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Abstract

Objectives. White matter lesions are a very common finding on MRI in older adults and their presence

increases the risk of stroke and dementia. Accurate and computationally efficient modelling methods are

necessary to map the association of lesion incidence with risk factors, such as hypertension. However,

there is no consensus in the brain mapping literature whether a voxel-wise modelling approach is better

for binary lesion data than a more computationally intensive spatial modelling approach that accounts

for voxel dependence.

Methods. We review three regression approaches for modelling binary lesion masks including mass-

univariate probit regression modelling with either maximum likelihood estimates, or mean bias-reduced

estimates, and spatial Bayesian modelling, where the regression coefficients have a conditional autore-

gressive model prior to account for local spatial dependence. We design a novel simulation framework

of artificial lesion maps to compare the three alternative lesion mapping methods. The age effect on

lesion probability estimated from a reference data set (13,680 individuals from the UK Biobank) is used

to simulate a realistic voxel-wise distribution of lesions across age. To mimic the real features of lesion

masks, we propose matching brain lesion summaries (total lesion volume, average lesion size and lesion

count) across the reference data set and the simulated data sets. Thus, we allow for a fair comparison

between the modelling approaches, under a realistic simulation setting.

Results. Our findings suggest that bias-reduced estimates for voxel-wise binary-response generalized linear

models (GLMs) overcome the drawbacks of infinite and biased maximum likelihood estimates and scale

well for large data sets because voxel-wise estimation can be performed in parallel across voxels. Contrary

to the assumption of spatial dependence being key in lesion mapping, our results show that voxel-wise

bias-reduction and spatial modelling result in largely similar estimates.

Conclusion. Bias-reduced estimates for voxel-wise GLMs are not only accurate but also computationally

efficient, which will become increasingly important as more biobank-scale neuroimaging data sets become

available.
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1. Introduction

White matter hyperintensities of presumed vascular origin (WMHs), also known as white matter lesions

or leukoaraiosis (Wardlaw et al., 2013), are signs of cerebral small vessel disease (SVD) in the brain.

Lesions are evident on Magnetic Resonance Imaging (MRI) as hyperintensities on the T2-weighted, fluid

attenuated inversion recovery (FLAIR), and proton density-weighted brain images. WMHs are common5

in the aging brain and are associated with cerebrovascular burden (Rostrup et al., 2012; Griffanti et al.,

2018; Lampe et al., 2019). It is not clear how different contributors to the cerebrovascular burden, such

as hypertension or smoking history, relate to the spatial distribution of WMHs in the brain and this has

given rise to the exploitation of a variety of statistical methods in the field.

There are other types of lesions in brain imaging, which differ by the factor influencing their devel-10

opment. For example, multiple sclerosis (MS) is an autoimmune disease of the central nervous system,

which causes the destruction of myelin further resulting in brain and spinal cord lesions. Another exam-

ple are stroke lesions, which can have very similar signal intensities as WMHs and are of vascular origin

too. However, independent of the type of brain lesions, their size, location, growth, etc., are important

for diagnosis, treatment or prevention. While all types of lesion data motivate the current work, going15

forward we will focus on WMHs of presumed vascular origin.

As originally created, the MRI scans exist in so-called native space, and do not correspond to any

other subject’s brain. These native space images are used to quantify the severity of lesions either

based on a visual scoring system (e.g. Fazekas scale Fazekas et al. 1987), or by segmenting the lesions

by producing a binary lesion map indicating lesion presence/absence. Visual scoring as well as manual20

lesion segmentation are quite common in neurodegenerative diseases such as MS, even though they are

expensive, time-consuming and subject to inter-rater variability (Rudick et al., 2012; Hagens et al., 2019).

An objective automated segmentation procedure, such as BIANCA (Griffanti et al., 2016), is preferable

since it provides a scalable method to obtain reproducible lesion maps on thousands of subjects.

Whether created manually or by an automated method, the native space lesion maps can be trans-25

formed to the MNI atlas space, producing aligned binary lesion maps ready for group analyses. For

example, a voxel-wise analysis can compare the distribution of patterns of lesions from different disease

subtypes (Filli et al., 2012), or perform voxel-wise linear regressions between lesion probability and dif-

ferent clinical disability scores (Charil et al., 2003; Kincses et al., 2011). Approaches such as the ones

mentioned are known as mass-univariate since they fit a model at each voxel independently, ignoring any30

spatial dependence between nearby voxels which is later accounted for at the inference stage (e.g. using a

method like false discovery rate (FDR) correction that allows for positive spatial dependence (Genovese

et al., 2002)). While some authors have used a standard linear model with lesion incidence as response

(Kincses et al., 2011), this is ill-advised as it ignores the binary and heteroscedastic nature of the data.

Mass-univariate voxel-wise modelling of lesion masks that accounts for the binary nature of the data is35

done through maximum likelihood estimation of a generalized linear model (GLM), e.g. logistic or probit

regression. While the GLM has been used in the voxel-wise brain lesion mapping literature (Lampe et al.,

2019; Rostrup et al., 2012), to our knowledge the limitations of logistic or probit regression with small

sample size and/or low incident responses has not been addressed. These issues have been thoroughly

investigated in the statistics literature and a short overview is provided here.40

Outside of linear models, maximum likelihood estimation typically requires iterative optimization, such as

iteratively reweighted least squares (IRLS) (Green, 1984). When a covariate (or a combination of covari-

ates) in a logistic or probit regression model perfectly separates the outcome variable, ‘data separation’

occurs (Albert & Anderson, 1984) and the maximum likelihood estimates (MLEs) for those covariates are

infinite. Hence the iterative procedure for maximum likelihood will diverge or, even worse, stop early, re-45
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porting massive in absolute value estimates without any warning that the estimates are in reality infinite.

This is more likely to happen when dealing with rare responses or small sample size. For example, with

lesion data, it could happen if only subjects older than 60 years of age have a lesion at a particular voxel

and no subject younger than 60 does. In such cases, estimated standard errors also diverge to infinity

but faster than the estimates. As a result, the commonly used Wald statistics become artificially small in50

absolute value masking any significance in evidence when testing. In addition, the optimal properties of

the ML estimator only hold asymptotically, and finite sample properties may be far from what is expected

asymptotically. To address both limitations of the MLE, the use of a bias-reduction approach (Kosmidis

& Firth, 2009; Kosmidis et al., 2020) in mass-univariate voxel-wise modelling is explored. The method

guarantees finite-valued estimates (Kosmidis & Firth, 2020) as it corrects for the first-order bias of the55

ML estimator. Furthermore, bias-reduced estimates are fast to obtain (typically being only slightly more

expensive than MLEs) and the voxel-wise modelling allows for parallel implementation, which makes the

method feasible for large imaging data sets.

In contrast to the mass-univariate approaches for brain image analysis, Ge et al. (2014) introduce

a Bayesian Spatial Generalized Linear Mixed Model (BSGLMM). While still accounting for the binary60

nature of the data, the main difference between BSGLMM and the classical GLMs is that BSGLMM

accounts for the local spatial dependence in the brain through the inclusion of spatially varying coefficients

to a Bayesian spatial model. Spatially varying coefficients are latent spatial processes (or fields) and

they are modelled jointly using a multivariate pairwise difference prior model, a particular instance of the

Multivariate Conditional Autoregressive (MCAR) model. Given that the method estimates an entire brain65

mask of coefficients for each covariate in a model (e.g. age and sex), there is a considerable computational

burden, which is partly alleviated by a parallel graphical processing unit (GPU) implementation (Ge

et al., 2014).

The motivation for the present work is the lack of validation for the mass-univariate generalized linear

regression model, and the only very limited simulation framework used to evaluate the BSGLMM method.70

In particular, it is not known whether the sample sizes and typical incident rates found in WMH studies

produce highly biased (or even divergent) estimates of regression effects with standard maximum likelihood

estimators. With the Bayesian approach, while Ge et al. (2014) provide simulations showing the benefits

of spatial regularization, those evaluations used only 2D images with large homogeneous lesion patterns

that do not reflect the highly structured and inhomogeneous patterns found in real data.75

To gain a better understating of the differences between the alternative lesion mapping methods, in this

paper we develop a novel simulation framework of artificial lesion maps. We estimate the effect of age on

lesion probability in a reference data set (a subset of the UK Biobank data set Miller et al. 2016) and we

use it to simulate a realistic voxel-wise distribution of lesions across age. We use age as a covariate since

it is thought to be the strongest risk factor for the presence of lesions, although the simulation approach80

could be adapted to utilise effect maps of any risk factor. To mimic the real features of lesion masks

we suggest matching brain lesion summaries (total lesion volume, average lesion size and lesion count)

across the reference data set and the simulated data sets. In this way, we allow for a more realistic, fairer

comparison between the modelling approaches.

In this paper, we compare three alternative approaches for modelling binary lesion masks, two mass-85

univariate regression methods and the BSGLMM method, with the remainder of the paper organised

as follows. In Section 2.1 we start by providing the details behind these different methods. We set

out the steps of our proposed novel simulation framework in Section 2.2, which mimics features of real

lesion masks. We then apply the three modelling approaches to simulated data sets and evaluate their

performance in terms of a range of estimation accuracy metrics, such as bias and mean squared error, as90
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well as spatial overlap between Wald statistics (reference versus estimated z-scores), false positive control

and computational cost (Section 3.1). To demonstrate the scalability of one of the methods, we apply

it to a subset of the UK Biobank data, where we estimate the effect of systolic blood pressure on lesion

probability (Section 3.2).

Software to generate lesion masks using our simulation framework is available through the Open Science95

Framework website1, which also provides a demonstration of the parallel GLMs implementation.

2. Materials and Methods

2.1. Summary of existing regression methods

Suppose that there are N individuals and that each subject i (i = 1, . . . , N) comes with a binary lesion

mask Yi ∈ B ⊂ R3. B is the human brain and we consider M cubic cells (voxels) as a discretization100

of the 3D brain on a regular rectangular grid, where sj denotes the jth voxel within the brain (j =

1, . . . ,M). When modelling binary lesions masks voxel-wise, we consider two approaches that ignore

spatial dependence and one that explicitly models that dependence.

2.1.1. Generalized Linear Model

A mass-univariate approach fits a model at each voxel marginally, ignoring spatial dependence. A

Generalized Linear Model (GLM) is required in order to respect the binary nature of the data. Every

GLM has a link function, deterministic and stochastic components, which we write as

[Yi(sj) | pi(sj)] ∼ Bernoulli(pi(sj)) (stochastic component) (1)

g(pi(sj)]) = ηi(sj) (link function) (2)

ηi(sj) = x>i β(sj) (deterministic component), (3)

where105

• Yi(sj) denotes a Bernoulli random variable with probability of success pi(sj) and probability mass

function f(yi(sj)|xi;β(sj)), where yi(sj) is a realization of random variable Yi(sj) that represents the

presence (Yi(sj)=1) or absence of a lesion for subject i at voxel sj . Note that in this mass-univariate

voxel-wise modelling framework, Y1(s1), . . . , YN (s1), . . . , Y1(sM ), . . . , YN (sM ) are assumed to be in-

dependent random variables given pi(sj).110

• g denotes the link function, which is a monotonic function that relates the expectation of the

stochastic outcome to the deterministic component.

• xi denotes the P -vector of subject-specific covariates for subject i, where X is the full rank model

matrix that collects x1, . . . ,xN in its rows and has columns X1, . . . ,XP .

• β(sj) = (β1(sj), . . . , βP (sj))
> is a P -vector of parameters at each voxel sj ; these are fixed effects.115

The GLM outlined in Equations (1-3) is fitted at each voxel sj independently. We obtain the maximum

likelihood estimators (MLEs) β̂(sj) by maximizing the log-likelihood

l(β(sj)) =
N∑
i=1

log f(yi(sj) | xi; β(sj)) , (4)

1Project URL: https://osf.io/h7sxr/
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through an iterative optimization procedure, such as IRLS (Green, 1984). The MLE is typically the default

choice of an estimator because of its optimal asymptotic properties (consistency, asymptotic normality

and efficiency). If the model assumptions are adequate, then any inferential procedures based on those

estimates, such as tests using Wald statistics (also known as standardized coefficients or z-scores) are also

asymptotically correct. However, for finite sample size N the estimates can be unstable and biased.120

Bias-reduction in parametric estimation has been thoroughly studied in the literature; for a detailed

review see Kosmidis (2014). There are many methods, such as bootstrap, which correct for bias, but they

rely on the existence of the MLE. However, if data separation occurs, the MLE for one or more covariates

is infinite2, which apart from computational issues also results in invalid Wald-type inference (extremely

wide and uninformative Wald-type confidence intervals due to large standard errors). The bias-correction125

approach which we focus on in this work was first introduced in Firth (1993) for logit link binomial GLMs

and then was further developed for exponential families and applied in generalized nonlinear models

(Kosmidis & Firth, 2009; Kosmidis et al., 2020). Adjustments to the score equations (partial derivatives

of the log-likelihood set to zero) ensure that estimates β̃(sj) have asymptotically smaller bias than what

the MLE typically has; see Appendix A.2 for details. Furthermore, obtaining the MeanBR estimates is130

only a modest addition to the computational complexity for computing the MLEs. The MeanBR method

is implemented in the R package bsglm2 (Kosmidis et al., 2020; Kosmidis, 2020) as an extension to the

base R glm tool.

For the current analyses of simulated and real data, we have chosen probit link Φ−1, where Φ indicates

the standard normal cumulative distribution function; we use probit link to ensure comparability with135

the link used in the BSGLMM approach. Finally, at each voxel, we obtain maximum likelihood estimates

β̂(sj) and mean bias-reduced estimates β̃(sj) along with Wald statistics ẑ(sj) and z̃(sj) based on those

estimates, respectively.

2.1.2. Bayesian Spatial Generalized Linear Mixed Model

The spatial generalized linear mixed model (GLMM) is based on the GLM presented above. However,

the deterministic components are explicitly defined functions of space. While the stochastic component

and the link function in Equations (1) and (2) are the same, the deterministic component introduced by

Ge et al. (2014) is:

ηi(sj) = xT
i (α+ β(sj)) , (5)

where the key difference is the inclusion of spatially varying coefficients in addition to the fixed effects.140

In particular,

• α denotes a P -vector of parameters, fixed effects.

• β(sj) denotes a P -vector of mean-zero random effects, one at each voxel sj . These random effects

are spatially varying voxel-specific effects.

The last bit of the model specification is to assign priors to all parameters in order to complete the145

specification of the hierarchical model. This is done in the following way:

• fixed effects’ priors are flat, improper, uninformative, i.e. π(α) ∝ 1.

2Software packages handle separation differently depending on their convergence criterion and the user might not be
notified.
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• random effects (spatially varying coefficients) have Markov random field (multivariate conditional

autoregressive (MCAR) model) priors to account for the spatial dependence. Two voxels are con-

sidered to be neighbors if they share a face, i.e. a maximum of six neighbors. In terms of notation,

Sk denotes the set of neighboring locations for location sj and the cardinality of this set is denoted

as N(sj). The MCAR prior can be written as

[β(sj) | β(−sj),Σ] ∼ MVN

[∑
s∈Sk

β(s)

N(sj)
,

Σ

N(sj)

]
, (6)

where

– β(−sj) denotes β excluding the coefficients at voxel sj .

– βT = [βT (s1), . . . ,βT (sM )] is a P ×M column vector.150

– Σ is a P × P symmetric positive definite matrix.

– The inverse of the hyperparameter Σ is needed and its inverse is assumed to have Wishart prior,

i.e. Σ−1 ∼W(ν, IP ), where ν is set to 0 in Ge et al. (2014) and IP is a P × P identity matrix.

The joint distribution of β is improper and not identifiable (Ge et al., 2014), but all the full conditional

distributions are well-defined but not easy to sample from. A graphical processing unit (GPU) allows for155

parallel implementation of the Gibbs sampler derived in Ge et al. (2014)3. At each voxel, posterior

summaries for the spatially varying coefficients β∗(sj) are obtained along with standardized posterior

effects or z-scores (posterior mean divided by posterior standard deviation) z∗(sj).

2.2. Simulations

Simulation of brain lesions is complicated by the need for a generative model that accounts for de-160

pendence in the data. The mass-univariate model makes no attempt to model dependence, and while the

BSGLMM explicitly models dependence, it does so on the regression parameters not the data itself. That

is, the BSGLMM assumes that the binary lesion data Yi are independent given the (CAR-regularised)

regression parameters β. Thus even if an accurate regression model could be fit everywhere in the brain,

simulation of lesion data Y from either the mass-univariate, or a conditionally independent Bayesian165

model would be characterised by independent “salt and pepper” noise, i.e. random isolated lesions of 1

or 2 voxels, or single voxel omissions from an otherwise large lesion.

Thus in this work we develop a novel simulation approach that generates realistic binary lesion data

that is calibrated to a given generalized linear model. We use this approach to compare three alternative

methods (see Section 2.1) for modelling the spatial distribution of white matter lesions, and to assess their170

performance in terms of a variety of measures of accuracy, such as mean squared error (MSE).

2.2.1. Simulation procedure

We aim to simulate Y ∗1 , . . . ,Y
∗
N∗ lesion masks for N∗ subjects that follow a generalized linear model

for a given map of regression parameters. Given an existing data set (referred to as ‘reference’ data) of N

lesion masks Y = (Y1, . . . ,YN ) and a vector X2 = (X12, . . . , XN2) of centered age, artificial binary lesion175

masks are simulated as follows:

Step 1: Learn Parameters from reference data.

3Code available at https://www.nisox.org/Software/BSGLMM/

6

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.01.11.426223doi: bioRxiv preprint 

https://www.nisox.org/Software/BSGLMM/
https://doi.org/10.1101/2021.01.11.426223
http://creativecommons.org/licenses/by-nd/4.0/


For a reference dataset Y and a model matrix X = [1N X2], where 1N is an N -vector of

ones, obtain estimated maps for intercept and age effects β(sj) = [β1(sj) β2(sj)], at each sj

(j = 1, . . . ,M). These coefficients β are considered as truth going forward.180

Step 2: Construct Simulation Design.

Create the model matrixX∗ by simulating ageX∗2 forN∗ subjects, where x∗2m ∼ U(min(X2),max(X2)),

(m = 1, . . . , N∗), the uniform distribution on the age range in the reference data set. Then the

simulation model matrix is X∗ = [1N∗ X∗2 ].

Step 3: Simulate Smooth Noise for Linear Predictor.185

Simulate a zero-mean Gaussian Random Field (GRF) with squared exponential covariance

function independently for each of the N∗ subjects. The R package RandomFields (Schlather

et al., 2020) and its function RFsimulate() are used to simulate a GRF with covariance C(h) =

σ2 exp(−h2/2`2), where h is the distance between voxels, and the two parameters are the

variance σ2 and the scale `. The scale determines the dependence between voxels.190

Step 4: Generate Binary Lesion Data.

Create a binary lesion mask for subject m as Y ∗m(sj) = I
{

Φ
(
x∗ >m β(sj) + GRFm(sj)

)
> 0.5

}
,

where x∗m is the mth row of the simulated model matrix X∗ and GRFm(sj) is the value of

the simulated GRF for subject m at voxel sj . In particular, we first add the true effect and

noise and transform the sum into a lesion probability using the cumulative distribution function195

of the standard normal before thresholding the lesion probabilities at 0.5 to get binary lesion

masks. Note that the threshold of 0.5 ensures that we match the lesion incidence found in the

reference data Y , set via the intercept term since we are using centered age.

In our illustration, the reference data set Y consists of binary lesion masks of 13,680 UK Biobank (UKB)

(Miller et al., 2016) participants along with their age at scan date; the data set is described further in200

Section 2.3. Since our binary lesion mask simulator takes effect maps and GRF parameters as inputs, we

make the following choices: (i) the effect maps β(sj) are mean bias-reduced estimates obtained by fitting

voxel-wise GLMs with probit link function and age as the only covariate in the model, and (ii) the use

of probit link GLMs to model the simulated data means the variance parameter σ2 should be fixed to 1

to match the standard Normal variance, and thus there is only one free GRF parameter `. Note that we205

simulate lesion masks of the same resolution as the reference data lesion masks.

2.2.2. Tuning of simulation parameters

Aiming to mimic the real features of the data, we tune the scale parameter ` of the GRF to minimise

the discrepancies between reference and simulated data medians of the following lesion mask summaries:

(i) total lesion volume, (ii) lesion count, (iii) average lesion size. Specifically, looking over ten age bins,210

(i) total lesion volume is defined as the number of lesion-affected voxels;

(ii) lesion count is determined using the FSL cluster4 function (connectivity 6);

(iii) average lesion size is defined as total lesion volume divided by lesion count;

4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Cluster
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and the age bins are determined by the deciles of the reference data set age distribution.

We repeat Steps (3-4) on a grid of scale parameters conditionally on the noise component in Step 3215

and until a satisfactory match is found between the simulated medians and reference medians across age

bins.

2.2.3. Measures of accuracy

Once the GRF parameter is tuned, the three regression modelling methods can be applied and their

performance compared across R repetitions. First, we repeat Steps (3-4) (Section 2.2.1) R times to obtain220

R simulated data sets. Then, for each simulated data set r (r = 1, . . . , R), we fit N∗ lesion masks Y ∗ (r)

on age X∗2 to obtain ML β̂(sj)
(r), MeanBR β̃(sj)

(r) and BSGLMM β∗(sj)
(r) intercept and age estimated

maps and their associated z-scores.

To compare the performance of the three regression modelling methods, we calculate the following

measures of accuracy of MLE β̂(sj), voxel-wise:225

• Bias B: B(β̂(sj)) ≈ 1
R

∑
r β̂(sj)

(r) − β(sj),

• Mean squared error MSE: MSE(β̂(sj)) ≈ 1
R

∑R
r=1(β̂(sj)

(r) − β(sj))
2,

• Probability of underestimation PU: PU(β̂(sj)) ≈ 1
R

∑R
r=1 I

{
β̂(sj)

(r) < β(sj)
(r)
}

.

The corresponding summaries are estimated for β̃(sj) and β∗(sj). We also explore the Pearson correlation

coefficient between the estimated coefficients and the reference data coefficients as another measure of230

estimator accuracy, resulting in one correlation coefficient per realisation r across the three methods.

To make inference about the effect of a covariate on the lesion probability across the brain, z-score

maps are typically explored. Given the difference in the sample size N of the reference data set and

N∗ of the simulated data sets, the power to detect significant age effect varies and use of a fixed z-

score threshold (e.g. ±1.96) to compare maps is not appropriate. Thus, we fix the z-score threshold to235

a particular percentile of the z-score distribution (in absolute value), such that we select the highest M∗

z-scores. We explore the Dice similarity coefficient (DSC) (Dice, 1945) to measure the spatial overlap

between a reference result and one of the three methods, e.g. the highest M∗ reference age z-scores z(sj)

and the the highest M∗ age z-scores ẑ(sj)
(r) for simulated data set r. DSC results are the mean across

R repetitions. We note that in the image validation literature, a DSC greater than 0.7 is interpreted as240

good overlap (Zijdenbos et al., 1994; Zou et al., 2004).

We also create maps of the lesion incidence across the brain, where p(sj) denotes the reference data

set lesion incidence at voxel sj and p̂(sj) denotes the lesion incidence for a simulated data set.

Software to generate lesion masks using our simulation framework is available through the Open Science

Framework website5, which also provides a demonstration of the parallel GLMs implementation.245

2.3. Application

To demonstrate the scalability of the mass-univariate approaches (ML and MeanBR), we apply them

to a subset of the UK Biobank data (Miller et al., 2016). The data set includes 13,680 healthy ageing

individuals, for details on the selection criteria see Veldsman et al. (2020). Voxel-wise analysis is used to

investigate the effect of systolic blood pressure (BP) on the spatial distribution of lesions while controlling250

for confounding (age, sex, age by sex interaction and head size scaling are included as confounding

variables; this is the minimal set of confounding variables suggested by Alfaro-Almagro et al. 2020).

5Project URL: https://osf.io/h7sxr/
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The mean age of the participants is 62.9 years (±7.4 years) with 53% being female (7,236 women).

Two sequential measurements of systolic BP were taken in each subject (either manual, or automatic

measurement) and the average of these two readings is used as our main covariate of interest. Note that255

blood pressure is known to be a dominant risk factor for the presence of lesions (Debette & Markus, 2010),

so it was chosen for illustrative purposes.

To generate the binary lesion masks for these 13,680 subjects, we use the Brain Intensity Abnormality

Classification Algorithm (BIANCA) (Griffanti et al., 2016) to segment the lesions. BIANCA’s inputs

include T1-weighted and T2-weighted FLAIR images (Alfaro-Almagro et al., 2018). The BIANCA output260

image in native space is thresholded at 0.8 and binarised as part of the segmentation, where the threshold

is optimised as part of the BIANCA training on manually segmented masks of subjects from the UKB

cohort. Those binary maps in subject space are then registered to 2mm MNI space by applying the

estimated spatial normalisation parameters derived as part of the published UKB preprocessing pipeline

(Alfaro-Almagro et al., 2018). More specifically, the generation of T2 FLAIR images in MNI space includes265

T2 FLAIR to T1 linear registration (FLIRT, Jenkinson et al. 2002) and T1 to MNI non-linear warping

(FNIRT, Andersson et al. 2007). The resulting images are binarised with a 0.5 threshold, as interpolation

produces non-binary values. It is these 13,680 binary lesion masks (reference data Y ) that are fit using a

mass-univariate approach (i) to define the reference MeanBR estimates for intercept and age used in the

simulator (Step 1 of the simulator in Section 2.2.1 with age as the only covariate), and (ii) to obtain ML270

and MeanBR estimates for systolic blood pressure across voxels while accounting for confounding due to

age, sex, age by sex and head size scaling.

3. Results

3.1. Results on the simulated data

The reference data set used to obtain the reference coefficients is the subset of the UKB data set275

described in Section 2.3. We fit 13,680 lesion masks on age to obtain MeanBR voxel-wise estimates for

the intercept and age terms. The model includes only age as a covariate and the analysis mask comprises

the 72,603 voxels with non-zero lesion incidence.

3.1.1. Simulation setting

Illustration of simulation steps. To tune the GRF scale parameter, we simulate one data set of N∗=1, 000280

subjects for various scale values. Figure 1 demonstrates the resulting simulated masks Y ∗ for two scale

parameter choices for subjects aged 50 and 70 years. Increasing the scale parameter increases the smooth-

ness of the GRF (lower granularity), i.e. the scale parameter controls the number of lesions and their

size; if the variance parameter is fixed, increasing the scale parameter leads to lower count but bigger size

of lesions (see Figures 2 and S2). Given that the true age effect suggests higher lesion probability with285

increasing age, we would expect to see more lesions for an individual aged 70, which is indeed the case in

the illustration in Figure 1.

Tuning of simulation parameters. As described in Section 2.2.2, our main goal is to match as closely as

possible the reference data (UKB data) lesion summaries to the simulated lesion summaries. Figure 2

includes the results for one of the lesion summaries we considered - average lesion size. The top plot290

represents the median average lesion size across 10 age groups for five simulation settings along with the

mean and median for the reference data set (dashed and solid black lines). By visual inspection, we found

that the best scale parameter value based on all three summaries (also see Figures S1 and S2) is `=1.5.

The side by side boxplots of average lesion size in one simulated data set of 1000 subjects and in the UKB
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(a) (b)

Age 50: Step 1 Step 2 Step 3 Age 70: Step 1 Step 2 Step 3

Figure 1: Illustration of simulation steps for scale parameters `=1 and `=2 for a subject aged 50 (a) and a subject aged
70 (b). Higher age is associated with higher lesion probability in the periventricular areas (Step 1), as shown by the linear
predictor for a 50-year-old and a 70-year-old. Higher scale parameter leads to coarser GRF component (Step 2). The choice
of the GRF parameter is crucial for simulating realistic lesion masks. Voxels with zero lesion incidence for the UKB data
set (p(sj)=0) are plotted as transparent to show a standard anatomical MRI for reference; axial slice z=45 shown.

data set of 13,680 participants across age groups suggests the chosen simulation setting follows closely295

the trend in the reference data across age and the variability in the simulated data is lower than the

variability in the reference data. Note we repeated the experiment for a second seed to make sure the

lesion summaries do not vary substantially and a plot complementary to Figure 2 is included in Figure

S3.

Estimated age effect. We have tuned the scale parameter of the GRF and the simulations from now on300

assume the variance and scale parameters are fixed to 1 and 1.5, respectively. Exploring the achieved

lesion probability for a single simulated data set of 1,000 subjects and the UKB lesion probability based

on 13,680 participants (Figure 3), we observe that the highest lesion probability regions are consistent

across the two maps but the simulated data set does not achieve as wide a spatial coverage as the real

data set (40,338 non-zero lesion incidence for the simulated data set vs 72,603 for the reference data set,305

respectively). Note that the UKB data set is about 14 times bigger than the simulated data set, i.e. with

a single simulated data set of that size we cannot capture the rarer lesions in the outer white matter. The

more limited coverage is also observed for the estimated regression coefficients since we simply do not fit

the mass-univariate GLMs at voxels with zero lesion incidence. However, BSGLMM has larger z-scores

due to the variance reduction of the smoothness prior and careful inspection suggests possible bleeding of310

signal into areas where ML and MeanBR do not capture any signal.

3.1.2. Estimator accuracy

We have visually compared the lesion probability maps and significance maps for one simulated data set

against the UKB data set, but in order to quantify the difference between the three modelling approaches,

we repeat the experiment R=1, 000 times, using the chosen simulation scale parameter for two sample315

sizes of N∗=250 and N∗=1, 000. We estimate β̂(sj)
(r), β̃(sj)

(r) and β∗(sj)
(r) (r = 1, . . . , R) and their

associated z-scores and measures of accuracy as described in Section 2.2.3. We focus on voxels with lesion

incidence in the reference data set p > 0.005 to ensure the lesion count is not too low in the simulated

data sets.
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Figure 2: Gaussian Random Field parameter tuning by matching the reference data (UKB) median average lesion size across
age bins (black solid line). (top) Plot of median average lesion size across age bins for five simulation settings (five GRF
scale parameter values) and reference data values (black lines). Legend values indicate the scale parameter value ` used to
simulate a GRF for each subject in the simulated sample. (bottom) Boxplots of average lesion size in UKB participants
(white) and in one simulated 1000-subject sample with GRF scale parameter `=1.5 (blue) across ten age bins. Note the
x-axis labels denote the center of each age bin, the y-axis units are in 2mm3 voxels, and the variance GRF parameter is
fixed to 1 for all simulation settings.
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Figure 3: Square-root transformed lesion probability based on 13,680 UKB participants
√
p and lesion probability based on

one simulated sample with N∗=1, 000 subjects
√
p̂ (left panel) and significance maps (z-scores) for the effect of age across

methods (right panel). 72,603 voxels have non-zero lesion probability for the UKB data set and 40,338 for the simulated
data set, respectively, which explains the difference in spatial coverage in the left panel.

Shrinkage effect. The plots of the estimated coefficients across the three methods against the reference320

coefficients (UKB) for age (Figures 4, S4 and S5), for one realisation of N∗=1, 000 subjects, suggest that

MeanBR and BSGLMM estimates are closer to the UKB reference coefficients than ML estimates. The

plots highlight the shrinkage effect of the coefficients towards zero, especially for the voxels with the lowest

lesion incidence (Figure S5). This is the result of bias reduction for MeanBR β̃ (see Kosmidis & Firth

2020) and the effect of the prior for BSGLMM β∗.325

Accuracy. We compare mean squared error (MSE), bias, probability of underestimation (PU) and correla-

tion coefficient across bins of voxels for N∗=250 in Table 1 and for N∗=1, 000 in Table 2. The summaries

presented for the estimates across methods are conditional on the MLEs finiteness. The Bayesian method

has better performance in terms of MSE and correlation due to the smoothness prior, which reduces

11

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.01.11.426223doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426223
http://creativecommons.org/licenses/by-nd/4.0/


Figure 4: Estimated coefficients β̂Age (ML), β̃Age (MeanBR), β∗
Age (BSGLMM) vs. βAge (reference). Each point is coloured

according to the density of points on an invisible grid overlaid on the plots (the brighter the colour, the higher the density of
the points) and the identity superimposed (dashed black line). Bias reduction and the effect of the prior result in shrinkage
of the coefficients towards zero with the Bayesian model following the equality line most closely. One simulated data set of
1,000 subjects used; 11,632 voxels with reference data lesion incidence p > 0.005 and finite MLEs plotted.

estimator variance at the expense of higher bias. Note that Pearson’s correlation is sensitive to outliers,330

thus the poor ML performance for low lesion incidence (e.g. large ML estimates as seen in Figure 4).

The PU values suggest a slightly positively skewed estimates for the Bayesian method, i.e. tendency for

overestimate the estimates. The opposite holds for the mass-univariate approaches, where we tend to

underestimate the coefficients. According to standard asymptotic theory, all estimators should converge

to a Normal distribution as the sample size increases, having PU of 50%, or equivalently being median335

unbiased. Reassuringly, increasing the sample size from 250 to 1000 subjects (Table 1 vs Table 2) gets PU

closer to 50%. Overall, BSGLMM performs better for smaller sample size and for low lesion probability,

but BSGLMM and MeanBR perform similarly for N∗=1, 000.

If we further explore the spatial overlap between the highest M∗ voxels, the DSCs across methods

suggest good spatial overlap (Table 3). If we select a small number of voxels, i.e. voxels with the highest340

M∗=1, 000 z-scores, all methods seem to detect the strongest age effect very well. The Bayesian method

has the worst overlap between the three methods. We understand this to be a reflection of the BSGLMM’s

tendency to “bleed out” stronger effects into weaker effect areas, a problem perhaps more severe at

N∗=250.

False positive control. To further compare the methods in terms of false positive detection, we simulate a345

single data set with no age effect added to the true effect component in Steps 1 and 2, Section 2.2.1 (only

reference data (UKB) intercept map used), but we add ageX∗2 as a covariate when fitting all three models.

We explore the same accuracy metrics as in Tables 1 and 2 by setting β(sj) = 0 for all voxels sj and the

Bayesian method performs best in terms of lowest MSE and the percentage of underestimation is very

close to 50%, which is to be expected if the estimates are symmetric around zero (Table 4). Interestingly,350

the effect of the prior in the Bayesian method (shrinkage towards zero) reduces the bias to be smaller or

comparable to the MeanBR method since the true effect is set to zero in this case. We observe (Table 5)

that all methods appear to be conservative in their false positive rate especially for low lesion incidence

voxels with the Bayesian method always being most conservative. This is also evident from the quantile-

quantile plots (see Figure S6), where as lesion incidence decreases, the normality deviations increase.355
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Accuracy

Method

# voxels p ∈ (0.005, 1] p ∈ (0.005, 0.01] p ∈ (0.01, 0.05] p ∈ (0.05, 0.1] p > 0.1

metrics 11,634 4,510 4,981 935 1,208

MSE

ML 43.67 (49.94) 93.63 (42.30) 17.15 (20.66) 0.24 (0.08) 0.11 (0.03)

MeanBR 1.21 (1.08) 1.94 (1.13) 1.01 (0.75) 0.21 (0.05) 0.10 (0.03)

BSGLMM 0.21 (0.13) 0.33 (0.13) 0.15 (0.05) 0.10 (0.02) 0.07 (0.01)

Bias

ML 32.12 (31.38) 61.92 (27.75) 18.36 (14.22) 2.10 (1.27) 0.81 (0.60)

MeanBR −1.07 (2.12) −2.75 (2.36) −0.03 (1.12) 0.10 (0.43) 0.02 (0.32)

BSGLMM 1.62 (4.94) 2.30 (5.98) 1.43 (4.56) 0.92 (3.15) 0.35 (2.03)

PU (%)

ML 43.92 (4.01) 41.25 (3.84) 44.59 (2.94) 47.49 (1.97) 48.36 (1.72)

MeanBR 57.42 (6.38) 61.30 (7.39) 56.34 (3.97) 52.45 (1.89) 51.25 (1.65)

BSGLMM 43.97 (16.63) 41.47 (19.47) 44.54 (15.50) 46.75 (12.16) 48.78 (9.53)

ρ

ML 0.12 (0.013) 0.12 (0.018) 0.18 (0.033) 0.79 (0.014) 0.86 (0.009)

MeanBR 0.46 (0.029) 0.34 (0.034) 0.49 (0.040) 0.80 (0.013) 0.86 (0.009)

BSGLMM 0.80 (0.006) 0.75 (0.010) 0.81 (0.008) 0.87 (0.009) 0.89 (0.007)

Table 1: Comparing methods across R=1, 000 data sets, N∗=250 subjects each. The measures of accuracy are averaged
across voxel bins based on the reference data (UKB) lesion incidence p with standard deviation in brackets. BSGLMM is
more accurate in terms of MSE and correlation values, but has higher bias than MeanBR. All values are multiplied by 1000
except probability of underestimation (PU) represented in percentage and Pearson correlation ρ with range (−1, 1).

Accuracy

Method

# voxels p ∈ (0.005, 1] p ∈ (0.005, 0.01] p ∈ (0.01, 0.05] p ∈ (0.05, 0.1] p > 0.1

metrics 11,634 4,510 4,981 935 1,208

MSE

ML 1.61 (14.45) 3.89 (22.76) 0.23 (3.36) 0.05 (0.01) 0.03 (0.01)

MeanBR 0.22 (0.31) 0.40 (0.44) 0.15 (0.06) 0.05 (0.01) 0.03 (0.01)

BSGLMM 0.07 (0.03) 0.08 (0.03) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01)

Bias

ML 3.13 (3.32) 5.87 (3.68) 1.85 (1.24) 0.46 (0.35) 0.21 (0.20)

MeanBR 0.16 (0.50) 0.31 (0.65) 0.08 (0.39) 0.01 (0.22) 0.01 (0.15)

BSGLMM 0.80 (2.95) 1.13 (3.86) 0.75 (2.49) 0.31 (1.34) 0.13 (0.81)

PU (%)

ML 47.34 (2.23) 46.27 (2.25) 47.61 (1.90) 48.83 (1.74) 49.10 (1.59)

MeanBR 53.22 (2.68) 54.79 (2.68) 52.83 (2.08) 51.27(1.61) 50.53 (1.56)

BSGLMM 46.24 (13.29) 44.75 (16.21) 46.48 (11.96) 48.41 (8.91) 49.15 (6.96)

ρ

ML 0.58 (0.144) 0.45 (0.134) 0.81 (0.029) 0.94 (0.003) 0.96 (0.002)

MeanBR 0.76 (0.022) 0.65 (0.032) 0.83 (0.006) 0.94 (0.003) 0.96 (0.002)

BSGLMM 0.90 (0.002) 0.85 (0.004) 0.90 (0.003) 0.95 (0.003) 0.96 (0.002)

Table 2: Comparing methods across R=1, 000 data sets, N∗=1, 000 subjects each. The measures of accuracy are averaged
across voxel bins based on the reference data (UKB) lesion incidence p with standard errors in brackets. All values are
multiplied by 1000 except probability of underestimation (PU) represented in percentage and Pearson correlation ρ with
range (−1, 1).

N∗ Method
Dice similarity coefficient

M∗=1, 000 M∗=5, 000 M∗=10, 000

N∗ = 250

ML 0.824 0.774 0.748

MeanBR 0.821 0.756 0.718

BSGLMM 0.740 0.704 0.736

N∗ = 1000

ML 0.907 0.871 0.857

MeanBR 0.907 0.868 0.848

BSGLMM 0.888 0.813 0.815

Table 3: Dice similarity coefficient (DSC) when comparing reference (UKB) and simulation z-scores estimated across the
three regression methods. DSCs are obtained across R=1, 000 data sets, N∗ ∈ {250, 1000} subjects each and the spatial
overlap considered is between the highest M∗ z-scores, where M∗ ∈ {1000, 5000, 10000}.

3.1.3. Computational time and scalability

On average, ML and MeanBR take about 15-20 minutes for each 250-subject data set and about

50-60 minutes for each 1,000-subject data set for single-core jobs, and 3-4 minutes and 10-12 minutes for

parallel jobs (8 cores), respectively. The difference in computational cost between ML and MeanBR is360

minimal with bias-reduction increasing the computational cost by only a few minutes for a 1000-subject

data set. Note that the number of regressions per simulated data set varies depending on the number of
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Accuracy

Method

# voxels p ∈ (0.005, 1] p ∈ (0.005, 0.01] p ∈ (0.01, 0.05] p ∈ (0.05, 0.1] p > 0.1

metrics 11,596 4,473 4,978 934 1,211

MSE

ML 12.08 31.08 0.19 0.04 0.02

MeanBR 0.17 0.28 0.13 0.04 0.02

BSGLMM 0.03 0.03 0.03 0.02 0.01

Bias

ML −0.62 −1.62 −0.02 0.05 0.07

MeanBR 0.28 0.59 0.10 0.07 0.08

BSGLMM 0.12 0.14 0.10 0.09 0.09

PU (%)

ML 49.39 49.06 49.66 49.84 49.17

MeanBR 49.14 48.66 49.46 49.73 49.17

BSGLMM 49.14 48.73 49.32 50.48 48.92

Table 4: Comparing methods across one null age effect data set of N∗=1, 000 subjects. The measures of accuracy are
averaged across voxel bins based on the reference data (UKB) lesion incidence p. All values are multiplied by 1000 except
probability of underestimation (PU) represented in percentage.

Method

N(| z | > 1.96)
% voxels (# voxels)

p ∈ (0.005, 1] p ∈ (0.005, 0.01] p ∈ (0.01, 0.05] p ∈ (0.05, 0.1] p > 0.1

11,596 4,473 4,978 934 1,211

ML 3.6% (422) 2.1% (95) 4.5% (225) 5.5% (51) 4.2% (51)

MeanBR 3.5% (406) 2.3% (104) 4.1% (205) 5.2% (49) 4.0% (48)

BSGLMM 1.6% (182) 0.4% (17) 1.8% (88) 3.6% (34) 3.6% (43)

Table 5: False positive rate evaluation. Number of voxels with z-scores significant at 5% for a two-sided test for age when no
age effect is included. Percentage is calculated within each bin (column) based on the reference data (UKB) lesion incidence
p. All methods appear to be conservative since we would expect 5% false positives, i.e. about 700 voxels across each row.
These results are based on one simulated data set of 1,000 subjects used, 11,596 voxels with lesion incidence in the reference
data greater than 0.005 and infinite MLEs discarded. Note, for this one simulated data set a 5% FDR correction found no
significant voxels for any method.

non-zero lesion incidence voxels. 23,404 regressions are performed on average per 250-subject data set and

40,286 per 1000-subject data set, respectively, instead of 228,483 (voxels in the brain mask). Our code

determines the voxels with non-zero lesion incidence first and creates a matrix of binary values only for365

those voxels to be used as input to the GLMs. This trick saves computation time, but also allows better

RAM management for big UKB-scale data sets since it avoids reading in all lesion masks at once. For the

simulated data sets this implementation might not be optimal in terms of speed, but it makes the UKB

application possible even without parallel implementation.

BSGLMM takes about 16 minutes for 100,000 iterations of the Gibbs sampler for a 250-subject data set370

and about 60 minutes for a 1,000-subject data set, respectively. BSGLMM is performed on an NVIDIA

TESLA K80 GPU card with 12 GB RAM and 2,496 threads. While the BSGLMM run time is comparable

to the ML and MeanBR, note that there is a practical upper limit of subjects due to a GPU RAM

constraint; the problem arises since the Bayesian method implementation loads all binary masks limiting

its application to UKB-scale data.375

To summarise, while BSGLMM’s GPU implementation is computationally efficient, the ML and

MeanBR have more flexibility in how parallelism can be used, making the latter easier to apply at biobank

scale.

3.2. Results on the real data

We choose to fit the mass-univariate voxel-wise GLM with MeanBR estimates due to its scalability to380

the UK Biobank data set of 13,680 subjects, but also obtain MLEs to check how often separation occurs.

The models we fit include systolic BP as the main effect of interest and age, sex, age by sex interaction

and head size scaling as confounders. On 72,603 regressions across the brain (voxels with non-zero lesion

incidence), sex MLEs are infinite for 23,330 voxels (32%); separation is more likely to occur for binary
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covariates and, for example, systolic BP MLEs are infinite for only 260 voxels (0.4%).385

Spatial distribution of lesions. The lesion incidence across 13,680 UKB participants suggests the areas with

the highest probabilities cover the periventricular and deep white matter regions (Figure 5). Fitting voxel-

wise GLMs with systolic BP as our main covariate of interest, we explore its effect on lesion probability

(Figures 5 and S7). Figure 5 includes axial slices of z-scores for the effect of systolic BP (right) along with

the UKB lesion probability (left); the darker the colour, the stronger the effect of systolic BP on lesion390

probability. The spatial distribution of lesions mirrors what is well known clinically, that is lesions are

classically found capping the ventricles, clustering around the ventricles and within the deep white matter

(Fazekas et al., 1987). Hypertension is known to be one of the strongest predictors of the presence of lesions

(Dufouil et al., 2001). Consistent with the literature, we find hypertension related lesions distributed in

periventricular and deep white matter regions as well as capping the ventricles (Moroni et al., 2018). We395

get 14,108 voxels with z-scores greater than 1.96 in absolute value (in comparison, 11,251 for z-scores

based on MLEs, respectively). Thus, systolic BP has a strong effect on lesion probability as expected

based on the existing literature.
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Figure 5: Square-root transformed lesion probability based on 13,680 UKB participants
√
p (left panel) and significance

maps (z-scores based on MeanBR estimates) for the effect of systolic BP (right panel); age, sex, age by sex interaction and
head size scaling included as confounders. 72,603 voxels have non-zero lesion probability; axial slices {40, 45, 50}.

Computational time. ML and MeanBR take about 3 hours and 3.5 hours, respectively, utilizing batch

jobs run on 8 cores. As mentioned in Section 3.1.3, we use the empirical incidence mask to select the400

non-zero incidence voxels and then run the GLMs for those voxels only, here 72,603 regressions.

4. Discussion

Simulation framework. Using binary lesion masks of 13,680 healthy aging UK Biobank participants as

our reference data set, we develop a binary lesion mask simulator. Age is used as the sole regressor and

by using a reference data set, we start building our simulation study by setting the true age coefficient405

map to the UKB-derived one. In other simulation studies, binary lesion masks or 2D slices are simulated,

but the true coefficients are not available (Sundaresan et al., 2019; Ge et al., 2014), which does not allow

any comparison between competing methods.

We made the artificial lesion masks as realistic as possible through tuning to make sure the artificial

and real lesion masks share important lesion characteristics, such as lesion size, lesion count and lesion410

volume. This step potentially overcomes the drawbacks of other simulation approaches, where the same

count, size and shape lesions are simulated (6 spheroid lesions of size 5 voxels in each dimension Chard

et al. 2010) or smoothing of the resulting simulated lesion masks (Sundaresan et al., 2019) is applied,

which could introduce stronger spatial dependencies than what is expected from real lesion masks.
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Our simulator code is available6 and ready to use to simulate binary lesion masks for healthy aging415

individuals. However, if the simulation framework is to be adjusted to any patient reference data set,

e.g. Dementia patients, binary lesion masks and age for those patients are needed to obtain the coefficient

maps and to tune the simulator as described in Section 2.2.2.

Method comparison. We compare three alternative regression approaches for modelling of binary lesion

masks. Two of them rely on voxel-wise fitting of generalized linear models using maximum likelihood420

and mean bias-reduction. The other is a Bayesian hierarchical model that takes into account the spatial

dependence in the brain though the inclusion of spatially varying coefficients.

The bias and mean squared error of the maximum likelihood and mean bias-reduced coefficients suggest

poorer performance of the maximum likelihood estimator, which is in line with the widely dispersed MLEs

in the coefficient plots (Figure 4). BSGLMM seems to perform slightly better in terms of mean-squared425

error values, but has higher bias than mean bias-reduced estimates due to the spatial regularization it

imposes. When comparing the ability of the methods to detect the voxels with the strongest age effect

on lesion probability, all three methods seem to perform similarly well. Null simulations find that for

a non-existent age effect all methods are valid but conservative, with false positive rates lowest for low

incidence voxels.430

The resources required to apply those methods vary significantly since the Bayesian spatial model

utilises a GPU implementation to decrease the computational burden. For the size of the simulated data

sets, all methods are relatively fast to perform with about an hour run-time for one data set of sample

size 1,000 subjects (single core for mass-univariate). However, for the spatial model there is a practical

upper limit on the number of subjects due to the GPU RAM constraint since all lesion masks need to be435

loaded in memory. On the contrary, for the mass-univariate methods, parallel implementation is possible

given that the methods are applied independently at each voxel. Thus, mass-univariate approaches are

computationally practical for large data sets.

UK Biobank application. Reassuringly, the distribution of lesions in the real data reflects the known

distribution of lesions associated with age and hypertension (Dufouil et al., 2001). Further work by our440

group demonstrates the clinical utility of the mass-univariate method (mean bias-reduced estimates) in

mapping the spatial distribution of lesions associated with different cerebrovascular risk factors (Veldsman

et al., 2020). Application of the mass-univariate methods (ML and MeanBR) to lesion masks on 13,680

subjects demonstrates that total separation occurs quite often for binary covariates (32% of voxels have

infinite sex estimates) even in such big data sets, thus mean bias-reduced estimates would be favoured.445

The run-time of about 6 hours suggests that voxel-wise modelling is feasible for large data sets; heavier

parallelism (we use a maximum of 8 cores) can reduce run-time substantially.

Limitations. Our simulation framework is not adapted for automated tuning, i.e. a grid of scale values

for the Gaussian Random Field are explored. An automated procedure could be developed but the merits

might not outweigh the computational effort. Further improvement could be introduced by allowing the450

GRF scale parameter to vary across age groups to achieve a closer match to the suggested empirical lesion

summaries. To match the variability in the reference data better, a more flexible covariance function than

the squared exponential (e.g. Matern at the expense of an extra parameter to tune) or a non-stationary

GRF might need to be adopted. However, our goal is to provide a simulation framework for the comparison

of lesion mapping methods and we believe that matching the median lesion summaries across age groups455

6Project URL: https://osf.io/h7sxr
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is sufficient for the fair comparison of the three approaches and any alternatives that may result from

future research.

Note that we do not account for any left-right symmetry of lesions, we have not imposed any physio-

logical boundaries or 3D dependence in the entire brain when simulating the lesion masks. However, we

do not believe this has any impact on the results presented here since the mass-univariate approaches do460

not account for the spatial dependence in the brain and the spatial model only accounts for local spatial

dependence. We refer to the lesion masks as ‘realistic’ but this is not meant to imply any clinical realism

(given the drawbacks mentioned) and we see the lesion masks as useful in a methods development or

methods comparison context.

We generate the lesion masks in MNI space by using outputs from the published UK Biobank pipeline465

(Alfaro-Almagro et al., 2018). Sensitivity analysis to registration or lesion segmentation approaches could

be of future interest but it is out of the scope of the current statistical work since we focus on masks

in MNI space for the design of the simulation framework. The proposed lesion mask simulator could be

tuned to reflect features of lesions independent of the image resolution, but the method comparison results

presented are specific to the sampling resolution of 2mm3 voxels and we have not performed sensitivity470

analysis to other voxel sizes.

Note that the lack of scalability of the Bayesian approach is due to the GPU memory constraint and

it could be overcome by either a time-consuming CPU implementation of the Gibbs sampler proposed

by Ge et al. (2014), or by adopting a divide-and-conquer method for Bayesian inference. The latter

involves splitting the data into smaller subsets (computationally manageable), sampling from the posterior475

distribution on all subsets and then combining the posterior samples to approximate the full data posterior,

where possible methods include the ones suggested by Srivastava et al. (2018); Minsker et al. (2017); Li

et al. (2017). We have focused our method comparison on the implementation available instead.

Investigating the effect of systolic blood pressure on lesion probability, we present test statistics at all

non-zero lesion incidence voxels to demonstrate the scalability of the method. We could have excluded480

voxels where the lesion incidence fell too low and then use false discovery rate correction to account for

multiple testing (Veldsman et al., 2020) to achieve better inference.

Conclusion. The proposed simulation framework mimics real features of the data, which allows for a fair

comparison between the lesion mapping methods through realistic experiments. Our findings suggest

that bias-reduced estimates for voxel-wise binary-response generalized linear models overcome the insta-485

bilities of maximum likelihood estimates, and scale well for large data sets due to parallel implementation.

Contrary to the assumption of spatial dependence being key in lesion mapping, our results show that

voxel-wise bias-reduction and spatial modelling result in largely similar estimates, but bias-reduction is

computationally feasible for biobank-scale neuroimaging data.

Funding490

PK is funded by EPSRC and MRC for Doctoral Training in Next Generation Statistical Science: The

Oxford-Warwick Statistics Programme (EP/L016710/1). IK is supported by The Alan Turing Institute

under the EPSRC grant EP/N510129/1. TEN is supported by the Wellcome Trust (100309/Z/12/Z).

Computation used the BMRC facility, a joint development between the Wellcome Centre for Human

Genetics and the Big Data Institute supported by the NIHR Oxford BRC. Financial support was provided495

by the Wellcome Trust Core Award Grant Number 203141/Z/16/Z. The views expressed are those of the

author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

17

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.01.11.426223doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426223
http://creativecommons.org/licenses/by-nd/4.0/


Acknowledgements

Thank you to Timothy Johnson for his valuable input on the testing of our simulation framework. We

would also like to thank Michele Veldsman for her help with the clinical interpretations of the real data500

analysis.

Appendix A. Iterative estimation: maximum likelihood and bias-reduction

Appendix A.1. Maximum likelihood estimates

The typical iterative algorithm used to find the maximum likelihood estimates (MLEs) for generalized

linear models (GLMs) is iteratively reweighted least squares (IRLS) (Green, 1984). IRLS is equivalent to

Fisher scoring obtain an iterative solution to the estimating equations (also known as score equations)

∂l

∂β
=

(
∂l

∂β1
, . . . ,

∂l

∂βp

)>
= U(β) = 0, (A.1)

where l is the log-likelihood, U(β) is the score vector (p-vector). A Taylor series expansion for ∂l/∂β

(Equation (A.1)) gives the standard Newton-Raphson method for solving the estimating equations

β∗ ≈ β +

[
−∂2l
∂β∂β>

]−1
U(β) = β + [J(β)]−1U(β), (A.2)

where J(β) = −∂2l/∂β∂β> is the observed information matrix, β is the initial value of the parameters

and β∗ is the updated value. Evaluation of U and J is repeated until convergence and the resulting505

estimates are the MLEs we report in the paper denoted as β̂.

If we replace the observed information J(β) with the expected information (Fisher information) I(β) =

E(J(β)) in the Newton-Raphson, the Fisher scoring iteration results. Fisher scoring is typically preferred

since the Fisher information is useful post-hoc to estimate the asymptotic variance of the parameters. Note

that for canonical link (e.g. logit link function for Binomial GLMs), observed and expected information510

coincide, hence Fisher scoring is equivalent to Newton-Raphson.

Appendix A.2. Bias-reduced estimates

The bias-correction method we use to obtain mean bias-reduced (MeanBR) estimates β̃ was first

introduced in Firth (1993) and was then applied and developed further for exponential family models

(Kosmidis & Firth, 2009; Kosmidis et al., 2020). The method is known as adjusted score equations,

i.e. a penalty A(β) is added to the score equations in Equation (A.1) in order to get estimates with

asymptotically smaller bias

U∗(β) = U(β) + A(β) = 0, (A.3)

where A(β) is a p-vector based on the expected information matrix I(β) and on the observed information

J(β). General formulae for the adjusted score equations are derived by Kosmidis & Firth (2009), showing

that solving the mean bias-reducing score functions by iterative optimization (e.g. IRLS) results in higher-

order mean unbiased estimators. What is interesting is that the general form of the first order bias is of

the form

b1(β)

N
= −[I(β)]−1A(β), (A.4)
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where the mean bias function B(β) of the MLE of β can be expanded in decreasing powers of N as

B(β) = E(β̂ − β) =
b1(β)

N
+
b2(β)

N2
+
b3(β)

N3
+O(n−4)

for an appropriate set of functions b1(β), b2(β), . . ., which are O(1) as n → ∞. Thus, the adjustment to

the score functions A(β) is a function of the first-order bias and the Fisher information, i.e. iteratively

subtracting the first-order bias in the Fisher scoring updates (Kosmidis & Firth, 2010). The iterative

procedure from Equation (A.2) becomes a quasi Fisher scoring to obtain MeanBR estimates

β∗ ≈ β + [I(β)]−1U∗(β) . (A.5)

Here it is ‘quasi’ since we are using the expectation of the second derivatives of the scores U(β), instead

of the second derivative of the adjusted scores U∗(β). Note that the iterated first-order bias adjustment

is only possible when b1(β) is available in closed-form.515
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Voxel-wise and spatial modelling of binary lesion masks:

Comparison of methods with a realistic simulation framework
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Figure S1: Gaussian Random Field parameter tuning by matching the reference data (UKB) median total lesion volume
across age bins (black solid line). (top) Plot of median total lesion volume across age bins for five simulation settings (five
GRF scale parameter values) and reference data values (black lines). Legend values indicate the scale parameter value ` used
to simulate a GRF for each subject in the simulated sample. (bottom) Boxplots of total lesion volume in UKB participants
(white) and in one simulated 1000-subject sample with GRF scale parameter `=1.5 (blue) across ten age bins. Note the
x-axis labels denote the center of each age bin, the y-axis units are in 2mm3 voxels, and the variance GRF parameter is
fixed to 1 for all simulation settings.
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Figure S2: Gaussian Random Field parameter tuning by matching the reference data (UKB) median lesion count across
age bins (black solid line). (top) Plot of median lesion count across age bins for five simulation settings (five GRF scale
parameter values) and reference data values (black lines). Legend values indicate the scale parameter value ` used to simulate
a GRF for each subject in the simulated sample. (bottom) Boxplots of lesion count in UKB participants (white) and in one
simulated 1000-subject sample with GRF scale parameter `=1.5 (blue) across ten age bins. Note the x-axis labels denote the
center of each age bin, the y-axis units are in number of connected components (lesions), and the variance GRF parameter
is fixed to 1 for all simulation settings.
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Figure S3: Gaussian Random Field parameter tuning by matching the reference data (UKB) median average lesion size
across age bins (black solid line) replicated for two seeds. Legend values indicate the scale parameter value ` used to simulate
a GRF for each subject in the simulated sample and the seed in brackets. The lesion summaries do not vary substantially
between seeds. Note the x-axis labels denote the center of the age bins, the y-axis units are in 2mm3 voxels, and the variance
GRF parameter is fixed to 1 for all simulation settings.
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Figure S4: Estimated coefficients β̂Age (ML), β̃Age (MeanBR), β∗
Age (BSGLMM) vs. βAge (reference). Each point is

coloured according to the density of points in an invisible grid overlaid on the plots (the brighter the colour, the higher the
density of the points) and the identity superimposed (dashed black line). Bias reduction and the effect of the prior result in
shrinkage of the coefficients towards zero with the Bayesian model following the equality line most closely. The ‘horizontal
effect’ observed mostly at the BSGLMM plot (826 voxels have reference data coefficients greater than 0.1 in absolute value)
occurs when the lesion incidence is very low. One simulated data set of 1,000 subjects used; 40,338 voxels with finite MLEs
plotted.

Figure S5: Estimated coefficients β̂Age (ML), β̃Age (MeanBR), β∗
Age (BSGLMM) vs. βAge (reference) across bins of voxels.

Each point is coloured according to the square-root lesion probability
√
p suggesting shrinkage is observed for voxels with low

lesion incidence. One simulated data set of 1,000 subjects used; 11,632 voxels with reference data lesion incidence p > 0.005
and finite MLEs plotted.
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Figure S6: Quantile-quantile (QQ) plots of the quantiles of the simulated data z-scores across bins of voxels versus the
theoretical quantiles from a Normal distribution. The lower the lesion incidence (darker colour), the greater the deviations
from a linear trend, i.e. the rarer the lesions, the greater the deviations from normality.
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Figure S7: Significance maps (z-scores based on MeanBR estimates) for the effect of age, sex (baseline men), age by sex
interaction and head size scaling to complement Figure 5. Data on 13,680 UK Biobank participants used. 72,603 voxels
with non-zero lesion probability shown with zero-lesion incidence voxels plotted as transparent to show anatomical MRI for
reference; axial slices {40, 45, 50} shown.
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