1 YHP: <u>Y</u>-chromosome <u>Haplogroup Predictor for predicting male lineages based on Y-STRs</u>

- 2
- 3 Mengyuan Song¹, Feng Song¹, Chenxi Zhao², Yiping Hou^{1*}
- 4 ¹Institute of Forensic Medicine, West China School of Basic Science & Forensic
- 5 Medicine, Sichuan University, Chengdu, China
- 6 ²College of Computer Science, Sichuan University, Chengdu, China
- 7
- 8 *Corresponding author:
- 9 E-mail: forensic@scu.edu.cn
- 10
- 11 ¹These authors contributed equally to this work.

13 Abstract

Human Y chromosome reflects the evolutionary process of males. Male lineage tracing by Y 14 chromosome is of great use in evolutionary, forensic, and anthropological studies when male 15 16 samples exist or especially when the biological sample is a mixture of male and female individuals. Identifying the male lineage based on the specific distribution of Y haplogroups 17 narrows down the investigation scope. Integrating previously published datasets with genotypes 18 19 of Y chromosome short tandem repeats (Y-STRs) and high-resolution haplogroups (122 haplogroups in total), we developed YHP (Y Haplogroup Predictor), an open-access and user-20 friendly software package to predict haplogroups, compare the similarity, and conduct 21 22 mismatch analysis of samples with Y-STR profiles. The software is available at Github (https://github.com/cissy123/YHP-Y-Haplogroup-Predictor-). 23

24

25 Key words: human Y chromosome; haplogroup; male lineage prediction; random forest

26

27 Author Summary

Familial searching has been used in forensic, anthropologic, and personalized scenarios. Software packages have been developed to assist in male familial searching, such as predicting Y-SNP haplogroups by Y-STRs. However, these software packages, in general, achieve this goal with a rough resolution. In this study, we developed a software package to conduct highresolution haplogroup inference to help familial searching and at the same time reduce the cost, since it does not require tiresome Y-SNP sequencing.

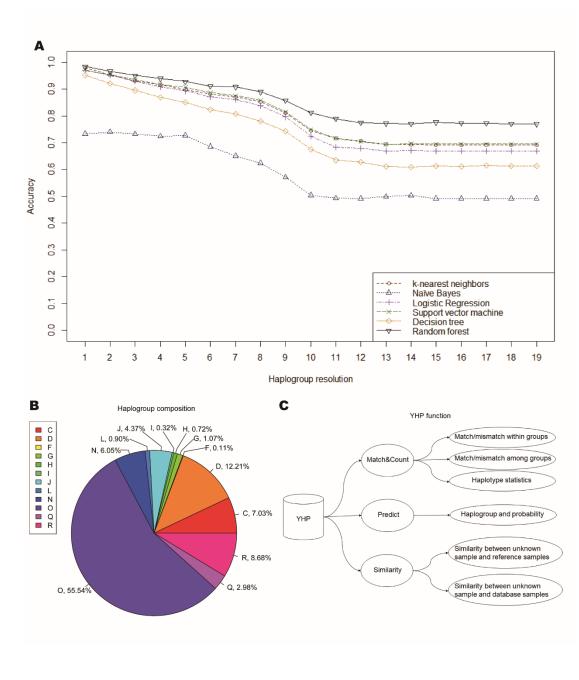
35 Introduction

Human Y chromosome has its unique evolutionary pattern and thus male phylogeny can be 36 used to trace male lineages, which is promising in evolutionary, forensic and anthropologic 37 38 studies. In forensics, identifying the possible genealogy of a DNA profile in crime scene investigations based on searching from the DNA database is of great interest (1,2). Previously 39 findings of autosomal chromosomes indicate that some forensically useful marker sets might 40 41 bear substantial ancestry information (3), indicating a significant connection between genes and geography (4). Besides, potential matches for two kinds of distinct genetic markers were 42 reported, such as Combined DNA Index System (CODIS) profile and single nucleotide 43 44 polymorphism (SNP) data, making it possible to link a CODIS profile to a whole-genome SNP profile (5-7). For Y chromosomes, the correlation of surnames and male-specific region 45 markers in Y chromosome is vital (8,9). Since surnames are arranged by male lineage in general, 46 we wondered if there was a correlation between two kinds of Y-chromosome markers, Y-STRs 47 and Y-SNPs (markers defining Y haplogroups), especially in haplogroup O. 48

49

50 Due to the low cost-effectiveness to genotype plenty of SNPs to assign haplogroups to 51 individuals, and the link between Y-STR variability and haplogroups (10), many software or programs appeared (Table 1). The software named "Yleaf" was established for Y haplogroup 52 inference from next-generation sequencing data (11), as well as many other packages for Y-53 54 STR data (12). Similarly, algorithms have been raised to classify mtDNA haplogroups (13). Previously, machine learning methods have been largely used in biological studies. Random 55 forest has been previously used in reconstructing invasion routes of Drosophila suzukii using a 56 multi-locus microsatellite dataset containing 25 loci of 23 population sites (14). Support Vector 57 Machine (SVM) was used to inference the biogeographic ancestry based on STR profiles (15). 58

- 59 Deep neural networks were also applied in predicting geographic location using whole-genome
- 60 sequence data of the organisms, achieving median test errors of 16.9km, 5.7km and 85km for
- 61 three species (Plasmodium parasites, Anopheles mosquitoes, and global human populations)
- 62 (16). More specifically, artificial neural networks were also used in classifying electrophoresis
- 63 profiles in forensic casework (17,18). Here in this study, we used machine learning to predict
- 64 Y haplogroups to a fine resolution based on Y-STRs.

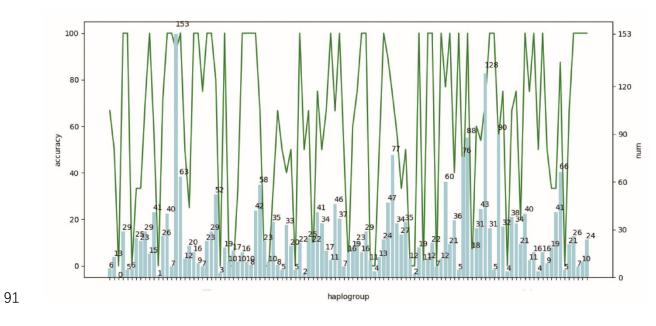

66	Table	1. 5	Summary	of	previous	softwares.
----	-------	------	---------	----	----------	------------

	Softwares	Establishers (Refer- ences)	Principles	Websites available			
Ha	plogroup predict	,					
1	YPredictor	Vadim Urasin (YFull- Research Group, Mos- cow, Russia.)	Based on the phylogeny of each hap- logroup, genotype of markers, mutation rates and the age of the parental node	http://predictor.ydna.ru/ (cannot be accessed)			
2	Haplogroup Predictor	Whit Atheys (Brookeville, MD, USA) (19,20)	Fitness score and Bayesian probability calculations	http://www.hprg.com/ha pest5/			
3	Haplogroup classifier	Joseph Schlecht (Computer Science Department, Univer- sity of Arizona, Tuc- son, Arizona) (12)	Machine learning approaches (decision tree, J48 and PART; Bayesian; support vector machine)	http://bcf.arl.ari- zona.edu/haplo (cannot be accessed)			
4	World Hap- logroup & Haplo-I Sub- clade Predic- tor	Jim Cullen	works on a Bootstrap WGD (weighted genetic distance) algorithm that's a var- iation of a goodness-of-fit test	members.bex.net/jtcul- len515/haplotest.htm			
5	NevGen Y- DNA haplog- roup predictor	Nevgen (Concept & JavaScript coding. Ken Nordtvedt)	Predict haplogroup R1b and R1a based on the correlation of the Y-STRs and Bayesian-allele-frequency	www.nevgen.org			
6	R-L21 SNP Robert Casey Predictor		Use binary Logistic Regression as the mathematical model representing the relationship between Y-STRs and Y-SNPs	http://www.rca- sey.net/DNA/R_L21/SN P_Predictor/index.php			
Ha	plogroup assignr	nent software					
7	AMY-tree	(21)	Determine Y haplogroups of samples based on whole genome SNP profiles (at least 10x coverage)	bio.kuleuven.be/eeb/lbeg			
8	YHap	(22)	Borrow information among individuals within a population by using a proba- bilistic assignment model to assign haplogroup for low-coverage data (less than 2x coverage)				
9	YFitter	(23)	Use an efficient dynamic programming algorithm that can assign haplogroups by maximum likelihood and represent the uncertainty in assignment	http://source- forge.net/projects/yfitter/			
1 0	Yleaf	(11)	Works with raw and aligned sequenc- ing data to produce the final haplog- roup output files	https://www.eras- musmc.nl/genetic_identi- fication/resources/			

68 Results and Discussion

- 69 Here we present YHP (Y Haplogroup Predictor), based on machine learning algorithms, written
- in Java, a user-friendly public software package to predict Y haplogroups based on Y-STRs.
- 71 The prediction accuracy was shown in **FIG. 1A**. Haplogroup information of database samples
- vised to train the algorithms was illustrated in FIG. 1B (detailed haplogroup information is in
- 73 **Supplementary table 1**). The three functions of YHP are shown in **FIG. 1**C.

Fig 1.


84	2.
83	2). More specifically, the accuracy for each haplogroup in random forest was displayed in FIG.
82	prediction. However, the accuracy is lower when predicting for population and region (Table
81	was shown in Table 2. Except for haplogroup prediction, we conducted population and region
80	number of samples correctly predicted dividing the total sample size of the training datasets and
79	basal haplogroup: 0.770 and 0.984, respectively). Prediction accuracy was defined by the
78	Of the six algorithms, random forest achieved the highest accuracy (both in the terminal and

- 86 Table 2. Prediction accuracy of the six acquired models while predicting the sample to
- 87 haplogroup, population or region.

Methods	Accuracy for haplogroup	population	region
k-nearest neighbors	0.691	0.671	0.235
Naïve Bayes*	0.735	0.568	0.121
Logistic Regression*	0.736	0.627	0.136
Support vector machine*	0.738	0.721	0.209
Decision tree*	0.659	0.623	0.189
Random forest	0.770	0.752	0.255

88 *The methods are optimized by linear discriminant analysis (LDA).

90 Fig 2.

93 The use of YHP was previously validated in a real case (24), population samples (25), and 94 another case (seen in Supplementary figure 1-3 and Supplementary table 2-4, 95 Supplementary Material I), all of them with validated Y-STR and Y-SNP genotypes. This was 96 achieved by the first and second function, "Predict" and "Similarity".

97

The third function, "Match&Count" serves when there is an unknown sample (e.g., from the 98 99 real crime scenes or anthropological sites) and reference samples (e.g., Y-STR profiles from the database, without Y haplogroup information), and we need to find the closest male lineage to 100 the unknown sample to conduct familial searching (fig. 1C, YHP function; the detailed function 101 102 description of YHP input files, pipeline, and output files are in Supplementary figure 4-18, Supplementary Material II, III, and IV). This software is also convenient for mismatch 103 104 analysis within or among haplogroups and populations. The function was previously applied in 105 a paper describing the founder effect of Li ethnic group (26), and was instructive in familiar 106 searching. We conducted 5,966,785 times mismatch (n=3455) calculations in the software and 107 the results were shown in Supplementary table 3 and 4. The results shows, when mismatch 108 number is no more than two, the frequency of the sample pair belonging to the same haplogroup exceeds 97% (mismatch number=0, 100%; mismatch number=1, 99.28%; mismatch number=2, 109 110 97.16%); when mismatch step is no more than two, the frequency of the sample pair belonging to the same haplogroup exceeds 97% (mismatch number=0, 100%; mismatch number=1, 111 99.08%; mismatch number=2, 97.22%) (Supplementary table 5 and 6). 112

113

Previous relevant software or programs aim at predicting samples to haplogroup I, R, J or very basal haplogroups (seen in Figure 1 of (12)), or assign haplogroup based on high-coverage or low-coverage whole-genome sequencing or resequencing data (**Table 1**). For instance,

inconsistency was reported in haplogroup prediction of a father-son pair using Whit Atheys' 117 118 haplogroup predictor (http://www.hprg.com/hapest5/hapest5/hapest5.htm) (20,27). However, after Y-SNP testing, the father-son pair was validated in the same haplogroup Olala. This 119 120 indicated that more accurate prediction is needed. The software YHP can effectively predict the father-son pair into haplogroup O1a1a2a1. YHP mainly focuses on haplogroup O (1919/3455, 121 122 55.54%, fig. 1B) (26,28,29) to give a high-resolution prediction result, where no previous 123 software reached this resolution. We have extended the resolution to 122 terminal clades, and 124 hopefully, in the future, the software can perform prediction more specifically without 125 sacrificing too much accuracy.

126

Since it requires haplotypes with known haplogroups to obtain well-established models, a larger dataset needs to be generated to achieve higher accuracy. Admittedly, the prediction accuracy is not under satisfaction in the finest resolution (although in basal haplogroup prediction, the accuracy reaches 98.4%). However, the unprecedented high resolution of haplogroup makes the software valuable in differentiating close male lineages, thus narrowing down the investigative scope in forensic and anthropological events.

133

Although there might be a plethora of samples that only have a few Y-STR mismatches when searching the database, pinpointing samples that are probable to be the same haplogroup is largely restricted. STRs are appealing genetic materials about both population history and evolutionary process, but they are difficult to interpret due to the back mutations (30,31). Considering the low mutation rate of Y-SNPs, individuals with the same prediction results tend to be from the same male lineage. This is of tremendous use for familial searching to speed up the process of finding the perpetrator.

141 **Design and Implementation**

142 **Datasets**

Here we use 3455 samples with 27 Y-STRs and 137 Y-SNPs in the dataset (the haplogroup information is listed in **Supplementary table 1**), generated by capillary electrophoresis (Genetic Analyzer 3130 and 3500) and next-generation sequencing (Ion Torrent PGM) and pyrosequencing (26,28,29). The study received the approval of the Ethics Committee at the Institute of Forensic Medicine, Sichuan University (K2019018) and the data were analyzed anonymously due to privacy concerns.

149

150 Algorithms

151 Supervised learning algorithms, k-nearest neighbors, Naïve Bayes, Logistic Regression, Support vector machine, Decision tree, and Random forest were used to train a model 152 respectively. The acquired model was used to predict the test datasets. When training a model, 153 154 we randomly split the data into training and test datasets to get a good representation of all data points. We split 3455 people into two disjoint subsets: a training set for learning associations 155 between Y-STRs and Y-SNPs and a test set for assessing prediction accuracy (400 samples as 156 test dataset and the remaining as training dataset; the training process was finished using 10 157 158 iterations). We use five-fold cross-validation with the same fraction of the full data (12%). The 159 input and output variables are indicated as X and Y, respectively, while the value for these two variables is indicated by x and y. The input data x is indicated as: 160

161
$$\mathbf{x} = (\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(i)}, \dots, \mathbf{x}^{(m)})^{\mathrm{T}}$$

162 $x^{(i)}$ is the ith locus of a single haplotype with m Y-STRs (m=27 in this study). The output data 163 y_i is the haplogroup of the corresponding x_i . The training data TR consists of pairs of input

164 and output values, shown as:

165
$$TR = \{(x_1, y_1), (x_2, y_2), \dots, (x_j, y_j), \dots, (x_n, y_n)\}$$

166 y_i is the haplogroup of sample j, with n being the total sample number (n=3455 in this study).

167

Supervised learning assumes that input and output variables X and Y are subject to the probability distribution P(X,Y), which is a probability density function. In the learning process, learning system uses the specified training dataset to learn and get a model, which is indicated as conditional probability distribution P(Y|X) or statistical decision function. In the predicting process, predicting system will give an output y_{N+1} based on the input x_{N+1} and the model:

173
$$y_{N+1} = \arg \max P(y_{N+1}|x_{N+1}) \text{ or } y_{N+1} = f(x_{N+1})$$

174 If the model has a high capability of prediction, the difference between the training data y_i and 175 the data $f(x_i)$ obtained from the model should be subtle enough (that means the sample is 176 predicted to the closest haplogroup). The learning system will select the best model among all 177 learning process to give the best prediction for the training dataset and unknown datasets.

178

179 Next, to give a rank to the reference samples evaluating the closest sample to the unknown180 sample, we developed similarity score using cosine distance, which is indicated as follows:

181 similarity=cosine_distance (probability_unknown, probability_reference)

182

183 Availability and future directions

184 The example data, and the code are available at Github (https://github.com/cissy123/YHP-Y185 Haplogroup-Predictor-). The software YHP works under Java environment, the package of

- 186 which can be downloaded from the link written in the readme file of the website.
- 187 Future directions include developing a Linux-based version and optimizing the algorithms for
- 188 prediction.
- 189
- 190 Supporting information
- 191 S1-6 Table and S1-18 Figure are compiled in the Supplementary material file (PDF).
- 192

193 Author Contributions

- 194 Conceptualization: Mengyuan Song, Yiping Hou.
- 195 Data curation: Feng Song, Chenxi Zhao.
- 196 Funding acquisition: Feng Song, Yiping Hou.
- 197 Methodology: Mengyuan Song, Chenxi Zhao.
- 198 Software: Mengyuan Song, Chenxi Zhao.
- 199 Supervision: Feng Song, Yiping Hou.
- 200 Writing-original draft: Mengyuan Song.
- 201 Writing-review & editing: Mengyuan Song, Feng Song, Chenxi Zhao, Yiping Hou.

202

203 Data Availability Statement:

204 All relevant data are within the manuscript and its Supporting Information files.

206 Funding:

207	This	work was supported by National Natural Science Foundation of China (grant numbers
208	81871	1532 and 81701866).
209		
210	Comj	peting interests:
211	The a	uthors have declared that no competing interests exist
212		
213	Refer	rences
214	1.	Cheung EYY, Gahan ME, McNevin D. Prediction of biogeographical ancestry in
215		admixed individuals. Forensic Sci Int Genet. 2018;
216	2.	Hammer MF, Chamberlain VF, Kearney VF, Stover D, Zhang G, Karafet T, et al.
217		Population structure of Y chromosome SNP haplogroups in the United States and
218		forensic implications for constructing Y chromosome STR databases. Forensic Sci Int.
219		2006;164(1):45–55.
220	3.	Algee-Hewitt BFB, Edge MD, Kim J, Li JZ, Rosenberg NA. Individual Identifiability
221		Predicts Population Identifiability in Forensic Microsatellite Markers. Curr Biol.
222		2016;26(7):935–42.
223	4.	Wang C, Zöllner S, Rosenberg NA. A Quantitative Comparison of the Similarity
224		between Genes and Geography in Worldwide Human Populations. PLoS Genet. 2012;
225	5.	Payseur BA, Place M, Weber JL. Linkage disequilibrium between STRPs and SNPs
226		across the human genome. Am J Hum Genet [Internet]. 2008 May [cited 2019 Dec
227		16];82(5):1039–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18423524

	28 6	5. E	dge MD.	Algee-Hewitt BFB	Pemberton TJ	, Li JZ.	, Rosenberg NA. Linka	ze
--	------	------	---------	------------------	--------------	----------	-----------------------	----

- 229 disequilibrium matches forensic genetic records to disjoint genomic marker sets. Proc
- 230 Natl Acad Sci [Internet]. 2017 May 30 [cited 2019 Dec 16];114(22):5671–6. Available
- from: https://www.pnas.org/content/114/22/5671
- Kim J, Edge MD, Algee-Hewitt BFB, Li JZ, Rosenberg NA. Statistical Detection of
 Relatives Typed with Disjoint Forensic and Biomedical Loci. Cell. 2018;
- 8. Gymrek M, McGuire AL, Golan D, Halperin E, Erlich Y. Identifying personal
 genomes by surname inference. Science (80-). 2013;339(6117):321–4.
- 236 9. Claerhout S, Roelens J, Van der Haegen M, Verstraete P, Larmuseau MHD, Decorte R.
- 237 Ysurnames? The patrilineal Y-chromosome and surname correlation for DNA kinship
 238 research. Forensic Sci Int Genet. 2020;44(July 2019).
- 239 10. Bosch E, Calafell F, Santos FR, Pérez-Lezaun A, Comas D, Benchemsi N, et al.
- 240 Variation in short tandem repeats is deeply structured by genetic background on the
 241 human Y chromosome. Am J Hum Genet. 1999;
- 242 11. Ralf A, Montiel González D, Zhong K, Kayser M. Yleaf: Software for Human Y-
- 243 Chromosomal Haplogroup Inference from Next-Generation Sequencing Data. Mol Biol
 244 Evol. 2018;
- 245 12. Schlecht J, Kaplan ME, Barnard K, Karafet T, Hammer MF, Merchant NC. Machine246 learning approaches for classifying haplogroup from Y chromosome STR data. PLoS
 247 Comput Biol. 2008;
- Wong C, Li Y, Lee C, Huang CH. Ensemble learning algorithms for classification of
 mtDNA into haplogroups. Brief Bioinform. 2011;12(1):1–9.
- 250 14. Fraimout A, Debat V, Fellous S, Hufbauer RA, Foucaud J, Pudlo P, et al. Deciphering

251	the routes of invasion of Drosophila suzukii by Means of ABC Random Forest. Mol
252	Biol Evol. 2017;

- 253 15. Alladio E, Della Rocca C, Barni F, Dugoujon JM, Garofano P, Semino O, et al. A
- 254 multivariate statistical approach for the estimation of the ethnic origin of unknown
- 255 genetic profiles in forensic genetics. Forensic Sci Int Genet [Internet].
- 256 2020;45(November 2019):102209. Available from:
- 257 https://doi.org/10.1016/j.fsigen.2019.102209
- 258 16. Battey CJ, Ralph PL, Kern AD. Predicting Geographic Location from Genetic
- 259 Variation with Deep Neural Networks. bioRxiv. 2019;
- 260 17. Taylor D, Kitselaar M, Powers D. The generalisability of artificial neural networks
- used to classify electrophoretic data produced under different conditions. Forensic Sci
 Int Genet. 2019;38:181–4.
- 18. Taylor D, Powers D. Forensic Science International : Genetics Teaching arti fi cial
 intelligence to read electropherograms. 2016;25:10–8.
- 265 19. Athey TW. Haplogroup prediction from Y-STR values using an allele-frequency
- 266 approach. J Genet Geneal [Internet]. 2005;1:1–7. Available from:
- 267 http://volgagermanbrit.us/documents/athey.pdf
- 268 20. Athey TW. Haplogroup Prediction from Y-STR Values Using a Bayesian-Allele-
- 269 Frequency Approach. J Genet Geneal. 2006;
- 270 21. Van Geystelen A, Decorte R, Larmuseau MHD. AMY-tree: An algorithm to use whole
 271 genome SNP calling for Y chromosomal phylogenetic applications. BMC Genomics.
 272 2013;
- 273 22. Zhang F, Chen R, Liu D, Yao X, Li G, Jin Y, et al. YHap: A population model for

274		probabilistic assignment of Y haplogroups from re-sequencing data. BMC
275		Bioinformatics. 2013;14(1).
276	23.	Jostins L, Xu Y, McCarthy S, Ayub Q, Durbin R, Barrett J, et al. YFitter: Maximum
277		likelihood assignment of Y chromosome haplogroups from low-coverage sequence
278		data. 2014;1-6. Available from: http://arxiv.org/abs/1407.7988
279	24.	Song M, Zhao C, Wang Z, Hou Y. Applying machine learning algorithms to a real
280		forensic case to predict Y-SNP haplogroup based on Y-STR haplotype. Forensic Sci
281		Int Genet Suppl Ser. 2019;
282	25.	Song M, Song F, Wang S, Hou Y. Developmental validation of the Yfiler TM Platinum
283		PCR Amplification Kit for forensic genetic caseworks and databases. Electrophoresis.
284		2020;
285	26.	Song M, Wang Z, Zhang Y, Zhao C, Lang M, Xie M, et al. Forensic characteristics and
286		phylogenetic analysis of both Y-STR and Y-SNP in the Li and Han ethnic groups from
287		Hainan Island of China. Forensic Sci Int Genet. 2019;39:e14–20.
288	27.	Zhang Z, Gao T, Li J, Lang M, Yun L. The finding of disaccord in haplogroup
289		prediction by online software in a father-son pair. Forensic Sci Int Genet Suppl Ser
290		[Internet]. 2017;6(August):e175-6. Available from:
291		http://dx.doi.org/10.1016/j.fsigss.2017.09.062
292	28.	Lang M, Liu H, Song F, Qiao X, Ye Y, Ren H, et al. Forensic characteristics and
293		genetic analysis of both 27 Y-STRs and 143 Y-SNPs in Eastern Han Chinese
294		population. Forensic Sci Int Genet. 2019;42(July):e13-20.
295	29.	Xie M, Song F, Li J, Lang M, Luo H, Wang Z, et al. Genetic substructure and forensic
296		characteristics of Chinese Hui populations using 157 Y-SNPs and 27 Y-STRs. Forensic

- 297 Sci Int Genet. 2019;
- 298 30. Putman AI, Carbone I. Challenges in analysis and interpretation of microsatellite data
- for population genetic studies. Ecol Evol. 2014;4(22):4399–428.
- 300 31. Wilson IJ, Balding DJ. Genealogical inference from microsatellite data. Genetics.
- 301 1998;

302

304 Figure legends

- 305 Fig 1. (A) Prediction accuracy of different models under different haplogroup resolution
- 306 (number 1-19 means the length of the haplogroup name). (B) Haplogroup composition of the
- 307 database. (C) Three main functions of YHP and the expected results.
- 308 Fig 2. Prediction accuracy for each haplogroup in random forest. The number in each bar
- 309 indicates the sample size in each haplogroup. The haplogroup information in x-axis can be
- 310 obtained upon request.

312	YHP: a software for predicting Y haplogroups based on Y-STRs
313	Supplementary material
314	
315	
316	
317	
318	
319	Supplementary table 12
320	Supplementary Material I (Supplementary figure 1-3 and Supplementary table 2-
321	4)4
322	Supplementary Material II (Supplementary figure 4-6)9
323	Supplementary Material III (Supplementary figure 7-13)11
324	Supplementary Material IV (Supplementary figure 14-18)17
325	Supplementary table 521
326	Supplementary table 622
327	

328 Supplementary table 1. Haplogroup information of the samples and their corresponding size

329 in each haplogroup.

	number of		number of		number of
haplogroup	haplotypes	haplogroup	haplotypes	haplogroup	haplotypes
С	9	N1a1a	17	O2a1c1a1a1b	20
C2	15	N1a1a1a1a3	10	O2a1c1a1b	1
C2b	7	N1a1a1a1a4	9	O2a1c1a1c	12
C2b1a1b1	3	N1a2	39	O2a1c1a1d	13
C2b1a2	6	N1b	67	O2a1c1a1e	27
C2b1a3	29	N1~	24	O2a2	8
C2b1b	6	Ola	10	O2a2a	13
C2c1	8	Olala	15	O2a2a1	73
C2c1a1	23	Olalala	5	O2a2a1a1a	23
C2c1a1a1	26	Olalalal	36	O2a2b	42
C2c1a2	38	Olalalala	14	O2a2b1	1
C2c1a2b	16	Olalalala	7	O2a2b1a1	6
C2c1b	41	Olalalalalal	38	O2a2b1a1a	84
D1a1	6	Olalalalala	24	O2a2b1a1a1	93
Dlalala	3	Olalalalalalb	2	O2a2b1a1a3	23
D1a1a1a1	2	Olalalalalalbl	8	O2a2b1a1a4	35
Dlalalala	31	Olalalb	5	O2a2b1a1a5	56
Dlalalala~	9	Olalalb1	4	O2a2b1a1a6	148
D1a1a1a2	46	Olalalb2	27	O2a2b1a2	28
D1a1a1a2b	8	O1a1a2	22	O2a2b1a2a	6
D1a2a1	3	Olala2a1	35	O2a2b1a2a1	99
D1a2a1a~	2	Olb	5	O2a2b1a2a1a3	34
D1a2a1b	171	Olblal	35	O2a2b1a2a1a3b1	5
D1a2a1b1	6	Olblala	6	O2a2b1a2a1a3b2	39
D1a2a1b1a	66	Olblalala	19	O2a2b1a2a1a3b2b2	38
D1a2a1b2	15	Olblalalala	6	Q	25
D1a2a1b3	3	Olblalalalal	43	Q*	43
D1a2a1b~	7	Olblalalalalb	1	Q1a2	15
DE	24	Olblalalalalbl	6	Q1b	18
F2	4	Olblalalala2	19	R	1
G	7	Olblalalalb	25	R1a1a	6
G2a	8	Olblalalalbl	22	R1a1a1b1a1	6
G2a2b	1	Olblalalb	16	R1a1a1b1a2	4
G2a2b2a	3	O1b1a2a	29	R1a1a1b2	15
G2a2b2a1	15	O1b1a2b	12	R1a1a1b2a	11
H1a	11	O1b1a2c	5	R1a1a1b2a1a	1
H1a1a	8	O1b2	19	R1a1a1b2a1a1a	22

H1a2a	1	O2	24	R1a1a1b2a2	48
Ι	11	O2a1	47	R1a1a1b2a2a	70
J1	29	O2a1c	90	R1a1a1b2a2b	4
J2	18	O2a1c1a	48	R1a1a1b2a2b1	6
J2a	35	O2a1c1a1	31	R1b	22
J2a1	54	O2a1c1a1a1	14	R1b1a1	26
J2a1a	7	O2a1c1a1a1a	32	R1b1a1a2	8
J2a1b	3	O2a1c1a1a1a1	14	R2	13
L	19	O2a1c1a1a1a1a	10	R2a	23
LT	10	O2a1c1a1a1a1a1a1	1		
Ν	2	O2a1c1a1a1a1a1a1a1a	2		
N1	17	O2a1c1a1a1a1a1a1b	4		
N1a	13	O2a1c1a1a1a2	3		
20					

332 Supplementary Material I: Application in another real case

333 There was a target sample with Y-STR profile (unknown sample) and 25 reference samples that

have the least mismatch with the unknown sample, retrieved from local Y-STR database

335 (Supplementary figure 1).

336

num	DYS576	DYS389 I	DYS635	DYS389II	DYS627	DYS460	DYS458	DYS19	Y-GATA- H4	DYS448	DYS391	DYS456	DYS390	DYS438	DYS392	DYS518	DYS570	DYS437	DYS3855	DYS3856	DYS449	DYS393	DYS439	DYS481	DYF387S1 a	DYF387S1	DYS533
unknown	19	12	20	28	18	9	18	14	12	20	10	15	23	- 11	14	37	17	15	15	19	33	12	12	23	35	40	11
1	19	12	20	28	19	9	18	14	12	20	10	15	23	11	14	37	17	15	15	19	33	12	12	23	35	40	11
2	19	12	20	28	20	9	18	14	12	20	10	15	23	11	14	37	17	15	15	19	33	12	12	23	35	40	11
3	19	12	20	28	21	9	18	14	12	20	10	15	23	11	14	37	17	15	15	19	33	12	12	23	35	40	11
4	19	12	20	28	19	9	18	14	12	20	10	15	23	11	14	37	17	15	15	19	33	12	12	24	35	40	11
5	19	12	20	28	19	9	18	14	12	20	10	15	23	11	14	38	17	15	15	19	33	12	12	23	35	40	11
6	19	12	20	28	21	9	18	14	12	20	10	15	23	11	14	37	17	15	15	19	32	12	12	23	35	40	11
7	19	12	20	28	22	9	17	14	12	20	10	15	23	11	14	37	17	15	15	19	33	12	12	23	35	40	11
8	19	12	20	28	20	9	18	14	12	20	10	15	23	11	14	37	17	15	15	19	33	12	12	23	35	39	11
9	19	12	20	28	18	9	18	14	12	20	10	15	23	11	14	36	17	15	15	19	33	12	12	23	35	39	11
10	19	12	20	28	21	9	18	14	12	20	10	15	23	11	14	37	17	15	15	19	32	12	12	23	35	40	11
11	20	12	20	28	22	9	18	14	12	20	10	15	23	11	14	37	17	15	15	19	33	12	12	23	35	40	11
12	19	12	20	28	21	9	18	14	12	20	10	12	23	11	14	37	17	15	15	19	32	12	12	23	35	40	11
13	19	12	20	28	22	9	18	14	12	20	10	12	23	11	14	37	17	15	15	19	33	12	12	23	35	40	11
14	19	12	20	28	19	9	18	14	12	20	10	15	23	11	14	37	17	15	15	19	33	12	12	23	35	39	11
15	19	12	20	28	20	9	18	14	12	20	10	15	22	11	14	37	17	15	15	19	33	12	12	23	35	40	11
16	18	12	20	28	20	9	18	14	12	20	10	15	23	11	14	37	17	15	15	19	32	12	12	23	35	40	11
17	18	12	20	28	20	9	18	14	12	20	10	15	23	11	14	37	17	15	15	19	32	12	12	23	35	40	11
18	18	12	20	28	19	9	18	14	12	20	10	15	23	11	14	37	17	15	15	19	33	12	12	23	35	38	11
19	20	12	20	28	20	9	18	14	12	20	10	15	23	11	14	37	17	15	15	19	33	12	12	23	35	42	11
20	19	12	20	28	21	9	18	14	12	20	10	15	22	11	14	37	17	15	15	19	33	12	12	23	35	40	11
21	21	12	20	28	20	9	18	14	12	20	10	15	23	11	14	37	17	15	15	19	31	12	12	23	35	40	11

338

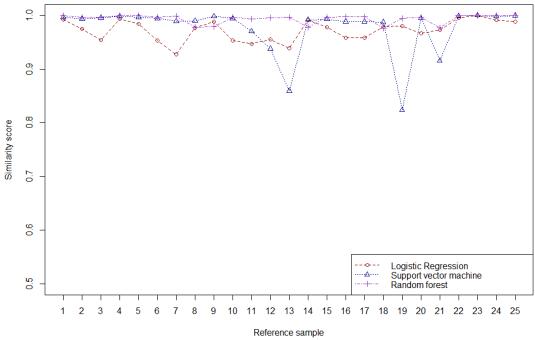
Supplementary figure 1. Haplotypes of a target sample and reference samples

339

Here questions came. Which samples are from the same male lineage as the unknown sample?
What is the ranking of the reference samples according to the closeness to the unknown sample?

We used the software to compare the similarity of the unknown sample and the reference samples. Because of the different principles behind the algorithms, we calculated similarity score between the unknown sample and 25 reference samples and concluded that reference sample 23 is the closest to the unknown sample. The steps are as follows.

347


348 First, we calculated the similarity score of these reference samples to the unknown samples in

- 349 three models (Supplementary table 2, Supplementary figure 2):
- 350

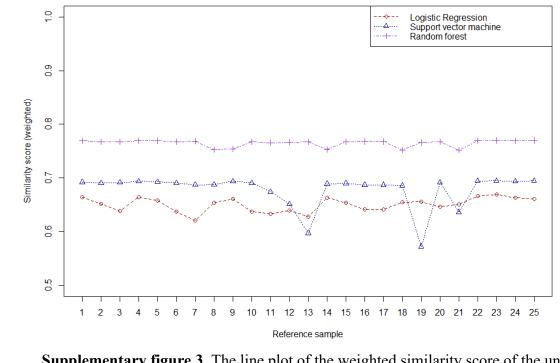
Supplementary table 2. Similarity score of these reference samples to the unknown samplesin three models.

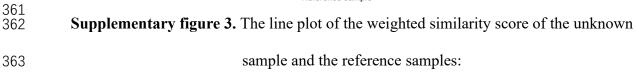
Reference	Logistic		Random
sample	Regression	SVM	Forest

1	0.992562	0.996092	0.999531
2	0.974887	0.9937	0.996514
3	0.954657	0.995065	0.996975
4	0.993527	0.998197	0.999751
5	0.983984	0.996739	0.999284
6	0.953399	0.994144	0.996468
7	0.927685	0.98888	0.998367
8	0.976826	0.989644	0.978107
9	0.98839	0.998236	0.978932
10	0.953399	0.994144	0.996468
11	0.946554	0.970426	0.993781
12	0.955503	0.937706	0.995788
13	0.938212	0.859445	0.996212
14	0.991501	0.991767	0.977985
15	0.977748	0.992833	0.996146
16	0.958325	0.988286	0.997434
17	0.958325	0.988286	0.997434
18	0.978671	0.98716	0.976332
19	0.979954	0.82383	0.994687
20	0.96622	0.995185	0.9964
21	0.972685	0.915663	0.977023
22	0.995496	0.999301	0.999899
23	0.999982	1	1
24	0.991264	0.997862	0.999859
25	0.988588	0.999885	0.999936

Si

Supplementary figure 2. The line plot of the similarity of the unknown sample and the


reference samples


357 Then, based on the accuracy in **Table 1**, we calculated the weighted similarity score

358 (Supplementary table 3, Supplementary figure 3):

- 359
- 360 **Supplementary table 3.** Weighted similarity score by the accuracy of different models.

Reference sample	Logistic Regression (weighted)	SVM (weighted)	Random Forest (weighted)
	z /	0.692284	0.769639
		0.690621	0.767316
		0.69157	0.767671
2	0.664669	0.693747	0.769808
4	0.658285	0.692733	0.769448
(0.637824	0.69093	0.767281
-	0.620621	0.687271	0.768742
8	0.653497	0.687803	0.753142
9	0.661233	0.693774	0.753777
10	0.637824	0.69093	0.767281
11	0.633245	0.674446	0.765211
12	0.639231	0.651705	0.766756
13	0.627664	0.597314	0.767083
14	0.663314	0.689278	0.753049
13	0.654114	0.690019	0.767032
10	6 0.641119	0.686859	0.768024
17	0.641119	0.686859	0.768024
18	0.654731	0.686076	0.751776
19	0.655589	0.572562	0.765909
20	0.646401	0.691653	0.767228
21	0.650726	0.636386	0.752308
22	0.665986	0.694515	0.769922
23	0.668988	0.695	0.77
24	0.663156	0.693514	0.769891
25	0.661366	0.69492	0.769951

364

365 Finally, the ranking of the reference samples is based on the mean value of three weighted

366 scores (Supplementary table 4):

367

368 **Supplementary table 4.** The ranking of the closeness to the unknown sample.

Reference sample	weighted score
23	0.711329168
22	0.710141087
4	0.709408108
24	0.708853689
25	0.708745317
1	0.708648946
5	0.706822429
15	0.703721642
2	0.703378919
9	0.702928022
14	0.701880327
20	0.701760818
3	0.699302072

6	0.698678134
10	0.698678134
16	0.698667317
17	0.698667317
8	0.698147231
18	0.697527623
7	0.692211636
11	0.690967345
12	0.685897656
21	0.679806661
19	0.66468681
13	0.66402034
<u>.</u>	.1 1

- 369 In conclusion, the reference sample 23 is the closest to the unknown sample, followed by
- 370 reference 22, 4,24, ..., 13.

372 Supplementary Material II: YHP input files

373 II-1 "Match&Count" for mismatch analysis

- 374 Input file includes sample ID (necessary), population, haplogroup and Y-STR (necessary)
- 375 genotypes (Supplementary figure 4).

376	A 1 SampleID(population-region) 2 BJ-1(Han-Beijing) 3 BJ-2(Han-Beijing) 4 BJ-100(Han-Beijing) 5 BJ-101(Han-Beijing) 6 BJ-102(Han-Beijing) 7 BJ-102(Han-Beijing) 8 BJ-102(Han-Beijing) 9 BJ-102(Han-Beijing) 10 BJ-102(Han-Beijing) 11 BJ-101(Han-Beijing) 13 BJ-108(Han-Beijing) 14 BJ-109(Han-Beijing)	B population Han Hui Han Hui Han Han Han Han Han Han Han Han Han	C Haplogroup O2a2bialai O2a2bialai O2a2bialai O2a2bialai Nib O2a2biala Nib O2a2clale C2c1a2b O1a1a1a1a1a1a Nib O1b2 O1b2 O2a1cla	DYS576 18 19 19 18 18 17 14 18 16 17 17 18	E DY\$3891 12 12 14 12 12 14 12 13 12 13 13 13 12	F DYS635 20 20 21 19 23 21 19 23 21 22 21 22 21 22 23 21 22 23 21 21	G DYS389II 28 28 31 28 28 30 28 30 29 29 29 28 28 29	H DYS627 21 21 21 21 21 21 21 21 21 21 21 21 21	DYS460 10 10 10 9 9 10 10 10 10 10 11 11 11	J DY\$458 18 18 19 18 15 18 15 15 15 15 17 17 17 19	K DYS19 14 14 15 14 15 14 15 16 15 14 15 15 17	L YGATAH4 12 12 12 11 11 11 12 12 12 12 12 12 12	
377			Suppleme	ntary	figur	•e 4. E	Examp	ole file	e: inp	ut1			
378													
379	II-2 "Predict"	for hap	ologroup pr	edict	ion								
380	Input file includ	les sam	ple ID and	Y-STI	R gen	otype	s (sing	gle sa	mple:	Supj	pleme	entary figu	ıre 5;
381	multiple sample	e: Supp	lementary	figure	e 6).								
382													
383	II-2-1 Single sa	ample 1	mode										
384	A B 1 SampleID population 2 unknown	C Haplogroup	D E DY\$576 DY\$389 19 12	PI DYS6 20	35 DYS	G 3389II I 28	H DY\$627 18	 DY\$460 9		J 458 D 18	<u>к</u> YS19 14	L YGATAH4 12	
385			Suppleme	ntary	figur	•e 5. E	Examp	ole file	e: inp	ut2			
386													
387	II-2-2 Multiple	e samp	le mode										

	A	B	С	D	E	F	G	Н		J	K	L
1	SampleID	population	Haplogroup	DYS576	DYS389I	DY\$635	DYS389II	DY\$627	DY\$460	DY\$458	DYS19	YGATAH4
2	unknown			19	12	20	28	18	9	18	14	12
3	1			19	12	20	28	19	9	18	14	12
4	2			19	12	20	28	20	9	18	14	12
5	3			19	12	20	28	21	9	18	14	12
6	4			19	12	20	28	19	9	18	14	12
7	5			19	12	20	28	19	9	18	14	12
8	6			19	12	20	28	21	9	18	14	12
9	7			19	12	20	28	22	9	17	14	12
10	8			19	12	20	28	20	9	18	14	12
11	9			19	12	20	28	18	9	18	14	12
12	10			19	12	20	28	21	9	18	14	12
13	11			20	12	20	28	22	9	18	14	12
14	12			19	12	20	28	21	9	18	14	12
15	13			19	12	20	28	22	9	18	14	12
16	14			19	12	20	28	19	9	18	14	12
17	15			19	12	20	28	20	9	18	14	12
18	16			18	12	20	28	20	9	18	14	12
19	17			18	12	20	28	20	9	18	14	12
20	18			18	12	20	28	19	9	18	14	12
21	19			20	12	20	28	20	9	18	14	12
22	20			19	12	20	28	21	9	18	14	12
23	21			21	12	20	28	20	9	18	14	12

388

Supplementary figure 6. Example file: input3. The line in blue background is the unknown sample and the lines below that are reference samples.

391

392 II-3 "Similarity" for similarity scoring

393 Input file includes sample ID and Y-STR genotypes of the unknown sample and the reference

394 samples (same as II-2-2). When there is no reference sample, the output file is mismatch result

395 of the unknown sample and all samples in the database.

397 Supplementary Material III: YHP pipeline

- 398 For the first function Match&Count, the interface is as follow (Supplementary figure 7 and
- **8**). Click the buttons to choose the input file and comparison mode.

🔳 ҮНР		—	×
Match&Count Predict Similarity			
File selectPopulation selectGroup match mismatch			
N	lot avaliable		

400

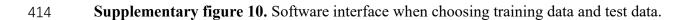
401

Supplementary figure 7. Software interface for Match&Count.

	YHP			- 🗆 ×
М	latch&Count Predict	t Similarity		
Fi	input1_forMatch			
	SampleID	Population	Haplogroup	
0	BJ-1(Han-Beijing)	Han	O2a2b1a1a1	[18, 12, 20, 28, 21, 10, 18,
1	BJ-2(Han-Beijing)	Han	O2a2b1a1a1	[18, 12, 20, 28, 21, 10, 18,
2	BJ-100(Han-Beijing)	Hui	O2a2b1a1a1	[19, 14, 22, 31, 21, 10, 18,
3	BJ-101(Han-Beijing)	Han	O2a2b	[19, 12, 21, 28, 21, 9, 19, 1
4	BJ-102(Han-Beijing)	Han	O2a2b1a1a	[18, 12, 19, 28, 19, 9, 18, 1
5	BJ-103(Han-Beijing)	Hui	N1b	[18, 14, 23, 30, 21, 10, 15,
6	BJ-104(Han-Beijing)	Han	O2a1c1a1e	[17, 12, 21, 28, 21, 10, 18,
7	BJ-105(Han-Beijing)	Han	C2c1a2b	[14, 13, 20, 30, 22, 10, 17,
8	BJ-106(Han-Beijing)	Han	O1a1a1a1a1a1a	[18, 12, 19, 29, 24, 10, 15,
9	BJ-107(Han-Beijing)	Han	N1b	[16, 13, 23, 29, 22, 10, 15,
10	BJ-111(Han-Beiiing)	hhh	O1b2	[17. 13. 21. 28. 19. 11. 17.

Supplementary figure 8. Software interface after the input file was chosen.

For the second function Predict, the interface is as follow (**Supplementary figure 9 and 10**). In this step, training data is changeable, whether using default dataset (generated in our lab as described above) or customized data (haplotypes with haplogroup information). If one uses customized data, the number of Y-STR loci is flexible, not having to be 27, but the test data should be consistent with the training data. After selection test data, click "Train" first, and then "Test".


YHP			_	Х
Match&Count	Predict	Similarity		
	PredictW	/indow		
		Not avaliable		

411

Supplementary figure 9. Software interface for Predict.

YHP	_	_		\times
Match&Count Predict Similarity				
Predict Window —		×	T	
trainDataSet 👻 📃 👘 👘				
Train Test				
			-	

- 416 For the third function Similarity, the interface is as follow (Supplementary figure 11, 12 and
- 417 13). There are two comparison mode, "withDatabase" and "withinSamples", which require
- 418 different input files as illustrated previously in the input section.

VHP			_	×
Match&Count	Predict	Similarity		
		withDatabase		
		withinSamples		
		Not avaliable		

419

420

Supplementary figure 11. Software interface for Similarity.

YHP		_		\times
Match&Coun	t Predict Similarity			
	💽 Similarity Window —	×	<	
	inputSample			
	Compute			

Supplementary figure 12. Software interface for Similarity in "withDatabase" mode.

THP YHP	_		×
Match&Count Predict Similarity			
💽 Similarity Window — 🗆	×]	
referenceSample inputSample			
Compute			
L		-	

Supplementary figure 13. Software interface for Similarity in "withinSamples" mode

426 Supplementary Material IV: Output results

427 The output files can be saved manually or automatically in file container "output".

428 IV-1 Match&Count

- 429 The file can be saved in the main window after mismatch analysis. The output result includes
- 430 match/mismatch number, step, ratio, and mismatch detail (Supplementary figure 14 is one of
- 431 the output results in this function).

	A	В	С	D	E	F	G H	_
1	samplePair	populationPair	groupPair	misMatchNum	misMatchSteps	misMatchRatio	misMatchDetail	
2	BJ-101(Han-Beijing),BJ-111(Han-Beijing)	Han, hhh	O2a2b,O1b2	20	37	1.85	2(19,17),1(12,13),0(21,2)	1),(
3	BJ-102(Han-Beijing),BJ-111(Han-Beijing)	Han,hhh	O2a2b1a1a,O1b2	18	35	1.94	1(18,17),1(12,13),2(19,2)	1),(
4	BJ-111(Han-Beijing),BJ-109(Han-Beijing)	hhh,Han	O1b2,O2a1c1a	17	27	1.59	1(17,18),1(13,12),0(21,2)	1),
5	BJ-1(Han-Beijing),BJ-111(Han-Beijing)	Han, hhh	O2a2b1a1a1,O1b2	20	30	1.5	1(18,17),1(12,13),1(20,2)	1),(
6	BJ-2(Han-Beijing),BJ-111(Han-Beijing)	Han,hhh	O2a2b1a1a1,O1b2	20	30	1.5	1(18,17),1(12,13),1(20,2)	1),(
7	BJ-104(Han-Beijing),BJ-111(Han-Beijing)	Han,hhh	O2a1c1a1e,O1b2	17	31	1.82	0(17,17),1(12,13),0(21,2)	1),(
8	BJ-105(Han-Beijing),BJ-111(Han-Beijing)	Han,hhh	C2c1a2b,O1b2	21	35	1.67	3(14,17),0(13,13),1(20,2)	1),:
9	BJ-107(Han-Beijing),BJ-111(Han-Beijing)	Han,hhh	N1b,O1b2	21	40	1.9	1(16,17),0(13,13),2(23,2)	1),:
10	BJ-106(Han-Beijing),BJ-111(Han-Beijing)	Han, hhh	Olalalalala,Olb2	21	39	1.86	1(18,17),1(12,13),2(19,2)	1),:
11	BJ-103(Han-Beijing),BJ-106(Han-Beijing)	Hui,Han	N1b,O1a1a1a1a1a	18	36	2	0(18,18),2(14,12),4(23,19)	9),:
12	BJ-100(Han-Beijing),BJ-104(Han-Beijing)	Hui,Han	O2a2b1a1a1,O2a1c1a1e	16	34	2.13	2(19,17),2(14,12),1(22,2)	1),:
13	BJ-100(Han-Beijing),BJ-108(Han-Beijing)	Hui,Han	O2a2b1a1a1,O1b2	21	41	1.95	2(19,17),1(14,13),1(22,2)	1),:
14	BJ-103(Han-Beijing),BJ-109(Han-Beijing)	Hui,Han	N1b,O2a1c1a	16	40	2.5	0(18,18),2(14,12),2(23,2)	1),:
15	BJ-100(Han-Beijing),BJ-105(Han-Beijing)	Hui,Han	O2a2b1a1a1,C2c1a2b	23	38	1.65	5(19,14),1(14,13),2(22,20	0),:
16	BJ-103(Han-Beijing),BJ-108(Han-Beijing)	Hui,Han	N1b,O1b2	20	41	2.05	1(18,17),1(14,13),2(23,2)	1),:
17	BJ-100(Han-Beijing),BJ-102(Han-Beijing)	Hui,Han	O2a2b1a1a1,O2a2b1a1a	20	36	1.8	1(19,18),2(14,12),3(22,19)	9),:
18	BJ-103(Han-Beijing),BJ-105(Han-Beijing)	Hui,Han	N1b,C2c1a2b	18	40	2.22	4(18,14),1(14,13),3(23,20	0),(

432

433

Supplementary figure 14. Output file for Match&Count.

434

435 IV-2 Predict

- 436 The predicting result (single sample: **Supplementary figure 15**; multiple sample:
- 437 Supplementary figure 16) is saved automatically in file container "output".

_	A	В
1	DATABASE	
2		unknown
3	knn	02a2a1(1.0)
4	naiveBayes	R2a(1.0)
5	logisticRegression	01b1a1(0.02)
6	svm	02a1c(0.057)
7	decesionTree	02a2b1a1a1(1.0)
8	randomForest	02a2b1a1a4(0.382)

Supplementary figure 15. Single sample prediction result.

	A	В	С	D	E	F	G	Н	I	J
1	DATABASE									
2		unknown	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
3	knn	02a2a1(1.0)	02a2a1(1.0)	02a2a1(1.0)	02a2a1(1.0)	02a2a1(1.	02a2a1(1.	02a2a1(1.	02a2a1(1.	02a2a1 (:
4	naiveBayes	R2a(1.0)	R2a(1.0)	R2a(1.0)	R2a(1.0)	R2a(1.0)	R2a(1.0)	R2a(1.0)	R2a(1.0)	R2a(1.0
5	logisticRegression	01b1a1(0.02)	01b1a1(0.02)	01b1a1(0.02)	01b1a1(0.02)	01b1a1(0.	01b1a1(0.	01b1a1(0.	01b1a1(0.	01b1a1 (
6	s∀m	02a1c(0.057)	02a1c(0.057)	02a1c(0.057)	02a1c(0.057)	02a1c(0.0	02a1c(0.0	02a1c(0.0	02a1c(0.0	02a1c(0.
7	decesionTree	02a2b1a1a1(1.0)	02a2b1a1a1(1.0)	02a2b1a1a1(1.0)	02a2b1a1a4(1.0)	02a2b1a1;	02a2b1a1a	02a2b1a1a	02a2b1a1a	02a2b1a
8	randomForest	02a2b1a1a4(0.382)	02a2b1a1a4(0.394)	02a2b1a1a4(0.418)	02a2b1a1a4(0.435)	02a2b1a1;	02a2b1a1a	02a2b1a1a	02a2b1a1a	02a2b1a

440

439

Supplementary figure 16. Multiple sample prediction result.

442

446

441

443 IV-3. Similarity

- 444 The similarity result (withDatabase: **Supplementary figure 17**; withinsamples:
- 445 Supplementary figure 18) is saved automatically in file container "output".

	А	В	С	D	E	F
1	sample	MinOrMax	referenceSample	misMatchNum	population	group
2	BJ-1(Han-Beijing)	MIN	BJ-1(Han-Beijing)	0	Han	O2a2b1a1a1
3	BJ-1(Han-Beijing)	MAX	LS48(Tibetan-Lhasa)	26	Tibetan	D1a2a1b1
4	BJ-1(Han-Beijing)	MAX	AB29(Tibetan-Ngawa)	26	Tibetan	D1a2a1b1a
5	BJ-1(Han-Beijing)	MAX	RK54(Tibetan-Xigaze)	26	Tibetan	D1a2a1b

- 447 Supplementary figure 17. Similarity result in "withDatabase". MIN indicates the closest
- sample between the target sample and samples in the database; MAX indicates the least
- 449 closest sample.

	. A	В	C	D
1	method		BJ-1 (Han-B	eijing)
2	knn	BJ-1(Han-Beijing)	1.0	
3		BJ-2(Han-Beijing)	1.0	
4		BJ-100(Han-Beijing)	0.5	
5		BJ-101(Han-Beijing)	0.5	
6		BJ-102(Han-Beijing)	0.5	
7		BJ-103(Han-Beijing)	0.5	
8		BJ-104(Han-Beijing)	0.5	
9		BJ-105(Han-Beijing)	0.5	
10		BJ-106(Han-Beijing)	0.5	
11		BJ-107(Han-Beijing)	0.5	
12		BJ-111(Han-Beijing)	0.5	
13		BJ-108(Han-Beijing)	0.5	
14		BJ-109(Han-Beijing)	0.5	
15	naiveBayes	BJ-1 (Han-Beijing)	1.0	
16		BJ-2(Han-Beijing)	1.0	
17		BJ-100(Han-Beijing)	0.5	
18		BJ-101 (Han-Beijing)	0.5	
19		BJ-102(Han-Beijing)	0.51369	
20		BJ-103(Han-Beijing)	0.5	
21		BJ-104(Han-Beijing)	0.5	
22		BJ-105(Han-Beijing)	0.5	
23		BJ-106(Han-Beijing)	0.5	
24		BJ-107(Han-Beijing)	0.5	
25		BJ-111(Han-Beijing)	0.5	
26		BJ-108(Han-Beijing)	0.5	
27		BJ-109(Han-Beijing)	0.5	
28	logisticRegression	BJ-1(Han-Beijing)	1.0	
29	1081501000810551001	BJ-2(Han-Beijing)	1.0	
30		BJ-100(Han-Beijing)	0.51025	
31		BJ-100(Han-Beijing)	0.51025	
32		BJ-102(Han-Beijing)	0.72476	
33		BJ-103(Han-Beijing)	0.50024	
34		BJ-103(Han-Beijing)	0.51158	
35		BJ-105(Han-Beijing)	0.50005	
36		BJ-106(Han-Beijing)	0.50072	
37		BJ-100(Han-Beijing)	0.50072	
38		BJ-111 (Han-Beijing)	0.51869	
30 39		BJ-108(Han-Beijing)	0.51869	
		BJ-108(Han-Beijing) BJ-109(Han-Beijing)	0.53099	
40				
41	SVM	BJ-1 (Han-Beijing)	1.0	
42		BJ-2(Han-Beijing)	1.0	
43		BJ-100(Han-Beijing)	0.50943	
44		BJ-101 (Han-Beijing)	0.51549	

450

Supplementary figure 18. Similarity result in "withinSamples".

452 The newest accessed version is up to December 7, 2020. The software will be regularly

453 updated and Linux-based version will be released soon.

455 **Supplementary table 5.** Indications from mismatch number results (mismatch number is the

456 total number of different alleles). Sample pairs are the number of pairs in the corresponding

457 mismatch number.

Mismatch	Sample	Pairs belonging	Pairs belonging to	Percentage of pairs
number	pairs	to the same	different	belonging to different
		haplogroup	haplogroups	haplogroups
0	89	89	0	0
1	116	114	2	1.724%
2	211	205	6	2.844%
3	449	428	21	4.677%
4	820	751	69	8.415%
5	1565	1300	265	16.932%
6	2462	1869	593	24.086%
7	4221	2721	1509	35.750%

458

460 **Supplementary table 6.** Indications from mismatch step results (mismatch step is the total

461 number of different allele steps). Sample pairs are the number of pairs in the corresponding

462 mismatch step.

Mismatch	Sample	Pairs belonging	Pairs belonging to	Percentage of pairs
step	pairs	to the same	different	belonging to different
		haplogroup	haplogroups	haplogroups
0	89	89	0	0
0 <s≤1< td=""><td>104</td><td>102</td><td>2</td><td>1.923%</td></s≤1<>	104	102	2	1.923%
1 <s≤2< td=""><td>180</td><td>175</td><td>5</td><td>2.778%</td></s≤2<>	180	175	5	2.778%
2 <s≤3< td=""><td>332</td><td>313</td><td>19</td><td>5.723%</td></s≤3<>	332	313	19	5.723%
3 <s≤4< td=""><td>536</td><td>505</td><td>31</td><td>5.784%</td></s≤4<>	536	505	31	5.784%
4 <s≤5< td=""><td>881</td><td>785</td><td>96</td><td>10.897%</td></s≤5<>	881	785	96	10.897%
5 <s≤6< td=""><td>1351</td><td>1130</td><td>221</td><td>16.358%</td></s≤6<>	1351	1130	221	16.358%
6 <s≤7< td=""><td>1848</td><td>1358</td><td>490</td><td>26.515%</td></s≤7<>	1848	1358	490	26.515%

463