1	
2	
3	
4	The Mimivirus L375 Nudix enzyme hydrolyzes the 5' mRNA cap
5	Short title: Mimivirus L375 mRNA decappping enzyme
6	
7	
8	Grace Kago ^{1#a} and Susan Parrish ^{1*}
9	
10	
11	
12	
13	
14	¹ Department of Biology, McDaniel College, Westminster, Maryland, United States of
15	America
16	
17	#aCurrent Address: Department of Molecular Biosciences, Institute for Cellular and
18	Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of
19	America
20	
21	
22	*Corresponding author
23	E-mail: <u>sparrish@mcdaniel.edu</u> (SP)

24 Abstract

25	The giant Mimivirus is a member of the nucleocytoplasmic large DNA viruses
26	(NCLDV), a group of diverse viruses that contain double-stranded DNA (dsDNA)
27	genomes that replicate primarily in eukaryotic hosts. Two members of the NCLDV,
28	Vaccinia Virus (VACV) and African Swine Fever Virus (ASFV), both synthesize Nudix
29	enzymes that have been shown to decap mRNA, a process thought to accelerate viral and
30	host mRNA turnover and promote the shutoff of host protein synthesis. Mimivirus
31	encodes two Nudix enzymes in its genome, denoted as L375 and L534. Importantly,
32	L375 exhibits sequence similarity to ASFV-DP and eukaryotic Dcp2, two Nudix
33	enzymes shown to possess mRNA decapping activity. In this work, we demonstrate that
34	recombinant Mimivirus L375 cleaves the 5' m ⁷ GpppN mRNA cap, releasing m ⁷ GDP as a
35	product. L375 did not significantly cleave mRNAs containing an unmethylated 5'GpppN
36	cap, indicating that this enzyme specifically hydrolyzes methylated-capped transcripts. A
37	point mutation in the L375 Nudix motif completely eliminated cap hydrolysis, showing
38	that decapping activity is dependent on this motif. Addition of methylated cap derivatives
39	or uncapped RNA inhibited L375 decapping activity, suggesting that L375 recognizes its
40	substrate through interaction with both the mRNA cap and RNA body.

41

42 Introduction

The giant Mimivirus, which infects *Acanthamoeba* species, possesses a 1.2 Mb
genome encoding over 900 proteins [1-3]. Interestingly, Mimivirus rivals some small

45	bacterial species with respect to physical and genome size, and was the first virus
46	identified to encode some of its own translational components [1-3]. Mimivirus is a
47	member of the nucleocytoplasmic large DNA viruses (NCLDV), a group that currently
48	includes seven viral families: Poxviridae, Asfarviridae, Iridoviridae, Phycodnaviridae,
49	Mimiviridae, Ascoviridae, and Marseilleviridae [4-8]. While many members of the
50	NCLDV share a subset of conserved genes, the evolutionary origins and relationships of
51	the NCLDV remain controversial [4-7, 9].
52	The Nudix hydrolase motif is a conserved amino acid sequence found in a diverse
53	group of enzymes that typically cleave <i>nu</i> cleoside <i>di</i> phosphates linked to another moiety
54	X[10]. Nudix enzymes are nearly universal, found in prokaryotes, eukaryotes, and some
55	viruses [4, 5, 11, 12]. Two NCLDV families, Poxviridae and Asfarviridae, encode Nudix
56	enymes that possess intrinsic mRNA decapping activity, a process that leads to mRNA
57	degradation and subsequent inhibition of gene expression [13-15].
58	The prototypic poxvirus, Vaccinia Virus (VACV), encodes two Nudix enzymes in
59	its genome termed D9 and D10. The D9R (VACV-WR_114) and D10R (VACV-
60	WR_115) genes lie adjacent to each other in the genome and encode proteins that share
61	~20% amino acid identity but are expressed at different times during infection [16-18].
62	Prior genetic studies showed that over-expression of either D9R or D10R resulted in
63	accelerated turnover of mRNAs containing 5' m7GpppN caps, a structural feature of both
64	VACV and eukaryotic host mRNAs [17]. While deletion of D9R did not cause any
65	obvious defects, deletion or inactivation of D10R resulted in persistence of viral and host
66	mRNAs and a delay in the shutoff of host protein synthesis [17-19]. Subsequent
67	biochemical experiments confirmed that both D9 and D10 cleave the mRNA cap,

releasing m⁷GDP as a product [13, 14]. Together, these data suggest that VACV D9 and
D10 decap viral and host mRNAs to facilitate mRNA turnover and the shutoff of host
protein synthesis, thereby promoting viral infection.

71	The sole member of Asfarviridae, African Swine Fever Virus (ASFV), contains a
72	gene (termed g5R in strain Malawi and D250 in strain Ba71V) that encodes the Nudix
73	enzyme denoted as ASFV-DP [20, 21]. Although ASFV-DP does not share significant
74	sequence similarity to VACV D9 or D10, it does exhibit sequence similarity to Dcp2, an
75	mRNA decapping enzyme found in yeasts and mammals, along with other multicellular
76	eukaryotes [12, 21-26]. ASFV-DP was shown to cleave a broad range of substrates,
77	including diphosphoinositol polyphosphates, GTP, and the 5' m ⁷ GpppN cap when
78	attached to an RNA moiety [15, 20]. Subsequent in vivo studies revealed that over-
79	expression of ASFV-DP increases viral and host mRNA turnover, supporting the idea
80	that ASFV-DP mediates mRNA decapping and destabilization during infection [21]
81	The Mimivirus genome encodes two putative Nudix enzymes in its genome,
81 82	The Mimivirus genome encodes two putative Nudix enzymes in its genome, termed L375 (NCBI ID: YP_003986880) and L534 (NCBI ID: YP_003987047). Of the
82	termed L375 (NCBI ID: YP_003986880) and L534 (NCBI ID: YP_003987047). Of the
82 83	termed L375 (NCBI ID: YP_003986880) and L534 (NCBI ID: YP_003987047). Of the characterized viral Nudix enzymes, L375 is most similar to the ASFV-DP mRNA
82 83 84	termed L375 (NCBI ID: YP_003986880) and L534 (NCBI ID: YP_003987047). Of the characterized viral Nudix enzymes, L375 is most similar to the ASFV-DP mRNA decapping enzyme, sharing ~21% amino acid identity. In contrast, L534 does not exhibit
82 83 84 85	termed L375 (NCBI ID: YP_003986880) and L534 (NCBI ID: YP_003987047). Of the characterized viral Nudix enzymes, L375 is most similar to the ASFV-DP mRNA decapping enzyme, sharing ~21% amino acid identity. In contrast, L534 does not exhibit significant similarity to any of the known viral or eukaryotic mRNA decapping enzymes,
82 83 84 85 86	termed L375 (NCBI ID: YP_003986880) and L534 (NCBI ID: YP_003987047). Of the characterized viral Nudix enzymes, L375 is most similar to the ASFV-DP mRNA decapping enzyme, sharing ~21% amino acid identity. In contrast, L534 does not exhibit significant similarity to any of the known viral or eukaryotic mRNA decapping enzymes, instead showing sequence similarity to uncharacterized Nudix enzymes of other giant
82 83 84 85 86 87	termed L375 (NCBI ID: YP_003986880) and L534 (NCBI ID: YP_003987047). Of the characterized viral Nudix enzymes, L375 is most similar to the ASFV-DP mRNA decapping enzyme, sharing ~21% amino acid identity. In contrast, L534 does not exhibit significant similarity to any of the known viral or eukaryotic mRNA decapping enzymes, instead showing sequence similarity to uncharacterized Nudix enzymes of other giant viruses, bacteria, and single-celled eukaryotes. Given the sequence similarity between

91	Recombinant L375 cleaved the 5' m ⁷ GpppN mRNA cap, releasing m ⁷ GDP as a product,
92	a reaction dependent an intact Nudix motif. Importantly, L375 did not significantly
93	cleave unmethylated GpppG capped mRNAs, suggesting that L375 specifically
94	recognizes the methylated mRNA cap structure. Addition of uncapped RNA to the
95	reaction significantly inhibited L375 cap cleavage activity. Furthermore, L375 decapping
96	activity was reduced in the presence of certain methylated cap derivatives, suggesting
97	that L375 uses both the RNA and cap moieties to locate target substrates.
98	

99 Materials and methods

100 Plasmid design

101 Mimivirus L375 appended with a C-terminal 10X histidine tag was generated by 102 GeneArt (Life Technologies) for codon-optimized expression in *Escherichia coli*. The 103 synthetic L375 gene was then amplified by the polymerase chain reaction (PCR) using 104 the oligonucleotide primers: 5'-ATG GAA TAT GAA ACC AAC TTT CGC AAA AAA 105 CAC ATT TG and 5'-GCG CGC AAG CTT TTA GTG ATG ATG GTG GTG ATG 106 GTG ATG ATG ATG. The resulting PCR product was ligated into the pMal-c2x protein 107 expression plasmid (New England Biolabs) adjacent to the *malE* gene to generate the 108 pMAL-c2x-malE-L375-his₁₀ plasmid encoding maltose binding protein (MBP) fusion 109 protein MBP-L375-HIS₁₀. A targeted mutation in the Nudix motif was introduced 110 through use of the QuikChange site-directed mutagenesis kit (Agilent Technologies) to 111 produce a plasmid encoding L375 (E258Q).

112

113 Synthesis and purification of recombinant L375 protein

114 Wild-type or mutated pMAL-c2x-malE-L375-his₁₀ plasmids were transformed 115 into *Escherichia coli* strain BL21 (EMD Millipore) for subsequent growth in LB broth 116 supplemented with 50 µg/ml carbenicillin and 0.2% (w/v) glucose. MBP-L375-HIS₁₀ 117 expression was induced with 0.15 mM isopropyl β -D-1 thiogalactopyranoside (IPTG) 118 followed by growth at 28 °C. After 4 h of induction, cell lysates were produced using 119 sonication. The recombinant protein was sequentially purified using an amylose column 120 (New England Biolabs) followed by a nickel-nitrilotriacetic acid column (Oiagen) and 121 then dialyzed against buffer comprised of 10 mM Tris-HCl pH 7.5, 100 mM NaCl, 10% 122 glycerol, 1 mM DTT, and 2 mM Mg acetate [27]. Recombinant VACV MBP-D10 was 123 produced and purified by affinity column chromatography as detailed in Parrish et al. 124 [13].

125

126 Synthesis of RNA substrate

127 The MEGAshortscript kit (Life Technologies) and pTRI-β-actin-human template 128 (Life Technologies) were used to in vitro transcribe a 309-nt actin RNA transcript that 129 was subsequently cap-labeled using recombinant VACV guanylyltransferase/guanine-7-130 methyltransferase (Epicentre Biotechnologies) in conjunction with capping buffer (50 131 mM Tris-HCl pH 8.0, 6 mM KCl, 1.25 mM DTT, 1.25 MgCl₂), 0.132 μM [α³²P] GTP, 132 and 0.1 mM S-adenosylmethionine [28]. The cap-labeled RNA was then purified from 133 unincorporated nucleotides by using a ProbeQuant G-50 gel filtration column (GE 134 Healthcare).

135

136 **RNA decapping assays**

137	0.02 pmol of cap-labeled RNA was incubated with purified recombinant wild-
138	type or mutant MBP-L375-HIS ₁₀ in the presence of decapping buffer (100 mM K acetate,
139	10 mM Tris-HCl pH 7.5, 2 mM MgCl ₂ , 0.5 mM MnCl ₂ , and 2 mM DTT) in a total
140	volume of 15 μ l for 30 min at 37 °C [27]. 2 μ l aliquots of each reaction were resolved on
141	a polyethyleneimine-cellulose thin layer chromatography plate (Sigma-Aldrich)
142	developed in 0.75 M LiCl. UV shadowing was used to detect unlabeled nucleotide
143	standards while autoradiography and PhosphorImager analysis (Molecular Dynamics)
144	were used to visualize radioactive signals.
145	

146 **Results**

147 Recombinant Mimivirus L375 exhibits mRNA decapping

148 activity

149 The observation that Mimivirus L375 harbors a Nudix motif, in conjunction with 150 the sequence similarity observed between L375 and ASFV-DP, suggested that L375 151 could possess intrinsic mRNA decapping activity to modulate mRNA turnover during 152 infection. To evaluate if recombinant Mimivirus L375 could decap mRNA, a maltose binding protein (MBP)-L375 fusion protein terminated with C-terminal 10X histidine 153 154 epitope tag (MBP-L375-HIS₁₀) was synthesized in *Escherichia coli* and purified through 155 successive amylose and nickel-nitrilotriacetic acid columns. Following separation of the 156 purified recombinant protein through sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (SDS/PAGE), the expected ~87–kDa band for MBP-L375-HIS₁₀ was
observed (Fig 1A).

159

179

160 Fig 1. Recombinant Mimivirus L375 hydrolyzes the mRNA cap. (A) An MBP-L375 161 fusion protein containing a C-terminal 10X histidine epitope tag (MBP-L375-HIS₁₀) was 162 synthesized in *Escherichia coli* and purified by affinity chromatography through 163 successive amylose and nickel-nitrilotriacetic acid columns. The purified MBP-L375-164 HIS₁₀ protein was separated by SDS/PAGE and visualized by Coomassie blue staining. 165 The locations of the protein mass standards (in kDa) are labeled on the left side of the gel 166 and the ~ 87 kDa MBP-L375-HIS₁₀ protein is denoted on the right. (B) MBP-L375-HIS₁₀ 167 (80 ng) and 0.02 pmol ³²P-cap-labeled actin RNA were added to decapping buffer and 168 incubated at 37 °C for 30 min. After the incubation, an aliquot of the reaction was treated 169 with 2 U of nucleoside diphosphate kinase (NDPK) in the presence of 1 mM ATP at 37 170 °C for 30 min to convert nucleoside diphosphates into nucleoside triphosphates. The 171 products of the reaction were separated on PEI-cellulose TLC plates in 0.75 M LiCl and 172 the radioactive signals were visualized by autoradiography. Non-radioactive nucleotide 173 standards were run in parallel and detected by UV shadowing, as indicated on the right. 174 175 For the mRNA decapping assays, in vitro synthesized 309-nt actin RNA was 176 capped, methylated, and radioactively labeled using recombinant VACV RNA 177 guanylyltransferase/guanine-7-methyltransferase in the presence of $\left[\alpha^{32}P\right]$ GTP and S-178 adenosylmethionine [28]. The ³²P-cap-labeled RNA substrate was then combined with

8

MBP-L375-HIS₁₀ and the products of the reactions were separated on polyethyleneimine

180 (PEI)-cellulose thin layer chromatography (TLC) plates. Radioactive signals were 181 visualized using either autoradiography or PhophorImager analysis, whereas unlabeled 182 TLC nucleotide standards were detected by UV shadowing. 183 As expected, in the absence of recombinant L375, the large ³²P-cap-labeled RNA 184 stayed at the origin of the TLC plate and no major reaction products were detected; the 185 minor faint spot detected may correspond to unincorporated GTP remaining after 186 purification of the cap-labeled RNA (Fig 1B). When recombinant MBP-L375-HIS₁₀ was 187 included in the reaction, a product was released that migrated the same distance as the 188 unlabeled m⁷GDP standard, demonstrating that L375 cleaves the methylated mRNA cap 189 (Fig 1B). After cap hydrolysis, a residual amount of uncleaved cap-labeled RNA was 190 observed at the origin. Since L375 specifically cleaves methylated-capped structures (see 191 below) and methylation by S-adenosylmethionine of the cap-labeled RNA is generally 192 incomplete, some intact, unmethylated cap-labeled RNA is expected to remain at the 193 origin. 194 To confirm that the product released was m⁷GDP, the decapping products were 195 incubated with nucleoside diphosphate kinase (NDPK), an enzyme that phosphorylates 196 nucleoside diphosphates to yield nucleoside triphosphates. After the addition of NDPK, 197 the m⁷GDP product generated by MBP-L375-HIS₁₀ shifted in a downward direction to

199

198

200 Recombinant Mimivirus L375 mRNA decapping activity is 201 dependent on the Nudix motif

co-migrate with the m⁷GTP standard (Fig 1B).

202	The highly conserved Nudix box consists of the signature sequence
203	GX5EX5[UA]XREX2EEXGU (where U indicates either isoleucine, leucine, or valine and
204	X denotes any amino acid), of which the EX_2EE sequence has been shown to be required
205	for divalent cation binding and catalytic activity [10, 29, 30]. To determine whether the
206	Nudix motif was essential for cap cleavage, a point mutation was created in the essential
207	$\mathrm{EX}_{2}\mathrm{EE}$ active site residues of L375. A mutated version of L375 was synthesized in which
208	the glutamic acid at position 258 was changed to glutamine [L375(E258Q)]. The mutated
209	L375(E258Q) protein was expressed in Escherichia coli and then purified by affinity
210	chromatography concurrently with the wild-type recombinant proteins. As previously
211	shown, incubation of wild-type recombinant L375 with the capped mRNA substrate
212	resulted in the hydrolysis of the 5' cap and release of m ⁷ GDP (Fig 2). However, when an
213	equal amount of the mutant L375(E258Q) protein was added to the capped RNA
214	substrate, m ⁷ GDP was not liberated, confirming that the Nudix motif was essential for
215	cap cleavage and that the recombinant protein was directly responsible for the decapping
216	activity observed in the assay (Fig 2).
217	
218	Fig 2. The mRNA decapping activity of recombinant L375 is dependent on an intact
219	Nudix hydrolase motif. The Nudix motif of MBP-L375-HIS $_{10}$ was subjected to site-
220	directed mutagenesis to convert the glutamic acid residue at position 258 into a glutamine
221	residue, thereby producing L375(E258Q). The mutant and wild-type proteins were

residue, thereby producing L375(E258Q). The mutant and wild-type proteins were 221

222 expressed and purified in parallel as described in Fig 1A and equivalent amounts of the

two proteins (50 ng) were added to separate mRNA decapping assays conducted as in Fig. 223

224 1B.

225

226 **Recombinant Mimivirus L375 specifically cleaves methylated**

227 cap structures

228 Since Nudix enzymes can cleave a broad range of substrates, it was important to 229 investigate the specificity of L375 for the 5' m⁷GpppN mRNA cap [31]. The mRNA cap 230 contains a unique methyl group at position 7 on the guanine base, a structural feature 231 often recognized by proteins that exclusively bind and/or cleave the mRNA cap. To 232 examine the selectivity of L375 for the 5' m⁷GpppN cap structure, an unmethylated 233 GpppN-capped RNA was synthesized by excluding the S-adenosylmethionine methyl 234 donor from the capping reaction, and the unmethylated substrate was subsequently 235 incubated with recombinant L375. Importantly, recombinant L375 was not able to 236 significantly cleave the unmethylated GpppN cap to release GDP, indicating that this 237 enzyme specifically recognizes the methylated mRNA cap (Fig 3). As expected, when 238 equivalent amounts of mutant L375(E258Q) protein was added to the unmethylated cap-239 labeled substrate, no products were generated.

240

241 Fig 3. Recombinant L375 specifically cleaves methylated cap structures. (A) The

³²P-cap-labeled actin 309-nt RNA substrate was synthesized either in the presence

243 (+CH₃) or absence (-CH₃) of the methyl donor *S*-adenosylmethionine. 0.02 pmol of

244 methylated or unmethylated RNA substrate was incubated with either 50 ng of

recombinant wild-type L375 or mutant L375 (E258Q) in mRNA decapping assays as

described in Fig 1B.

248 Mimivirus L375 mRNA decapping activity increases with time

249 and enzyme concentration

250	A time course experiment revealed that the amount of m ⁷ GDP product released by
251	L375 increased through time, as expected for an enzyme (Fig 4A). Likewise, increasing
252	amounts of L375 enzyme resulted in the release of more m7GDP product, until saturation
253	was reached (Fig 4B). As noted for above and similar to other viral mRNA decapping
254	enzymes, a proportion of the substrate remains resistant to cleavage despite high enzyme
255	concentrations (~28%), because some of the ³² P-cap-labeled RNA remains unmethylated
256	and therefore not a viable substrate. This observation, along with the finding that the
257	presence of uncapped RNA inhibits L375 mRNA decapping activity (see Fig 5 below),
258	hindered our ability to determine the kinetic coefficients of the reaction.
259	
259 260	Fig 4. Recombinant L375 mRNA decapping activity increases with time and
	Fig 4. Recombinant L375 mRNA decapping activity increases with time and enzyme concentration. (A) 60 ng of recombinant L375 was incubated with 0.02 pmol
260	
260 261	enzyme concentration. (A) 60 ng of recombinant L375 was incubated with 0.02 pmol
260 261 262	enzyme concentration. (A) 60 ng of recombinant L375 was incubated with 0.02 pmol ³² P-cap-labeled actin RNA substrate in decapping buffer at 37 °C for the time indicated
260 261 262 263	enzyme concentration. (A) 60 ng of recombinant L375 was incubated with 0.02 pmol ³² P-cap-labeled actin RNA substrate in decapping buffer at 37 °C for the time indicated on the graph. After separation of the reaction products on PEI-cellulose TLC plates, the
260 261 262 263 264	enzyme concentration. (A) 60 ng of recombinant L375 was incubated with 0.02 pmol ³² P-cap-labeled actin RNA substrate in decapping buffer at 37 °C for the time indicated on the graph. After separation of the reaction products on PEI-cellulose TLC plates, the percentage of m ⁷ GDP released was calculated by PhosphorImager analysis. (B) The

268

269 Uncapped RNA inhibits Mimivirus L375 mRNA decapping

270 activity

271	The viral mRNA decapping enzymes characterized to date have all been shown to
272	be inhibited by the addition of uncapped RNA, suggesting that these enzymes recognize
273	and bind the RNA moiety during substrate identification [13-15]. To evaluate if
274	Mimivirus L375 also interacts with the RNA body during substrate recognition,
275	increasing molar amounts of uncapped RNA were added to the reaction and the
276	percentage of m7GDP product released was calculated. Addition of uncapped RNA
277	competitor significantly decreased L375 decapping activity, in a manner almost identical
278	to that observed for VACV D10 (Fig 5). For example, a 20-fold molar excess of
279	competitor RNA reduced both L375 and VACV decapping activity by 62%, suggesting
280	that L375 binds the RNA body during substrate recognition (Fig 5).
281	
282	Fig 5. Recombinant L375 mRNA decapping activity is reduced by the addition of
283	uncapped RNA competitor. 80 ng of recombinant L375 or VACV D10 and 0.02 pmol
284	³² P-cap-labeled 309-nt actin RNA were incubated with increasing amounts of uncapped,
285	non-radioactive 309-nt actin RNA in mRNA decapping assays conducted as described in
286	Fig 1B. The percentage of m ⁷ GDP product released was determined by using a
287	PhosphorImager.
	r nosphormager.

288

289 Methylated nucleotides inhibit L375 mRNA decapping activity

290	It was previously shown that the decapping activity of VACV D9 and D10 was
291	inhibited by m7GTP, m7GDP, and m7GpppG, structures that mimic the mRNA cap and
292	therefore may compete for binding [13, 14]. Conversely, ASFV-DP was not inhibited by
293	any of the three methylated cap analogs, indicating that ASFV-DP may exclusively use
294	the RNA moiety to locate its substrate [15]. To evaluate the effect of methylated
295	nucleotides on L375 substrate cleavage, increasing quantities of m7GTP, m7GDP, and
296	m ⁷ GpppG or unmethylated alternatives of these nucleotides were included in the
297	reactions and the amount of product generated was calculated. Interestingly, the most
298	robust inhibition of L375 decapping activity was observed for m7GTP, mirroring the
299	results seen for VACV D10 (Figs 6A, 6B, and 6C). m7GDP also inhibited L375 cap
300	cleavage, but the effect was more modest than that observed for m ⁷ GTP (Fig 6B).
301	Surprisingly, m ⁷ GpppG did not significantly reduce the ability of L375 to decap mRNA,
302	in contrast to the observed reduction of D10 decapping activity by this cap analog (Fig
303	6C). In support of the specificity of L375 for the methylated cap, the unmethylated
304	versions of the three nucleotides (GDP, GTP, and GpppG) did not significantly inhibit
305	L375 decapping activity. These results suggest that L375 may recognize both the
306	methylated cap structure and the RNA moiety during substrate identification.
307	

308 Fig 6. Recombinant L375 mRNA decapping activity is inhibited by addition of

309 m^7 GTP or m^7 GDP. (A) 80 ng of recombinant L375 or VACV D10 and 0.02 pmol ³²P-

- 310 cap-labeled actin RNA were incubated together in the presence of increasing quantities of
- 311 m⁷GTP or GTP in mRNA decapping assays as described in Fig 1B. The percentage of
- 312 m⁷GDP liberated was calculated through PhosphorImager analysis. (B) mRNA decapping

313	assays were performed as in Panel A with increasing amounts of m ⁷ GDP or GDP. (C)
314	mRNA decapping assays were performed as described in Panel A with increasing
315	amounts of m ⁷ GpppG cap analog or GpppG.

316

317 **Discussion**

318 Nudix hydrolases cleave a broad range of substrates, a subset of which cleave the 319 5' mRNA cap. The importance of these enzymes is illustrated by their conservation 320 between the living organisms (prokaryotes and eukaryotes), as well as their presence in 321 some of the non-living viruses. Three NCLDV Nudix hydrolases have been characterized 322 to date, VACV D9, VACV D10, and ASFV-DP. Each of these enzymes have been shown 323 to possess intrinsic mRNA decapping activity in vitro [13-15]. Importantly, ASFV-DP 324 shares sequence similarity to both the well-characterized eukaryotic Dcp2 Nudix mRNA 325 decapping enzyme and Mimivirus L375, the focus of this work [12, 21-26]. 326 Here we show that the Mimivirus Nudix enzyme L375 hydrolyzed the mRNA cap 327 to release $m^{7}GDP$; a reaction that is dependent on an intact Nudix box. Like L375, 328 VACV D9 was shown to preferentially hydrolyze methylated rather than unmethylated 329 mRNA caps [14]. In contrast, ASFV-DP has a broader nucleotide substrate range that 330 includes GTP [15, 20]. Eukaryotic Dcp2 has been reported to preferentially cleave 331 methylated rather than unmethylated cap structures, although some decapping activity 332 has been detected with unmethylated mRNA cap substrates depending on the divalent 333 cation present in the reaction buffer [23-25, 27, 32].

334	Similar to the viral and eukaryotic mRNA decapping enzymes characterized to
335	date, uncapped competitor RNA reduced L375 decapping activity, suggesting that L375
336	also uses the RNA moiety for substrate selection [13-15, 25, 27, 33]. Previous studies
337	showed that uncapped competitor RNA more potently inhibited the mRNA decapping
338	activity of ASFV-DP compared to VACV D9 or D10 (ASFV-DP>D9>D10), indicating
339	that ASFV-DP may have a higher affinity for RNA than the poxvirus enzymes [13-15].
340	In this work, the inhibition of L375 by competitor RNA more closely resembled that of
341	VACV D10, suggesting that L375 may have a lower affinity for RNA than ASFV-DP,
342	despite their greater sequence similarity.
343	The strong affinity of ASFV-DP for RNA was confirmed through an
344	electrophoretic mobility shift assay, in which the migration of uncapped RNA was
345	impeded with the addition of ASFV-DP [15]. Subsequent in vivo experiments confirmed
346	that ASFV interacts with viral and host mRNAs during infection, a property dependent
347	on the N-terminus of the protein, rather than the Nudix motif [21]. ASFV-DP also
348	exhibited different levels of binding efficiency depending on the specific mRNA, similar
349	to Dcp2 [21]. For example, yeast Dcp2 preferentially binds capped mRNAs with a stem-
350	loop structure within the first 10 bases of the sequence. [34, 35].
351	As observed for VACV D9 and D10 (but not for ASFV-DP), addition of
352	methylated cap derivatives reduced L375 decapping activity, suggesting that L375
353	recognizes the cap structure in addition to the RNA body [13, 14]. Specifically, L375
354	decapping activity was most potently inhibited by m7GTP, followed by m7GDP, whereas
355	the effect of m ⁷ GpppG was negligible (m ⁷ GTP>m ⁷ GDP>m ⁷ GpppG). In comparison, the
356	decapping activity of both VACV D9 and D10 was diminished by all three methylated

357 cap derivatives, with the most striking reduction also observed with m^7 GTP [13, 14]. 358 Interestingly, VACV D10 was more sensitive to inhibition by methylated nucleotides 359 than either L375 or VACV D9, suggesting a greater importance of the cap structure for 360 substrate recognition for this enzyme [13, 14]. 361 In contrast, ASFV-DP was not inhibited by addition of methylated cap 362 derivatives, nor could it cleave free methylated cap analog *in vitro*, suggesting that for 363 ASFV-DP, the RNA body is critical during substrate identification [15, 20]. Like ASFV-364 DP, the mRNA decapping activity of most eukaryotic Dcp2 enzymes is not affected by 365 the addition of methylated cap analogs, suggesting these enzymes primarily recognize the 366 RNA moiety to locate target substrates [23-25, 27]. Hence, the inhibition of L375 367 decapping activity by methylated cap derivatives more closely resembles VACV D9 and 368 D10 rather than that of ASFV-DP or Dcp2. 369 The purpose of mRNA decapping during viral infection has been revealed 370 through in vivo studies characterizing VACV D9, D10, and ASFV-DP. Increased 371 expression of VACV D9, VACV D10, or ASFV-DP resulted in enhanced mRNA 372 turnover of capped viral and host transcripts, further validating that these enzymes decap 373 mRNA to elicit subsequent mRNA degradation [17, 21]. Interestingly, over-expression of 374 ASFV-DP increased degradation of some mRNA transcripts more than others, suggesting 375 that the degree of mRNA turnover induced by ASFV-DP could be selective, as has been 376 shown for Dcp2 [21, 34. 35].

In complementary genetic studies in VACV, deletion or inactivation of D10
resulted in persistence of viral and host mRNAs, a delay in the shutoff of host protein
synthesis, and a modest reduction of virulence in animal hosts, whereas deletion of D9

380	did not produce any noticeable defects [17-19, 36]. When both D9 and D10 were					
381	inactivated concurrently, viral replication was severely impaired both in vitro and in vivo,					
382	suggesting that these two enzymes work together synergistically [37]. The substantial					
383	replication defects exhibited by the double D9/D10 mutant virus were shown to result					
384	from the accumulation of excess amounts of viral double-stranded RNA (dsRNA) that					
385	subsequently activated the host's innate immune defenses to curtail infection [37]. These					
386	results suggest that in addition to modulating viral and cellular mRNA turnover, D9 and					
387	D10 also induce viral dsRNA degradation to avoid activating host anti-viral responses.					
388	Furthermore, cellular RNA exonuclease Xrn1, which degrades RNA following					
389	decapping, was also required to avoid aberrant viral dsRNA accumulation, suggesting the					
390	viral mRNA decapping enzymes work in concert with cellular Xrn1 to degrade viral					
391	dsRNA to evade the host immune system [38].					
392	Like VACV and ASFV, Mimivirus encodes its own mRNA capping enzyme and					
393	directs a sequential cascade of viral gene expression consisting of early, intermediate, and					
394	late phases; therefore, decapping of viral mRNAs by L375 could provide a mechanism to					
395	orchestrate the transitions between viral gene expression during infection [2, 39].					
396	Furthermore, mRNA decapping by L375 during Mimivirus infection could be responsible					
397	for the degradation of host mRNAs to elicit the shutdown of host protein synthesis,					
398	allowing viral transcripts preferential access to the host translation machinery [2].					
399	In contrast to the animal hosts of VACV and ASFV, Mimivirus primarily infects					
400	unicellular Acanthamoeba species, and therefore does not require L375 mRNA					
401	decapping activity to evade the complex vertebrate immune systems. However,					
402	Mimivirus could still use selective mRNA decapping and degradation of specific host					

403	mRNAs to promote a robust Acanthamoeba infection. Future in vivo studies will help
404	elucidate the role of L375 mRNA decapping and decay during Mimivirus infection.

405

406 Acknowledgments

407 We sincerely thank Bernard Moss for his generous support of this work, guidance,

408 and helpful suggestions. In addition, we are grateful to Wolfgang Resch, P.S.

409 Satheshkumar, Zhilong Yang, and Cheng Huang for helpful discussions and technical

410 assistance.

411

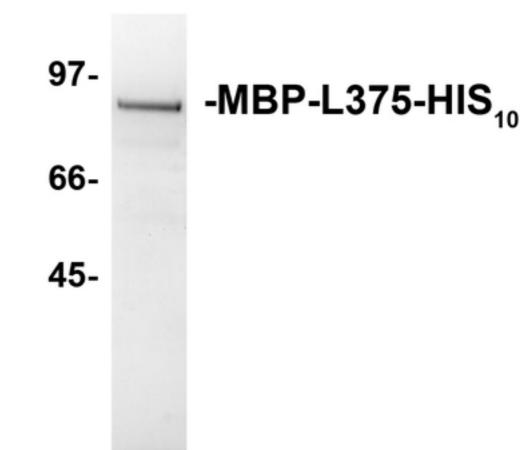
412 **References**

413 1. Raoult D, Audic S, Robert C, Abergel, C, Renesto, P, Ogata H, et al. The 1.2-megabase

414 genome sequence of Mimivirus. Science. 2004; 304(5700):1344-1350.

- 415 2. Legendre M, Audic S, Poirot O, Hingamp P, Seltzer V, Byrne D, et al. mRNA deep
- 416 sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus.
- 417 Genome Res. 2010; 20(5):664-674.
- 418 3. Legendre M, Santini S, Rico A, Claverie J. Breaking the 1000-gene barrier for Mimivirus
- 419 using ultra-deep genomic and transcriptome sequencing. Virol. J. 2011 March 4. doi:
- 420 <u>10.1186/1743-422X-8-99</u>.
- 421 4. Iyer LM, Aravind L, Koonin EV. Common origin of four diverse families of large eukaryotic
- 422 DNA viruses. J. Virol. 2001; 75(23):11720-11734.
- 423 5. Iyer LM, Balaji S, Koonin EV, Aravind L. Evolutionary genomics of nucleo-cytoplasmic
- 424 large DNA viruses. Virus Res. 2006; 117(1):156-184.

- 425 6. Yutin N, Wolf YI, Raoult D, Koonin EV. Eukaryotic large nucleo-cytoplasmic DNA
- 426 viruses: Clusters of orthologous genes and reconstruction of viral genome evolution.
- 427 Virol. J. 2009; 6(223). doi: <u>10.1186/1743-422X-6-223</u>.
- 428 7. Yutin N, Koonin EV. Hidden evolutionary complexity of nucleo-cytoplasmic large
- 429 DNA viruses of eukaryotes. Virol. J. 2012; 9(161) doi: https://doi.org/10.1186/1743-
- 430 422X-9-161.
- 431 8. Colson P, Pagnier I, Yoosuf N, Fournous G, La Scola B, Raoult D. "Marseilleviridae", a new
- 432 family of giant viruses infecting amoebae. Arch. Virol. 2013; 158(4):915-920.
- 433 9. Koonin EV, Yutin N. Multiple evolutionary origins of giant viruses. F1000Res. 2018
- 434 Nov. 22. doi: <u>10.12688/f1000research.16248.1</u>
- 435 10. Bessman MJ, Frick DN, O'Handley SF. The MutT proteins or "Nudix" hydrolases, a family
 436 of versatile, widely distributed, "housecleaning" enzymes. J. Biol. Chem. 1996;
- 437 271(41):25059-25062.
- 438 11. McLennan AG. The Nudix hydrolase superfamily. Cell Mol. Life Sci. 2006; 63:123-143.
- 439 12. McLennan, AG. Decapitation: Poxvirus makes RNA lose its head. Trends Biochem. Sci.
- 440 2007; 32(7):297-299.
- 13. Parrish S, Resch W, Moss B. Vaccinia virus D10 protein has mRNA decapping activity,
- 442 providing a mechanism for control of host and viral gene expression. Proc. Natl. Acad. Sci.
- 443 U. S. A. 2007; 104(7):2139-2144.
- 444 14. Parrish S, Moss B. Characterization of a second vaccinia virus mRNA-decapping enzyme
 445 conserved in poxviruses. J. Virol. 2007; 81(23):12973-12978.
- 446 15. Parrish S, Hurchalla M, Liu SW, Moss B. The African swine fever virus g5R protein
- 447 possesses mRNA decapping activity. Virology. 2009; 393(1):177-182.


448	16. Lee-Chen GJ, Niles EG. Transcription and translation mapping of the 13 genes in the
449	vaccinia virus HindIII D fragment. Virology. 1988; 163(1):52-63.
450	17. Shors T, Keck JG, Moss B. Down regulation of gene expression by the vaccinia virus D10
451	protein. J. Virol. 1999; 73(1):791-796.
452	18. Parrish S, Moss B. Characterization of a vaccinia virus mutant with a deletion of the D10R
453	gene encoding a putative negative regulator of gene expression. J.Virol. 2006; 80(2):553-
454	561.
455	19. Dvoracek B, Shors T. Construction of a novel set of transfer vectors to study vaccinia virus
456	replication and foreign gene foreign gene expression. Plasmid. 2003; 49(1):9-17.
457	20. Cartwright JL, Safrany ST, Dixon LK, Darzynkiewicz E, Stepinski J, Burke R, McLennan,
458	AG. The g5R (D250) gene of African swine fever virus encodes a Nudix hydrolase that
459	preferentially degrades diphosphoinositol polyphosphates. J. Virol. 2002; 76(3):1415-1421.
460	21. Quintas A, Pérez-Núñez D, Sánchez E, Nogal M, Hentze M, Castelló A, Revilla Y.
461	Characterization of the African Swine Fever Virus decapping enzyme during
462	infection. J. Virol. 2017; 91(24):e00990-17. doi: 10.1128/JVI.00990-17.
463	22. Dunckley T, Parker R, The DCP2 protein is required for mRNA decapping in
464	Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J. 1999; 18(19),
465	5411-5422.
466	23. Wang Z, Jiao X, Carr-Schmid A, Kiledjian M. The hDcp2 protein is a mammalian mRNA
467	decapping enzyme. Proc. Natl. Acad. Sci. U. S. A. 2002; 99(20):12663-12668.
468	24. van Dijk E, Cougot N, Meyer S, Babajko S, Wahle E, Seraphin B. Human Dcp2: a
469	catalytically active mRNA decapping enzyme located in specific cytoplasmic structures.
470	EMBO J. 2002; 21(24):6915-6924.

- 471 25. Cohen LS, Mikhli C, Jiao X, Kiledjian M, Kunkel G, Davis RE. Dcp2 decaps
- 472 m2,2,7GpppN-capped RNAs, and its activity is sequence and context dependent. Mol. Cell
- 473 Biol. 2005; 25(20): 8779-8791.
- 474 26. Xu J, Yang JY, Niu QW, Chua NH. Arabidopsis DCP2, DCP1, and VARICOSE form a
- 475 decapping complex required for postembryonic development. Plant Cell. 2006;
- 476 18(12):3386-3398.
- 477 27. Piccirillo C, Khanna R, Kiledjian M. Functional characterization of the mammalian mRNA
 478 decapping enzyme hDcp2. RNA. 2003; 9(90):1138-1147.
- 479 28. Martin SA, Moss B. Modification of RNA by mRNA guanylyltransferase and mRNA
- 480 (guanine-7-)methyltransferase from vaccinia virions. J. Biol. Chem. 1975; 250(24):9330481 9335.
- 482 29. Koonin E. A highly conserved sequence motif defining the family of MutT-related proteins
 483 from eubacteria, eukaryotes and viruses. Nucleic Acids Res. 1993; 21(20):4847.
- 484 30. Mildvan AS, Xia Z, Azurmendi HF, Saraswat V, Legler PM, Massiah MA et al. Structures
- 485 and mechanisms of Nudix hydrolases. Arch. Biochem. Biophys. 2005; 433(1):129-143.
- 486 31. McLennan AG. Substrate ambiguity among the nudix hydrolases: biologically significant,
- 487 evolutionary remnant, or both? Cell Mol. Life Sci. 2013; 70(3):373-385.
- 488 32. Song M, Bail S, Kiledjian M. Multiple Nudix family proteins possess mRNA decapping
 489 activity. RNA. 2013; 19(3):390-399.
- 490 33. Gunawardana D, Cheng HC, Gayler KR. Identification of functional domains in Arabidopsis
- 491 *thaliana* mRNA decapping enzyme (AtDcp2). Nucleic Acids Res. 2008; 36(1):203-216.
- 492 34. Li Y, Song M, Kiledjian M. Transcript-specific decapping and regulated stability by the
- 493 human Dcp2 decapping protein. Mol. Cell Biol. 2008; 28(3):939-948.

494	35. Li Y.	Ho E.	Gunderson S.	Kiledjian M	I. Mutational	analysis of a	Dcp2-binding element

- reveals general enhancement of decapping by 5-end stem-loop structures. Nucleic Acid Res.
- 496 2009; 37(7):2227-2237.
- 497 36. Liu SW, Wyatt LS, Orandle MS, Minai M, Moss B. The D10 decapping enzyme of vaccinia
- 498 virus contributes to decay of cellular and viral mRNAs and to virulence in mice. J. Virol.
- 499 2014; 88(1):202-211.
- 500 37. Liu SW, Katsafanas GC, Liu R, Wyatt LS, Moss B, Poxvirus decapping enzymes enhance
- 501 virulence by preventing the accumulation of dsRNA and the induction of innate antiviral
- 502 response. Cell Host Microbe. 2015; 17(3):320-331.
- 38. Burgess H, Mohr I. Cellular 5'-3' mRNA exonuclease Xrn1 controls double-stranded RNA
 accumulation and anti-viral responses. Cell Host Microbe. 2015; 17(3): 332-344.
- 505 39. Benarroch D, Smith P, Shuman S. Characterization of a trifunctional Mimivirus mRNA
- 506 capping enzyme and crystal structure of the RNA triphosphate domain. Structure. 2008;

507 16(4):501-512.

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.11.426193; this version posted January 11, 202 (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to dis available under aCC-BY 4.0 International license.

-m⁷GDP

Figure

-L375 +L375 +L375 +NDPK

-origin

-m⁷GTP

-m⁷GDP

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.11.426193; this version posted January 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

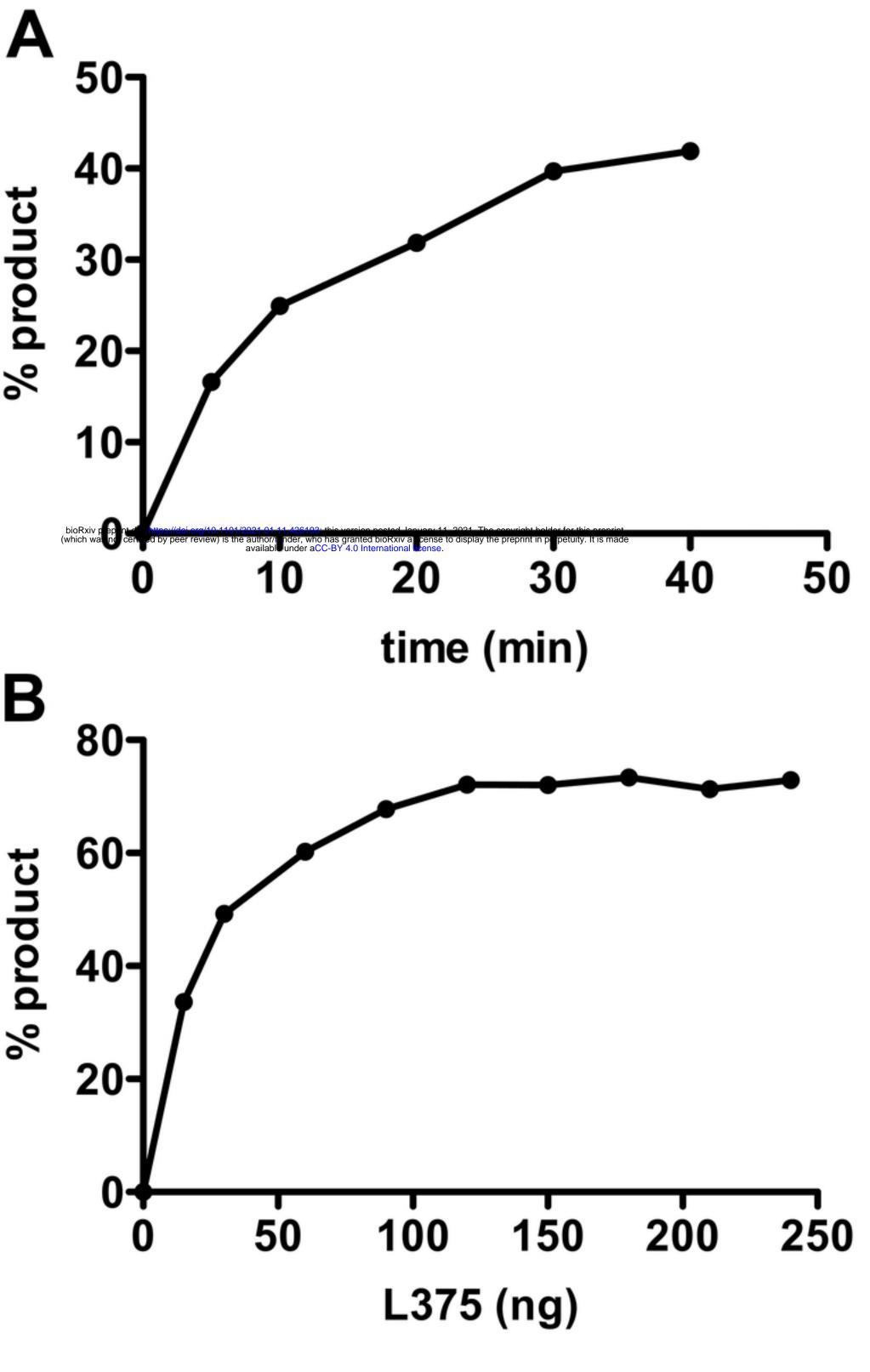
Figure

 \bigcirc

-L375 +L375

+L375 E258Q

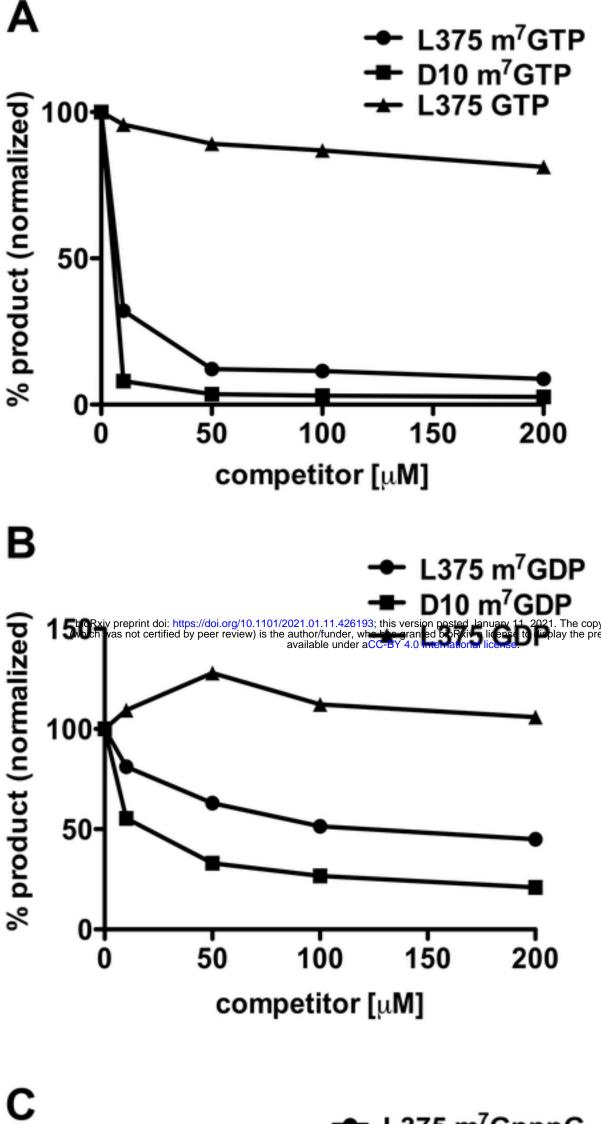
-origin

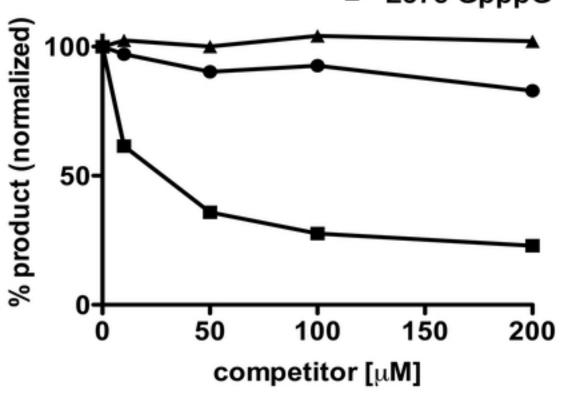


-GDP

-origin

+CH₃ +CH₃ -CH₃ -CH₃ -CH₃ -L375 +L375 -L375 +L375 +L375 E258Q


Figure



Figure

L375 m⁷GpppG
 D10 m⁷GpppG
 L375 GpppG

Figure

