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Abstract 13 

Human Y chromosome reflects the evolutionary process of males. Male lineage tracing by Y 14 

chromosome is of great use in evolutionary, forensic, and anthropological studies when male 15 

samples exist or especially when the biological sample is a mixture of male and female 16 

individuals. Identifying the male lineage based on the specific distribution of Y haplogroups 17 

narrows down the investigation scope. Integrating previously published datasets with genotypes 18 

of Y chromosome short tandem repeats (Y-STRs) and high-resolution haplogroups (122 19 

haplogroups in total), we developed YHP (Y Haplogroup Predictor), an open-access and user-20 

friendly software package to predict haplogroups, compare the similarity, and conduct 21 

mismatch analysis of samples with Y-STR profiles. The software is available at Github 22 

(https://github.com/cissy123/YHP-Y-Haplogroup-Predictor-). 23 

 24 

Key words: human Y chromosome; haplogroup; male lineage prediction; random forest 25 

 26 

Author Summary 27 

Familial searching has been used in forensic, anthropologic, and personalized scenarios. 28 

Software packages have been developed to assist in male familial searching, such as predicting 29 

Y-SNP haplogroups by Y-STRs. However, these software packages, in general, achieve this 30 

goal with a rough resolution. In this study, we developed a software package to conduct high-31 

resolution haplogroup inference to help familial searching and at the same time reduce the cost, 32 

since it does not require tiresome Y-SNP sequencing. 33 
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Introduction 35 

Human Y chromosome has its unique evolutionary pattern and thus male phylogeny can be 36 

used to trace male lineages, which is promising in evolutionary, forensic and anthropologic 37 

studies. In forensics, identifying the possible genealogy of a DNA profile in crime scene 38 

investigations based on searching from the DNA database is of great interest (1,2). Previously 39 

findings of autosomal chromosomes indicate that some forensically useful marker sets might 40 

bear substantial ancestry information (3), indicating a significant connection between genes and 41 

geography (4). Besides, potential matches for two kinds of distinct genetic markers were 42 

reported, such as Combined DNA Index System (CODIS) profile and single nucleotide 43 

polymorphism (SNP) data, making it possible to link a CODIS profile to a whole-genome SNP 44 

profile (5–7). For Y chromosomes, the correlation of surnames and male-specific region 45 

markers in Y chromosome is vital (8,9). Since surnames are arranged by male lineage in general, 46 

we wondered if there was a correlation between two kinds of Y-chromosome markers, Y-STRs 47 

and Y-SNPs (markers defining Y haplogroups), especially in haplogroup O.  48 

 49 

Due to the low cost-effectiveness to genotype plenty of SNPs to assign haplogroups to 50 

individuals, and the link between Y-STR variability and haplogroups (10), many software or 51 

programs appeared (Table 1). The software named ”Yleaf” was established for Y haplogroup 52 

inference from next-generation sequencing data (11), as well as many other packages for Y-53 

STR data (12). Similarly, algorithms have been raised to classify mtDNA haplogroups (13). 54 

Previously, machine learning methods have been largely used in biological studies. Random 55 

forest has been previously used in reconstructing invasion routes of Drosophila suzukii using a 56 

multi-locus microsatellite dataset containing 25 loci of 23 population sites (14). Support Vector 57 

Machine (SVM) was used to inference the biogeographic ancestry based on STR profiles (15). 58 
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Deep neural networks were also applied in predicting geographic location using whole-genome 59 

sequence data of the organisms, achieving median test errors of 16.9km, 5.7km and 85km for 60 

three species (Plasmodium parasites, Anopheles mosquitoes, and global human populations) 61 

(16). More specifically, artificial neural networks were also used in classifying electrophoresis 62 

profiles in forensic casework (17,18). Here in this study, we used machine learning to predict 63 

Y haplogroups to a fine resolution based on Y-STRs. 64 
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Table 1. Summary of previous softwares. 66 

  67 

 Softwares Establishers (Refer-

ences) 

Principles Websites available 

Haplogroup prediction software   

1 YPredictor  Vadim Urasin (YFull-

Research Group, Mos-

cow, Russia.) 

Based on the phylogeny of each hap-

logroup, genotype of markers, mutation 

rates and the age of the parental node 

http://predictor.ydna.ru/  

(cannot be accessed) 

2 Haplogroup 

Predictor 

Whit Atheys 

(Brookeville, MD, 

USA) (19,20) 

Fitness score and Bayesian probability 

calculations 

http://www.hprg.com/ha

pest5/ 

3 Haplogroup 

classifier 

Joseph Schlecht 

(Computer Science 

Department, Univer-

sity of Arizona, Tuc-

son, Arizona) (12) 

Machine learning approaches (decision 

tree, J48 and PART; Bayesian; support 

vector machine) 

http://bcf.arl.ari-

zona.edu/haplo 

(cannot be accessed) 

4 World Hap-

logroup & 

Haplo-I Sub-

clade Predic-

tor 

Jim Cullen works on a Bootstrap WGD ( weighted 

genetic distance ) algorithm that's a var-

iation of a goodness-of-fit test 

members.bex.net/jtcul-

len515/haplotest.htm 

5 NevGen Y-

DNA haplog-

roup predictor 

Nevgen (Concept & 

JavaScript coding. 

Ken Nordtvedt) 

Predict haplogroup R1b and R1a based 

on the correlation of the Y-STRs and 

Bayesian-allele-frequency  

www.nevgen.org 

6 R-L21 SNP 

Predictor 

Robert Casey Use binary Logistic Regression as the 

mathematical model representing the 

relationship between Y-STRs and Y-

SNPs 

http://www.rca-

sey.net/DNA/R_L21/SN

P_Predictor/index.php 

Haplogroup assignment software   

   

7 AMY-tree (21) Determine Y haplogroups of samples 

based on whole genome SNP profiles 

(at least 10x coverage) 

bio.kuleuven.be/eeb/lbeg 

8 YHap (22) Borrow information among individuals 

within a population by using a proba-

bilistic assignment model to assign 

haplogroup for low-coverage data (less 

than 2x coverage) 

http://www1.impe-

rial.ac.uk/medicine/peo-

ple/l.coin/ 

9 YFitter (23) Use an efficient dynamic programming 

algorithm that can assign haplogroups 

by maximum likelihood and represent 

the uncertainty in assignment 

http://source-

forge.net/projects/yfitter/ 

1

0 

Yleaf (11) Works with raw and aligned sequenc-

ing data to produce the final haplog-

roup output files 

https://www.eras-

musmc.nl/genetic_identi-

fication/resources/ 
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Results and Discussion 68 

Here we present YHP (Y Haplogroup Predictor), based on machine learning algorithms, written 69 

in Java, a user-friendly public software package to predict Y haplogroups based on Y-STRs. 70 

The prediction accuracy was shown in FIG. 1A. Haplogroup information of database samples 71 

used to train the algorithms was illustrated in FIG. 1B (detailed haplogroup information is in 72 

Supplementary table 1). The three functions of YHP are shown in FIG. 1C. 73 
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Fig 1. 75 

 76 
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Of the six algorithms, random forest achieved the highest accuracy (both in the terminal and 78 

basal haplogroup: 0.770 and 0.984, respectively). Prediction accuracy was defined by the 79 

number of samples correctly predicted dividing the total sample size of the training datasets and 80 

was shown in Table 2. Except for haplogroup prediction, we conducted population and region 81 

prediction. However, the accuracy is lower when predicting for population and region (Table 82 

2). More specifically, the accuracy for each haplogroup in random forest was displayed in FIG. 83 

2. 84 
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Table 2. Prediction accuracy of the six acquired models while predicting the sample to 86 

haplogroup, population or region. 87 

Methods Accuracy for haplogroup population region 

k-nearest neighbors 0.691 0.671 0.235 

Naïve Bayes* 0.735 0.568 0.121 

Logistic Regression* 0.736 0.627 0.136 

Support vector machine* 0.738 0.721 0.209 

Decision tree* 0.659 0.623 0.189 

Random forest 0.770 0.752 0.255 

*The methods are optimized by linear discriminant analysis (LDA). 88 
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Fig 2. 90 

 91 
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The use of YHP was previously validated in a real case (24), population samples (25), and 93 

another case (seen in Supplementary figure 1-3 and Supplementary table 2-4, 94 

Supplementary Material I), all of them with validated Y-STR and Y-SNP genotypes. This was 95 

achieved by the first and second function, “Predict” and “Similarity”.  96 

 97 

The third function, “Match&Count” serves when there is an unknown sample (e.g., from the 98 

real crime scenes or anthropological sites) and reference samples (e.g., Y-STR profiles from the 99 

database, without Y haplogroup information), and we need to find the closest male lineage to 100 

the unknown sample to conduct familial searching (fig. 1C, YHP function; the detailed function 101 

description of YHP input files, pipeline, and output files are in Supplementary figure 4-18, 102 

Supplementary Material II, III, and IV). This software is also convenient for mismatch 103 

analysis within or among haplogroups and populations. The function was previously applied in 104 

a paper describing the founder effect of Li ethnic group (26), and was instructive in familiar 105 

searching. We conducted 5,966,785 times mismatch (n=3455) calculations in the software and 106 

the results were shown in Supplementary table 3 and 4. The results shows, when mismatch 107 

number is no more than two, the frequency of the sample pair belonging to the same haplogroup 108 

exceeds 97% (mismatch number=0, 100%; mismatch number=1, 99.28%; mismatch number=2, 109 

97.16%); when mismatch step is no more than two, the frequency of the sample pair belonging 110 

to the same haplogroup exceeds 97% (mismatch number=0, 100%; mismatch number=1, 111 

99.08%; mismatch number=2, 97.22%) (Supplementary table 5 and 6). 112 

 113 

Previous relevant software or programs aim at predicting samples to haplogroup I, R, J or very 114 

basal haplogroups (seen in Figure 1 of (12)), or assign haplogroup based on high-coverage or 115 

low-coverage whole-genome sequencing or resequencing data (Table 1). For instance, 116 
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inconsistency was reported in haplogroup prediction of a father-son pair using Whit Atheys’ 117 

haplogroup predictor (http://www.hprg.com/hapest5/hapest5b/hapest5.htm) (20,27). However, 118 

after Y-SNP testing, the father-son pair was validated in the same haplogroup O1a1a. This 119 

indicated that more accurate prediction is needed. The software YHP can effectively predict the 120 

father-son pair into haplogroup O1a1a2a1. YHP mainly focuses on haplogroup O (1919/3455, 121 

55.54%, fig. 1B) (26,28,29) to give a high-resolution prediction result, where no previous 122 

software reached this resolution. We have extended the resolution to 122 terminal clades, and 123 

hopefully, in the future, the software can perform prediction more specifically without 124 

sacrificing too much accuracy.  125 

 126 

Since it requires haplotypes with known haplogroups to obtain well-established models, a larger 127 

dataset needs to be generated to achieve higher accuracy. Admittedly, the prediction accuracy 128 

is not under satisfaction in the finest resolution (although in basal haplogroup prediction, the 129 

accuracy reaches 98.4%). However, the unprecedented high resolution of haplogroup makes 130 

the software valuable in differentiating close male lineages, thus narrowing down the 131 

investigative scope in forensic and anthropological events.  132 

 133 

Although there might be a plethora of samples that only have a few Y-STR mismatches when 134 

searching the database, pinpointing samples that are probable to be the same haplogroup is 135 

largely restricted. STRs are appealing genetic materials about both population history and 136 

evolutionary process, but they are difficult to interpret due to the back mutations (30,31). 137 

Considering the low mutation rate of Y-SNPs, individuals with the same prediction results tend 138 

to be from the same male lineage. This is of tremendous use for familial searching to speed up 139 

the process of finding the perpetrator. 140 
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Design and Implementation 141 

Datasets  142 

Here we use 3455 samples with 27 Y-STRs and 137 Y-SNPs in the dataset (the haplogroup 143 

information is listed in Supplementary table 1), generated by capillary electrophoresis 144 

(Genetic Analyzer 3130 and 3500) and next-generation sequencing (Ion Torrent PGM) and 145 

pyrosequencing (26,28,29). The study received the approval of the Ethics Committee at the 146 

Institute of Forensic Medicine, Sichuan University (K2019018) and the data were analyzed 147 

anonymously due to privacy concerns. 148 

 149 

Algorithms 150 

Supervised learning algorithms, k-nearest neighbors, Naïve Bayes, Logistic Regression, 151 

Support vector machine, Decision tree, and Random forest were used to train a model 152 

respectively. The acquired model was used to predict the test datasets. When training a model, 153 

we randomly split the data into training and test datasets to get a good representation of all data 154 

points. We split 3455 people into two disjoint subsets: a training set for learning associations 155 

between Y-STRs and Y-SNPs and a test set for assessing prediction accuracy (400 samples as 156 

test dataset and the remaining as training dataset; the training process was finished using 10 157 

iterations). We use five-fold cross-validation with the same fraction of the full data (12%). The 158 

input and output variables are indicated as X and Y, respectively, while the value for these two 159 

variables is indicated by x and y. The input data x is indicated as: 160 

x = (x(1),x(2),…,x(i),…,x(m))T 161 

x(i)  is the ith locus of a single haplotype with m Y-STRs (m=27 in this study). The output data 162 

yi is the haplogroup of the corresponding xi. The training data TR consists of pairs of input 163 
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and output values, shown as: 164 

TR = {(x1,y1),(x2,y2),…,(xj,yj),...(xn,yn)} 165 

yj is the haplogroup of sample j, with n being the total sample number (n=3455 in this study). 166 

 167 

Supervised learning assumes that input and output variables X and Y are subject to the 168 

probability distribution P(X,Y), which is a probability density function. In the learning process, 169 

learning system uses the specified training dataset to learn and get a model, which is indicated 170 

as conditional probability distribution P(Y|X) or statistical decision function. In the predicting 171 

process, predicting system will give an output yN+1 based on the input xN+1 and the model: 172 

yN+1 = arg max P(yN+1|xN+1) or yN+1 = f(xN+1) 173 

If the model has a high capability of prediction, the difference between the training data yi and 174 

the data f(xi) obtained from the model should be subtle enough (that means the sample is 175 

predicted to the closest haplogroup). The learning system will select the best model among all 176 

learning process to give the best prediction for the training dataset and unknown datasets.  177 

 178 

Next, to give a rank to the reference samples evaluating the closest sample to the unknown 179 

sample, we developed similarity score using cosine distance, which is indicated as follows: 180 

similarity=cosine_distance (probability_unknown, probability_reference) 181 

 182 

Availability and future directions 183 

The example data, and the code are available at Github (https://github.com/cissy123/YHP-Y-184 

Haplogroup-Predictor-). The software YHP works under Java environment, the package of 185 
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which can be downloaded from the link written in the readme file of the website. 186 

Future directions include developing a Linux-based version and optimizing the algorithms for 187 

prediction. 188 

 189 

Supporting information 190 

S1-6 Table and S1-18 Figure are compiled in the Supplementary material file (PDF). 191 
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Figure legends 304 

Fig 1. (A) Prediction accuracy of different models under different haplogroup resolution 305 

(number 1-19 means the length of the haplogroup name). (B) Haplogroup composition of the 306 

database. (C) Three main functions of YHP and the expected results. 307 

Fig 2. Prediction accuracy for each haplogroup in random forest. The number in each bar 308 

indicates the sample size in each haplogroup. The haplogroup information in x-axis can be 309 

obtained upon request. 310 
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Supplementary table 1. Haplogroup information of the samples and their corresponding size 328 

in each haplogroup. 329 

haplogroup 

number of 

haplotypes haplogroup 

number of 

haplotypes haplogroup 

number of 

haplotypes 

C 9 N1a1a 17 O2a1c1a1a1b 20 

C2 15 N1a1a1a1a3 10 O2a1c1a1b 1 

C2b 7 N1a1a1a1a4 9 O2a1c1a1c 12 

C2b1a1b1 3 N1a2 39 O2a1c1a1d 13 

C2b1a2 6 N1b 67 O2a1c1a1e 27 

C2b1a3 29 N1~ 24 O2a2 8 

C2b1b 6 O1a 10 O2a2a 13 

C2c1 8 O1a1a 15 O2a2a1 73 

C2c1a1 23 O1a1a1a 5 O2a2a1a1a 23 

C2c1a1a1 26 O1a1a1a1 36 O2a2b 42 

C2c1a2 38 O1a1a1a1a 14 O2a2b1 1 

C2c1a2b 16 O1a1a1a1a1a 7 O2a2b1a1 6 

C2c1b 41 O1a1a1a1a1a1 38 O2a2b1a1a 84 

D1a1 6 O1a1a1a1a1a1a 24 O2a2b1a1a1 93 

D1a1a1a 3 O1a1a1a1a1a1b 2 O2a2b1a1a3 23 

D1a1a1a1 2 O1a1a1a1a1a1b1 8 O2a2b1a1a4 35 

D1a1a1a1a 31 O1a1a1b 5 O2a2b1a1a5 56 

D1a1a1a1a~ 9 O1a1a1b1 4 O2a2b1a1a6 148 

D1a1a1a2 46 O1a1a1b2 27 O2a2b1a2 28 

D1a1a1a2b 8 O1a1a2 22 O2a2b1a2a 6 

D1a2a1 3 O1a1a2a1 35 O2a2b1a2a1 99 

D1a2a1a~ 2 O1b 5 O2a2b1a2a1a3 34 

D1a2a1b 171 O1b1a1 35 O2a2b1a2a1a3b1 5 

D1a2a1b1 6 O1b1a1a 6 O2a2b1a2a1a3b2 39 

D1a2a1b1a 66 O1b1a1a1a 19 O2a2b1a2a1a3b2b2 38 

D1a2a1b2 15 O1b1a1a1a1a 6 Q 25 

D1a2a1b3 3 O1b1a1a1a1a1 43 Q* 43 

D1a2a1b~ 7 O1b1a1a1a1a1b 1 Q1a2 15 

DE 24 O1b1a1a1a1a1b1 6 Q1b 18 

F2 4 O1b1a1a1a1a2 19 R 1 

G 7 O1b1a1a1a1b 25 R1a1a 6 

G2a 8 O1b1a1a1a1b1 22 R1a1a1b1a1 6 

G2a2b 1 O1b1a1a1b 16 R1a1a1b1a2 4 

G2a2b2a 3 O1b1a2a 29 R1a1a1b2 15 

G2a2b2a1 15 O1b1a2b 12 R1a1a1b2a 11 

H1a 11 O1b1a2c 5 R1a1a1b2a1a 1 

H1a1a 8 O1b2 19 R1a1a1b2a1a1a 22 
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 330 

  331 

H1a2a 1 O2 24 R1a1a1b2a2 48 

I 11 O2a1 47 R1a1a1b2a2a 70 

J1 29 O2a1c 90 R1a1a1b2a2b 4 

J2 18 O2a1c1a 48 R1a1a1b2a2b1 6 

J2a 35 O2a1c1a1 31 R1b 22 

J2a1 54 O2a1c1a1a1 14 R1b1a1 26 

J2a1a 7 O2a1c1a1a1a 32 R1b1a1a2 8 

J2a1b 3 O2a1c1a1a1a1 14 R2 13 

L 19 O2a1c1a1a1a1a 10 R2a 23 

LT 10 O2a1c1a1a1a1a1a1 1   

N 2 O2a1c1a1a1a1a1a1a1a 2   

N1 17 O2a1c1a1a1a1a1a1b 4   

N1a 13 O2a1c1a1a1a2 3   
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Supplementary Material I: Application in another real case 332 

There was a target sample with Y-STR profile (unknown sample) and 25 reference samples that 333 

have the least mismatch with the unknown sample, retrieved from local Y-STR database 334 

(Supplementary figure 1). 335 

 336 

 337 

Supplementary figure 1. Haplotypes of a target sample and reference samples 338 

 339 

Here questions came. Which samples are from the same male lineage as the unknown sample? 340 

What is the ranking of the reference samples according to the closeness to the unknown sample? 341 

 342 

We used the software to compare the similarity of the unknown sample and the reference 343 

samples. Because of the different principles behind the algorithms, we calculated similarity 344 

score between the unknown sample and 25 reference samples and concluded that reference 345 

sample 23 is the closest to the unknown sample. The steps are as follows. 346 

 347 

First, we calculated the similarity score of these reference samples to the unknown samples in 348 

three models (Supplementary table 2, Supplementary figure 2): 349 

 350 

Supplementary table 2. Similarity score of these reference samples to the unknown samples 351 

in three models. 352 

Reference 

sample 

Logistic 

Regression SVM 

Random 

Forest 
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1 0.992562 0.996092 0.999531 

2 0.974887 0.9937 0.996514 

3 0.954657 0.995065 0.996975 

4 0.993527 0.998197 0.999751 

5 0.983984 0.996739 0.999284 

6 0.953399 0.994144 0.996468 

7 0.927685 0.98888 0.998367 

8 0.976826 0.989644 0.978107 

9 0.98839 0.998236 0.978932 

10 0.953399 0.994144 0.996468 

11 0.946554 0.970426 0.993781 

12 0.955503 0.937706 0.995788 

13 0.938212 0.859445 0.996212 

14 0.991501 0.991767 0.977985 

15 0.977748 0.992833 0.996146 

16 0.958325 0.988286 0.997434 

17 0.958325 0.988286 0.997434 

18 0.978671 0.98716 0.976332 

19 0.979954 0.82383 0.994687 

20 0.96622 0.995185 0.9964 

21 0.972685 0.915663 0.977023 

22 0.995496 0.999301 0.999899 

23 0.999982 1 1 

24 0.991264 0.997862 0.999859 

25 0.988588 0.999885 0.999936 

 353 
Supplementary figure 2. The line plot of the similarity of the unknown sample and the 354 

reference samples 355 

356 
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Then, based on the accuracy in Table 1, we calculated the weighted similarity score 357 

(Supplementary table 3, Supplementary figure 3): 358 

 359 

Supplementary table 3. Weighted similarity score by the accuracy of different models. 360 

Reference 

sample 

Logistic 

Regression 

(weighted) 

SVM 

(weighted) 

Random 

Forest 

(weighted) 

1 0.664024 0.692284 0.769639 

2 0.652199 0.690621 0.767316 

3 0.638666 0.69157 0.767671 

4 0.664669 0.693747 0.769808 

5 0.658285 0.692733 0.769448 

6 0.637824 0.69093 0.767281 

7 0.620621 0.687271 0.768742 

8 0.653497 0.687803 0.753142 

9 0.661233 0.693774 0.753777 

10 0.637824 0.69093 0.767281 

11 0.633245 0.674446 0.765211 

12 0.639231 0.651705 0.766756 

13 0.627664 0.597314 0.767083 

14 0.663314 0.689278 0.753049 

15 0.654114 0.690019 0.767032 

16 0.641119 0.686859 0.768024 

17 0.641119 0.686859 0.768024 

18 0.654731 0.686076 0.751776 

19 0.655589 0.572562 0.765909 

20 0.646401 0.691653 0.767228 

21 0.650726 0.636386 0.752308 

22 0.665986 0.694515 0.769922 

23 0.668988 0.695 0.77 

24 0.663156 0.693514 0.769891 

25 0.661366 0.69492 0.769951 
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 361 
Supplementary figure 3. The line plot of the weighted similarity score of the unknown 362 

sample and the reference samples: 363 

 364 

Finally, the ranking of the reference samples is based on the mean value of three weighted 365 

scores (Supplementary table 4): 366 

 367 

Supplementary table 4. The ranking of the closeness to the unknown sample. 368 

Reference 

sample 
weighted score 

23 0.711329168 

22 0.710141087 

4 0.709408108 

24 0.708853689 

25 0.708745317 

1 0.708648946 

5 0.706822429 

15 0.703721642 

2 0.703378919 

9 0.702928022 

14 0.701880327 

20 0.701760818 

3 0.699302072 
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6 0.698678134 

10 0.698678134 

16 0.698667317 

17 0.698667317 

8 0.698147231 

18 0.697527623 

7 0.692211636 

11 0.690967345 

12 0.685897656 

21 0.679806661 

19 0.66468681 

13 0.66402034 

In conclusion, the reference sample 23 is the closest to the unknown sample, followed by 369 

reference 22, 4,24, …, 13. 370 

  371 
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Supplementary Material II: YHP input files 372 

II-1 “Match&Count” for mismatch analysis 373 

Input file includes sample ID (necessary), population, haplogroup and Y-STR (necessary) 374 

genotypes (Supplementary figure 4). 375 

 376 

Supplementary figure 4. Example file: input1 377 

 378 

II-2 “Predict” for haplogroup prediction 379 

Input file includes sample ID and Y-STR genotypes (single sample: Supplementary figure 5; 380 

multiple sample: Supplementary figure 6). 381 

 382 

II-2-1 Single sample mode 383 

 384 

Supplementary figure 5. Example file: input2 385 

 386 

II-2-2  Multiple sample mode 387 
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 388 

Supplementary figure 6. Example file: input3. The line in blue background is the unknown 389 

sample and the lines below that are reference samples. 390 

 391 

II-3 “Similarity” for similarity scoring 392 

Input file includes sample ID and Y-STR genotypes of the unknown sample and the reference 393 

samples (same as II-2-2). When there is no reference sample, the output file is mismatch result 394 

of the unknown sample and all samples in the database. 395 

  396 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426186doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426186
http://creativecommons.org/licenses/by/4.0/


32 

 

Supplementary Material III: YHP pipeline 397 

For the first function Match&Count, the interface is as follow (Supplementary figure 7 and 398 

8). Click the buttons to choose the input file and comparison mode. 399 

  400 

Supplementary figure 7. Software interface for Match&Count. 401 
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 402 

Supplementary figure 8. Software interface after the input file was chosen. 403 

  404 
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For the second function Predict, the interface is as follow (Supplementary figure 9 and 10). 405 

In this step, training data is changeable, whether using default dataset (generated in our lab as 406 

described above) or customized data (haplotypes with haplogroup information). If one uses 407 

customized data, the number of Y-STR loci is flexible, not having to be 27, but the test data 408 

should be consistent with the training data. After selection test data, click “Train” first, and then 409 

“Test”. 410 

 411 

Supplementary figure 9. Software interface for Predict. 412 
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 413 

Supplementary figure 10. Software interface when choosing training data and test data. 414 
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For the third function Similarity, the interface is as follow (Supplementary figure 11, 12 and 416 

13). There are two comparison mode, “withDatabase” and “withinSamples”, which require 417 

different input files as illustrated previously in the input section. 418 

 419 

Supplementary figure 11. Software interface for Similarity. 420 
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 421 

Supplementary figure 12. Software interface for Similarity in “withDatabase” mode. 422 

 423 

Supplementary figure 13. Software interface for Similarity in “withinSamples” mode 424 
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Supplementary Material IV: Output results 426 

The output files can be saved manually or automatically in file container “output”. 427 

IV-1 Match&Count 428 

The file can be saved in the main window after mismatch analysis. The output result includes 429 

match/mismatch number, step, ratio, and mismatch detail (Supplementary figure 14 is one of 430 

the output results in this function). 431 

 432 

Supplementary figure 14. Output file for Match&Count. 433 

 434 

IV-2 Predict 435 

The predicting result (single sample: Supplementary figure 15; multiple sample: 436 

Supplementary figure 16) is saved automatically in file container “output”. 437 

  438 
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Supplementary figure 15. Single sample prediction result. 439 

 440 

Supplementary figure 16. Multiple sample prediction result. 441 

 442 

IV-3. Similarity 443 

The similarity result (withDatabase: Supplementary figure 17; withinsamples: 444 

Supplementary figure 18) is saved automatically in file container “output”.  445 

 446 

Supplementary figure 17. Similarity result in “withDatabase”. MIN indicates the closest 447 

sample between the target sample and samples in the database; MAX indicates the least 448 

closest sample.                                                      449 
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 450 

Supplementary figure 18. Similarity result in “withinSamples”. 451 

The newest accessed version is up to December 7, 2020. The software will be regularly 452 
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updated and Linux-based version will be released soon. 453 

  454 
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Supplementary table 5. Indications from mismatch number results (mismatch number is the 455 

total number of different alleles). Sample pairs are the number of pairs in the corresponding 456 

mismatch number. 457 

Mismatch 

number 

Sample 

pairs 

Pairs belonging 

to the same 

haplogroup 

Pairs belonging to 

different 

haplogroups 

Percentage of pairs 

belonging to different 

haplogroups 

0 89 89 0 0 

1 116 114 2 1.724% 

2 211 205 6 2.844% 

3 449 428 21 4.677% 

4 820 751 69 8.415% 

5 1565 1300 265 16.932% 

6 2462 1869 593 24.086% 

7 4221 2721 1509 35.750% 

 458 

  459 
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Supplementary table 6. Indications from mismatch step results (mismatch step is the total 460 

number of different allele steps). Sample pairs are the number of pairs in the corresponding 461 

mismatch step. 462 

Mismatch 

step 

Sample 

pairs 

Pairs belonging 

to the same 

haplogroup 

Pairs belonging to 

different 

haplogroups 

Percentage of pairs 

belonging to different 

haplogroups 

0 89 89 0 0 

0<s≤1 104 102 2 1.923% 

1<s≤2 180 175 5 2.778% 

2<s≤3 332 313 19 5.723% 

3<s≤4 536 505 31 5.784% 

4<s≤5 881 785 96 10.897% 

5<s≤6 1351 1130 221 16.358% 

6<s≤7 1848 1358 490 26.515% 

 463 

 464 
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