhood ( N(t) ) of a structure t was defined as the set 757 

spots with a distance less than a threshold TN to t. That is: 758 

  759 

Where S is the set of all spots, while distances between spots and structures ( d(s,t) ) are 760 

defined and computed as described in the section above (Features as a function of distance). In 761 

this study, we set the distance threshold (TN to 210). Having formed the neighborhoods, their 762 

associated expression profiles for a feature (xN(t)) were assembled accordingly: 763 

 764 

Where wts are the distance-based weights given by: 765 

 766 

In this analysis, σ was set to 20. As multiple features (x) are used, NEPs are represented by a 767 

vector of N (the number of features used) elements, denoted as xN(t). Each NEP was then given 768 

a class label, portal or central, based on the associated structure’s annotations. The task of 769 

predicting class labels from the NEPs then surmounts to a multivariate binary classification 770 

problem, for which a logistic regression model was employed. Implementation-wise the logistic 771 

regression was performed by using the LogisticRegression class from sklearn’s (v 0.23.1) 772 
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linear_model module, a l2 penalty was used (regularization strength 1), the number of max 773 

iterations was set to 1000, default values were used for all other parameters.  774 

 775 

In short, the logistic model considers the class label (zt) of a structure t as bernoulli variable 776 

conditioned on the NEPs, i.e:  777 

 778 

Fitting the model equates to finding the maximum likelihood estimates of the βN(t) and β0 given 779 

the observed data and regularization terms. Once fitted, the class of a structure t is taken as 780 

class 1 if pt ≤ 0.5 and class 2 if pt > 0.5. However, pt is a continuous value that also can be 781 

interpreted as the probability of a structure belonging to each class (low values indicate more 782 

similarities with class 1 and vice versa) - offering a form of soft classification. 783 

 784 

To validate performance, cross validation strategies were implemented at two different levels: 785 

section and sample. In the former K-sections were set aside forming a test set while the 786 

remaining sections constituted the training set. The model was trained on the training set and 787 

evaluated on the K sections in the test set. This procedure was iterated for all combinations of 788 

the pairs. Cross validation on the sample level was conducted in a similar fashion, but setting 789 

w.r.t. samples rather than individual sections - here setting aside a sample is equivalent to 790 

excluding all sections associated with the sample.  791 

 792 

As the number of samples - and thus structures - were fairly low, using the complete expression 793 

profiles (i.e., all genes) would likely have led to an overfitted model (n_features >> n_samples). 794 

Thus, a reduced set of genes were used to construct the NEPs, extracted from the set of marker 795 

genes identified in the previously described differential gene expression analysis - this set of 796 

genes can be found in Supplementary figure 13. 797 
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Data Availability 798 

The datasets generated during and/or analyzed during the current study are available in the doi-799 

minting repository ST Liver (10.5281/zenodo.4399655) and can be accessed at 800 

https://zenodo.org/record/4399655. The data used for comparative analysis of previously 801 

published data can be accessed at 14 and Gene Expression omnibus (accession code  802 

GSE84498) as well as at 39, http://bis.zju.edu.cn/MCA/ with raw data accessible at Gene 803 

Expression omnibus (accession code GSE108097) 804 

 805 

Code Availability 806 

Code to reproduce the analysis can be accessed at https://github.com/almaan/ST-mLiver, it has 807 

also been deposited to a doi-minting repository (Zenodo) accessible via 808 

https://zenodo.org/record/4399655. Functions and classes pertaining to the feature by distance 809 

and classification analysis have been assembled into a Python module (hepaquery), while the 810 

workflow used to produce the results is given in a set of notebooks. A CLI program to prepare 811 

the data for the distance-related analysis once masks have been created is also provided. See 812 

the repository documentation for more information regarding reproduction of the analyses. 813 

 814 
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FIGURES 856 

Figure 1 857 

 858 

 859 
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Figure 2 860 

 861 

 862 

 863 
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Figure 3 864 

 865 

 866 

 867 

 868 

 869 

 870 
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Figure 4 871 

 872 
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FIGURE LEGENDS 873 

Figure 1. Study overview of spatial transcriptomics on murine liver. 874 

 a) Spatial transcriptomics was performed on a total of 8 murine liver tissue sections. The tissue 875 

sections were placed in one of six, 6.2 x 6.4 mm frames on the glass slide ST array. Each frame 876 

contains 1932 spots, with >200M uniquely barcoded, mRNA capture probes. The distance 877 

between centers of each neighboring spot is 150 µm. Initially, each tissue section was fixed, 878 

stained with hematoxylin and eosin (H&E), followed by imaging. Tissue sections were 879 

permeabilized, followed by mRNA capture, tissue removal and sequencing. Thereafter, the count 880 

data was subjected to cluster- and differential gene expression analysis (DGEA). The results of 881 

the clustering and DGEA were further analyzed and spatially annotated at the global tissue 882 

context and down to the lobular level. For new spatial annotations, pathway analysis was 883 

performed. Liver lobules are classically described by a central vein (CV, red) surrounded by 6 884 

portal nodes (PV, blue) with neighboring bile-ducts (BD, green). For lobular spatial annotations, 885 

clusters have been computationally annotated by comparing expression levels in a set of genetic 886 

markers linked to metabolic zonation along the lobular axis. 887 

b) Canonical correlation analysis (CCA) was performed to integrate data of eight liver tissue 888 

sections, the data was subsequently normalized and subjected to graph-based clustering in which 889 

6 clusters were identified (see methods). The integrated data was embedded in UMAP space 890 

(top) and depicted as an overlay of the spot cluster annotation across the tissue (bottom) (scale 891 

bar indicates 500 µm). 892 

c) Heatmap depicting expression values of the five most variable genes for each cluster after 893 

subjecting the six clusters to DGEA, with the exception of cluster 3, which resulted in only four 894 

significantly differentially expressed genes. 895 

d) Visualization of spatial distribution of reported expression markers of Hepatocytes (Alb), liver 896 

endothelial cells (Cdh5), Kupffer cells (Clec4f), Cholangiocytes (Spp1), hepatic stellate cells 897 
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(Reln) and lymphatic liver endothelial cells (Lyve1) by spots under the tissue. Pie-charts indicate 898 

the respective proportion of cell type markers present in spots under the tissue (scale bar indicates 899 

500 µm). 900 

Figure 2. Clustering, spatial annotation and computational validation using established 901 

scRNA-seq data 902 

a) Visualization of cell type co-localization by Pearson correlations (left). Positive correlation 903 

values indicate spatial co-localization of cell types while negative values represent spatial 904 

segregation. UMAP embedding of single-cell data of the Mouse Cell Atlas (MCA)41 grouped by 905 

annotated cell types (bottom right). Numeration behind the cell types represent annotation of 906 

MCA data (B cell-1 = Fcmr high, -2 = Jchain high, Dendritic cell-1 = Cst3 high, -2 = Siglech high, 907 

Epithelial cell-1 = Spp1 high, -2 = /, Eryhroblast-1 = Hbb-bs high, -2 = Hbb-bt high, Hepatocyte-1 908 

= Fabp1 high, -2 = mt-Nd4 high, T cell-1 = Gzma high, -2: Trbcs2 high).  Encircled clusters in 909 

the plot refer to pericentral or periportal hepatocytes of MCA data. Quantile scales of cell-910 

proportions annotated as pericentral and periportal hepatocytes (see methods) are mapped on 911 

spatial transcriptomics spot data (top right). 912 

b) Visualization of spots representing gene expression profiles of cluster 1 (portal vein, blue) 913 

and cluster 2 (central vein, red) on H&E stained tissue (right), compared with visual histology 914 

annotations of central- (red circles) and portal- (blue circles) veins (left) (scale bar indicates 500 915 

µm). 916 

c) Pearson correlations of genes expressed in cluster 1 and 2 ordered by their first principal 917 

component (see methods). Genes with high expression in the pericentral cluster (cluster 2) 918 

show negative correlation with genes highly expressed in the periportal cluster (cluster 1) and 919 

vice versa. Genes present within cluster 1 or cluster 2 exhibit positive correlation with genes in 920 

the same cluster. 921 
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d) Projection of selected markers for central venous expression (Glul, top) and periportal 922 

expression (Sds, bottom) in UMAP space and spots under the tissue (scale bar indicates 923 

500µm). 924 

Figure 3. Expression gradient along the lobular axis and computational annotation of 925 

liver vein types 926 

a) Enlarged view of a superimposed visualization of Sds, Cyp2f2 expression in the portal vein 927 

module, consisting of selected DEGs of cluster one (supplementary table 1), all with high values 928 

around the histological annotation of a portal vein (top). Expression of Glul, Cyp2e1 as 929 

representative marker-genes of the central vein module expression (supplementary table 1), 930 

consisting of DEGs of cluster 2 with high values around the histological annotation of a central 931 

vein (bottom). 932 

b) Visualization of the average expression by distance to vein-type measured within 50 µm from 933 

the vein. The top row shows expression by distance of portal markers Sds, Cyp2f2, Hal, 934 

Hsd17b13 and Aldh1b1 to portal veins in blue and central veins in red, while the bottom row 935 

shows distances of central vein markers Glul, Oat, Slc1a2, Cyp2e1 and Cyp2a5 to portal veins 936 

in blue and central veins in red (top panel). Visualization of relative proximity of portal vein 937 

markers in the top row and central vein markers in the bottom row to both vein types. The gene 938 

expression as a function of the logged relative distances (see methods for details), negative 939 

values on the x-axis indicate points with closer proximity to central veins in red compared to 940 

portal veins in blue and vice versa for positive values, as indicated by the schematic (below 941 

graphs). 942 

c) Visual histological annotations (left) of central (red) and portal (blue) veins, including 943 

ambiguous visual annotations (green), compared with computational prediction, using the 10 944 

marker genes from 3b (right). The classification of vein types is based on a weighted (by 945 

distance) average expression of the genes expression profiles in the neighborhood of each vein. 946 
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In addition, the spatial expression data of spots neighboring uncertain morphological vascular 947 

annotations (green) can be used to deduce periportal or pericentral vein-types in the cases 948 

where visual annotations are ambiguous. 949 

d) Expression by distance of portal - (top panel) and central - (bottom panel) markers. 950 

Probabilities for each class (central and portal) can be extracted from the logistic regression 951 

model, here given as P(central) or P(portal) (scale bar indicates 500µm). 952 

 953 

Figure 4. Identification of liver tissue regions with unique transcriptional patterns 954 

 a) Projection of spots including transcriptional patterns of cluster 5 in the UMAP (from Fig 1b), 955 

on a selected part of a histological section of the caudate lobe (left) and spot location in the 956 

entire tissue section (right). 957 

 b) Visualization of Vim, Col3a1, Col1a2 and Gsn expression in spots of the same tissue section 958 

as in 4a. 959 

c) Gene-ontology (GO) enrichment for markers present in cluster 5. The Enrichment is given as 960 

the negative log10 algorithm of the adjusted p-value” (g:SCS correction, see methods)  of the 961 

differentially expressed marker genes in cluster 5. 962 

d) Module scores of genes (see methods) in cluster 5 belonging to the two biological processes 963 

with the highest enrichment scores: “collagen fibril organization” and “response to cytokine” are 964 

visualized on spots across the tissue. 965 

 966 

 967 

 968 

 969 
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