Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Tinnitus-like “hallucinations” elicited by sensory deprivation in an entropy maximization recurrent neural network

Aviv Dotan, View ORCID ProfileOren Shriki
doi: https://doi.org/10.1101/2021.01.11.426188
Aviv Dotan
1Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
3Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Oren Shriki
1Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
2Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
3Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Oren Shriki
  • For correspondence: shrikio@bgu.ac.il
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Sensory deprivation has long been known to cause hallucinations or “phantom” sensations, the most common of which is tinnitus induced by hearing loss, affecting 10–20% of the population. An observable hearing loss, causing auditory sensory deprivation over a band of frequencies, is present in over 90% of people with tinnitus. Existing plasticity-based computational models for tinnitus are usually driven by homeostasis mechanisms, modeled to fit phenomenological findings. Here, we use an objective-driven learning algorithm to model an early auditory processing neuronal network, e.g., in the dorsal cochlear nucleus. The learning algorithm maximizes the network’s output entropy by learning the feed-forward and recurrent interactions in the model. We show that the connectivity patterns and responses learned by the model display several hallmarks of early auditory neuronal networks. We further demonstrate that attenuation of peripheral inputs drives the recurrent network towards its critical point and transition into a tinnitus-like state. In this state, the network activity resembles responses to genuine inputs even in the absence of external stimulation, namely, it “hallucinates” auditory responses. These findings demonstrate how objective-driven plasticity mechanisms that normally act to optimize the network’s input representation can also elicit pathologies such as tinnitus as a result of sensory deprivation.

Author summary Tinnitus or “ringing in the ears” is a common pathology. It may result from mechanical damage in the inner ear, as well as from certain drugs such as salicylate (aspirin). A common approach toward a computational model for tinnitus is to use a neural network model with inherent plasticity applied to early auditory processing, where the input layer models the auditory nerve and the output layer models a nucleus in the brain stem. However, most of the existing computational models are phenomenological in nature, driven by a homeostatic principle. Here, we use an objective-driven learning algorithm based on information theory to learn the feed-forward interactions between the layers, as well as the recurrent interactions within the output layer. Through numerical simulations of the learning process, we show that attenuation of peripheral inputs drives the network into a tinnitus-like state, where the network activity resembles responses to genuine inputs even in the absence of external stimulation; namely, it “hallucinates” auditory responses. These findings demonstrate how plasticity mechanisms that normally act to optimize network performance can also lead to undesired outcomes, such as tinnitus, as a result of reduced peripheral hearing.

Footnotes

  • ↵* shrikio{at}bgu.ac.il

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted January 11, 2021.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Tinnitus-like “hallucinations” elicited by sensory deprivation in an entropy maximization recurrent neural network
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Tinnitus-like “hallucinations” elicited by sensory deprivation in an entropy maximization recurrent neural network
Aviv Dotan, Oren Shriki
bioRxiv 2021.01.11.426188; doi: https://doi.org/10.1101/2021.01.11.426188
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Tinnitus-like “hallucinations” elicited by sensory deprivation in an entropy maximization recurrent neural network
Aviv Dotan, Oren Shriki
bioRxiv 2021.01.11.426188; doi: https://doi.org/10.1101/2021.01.11.426188

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4120)
  • Biochemistry (8829)
  • Bioengineering (6533)
  • Bioinformatics (23488)
  • Biophysics (11812)
  • Cancer Biology (9228)
  • Cell Biology (13347)
  • Clinical Trials (138)
  • Developmental Biology (7450)
  • Ecology (11428)
  • Epidemiology (2066)
  • Evolutionary Biology (15175)
  • Genetics (10455)
  • Genomics (14057)
  • Immunology (9188)
  • Microbiology (22206)
  • Molecular Biology (8825)
  • Neuroscience (47654)
  • Paleontology (351)
  • Pathology (1431)
  • Pharmacology and Toxicology (2493)
  • Physiology (3739)
  • Plant Biology (8095)
  • Scientific Communication and Education (1438)
  • Synthetic Biology (2225)
  • Systems Biology (6044)
  • Zoology (1257)