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Abstract

We propose a flexible statistical model for phyllochron that enables to seasonal
variations analysis and hypothesis testing, and demonstrate its efficiency on a data
set from a divergent selection experiment on maize.

The time between appearance of successive leaves or phyllochron enables to characterize
the vegetative development of maize plants which determines their flowering time. Phyllochron
is usually considered as constant over the development of a given plant, even though studies
have demonstrated response of growth parameters to environmental variables. In this paper,
we proposed a novel statistical approach for phyllochron analysis based on a stochastic pro-
cess, which combines flexibility and a more accurate modelling than existing regression models.
The model enables accurate estimation of the phyllochron associated with each leaf rank and
enables hypothesis testing. We applied the model on an original maize dataset collected in
fields from plants belonging to closely related genotypes originated from divergent selection
experiments for flowering time conducted on two maize inbred lines. We showed that the main
differences in phyllochron were not observed between selection populations (Early or Late),
but rather ancestral lines, years of experimentation, and leaf ranks. Finally, we showed that
phyllochron variations through seasons could be related to climate variations, even if the im-
pact of each climatic variables individually was not clearly elucidated. All script and data can
be found at https://doi.org/10.15454/CUEHO6

Date of submission: january 2021

1 Introduction
Annual plants produce new organs and undergo several developmental transitions almost all along
their life-cycle. Hence in annual plant species, growth and development are critical to determine
the time to completion of their life-cycle (from germination to seed maturation). The development
schedule, and in particular the time of flowering that determines the onset of seed production
within one season, needs to be synchronized with the season’s length to maximise plant fitness or
grain yield (Brachi et al., 2013). Plant development is characterized by successive events of organ
production from (Poethig, 2003). Notably, apical meristems give rise to the roots and shoots.
During vegetative growth, leaves are initiated from the Shoot Apical Meristem (SAM). After floral
transition, the SAM becomes a male inflorescence that will later produce the panicule during the
flowering phase and the total number of leaves is fixed (Hill and Li, 2016). Thus, the flowering
time is tightly dependent on the duration of the vegetative phase, which is determined by the
number of leaves to initiate from the meristem and by their rate of initiation (Padilla and Otegui,
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2005). Maize (Zea mays) is a monocotyledon species that initiates between seven to more than 18
phytomers before flowering (Flint-Garcia et al., 2005; Vidal and Andrieu, 2019). Observation of
the time between successive leaves initiation (plastochron) requires destructive measurements and
cannot be repeatedly performed on individual plants. However, the time between leaf appearance
(phyllochron) enables to characterize the whole vegetative development of individual plants by
avoiding plant dissection.

Environmental temperature is the climatic variable influencing the most plant development.
Indeed, unlike homeotherms animals, plants do not maintain their temperature constant. Because
of the high sensitivity of enzymatic reaction rates to temperature changes (Johnson et al., 1942),
cell division rate can be considerably reduced (or stopped) in non optimal conditions leading to
changes in growth rate with temperature. To take into account thermal dependence of plant growth
rate, it is possible to model temperature-compensated developmental rates by measuring time in
degree days (accumulated thermal time or ATT) taking into account species specific relationship
between growth rates and daily temperatures. Notably, such approaches have been applied on
maize grown in greenhouses, growth chambers and field conditions (Millet et al., 2019). This
leads to a calibration of the equation of temperature-compensated rates of development when
temperature fluctuates over a large range, for which thermal time based on a linear response is
inefficient (Parent et al., 2010).

In addition to temperature, other climatic variables have been previously shown to modulate
developmental rates in maize notably through alterations of cell’s elongation rate. For instance,
Granier and Tardieu (2009) demonstrated that water deficit results in a reduction of leaf length.
Specifically to leaf appearance rates, a decrease of photosynthetically active radiation seems to slow
down the phyllochron in a context of mixed cultivation systems (Zhu et al., 2014; Birch et al., 1998)
while long photoperiods increase the leaf appearance rate (Warrington and Kanemasu, 1983). To
a lesser extent, sowing date is another factor affecting leaf appearance rate (Birch et al., 1998),
which can be considered as the resulting effect of multiple climatic variables.

Although these studies demonstrated changes in the phyllochron depending on the environ-
mental conditions, phyllochron is usually considered as constant over the development of a given
plant and characterized by the slope of linear regression between number of emerged leaves and
thermal time (Padilla and Otegui, 2005). However, response of growth parameters and yield to
within-season environmental variables have also been described (Chenu et al., 2008; Yu and Goh,
2019) and the impact of on-off climatic events on the phyllochron are worth to be considered and
may question its constancy. A couple of phyllochron models with more flexible functions of ATT
have been proposed, in particular bi- or tri-linear functions for rice (Clerget and Bueno, 2013) or
splines for wheat (Baumont et al., 2019). Nevertheless, these models based on a regression between
number of emerged leaves and thermal time ignore the statistical correlation between the number
of leaves at successive time on the same plant (e.g. the number of leaves at time t+dt is not smaller
that the number of leaves at time t). Therefore, even if they are suitable for a descriptive analysis of
phyllochron, the statistical analyses (confidence interval, test...) based on these models are biased.
In this paper, we propose a flexible modelling of phyllochron based on thermal time which enables
to release the classic linearity assumption. This model provides a more precise representation
of phyllochron, but also enables to test for differences in phyllochron between various conditions
and to evaluate the impact of climatic variables on variations of phyllochron throughout the season.

After domestication, maize was spread worldwide and adapted to a wide range of environmental
conditions (Brandenburg et al., 2017). European and Northern american varieties lost sensitivity
to photoperiod. Although similar response curves to temperature are observed for developmental
processes of different lines (Parent and Tardieu, 2012), they still exhibit genetic variations for
flowering time (Parent et al., 2018). These differences are generally associated with variation of
the total leaf number: early varieties have a lower leaf number than late varieties (Li et al., 2016).
However, flowering time may vary without changes in total leaf number (Durand et al., 2012),
suggesting genetic variability for leaf appearance rate. Phyllochron genetic variability has been
observed on maize inbred lines (Verheul et al., 1996) and hybrids (Padilla and Otegui, 2005). In
the present study, we take advantage of maize genotypes exhibiting differences for flowering time
to develop estimation method taking into account the experimental protocol of data collection.

We make use of an original plant material that resulted from twelve years of divergent selection
for flowering time within single maize inbred lines under agronomical conditions (Durand et al.,
2010, 2015). Within homogeneous genetic background, phenological shifts between Early and
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Late progenitors were selected, resulting in a difference reaching three weeks (150 degree days,
(Durand et al., 2015)). Representative progenitors from generation G13 were chosen to monitor
plant growth during three years, between 2014 and 2016. This study aims at evaluating the
phyllochron differences between these genotypes and also to better understand whether and how
climatic variables can lead to short term developmental responses.

2 Materials and methods

2.1 Experimental plan/data collection
Plant Material. The plants used in these experiments were produced by 12 years of divergent se-
lection for flowering time in two maize inbred lines MBS847 (MBS) and F252. In each inbred, two
early and two or three late genotypes were formed by recurrently selecting and selfing the earliest
and lastest flowering plants in Early and Late selection populations respectively. In F252, early
genotypes are named FE36 and FE39 and late ones FL27, FL317 and FL318. In MBS, early geno-
types are named ME49 and ME52 and late ones ML40 and ML53. Details about of the selection
and selfing processes are provided in Durand et al. (2010). In generation G13, contrasted flowering
times were observed between Early and Late selection populations in both ancestral lines (Durand
et al., 2015).

Crop experiment. G13 plants from the nine genotypes were sown on Saclay’s Plateau (France)
in 2014, 2015 and 2016. 25 seeds were sown in lines of 5.2m with distance between two lines of
0.8m. For each inbred line, the parcel was formed of several plots of 14 lines protected on both sides
by two border lines of control plants. In 2014, three lines were sown per genotype. In 2015, three
to five lines were sown per genotype. In both years, genotypes were randomly assigned to lines and
plots. In 2016, a particular attention was brought to ME52 and ML40 and 12 lines of each were
sown in two plots. To protect plants from bird predation, experimental plots were protected with
nettings installed immediately after sowing until most of the plants had at least six-seven visible
leaves. Nettings were removed once when most plants had around three-four leaves, and the third
leaf were marked using a pencil. From nettings removal to the emergence of panicule, the rank
of every odd new leaf was marked with a pencil and the number of leaves of each plant counted
twice a week (every two to four days). Temperature was recorded from the sowing date every hour
at the climatic station hosted by our laboratory (station Gif-Sur-Yvette number 91272003 in the
climatik INRAE database https://intranet.inrae.fr/climatik) and the mean temperature of the day
was used to compute thermal time (Parent et al., 2010). A portion of the observed plants were
dissected for further analysis, around a median leaf rank of 8.5 (year 2014), 10 (year 2015) and 9
(year 2016). These partially observed plants were used to infer the phyllochron model but their
contribution is limited to the estimation of the first leaves appearance.

Altogether, we collected data on 1795 plants at various time points. Within each year y,
observations consist in couples (ty,lsg,p,j , Xy,lsg,p,j), where Xy,lsg,p,j is the leaf rank of the youngest
visible leaf of plant p from genotype lsg, with l the ancestral line (F252 or MBS) and s the selection
population (Early or Late), observed at the jth observation time ty,lsg,p,j . For each plant, the
appearance of the two last leaves was not modelled and the corresponding records were removed.
Moreover, plants with non-increasing numbers of leaves (error of measurement) were deleted. In
2014 we obtained data on the full phyllochron for 318 plants with 8-17 [mean 12.5] observation
time points. In 2015, we obtained data on the full phyllochron for 371 plants with 8-21 [mean
13] time points, and partial measurements for 328 plants. In 2016, we obtained data on the full
phyllochron for 196 plants with 6-15 [mean 11.2] time points, and partial measurements for 233
plants.

2.2 Statistical model for the phyllochron
Phyllochron model was implemented separately for each year of experiment, thus parameters de-
pend on the year but to simplify notations, reference to the year is omitted in this section.

Probabilistic model for the phyllochron. Denote by Ylsg,p,f the unobserved time interval be-
tween appearance of leaves of rank f − 1 and f on plant p from genotype lsg. The phyllochron
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process of plant p is characterised by the vector (Ylsg,p,f )f=1,...,F lsg with F lsg be the overall max-
imum number of leaves for genotype lsg. Then, the time of appearance of leaf f on plant p from
genotype lsg is

Hlsg,p,f =

f∑
f ′=1

Ylsg,p,f ′ .

We assume that the time interval between successive leaves Ylsg,p,f depends on some charac-
teristics of the plant genotype lsg and on the leaf rank f = 1, . . . , F lsg:

Ylsg,p,f = µlsg,f + plant level variation (1)

Thus, the average phyllochron of genotype lsg is characterized by the vector µlsg = (µlsg,1, . . . µlsg,F lsg ),
and µlsg,f =

∑f
f ′=1 µlsg,f ′ corresponds to the average time of appearance of leaf f . Note that no

parametric form is assumed for the average phyllochron. Moreover, time intervals between ap-
pearance of successive leaves on each plant are assumed to be independent random variables and
Gaussian distributed, thus

Ylsg,p = (Ylsg,p,1, . . . , Ylsg,p,F lsg ) ∼ NF lsg (µlsg,Σlsg) (2)

with Σlsg = diag(σ2
lsg,1, . . . , σ

2
lsg,F lsg ) the diagonal variance-covariance matrix.

Note that the times (Hlsg,p,1, . . . ,Hlsg,p,F lsg ) of leaf appearance on a plant p are not inde-
pendent, as they result from accumulation of independent intervals between leaves (Ylsg,p,f )f , as
illustrated on Figure 1-A.

Taking into account experimental constraints. Observations in the field started at a fixed time
point, resulting in variations of the first leaf rank observed between plants. For each genotype lsg,
we modelled the phyllochron on the range of leaf ranks [f lsgmin, f

lsg
max] such that leaf ranks f lsgmin − 1

and f lsgmax were observed on at least 10 plants per genotypes. Figure 1-B illustrates the observations
available for a single plant, as compared to the full dynamics of leaf appearance.

Statistical model. First leaves being unobserved, we estimated the distribution of the time
interval Hlsg,p,f lsg

min
between sowing and appearance of leaf of rank f lsgmin, denoted by cumulated

phyllochron, and of the vector (Ylsg,p,f )f=f lsg
min+1,...,f lsg

max
denoted by instant phyllochron. According

to the probabilistic model (2), Hlsg,p,f lsg
min
∼ N (µClsg, σ

C
lsg), with

µClsg = µlsg,f lsg
min

=

f lsg
min∑
f ′=1

µlsg,f ′ , σClsg =

√√√√√f lsg
min∑
f ′=1

σ2
lsg,f ′ .

(
µClsg, µlsg,f

)
are the main parameters of interest, while

(
σClsg, σlsg,f

)
may be considered as nui-

sance parameters. For each genotype, parameters
(
µClsg, σ

C
lsg, (µlsg,f , σlsg,f )f=f lsg

min+1,...,f lsg
max

)
were

estimated via a Monte Carlo Expectation Maximisation algorithm (Figure 2 and Suppl.Mat. A).

2.3 Model comparisons
Test genotypic groups effects. We made use of the hierarchical grouping of plants to understand
the genetic factors that impact phyllochron. Indeed, differences between plants may come from
ancestral lines (F252 versus MBS), selection population (Early versus Late), or genotypes within
a selection population and an ancestral line. Note that because of the hierarchical structure of
the models, significant differences between genotypes may result in significant differences between
selection populations, independently of a divergent selection effect. In addition, statistical differ-
ences can occure either before the first observations and target the µC parameter, or on a the
modeled leaf rank and target the µ parameters. Altogether, we ran seven different models Mi,j

(Table 1) implemented on the leaf ranks common to all genotypes: [fmin, fmax] =
⋂

[f lsgmin, f
lsg
max];

indexes i and j denote the level of dependence of cumulated and instant phyllochron respectively,
and values 0,1,2,3 indicates that phyllochron is identical accross all plants (0), within the ancestral
line (1), within the selection population (2) or within a genotype (3).
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Model M00 assumes that all plants have the same phyllochron distribution whatever the ances-
tral line, the selection population or the genotype. Models M10 and M11 suppose that phyllochron
varies with the ancestral line for at least one leaf rank, either during early developmental stages
(M10) or anywhere throughout the season (M11); M11 is preferred to M10 when the phyllochron
differences occur on observed leaf ranks. Similarly, models M21 and M22 assume differences in
phyllochron between Early and Late populations for at least one leaf rank, while models M32 and
M33 assume differences between genotypes.

As phyllochron estimates highlight obvious differences between years of experimentation, a sep-
arate analysis was run for each year. Also, comparisons betweenM12/M22 andM11 were performed
either by pooling the two ancestral lines, or within each ancestral line. Similarly for comparisons
between M23/M33 and M22 within ancestral line and selection population.

Parametric sub-models of the phyllochron dynamics. In order to elucidate trends in the de-
parture from the classic constant leaf rate appearance model, we considered parametric models for
the instant phyllochron as a function of leaf rank, that can capture general trends by summarizing
the vector (µlsg,f lsg

min+1, . . . µlsg,f lsg
max

) through a reduced set of parameters for each genotype. We
considered four parametric models. (i) The constant model supposes that phyllochron is constant
throughout the season. (ii) The constant-rate model supposes a constant increase or decrease of
phyllochron with leaf rank. (iii) The piecewise constant model allows a single change in the phyl-
lochron at a given leaf stage. (iv) The piecewise linear model allows two increasing or decreasing
phase. Details on model selection in Suppl. Mat. B.

Criteria for model comparison. We considered the χ2-likelihood ratio test, as well as the AIC
and BIC criteria (Suppl. Mat. D). As these criteria rely on asymptotic considerations and may be
biased in the context of a finite sample size, we validated them by a complementary permutation
test. The instant phyllochrons of genotypes FE36 and FE39 on year 2015 were compared, with
the null assumption of equal phyllochron distribution for the two genotypes. Then the same com-
parison was repeatedly performed while permutating the genotype labels and thus defining false
genotypes; if the likelihood ratio test was unbiased, the p-value for the "false genotypes" would
have been uniformly distributed on [0, 1]; moreover, the most relevant criterion among AIC and
BIC should have mostly selected the model under the null assumption.

Principal Components Analysis (PCA).
PCA was implemented on the set of vectors (µ̂y,lsg,8, µ̂y,lsg,9, . . . , µ̂y,lsg,14) for all combination

of genotype lsg and all year y. For genotypes FE36 and FL317 in 2014, fy,lsgmax = 13 so µ̂y,lsg,14 was
not estimated, and we replaced these two missing values by the average of µ̂y,lsg,14 over all other
genotype-year combinations.

2.4 Impact of climate on phyllochron
In order to elucidate the impact of climate on the variations of phyllochron throughout the season
and between years, we considered a model where the interval times between successive leaves were
regressed over climatic variables. First of all, a set of climatic variables recorded through the maize
growth season were extracted from meteo station data. Secondly, a subset of variables associated
with phyllochron variations was selected. Finally, the optimal time windows on which climate
variables impact leaf appearance were selected.

2.4.1 Extraction of representative climatic variables

Thirty-one climatic variables were downloaded from the climatik INRAE database. Pearson corre-
lation coefficient r was calculated between each pair of climatic variables, and the distance between
pairs of variables was defined as 1− r, forming a distance matrix. Then, the Ward clustering algo-
rithm was implemented on this distance matrix using the euclidean distance, leading to six clusters
of climatic variables (Figure S3). Finally, a set C0 of six climatic variables typical of each cluster
and easy to interpret was selected based on background knowledge:

• PAR: daily average photosynthetically active radiation (in Joules per cm2)
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• RF: rain falls (in millimeters per day)

• H: daily average atmospheric humidity (in %)

• W: daily average wind speed (in meter per seconde)

• DT: dewpoint temperature (in °C)

• T: daily average temperature (in °C)

2.4.2 Statistical model of climatic variables and phyllochron.

We defined a model in which the average time intervals between successive leaves (µy,lsg,f )y,lsg,f are
explained by a set C climatic variables, instead of leaf ranks. More precisely, for year y, genotype
lsg and leaf rank f ,

m1(C,∆) : µy,lsg,f = αy,l +
∑
j∈C

βy,l,jC
(∆j)
y,lsg,f,j +Alsg + εy,lsg,f

with C(∆j)
y,lsg,f,j the average value of the jth climatic variable on a ∆j-day window before the time

of appearance µy,lsg,f of leaf f , transformed into calendar time (Figure S4). The line-year effect
αy,l accounts for the potential effect of genetic background interacting with the year of experiment
(climatic and cultivation conditions and sowing date). The effect of each climatic variable j ∈ C
depends on the year-line background through the coefficient βy,l,j . Moreover, the effect of genotype
is accounted for through a Gaussian random effect Alsg identical over years, and residuals εy,lsg,f
are assumed i.i.d. Gaussian centered.

The associated null model supposes that leaf appearance rate is constant over the season for
each genotype:

m0 : µy,lsg,f = αy,l +Alsg + εy,lsg,f

Models (m1) and (m0) are defined for the true average interval time between leaves (µy,lsg,f ), but
they were inferred based on estimates.

2.4.3 Selection of the climatic variables that impact phyllochron.

A set Cselect of climatic variables was extracted by a backward stepwise selection based on the AIC
criterion. Starting from the reference modelmfull

1 = m1

(
C0, (10, . . . , 10)

)
including the six climatic

variables computed on a fixed 10-day time window, at each step the variable whose removal lead to
the strongest decrease of AIC was eliminated; the procedure stopped when AIC did not decrease
anymore. The selected model is m1

(
Cselect, (10, . . . , 10)

)
.

2.4.4 Determination of the time window

Climatic variables may have either a short-time or a long-term effect on phyllochron, governed by
the window ∆j which is assumed to depend on the climatic variable but to be identical through
genotypes and year and throughout the season. The vector of optimal time windows ∆opt was
chosen by AIC criterion over all combinations of windows ∆ ∈{1; 2; 3; 5; 10; 15; 20; 25}#Cselect

with #Cselect the number of variables in Cselect. The model with selected climate variables and
optimal time windows is denoted mbest

1 = m1(Cselect,∆opt).

3 Results

3.1 Total leaf number
Figure S1 displays the distribution of the total leaf number. Early genotypes have globally less
leaves than Late genotypes from the same genetic background, and this difference is stronger for
the ancestral line MBS with 16-18 leaves versus 18-20 leaves. Besides, the total leaf number is
similar across years within genotypes, even slightly higher in 2014 than in 2015, and in 2015 than
in 2016 except for genotype FL317. By construction, the maximum modelled leaf rank fy,lsgmax is
correlated to the total leaf number, thus the trends observed on the latter are recovered on the
former.
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3.2 Phyllochron estimates by genotypes
Figure 3 displays the estimates of the cumulated phyllochron between sowing and the appearance
of the 8th leaf, equal to µ̂Cy,lsg if fy,lsgmin = 8 and µ̂Cy,lsg + µ̂y,lsg,8 if fy,lsgmin = 7, as well as the interval
of time between leaves 8 and 13

13∑
f ′=9

µ̂y,lsg,f ′ .

The cumulated phyllochron (Figure 3A) is mainly associated with year, being 3 − 5 degree days
shorter in 2015 than in 2014 and 2016, and is shorter in ancestral line F252 than MBS. Contrary
to the cumulated phyllochron, the instant phyllochron (Figure 3B) is shorter in 2014 than in 2015,
and intermediate in 2016. Difference between years is more pronounced on ancestral line MBS
(difference of 3-4 degree days) than on ancestral line F252 (1-2 degree days). Within selection
populations, differences between genotypes are mostly preserved from one year to the other for
both cumulated and instant phyllochrons. Note two exceptions: for groups F252-Early (cumulated
phyllochron) and MBS-Early (instant phyllochron).

More in details, the temporal trend of the instant phyllochron strongly varies between years
(Figure 4). In 2014 and 2016, time interval between successive leaves varies moderately between
3 and 5 degree days, except an increasing trend between leaves 13 and 14 in F252 genotypes,
and is globally shorter in 2014 than in 2016 (3.5 versus 4 degree days on average). In 2015, the
phyllochron shows stronger variations throughout the season, between 3 and 7 degree days, with
an increasing and a decreasing phase for MBS genotypes, and a rather constant increase for F252
genotypes.

3.3 Model comparisons
Statistical tests. Genotypic groups comparisons were performed only for years 2014 and 2015,
where all genotypes were observed, and were restricted to the range of leaf ranks [9, 13], common
to all genotypes. The preliminary permutation test indicated that χ2-test and AIC criterion were
reliable for group effect testing, even if AIC was slightly biased in favor of the largest model (Suppl.
Mat. D).

Table 2 displays the result of comparisons between ancestral line, selection and genotypes. Both
criteria mostly provide coherent conclusions, while AIC is slightly less conservative as highlighted
by the permutation test. Effects were analysed based on a 0.01 p-value threshold.

The results indicate a strong effect of the ancestral line on both cumulated and instant phyl-
lochron. Difference between selection populations depends on year and ancestral line; in 2014 a
significant difference was observed on the instant phyllochron but not on the cumulated phyllochron
for the general comparison between Early and Late selection populations, and between Early and
Late populations in F252, while ancestral line MBS displays a selection population effect. In 2015,
we found a difference between selection population on instant phyllochron in both F252 and MBS
backgrounds, but the difference on cumulative phyllochron was only significant for MBS. Finally,
we find a significant genotypic effect on both the instant and the cumulative phyllochron except
for the Early MBS population in 2014 (no effect), and the Early F252 population in 2015 (no
cumulative effect).

Graphical analysis. Results of statistical tests can be refined by graphical analysis of the esti-
mates of instant (Figure 5) and cumulated (Figure 3A) phyllochrons.

In 2014, significant differences between ancestral lines are propelled by lower values of the
cumulated phyllochron but higher values of instant phyllochron at leaf 13 and in F252 genotypes,
as compared to MBS genotypes. Differences between Early and Late genotypes are only significant
within F252 genotypes and concern the instant phyllochron, which tends to increase between leaf
nine and leaf 13 in Late genotypes, and to stay constant in Early genotypes.

In 2015, significant differences between ancestral lines are propelled by lower values of the
cumulated phyllochron and higher values of the instant phyllochron at leaf 13 in F252 genotypes,
but also by higher values of the instant phyllochron at leaf 11 and leaf 12 in MBS genotypes.
Significant differences between selection populations for the instant phyllochron are probably due
to lower values at leaf nine in Late F252 as compared to Early F252, and to higher values at leaf
11 in Early MBS as compared to Late MBS.

Altogether, we found significant differences on phyllochron at all level of grouping. Differences
between ancestral lines are particularly clear in 2015: instant phyllochron tends to increase with
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leaf rank in F252 genotypes, while it shows a maximum around leaf ranks 11-12 in MBS geno-
types. Differences between genotypes were also significant at each leaf stage, except for Early MBS
genotypes in 2014.

3.4 Parametric models
Figure 6 displays the best parametric sub-model for each genotype. Overall, the sub-models fit well
the complete models, and manage to capture the seasonal tendencies. The constant phyllochron
model was selected only for one genotype in 2014 (ME052). Moreover, the major differences previ-
ously observed are recovered by the best parametric sub-model. In 2014 and 2016, the variations
of phyllochron are moderate with a few exceptions in 2014 for the Late F252 genotypes, that in-
creases either linearly (FL317, FL318) or piecewise (FL027). In 2015, the phyllochron of most F252
genotypes increases throughout the season, while the phyllochron of MBS genotypes and FL027
shows a maximum between 11 and 13 leaves, with an increase before and a decrease after.

3.5 Patterns of variation
PCA of all phyllochron estimates (µ̂y,lsg,f )y,lsg,f (Figure 7) provides and overview of global patterns
in phyllochron. The first axis (49% of total inertia), discriminates year 2015 on the right versus
years 2014 and 2016 on the left. The second axis (21% of total inertia) discriminates ancestral lines:
F252 genotypes mostly have negative coordinates, while MBS genotypes have positive coordinates.
No clear discrimination was observed between Early and Late genotypes within each ancestral line.
Other differences concern genotypes, independently of the year of observation, the ancestral line or
the selection effect. Besides, the cumulated phyllchron as well as the instant phyllochron of leaves
nine to 13 are loaded by both axes, and thus are associated with both ancestral line and year.
On the contrary, µ̂14 is mostly associated with ancestral line. Finally, phyllochrons parameters
are ordered clockwise by leaf ranks in the correlation circle, which indicates that intervals between
successive leaves are similar for close leaf ranks.

3.6 Input from climatic variables
The AIC decreases strongly between the null model m0 and the model mbest

1 (Table 3), thus the
climatic model explains a significant part of phyllochron variations. Moreover, the model recovers
seasonal trends for all genotypes and years, notably the clear seasonal trend in 2015, and the
residuals are small and do not show any residual seasonal effect (Figure 8). Besides, variable
selection seems to have a weaker impact than window selection, as indicated by AIC decrease (5.02
and 19.44 resp.)

More in details, the set Cselect of selected variables associated with phyllochron variations
includes : dewpoint temperature (DT), wind (W), humidity (H) and radiation (PAR). The optimal
time windows are respectively 20 days (DT), five days (W), 20 days (H), and five days (PAR).
AIC globally increases as each time window moves away from its optimal value, all other windows
being fixed to optimal values (Figure 9-top). Moreover, the optimality of each selected window is
globally preserved when the other windows vary (Figure 9-bottom). Nevertheless, the 10 sets of
windows leading to the lowest AIC are very different, which suggest that variations of one window
can be compensated by variations of the other (Table 4). The sign of model coefficients, which
should indicate if each climatic variable accelerates or slows down the leaf appearance process,
varies with year and ancestral line (Table 5).

4 Discussion

4.1 A stochastic process model for maize phyllochron
In this paper, we proposed a flexible model for phyllochron based on a stochastic process in which
phyllochron depends on leaf rank non-parametrically. Inference is far more complex than with the
linear model or even with more flexible regression models, and requires a specific algorithm. This
model is more flexible than the classic linear phyllochron model, which assumes a constant leaf
appearance rate, and the results on our dataset indicate a strong departure from this assumption,
notably in 2015, which validates a posteriori the relevance of a more general modelling, particularly
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in the context of peculiar climatic conditions. Our analysis of various parametric sub-models
suggests that a two-phase model could represent a reasonable compromise between simplicity and
flexibility, even if the complete model is statistically more accurate. Our model differs from the
flexible regression models in literature (Clerget and Bueno, 2013; Baumont et al., 2019) in which
variations of phyllochron throughout season are modelled on an external time scale (the thermal
time), while in our model these variations are associated with the development of the plant through
the leaf stage. Note that a given leaf rank can correspond to different periods of the season for
different genotypes; one’s has to keep in mind this aspect in the comparison between genotypes.

Furthermore, we proposed an unbiased statistical procedure to compare phyllochron in various
conditions, that we applied to genotypic groups comparison. Generally, a price to pay for flex-
ibility is the larger number of parameters, which requires more data to be correctly estimated,
and this limitation is particularly true in the context of interval censoring with less informative
observations. Nevertheless, our results indicate that aproximately 40 plants by genotypes (year
2014) were sufficient to enhance significant differences between genotypic groups resulting from a
recent divergence.

The inference algorithm we proposed assumes Gaussian plant level variations around the geno-
type average phyllochron. Approximation of a positive variable by a Gaussian distribution is
acceptable if the standard deviation is smaller than three-four times the mean, which is the case
for most but not all genotypes on our data set. Nevertheless, Gaussian approximation is very
common in statistical modelling, and it can be shown in diverse contexts that it leads to unbiased
or moderately biased results.

The effect of climate variables on phyllochron was assessed with a two-step procedure: first, the
parameters of the phyllochron model were inferred for each genotype and each year, then climate
variables cumulated on window before appearance of each leaf were regressed on the average interval
between leaves. This approach can be compared notably to genotype-to-phenotype studies in which
a dynamic phenotype is summarised by a restricted set of parameters on which statistical analyses
are performed (Reymond et al., 2004; Marchadier et al., 2019). Nevertheless the climate variable
and windows selection via the two-step procedure does not account for precision in the estimation
of phyllochron parameters. We are currently working on a more general framework based on semi-
Markov models that can handle various distributions and thus relax normality assumption, and
that would directly include longitudinal covariates such as climatic variables within the phyllochron
model.

4.2 Differences in phyllochron between closely related genotypes
As previously published, maize lines produced by Saclay’s DSE experiment exhibit a gradual flow-
ering time divergence over the first 13 generations (Durand et al., 2015). The characterization of
the phyllochron of these genotypes, as performed here, enables to better understand the develop-
mental changes that could underlie such a response to selection. Unsurprisingly, we observed that
the total leaf number was impacted during the selection process, with late populations tending to
produce more leaves than early genotypes, (Durand et al., 2012) especially in the MBS genetic
background. Apart from temporal variations of phyllochron, a simple change in leaf number would
be sufficient to accelerate or delay the flowering time.
However, significant differences of phyllochron are observed between the DSE selection population
and genotypes selected in response to the same selective pressure (earliness or lateness). These
differences appear robust to environmental variations as they are mostly preserved from one year
to the other for both the cumulated and the instant phyllochron. They could be explained by (i)
random variations appearing through the selection process without contributing to the response
to selection (genetic drift) and/or (ii) independent changes contributing to the adaptation to the
selection pressure via different developmental mechanisms (i.e. convergent evolution). Neverthe-
less, no general trend could characterize Early and Late selection branchs; in particular, genotypes
from the Early flowering selection branch do not display a faster development than the late one,
which pleads for the first hypothesis.

4.3 Phyllochron temporal trends and climate
As different genotypes do not experience the same environment at the same developmental stage,
differences in phyllochron observed between genotypes may originate either from selection or from
differences in environment. We proposed a model that includes longitudinal climatic variables
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and thus enables a calendar time analysis, with selection of both climatic variables and time-
windows preceding leaf appearance. As phyllochron temporal trends in 2015 strongly differ between
ancestral lines with an increasing and a decreasing phase for MBS genotypes and two increasing
phases for F252, potential interactions between climate and ancestral line and year were considered.
Moreover, the climatic context that could result from unobserved environmental variables or model
mispecification is incorporated through a coefficient depending on year and ancestral line.

After variables and time window selection, the climatic model includes four climatic variables,
whose effects are added to the cumulative temperature taken into account in thermal time calcula-
tion. These variables enable to recover seasonal variations in phyllochron but the coefficient signs
are not coherent between years and lines and the time window selection is unstable. Therefore
interpretation of the results related to each variable would be hazardous.

Unstable results may originate either from (i) potential statistical biases of the two-step ap-
proach underlined in Section 4.1, (ii) correlations between climatic variables, (iii) simplicity of the
model that can not recover complex behaviours. Notably, the model does not account for potential
non-monotonous effect of variables (medium optimum value). Moreover, additive modelling of co-
variate effects may not be enough to recover complex interplays (Matiu et al., 2017). Nevertheless,
a richer model would be at the price of a large number of parameters with respect to the number of
phyllochron estimates used for model fitting, and could not be properly inferred with our limited
number of genotypes.

In summary, the results suggest a strong impact of climate on phyllochron. Indeed, a limited
set of variables enables to recover temporal trends, even if the climatic model was not sufficient to
elucidate the impact of each variable. Besides, the phyllochron estimates display temporal trends
mainly associated with year, notably successive leaves are alike for close leaf ranks, which suggests
a medium or long term impact of climate on phyllochron.

4.4 Conclusion
Our phyllochron model based on a stochastic process enables to detect fine differences between
related genotypes up to a moderate experimental effort (10 to 20 measurements throughout the
season on 30-50 plants by genotypes). On the DSE dataset, we showed that the major sources
of differences for the phyllochron were not the selection population (Early or Late), but rather
the ancestral line (F252 or MBS), the year of experimentation, and the leaf rank. Moreover, our
results clearly indicate that phyllochron is not constant throughout the season, and these temporal
trends could be associated with climate.

Data availability statement.
All scripts and data can be found at https://doi.org/10.15454/CUEHO6
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Tables

Model Cumulated phyllochron parameters Instant phyllochron parameters Model name
M00 ∀(l, s, g), (µClsg, σ

C
lsg) = (µC , σC) ∀(l, s, g), (µlsg, σlsg) = (µ, σ) identical

M10 ∀(s, g), (µClsg, σ
C
lsg) = (µCl , σ

C
l ) ∀(l, s, g), (µlsg, σlsg) = (µ, σ) C-line

M11 ∀(s, g), (µClsg, σ
C
lsg) = (µCl , σ

C
l ) ∀(s, g), (µlsg, σlsg) = (µl, σl) (C+I)-line

M21 ∀g, (µClsg, σ
C
lsg) = (µCls, σ

C
ls) ∀(s, g), (µlsg, σlsg) = (µl, σl) C-selection

M22 ∀g, (µClsg, σ
C
lsg) = (µCls, σ

C
ls) ∀g, (µlsg, σlsg) = (µls, σls) (C+I)-selection

M32 (µClsg, σ
C
lsg) = (µClsg, σ

C
lsg) ∀g, (µlsg, σlsg) = (µls, σls) C-genotype

M33 (µClsg, σ
C
lsg) = (µClsg, σ

C
lsg) (µlsg, σlsg) = (µlsg, σlsg) (C+I)-genotype

Table 1: Models for genotypic groups effects. C: cumulated phyllochron, I: instant phyl-
lochron.

Model number of parameters AIC
m0 7 395.72

mfull
1 = m1(C0, (10, . . . , 10)) 37 267.52

m1 = m1(Cselect, (10, . . . , 10) 27 262.50
mbest

1 = m1(Cselect,∆opt) 31 243.06

Table 3: Comparison of climatic models. m0: no effect of climatic variables; mfull
1 : model with

the six climatic variables and a time window of 10 days for all variables; m1(Cselect, (10, . . . , 10))
model with the 4 selected climate variables and a time window of 10 days for all variables; mbest

1 :
model with the 4 selected climate variables and the optimal time windows.
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DT PAR W H AIC
20.00 5.00 5.00 20.00 235.07
2.00 25.00 15.00 20.00 235.40
3.00 25.00 15.00 20.00 235.80
20.00 10.00 5.00 10.00 235.87
3.00 10.00 5.00 10.00 236.78
20.00 10.00 5.00 20.00 236.84
1.00 25.00 15.00 20.00 237.61
3.00 10.00 5.00 20.00 238.04
4.00 10.00 5.00 20.00 238.68
15.00 10.00 5.00 10.00 239.12

Table 4: Combinations of time windows leading to the smallest AIC value in modelm1(Cselect,∆),
with the set of selected variables: Dewpoint Temperature (DT), Wind (W), Humidity (H), Photo-
synthetically Active Radiation (PAR). The first line corresponds to the optimal time windows of
the mbest

1 model.

F252-2014 F252-2015 MBS-2014 MBS-2015 MBS-2016
DT (20 days) -12.89 6.19 -4.95 5.09 -1.42
PAR (5 days) 0.94 -0.17 1.99 5.28 -1.89
W (5 days) -1.36 -2.69 1.13 -3.38 -1.47
H (20 days) 31.08 -10.10 9.75 9.90 -0.22

Table 5: Coefficients of the mbest
1 model.
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Figure 1: Illustration of the phyllochron process. The leaf appearance process of a plant is
characterised by the number of visible leaves at each time (in degree-days), or equivalently by the
time interval between successive leaves. For a plant p and a leaf rank f , the horizontal bar with
y-coordinate equal to f − 1 corresponds to the time interval Ylsg,p,f between appearance of leaves
f − 1 and f . A. Leaf appearance dynamics for several plants from the same genotype. [fmin, fmax]
correspond to the interval on which the phyllochron is estimated; Grey lines correspond to leaf
stages that are not modelled. The dynamic of a single plant is highlighted in red. B. Representation
of the dynamics and the observations of a single plant. Hlsg,p,f is the time of appearance of leaf f
since sowing. Dots represent the observation time points, at which the number of visible leaves is
monitored

  

Initial value of parameters

Generate

unobserved data
Compute new value
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Observations

Figure 2: Monte Carlo Expectation Maximisation algorithm. Starting from an initial
value of the parameters, the unobserved times of leaf appearance are drawn from their distribution
given the observed data. Then, the maximum likelihood estimator is inferred from the simulated
unobserved data, producing a new estimate of the parameters. The algorithm is iterated until
stabilisation of the parameters.
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Figure 3: Cumulated and instant phyllochron. A. Time in degree days to reach eight visible
leaves. B. Time interval in degree days between appearance of leaves eight and 13. Straight lines
join genotypes from the same selection population observed the same year.
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Figure 4: Estimates of instant phyllochron. Each plot corresponds to a year; Colors correspond
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from the same genotype
lsg at successive leaf ranks.
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Figure 5: Genotypic and selection effects on instant phyllochron. Instant phyllochrons of
all genotypes within selection groups. Columns correspond to selection populations and row to
years. When differences between genotypes within selection population were not significant, the
phyllochron estimates on the whole selection groups was represented.
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Figure 6: Best parametric sub-models. Each plot shows the instant phyllochron
(µ̂y,lsg,f )f=fy,lsg

min +1,...,fy,lsg
max

in degree days for each genotype and each year. Dots correspond to
the estimates under the complete model, while straight line display the estimate under the best
parametric sub-model.
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Figure 9: AIC of the climatic model as window time varies. For each selected variables, (DT
= Dewpoint Temperature, PAR = Photosynthetically Active Radiation, W=Wind, H=Humidity),
the AIC is displayed when the window time of the variable varies. First row: windows for the
other variables are fixed to the optimal value; second row: all combinations of windows for the
other variables are considered. Red bullet and line represent the optimal value.
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Supplementary materials

A Monte Carlo Expectation Maximisation Algorithm
Consider a given genotype lsg (or higher level genotypic group) and year y, the indexes lsg and y
are omitted in this section. For a plant p, let (tp,1, . . . , tp,Np

) be the monitoring times (with time
origin at sowing) and Xp,j the number of leaves of plant p at time tp,j . For each plant and leaf
rank, the observations indicate that leaf f appeared at some time between the last observation
date when the plant had at most (f −1) leaves, and the first observation date when the plants had
at least f leaves. We denote by νp,f and τp,f respectively these two dates:

νp,f =

{
max{tp,j , j s.t. Xp,j ≤ f} if min(Xp,j) ≤ f
0 otherwise

τp,f =

{
min{tp,j , j s.t. Xp,j > f} if max(Xp,j) > f
+∞ otherwise

The likelihood of the observations involves an integral of dimension fmax−fmin+1, thus a direct
maximisation would be intractable. Thus, we considered a Monte-Carlo Expectation Maximisation
algorithm, wihere the complete data (unobserved) are Hp = (Hp,f )p=1,...,n,f=fmin,...,fmax

• Initialisation. Proxies of the {Hp,f}p,f are computed as:

Ĥp,f =
1

2
(νp,f + τp,f ) , f = fmin, . . . , fmax

for all (p, f) such that νp,f > 0 and τp,f <∞, and the initial values of µf and σf are inferred
as robust estimators of mean and variance based on the proxies.

• Monte-Carlo E-step. Let Θ(m) = (µC,(m), σC,(m), µ
(m)
f , σ

(m)
f )f=fmin+1,...,fmax

be the current

value of the parameters. For each p a sample (H
(m)
p,r )r=1,...,N is generated from the conditional

distribution:

PΘ(m) [Hp|Hp,f ∈ [νp,f + τp,f ), f = fmin, . . . , fmax]

namely a truncated multivariate Gaussian distribution. Computation time of classic rejection
methods dramatically increase with the dimension, nevertheless specific are available for the
truncated multivariate distribution. We used the R package TruncatedNormal (Botev and
Belzile, 2020) well adapted when the truncated region is in the tail of the distribution.

• M-step. For f = fmin + 1, . . . , fmax, let Y
(m)
p,r,f = H

(m)
p,r,f − Y

(m)
p,r,f−1. The new value of the

parameters Θ(m+1) maximises

fmax∑
f=fmin+1

(
n∑
p=1

N∑
r=1

log φµf ,σf
(Y

(m)
p,r,f )

)
+

n∑
p=1

N∑
r=1

log φµC
fmin

,σC
fmin

(H
(m)
p,r,fmin

) (3)

with φµ,σ the density of the normal distribution with mean µ and standard deviation σ. This
problem is equivalent to a simple maximum likelihood estimation of a multivariate Gaussian
distribution with diagonal covariance matrix, thus:

µ
(m+1)
f =

1

nN

n∑
p=1

N∑
r=1

Y
(m)
p,r,f , f = fmin + 1, . . . , fmax (4)

µC,(m+1) =
1

nN

n∑
p=1

N∑
r=1

H
(m)
p,r,fmin

(
σ

(m+1)
f

)2

=
1

nN

n∑
p=1

N∑
r=1

(
Y

(m)
p,r,f

)2

−
(
µ

(m+1)
f

)2

, f = fmin + 1, . . . , fmax

(
σC,(m+1)

)2

=
1

nN

n∑
p=1

N∑
r=1

(
H

(m)
p,r,fmin

)2

−
(
µC,(m+1)

)2
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The algorithm is iterated until stabilisation of the parameters.

B Parametric sub-models
For each genotype lsg and year y, we consider the following parametric models for the average
interval times between leaves µy,lsg,f lsg

min+1, . . . , µy,lsg,fy,lsg
max

as a function of leaf rank:

• Constant: µy,lsg,f = ay,lsg, ∀f = fy,lsgmin + 1, . . . , fy,lsgmax (mod-ct)

• Linear: µy,lsg,f = ay,lsg × f + by,lsg, ∀f = fy,lsgmin + 1, . . . , fy,lsgmax (mod-lin)

• Piecewise constant: µy,lsg,f = alsg + by,lsg1If>κ, ∀f = fy,lsgmin + 1, . . . , fy,lsgmax , for κ = fmin +
2, . . . , fmax − 2 (mod-pct(κ))

• Piecewise linear: µynlsg,f = ay,lsg+by,lsg(f1If≤κ+κ1If>κ)+cy,lsg(f−κ)1If>κ, ∀f = fy,lsgmin +
1, . . . , fynlsgmax , for κ = fmin + 3, . . . , fmax − 3 (mod-plin(κ))

In order to test the classic hypothesis of constant leaf appearance rate which corresponds to
(mod-ct), for each genotype we compared models (mod-lin), (mod-pct(κ))), (mod-plin(κ)) with
(mod-ct). First, (mod-ct) was compared to all parametric models and to the complete model using
the χ2-likelihood ratio test ; if all p > 0.01, (mod-ct) is selected; otherwise, the parametric model
with the largest AIC is selected.

Monte Carlo EM algorithm for the parametric sub-models. We omit the indexes y
and lsg. The parametric models we considered are equivalent to imposing a linear constraint:

Bq(µfmin+1, . . . , µfmax
) = 0

with Bq a q × s-matrix, s = fmax − fmin and q < s. The parameter µC is unconstrained.

• Constant model (mod-ct):

Bq =


1 −1 0 · 0
1 0 −1 · 0
· · ·

1 0 · 0 −1


• Linear model: Bq is the (s− 2)× s matrix such that for every j > 2 Bq[j − 2, 1] = j − 2

Bq[j − 2, 2] = 1− j
Bq[j − 2, j] = 1

and the other coefficients are zero.

• Piecewise constant (mod-pct(κ)): let κ′ = κ− fmin, then Bq is the (s− 2)× s matrix with,

Bq[j − 1, 1] = 1, Bq[j − 1, j] = −1 if j = 2, . . . , κ′

Bq[j − 1, s] = 1, Bq[j − 1, j] = −1 if j = κ′, . . . , s− 1

and the other coefficients are zero.

• Piecewise linear: let κ′ = κ− fmin

Bq is the (s− 3)× s matrix such that for every 2 < j ≤ κ′ Bq[j − 2, 1] = j − 2
Bq[j − 2, 2] = 1− j
Bq[j − 2, j] = 1
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Model µC parameters µ parameters
Mσ

00 ∀(l, s, g), (µClsg, σ
C
lsg) = (µC , σCl ) ∀(l, s, g), (µlsg, σlsg) = (µ, σl)

Mσ
11 ∀(s, g), (µClsg, σ

C
lsg) = (µCl , σ

C
ls) ∀(s, g), (µlsg, σlsg) = (µl, σls)

Mσ
22 ∀(g), (µClsg, σ

C
lsg) = (µCls, σ

C
lsg) (µlsg, σls) = (µlsg, σlsg)

Table S1: Models in which the mean parameters depend on grouping level j − 1 and the variance
parameters on grouping level j

and for every κ′ + 1 < j ≤ s 
Bq[j − 2, 1] = κ− 2
Bq[j − 2, 2] = 1− κ
Bq[j − 2, j] = 1
Bq[j − 2, κ] = j − κ
Bq[j − 2, κ+ 1] = κ− j

and the other coefficients are zero.

The Monte-Carlo E-step is identical to the case of unconstrained µ. The M-step corresponds
to the maximum likelihood estimation problem from a multivariate Gaussian distributed sample
under linear constraints on the mean, which admits an explicit expression as follows (Zoppé et al.,
2001). Let Bs−q be any matrix such that

B =

(
Bs−q
Bq

)
is invertible. Then, let

S(m) =
1

nN

n∑
p=1

N∑
r=1

B(Ỹ(m)
p,r − Ỹ

(m)

)(Ỹ(m)
p,r − Ỹ

(m)

)tBt =

(
Ss−q,s−q Ss−q,q
Sq,s−q Sq,q

)

where Ỹ
(m)
p,r = (Y

(m)
p,r,f )f=fmin+1,...,fmax , Ỹ = (1/nN)

∑n
p=1

∑N
r=1 Ỹp,r, and Sa,b are submatrices of

S with dimension a× b. Let Ỹs−q (resp. Ỹq) be the subvector of Ỹ with the s− q first (resp. the
q last) coordinates of Ỹ, then

(µ
(m+1)
fmin+1, . . . , µ

(m+1)
fmax

) = B−1

(
Ỹs−q − S−1

q,qSs−q,qỸq

0

)
Finally, (µC,(m+1), σC,(m+1), σ(m+1)) are given by equation (4).

C Are genotypic group effect due to differences in the average phyl-
lochron?

The differences of phyllochron between genotypic groups (genotypes, selection populations and
inbred lines) could originate from differences in the average phyllochron (µC , µ) and/or on the
standard deviations (σC , σ). In this subsection, we perform additional comparisons to ensure that
the genotypic effect indeed impacts the average phyllochron. In addition to models Mj−1,j−1 and
Mj,j in Table 1, we considered modelsMσ

j−1,j−1 in which the mean parameters depend on grouping
level j − 1 and the variance parameters on grouping level j (Table S1)

The comparison of models Mj,j and Mσ
j−1,j−1 enables to test the effect of genotypic grouping

on the mean parameters (µy,lsg,f ) only, regardless of its effect on variance parameters (σy,lsg,f ).
Results in Table S2 indicate that these comparisons lead to similar p-values than the compari-
son Mj,j/Mj−1,j−1. Moreover, the estimates of (µy,lsg,f ) computed under models Mj−1,j−1 and
Mσ
j−1,j−1 are very similar (Figure S2). Therefore, the observed genotypic groups effects are due,

in a significant part, to differences on the average phyllochron (µCy,lsg, µy,lsg,f ) rather than on the
nuisance parameters (σCy,lsg, σy,lsg,f ).

23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426247doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426247
http://creativecommons.org/licenses/by-nc-nd/4.0/


D Criteria for model comparison - Evaluation through permutation test.
Intially, we considered three criteria for model comparisons.

• the AIC criterion −2`+ 2p with ` the log-likelihood of the observations and p the number of
parameters in the model. The smaller the better.

• the BIC criterion −2`+ p× log n with n the sample size (number of plants). The smaller the
better. As soon as the sample size is larger than 8, BIC is more conservative than AIC.

• The p-value of the χ2-likelihood ratio test.

These three criteria rely on asymptotic heuristics, and there is no obvious choice a priori. On the
contrary, permutation tests are unbiased but too time consuming to be used for all comparisons.
Thus, in order to evaluate the relevance of the three criteria for finite sample size, we used a
permutation test with N = 200 permutations for the comparisonM22/M33 for the two genotypes of
the group F252-Early. On the non-permuted data, AIC selected H1 (1904 versus 1915) indicating a
genotypic effect, while BIC (which is more conservative by definition) selected H0 (1954 vs 1982),
indicating no genotypic effect. The χ2-likelihood ratio test had a significant p-value (5.10−5),
leading to the same conclusion that the AIC criterion. Therefore, we wondered if BIC criterion is
too conservative, or if AIC and χ2-test over-estimated the genotypic effect.

On the one hand, the unbiased permutation test had a p-value of 0.02, coherent with the χ2-log
likelihood test, even less significant. Besides, the quantile 0.05 of the empirical distribution of the
χ2 p-value on the resampled data, equal to 0.013, could be considered as a conservative heuristic
threshold, since tests involving more plants (e.g. selection or line effect) are expected to be less
biased. Nevertheless, given the very weak p-values obtained on the data, this distinction would not
dramatically change the conclusions. On the other hand, the AIC criterion proved to be reliable
since it mostly selects M22 on the resampled data (94.5% of the permutations), even slightly too
selective; similarly to χ2-likelihood test. Finally, the BIC criterion appeared too conservative, as
it did not allowed to detect a significant genotypic effect with the original genotypes.
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Figure S1: Distribution of the total leaf number for all plants by genotype and by year.
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Figure S2: Estimates of instant phyllochron for models Mj−1,j−1 ((µC , µ, σC , σ) depend on the
grouping level j − 1, red), Mj,j ((µC , µ, σC , σ) depend on the grouping level j, dashed lines) and
Mσ
j−1,j−1 ((µC , µ) depend on the grouping level j − 1 and (σC , σ) depend on the grouping level j,

blue). Models are described in Tables 1 and S1. Rows 1 and 2 correspond to year 2014, and rows
3 and 4 to 2015. For each year, plots entitled All plants correspond to j = 1, plots F252 and MBS
to j = 2, and plots F252-Early, F252-Late, MBS-Early and MBS-Late to j = 3.

2014
Mj,j/Mj−1,j−1 Mj,j/M

σ
j−1,j−1

all <e-16 7.3e-15
F 2.00e-12 1.8e-09
M 4.20e-02 7.2e-02

Fearly 6.60e-05 3.6e-05
Flate 5.70e-12 1.1e-9

Mearly 6.00e-02 7.3e-02
Mlate 3.80e-05 6.3e-06

2015
Mj,j/Mj−1,j−1 Mj,j/M

σ
j−1,j−1

all <e-16 <e-16
F 3.0e-03 1.7e-02
M 1.3e-05 2.0e-04

Fearly 4.9e-04 6.8e-05
Flate 3.7e-09 9.4e-06

Mearly <e-16 <e-16
Mlate 1.5e-04 2.0e-05

Table S2: χ2 likelihood ratio p-value for genotypic group effect on the mean and variance of the
phyllochron (Mj,j/Mj−1,j−1) and on the average phyllochron µ only (Mj,j/M

σ
j−1,j−1).
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Figure S3: Dendrogram and clusters identified among climatic variables. TR= tempera-
ture range, PETP = Penman evapotranspiration, CGR = calculated global radiation, GR = global
radiation, PAR = photosynthetically active radiation, CID = calculated sunshine duration, IF =
percentage of sunshine, RF = rain falls, RFX = maximum rain falls, HD4 = >40% humidity du-
ration, WD = wetness duration, HX = maximal humidity, HD9 = >90% humidity duration, HN
= minimum humidity,HD8 = >80% humidity duration, H = atmospheric humidity, W = wind
speed, WX = maximum wind speed, DT = dewpoint temperature, MVP = mean vapor pressure,
AI1 = actinothermic index 10cm, AI5 = actinothermic index 50cm, TN = minimum temperature,
S1X = soil maximum temperature 50cm, S1N = soil minium temperature 10cm, S5M = soil tem-
perature 50cm, T = mean temperature, CMT = calculated mean temperature, TX = maximum
temperature, I1X = maximum actinothermic index 10cm, I5X = maximum actinothermic index
50cm.
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Calendar time

Number
of leaves

Level of
climatic variable j

Appearance 
of leaf f

∆j

Figure S4: Time window in the climatic variable model m1. The upper graph displays the average
phyllochron for genotype lsg on year y, and the lower graph a climatic variable. The average value
C

(∆j)
y,lsg,f,j of the climatic variable on an interval ∆j before appearance of leaf f corresponds to the

hatched area normalised by ∆j .
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