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Summary

Pro-inflammatory fibroblasts are critical to pathogenesis in rheumatoid arthritis, inflammatory bowel disease,
interstitial lung disease, and Sjogren’s syndrome, and represent a novel therapeutic target for chronic
inflammatory disease. However, the heterogeneity of fibroblast phenotypes, exacerbated by the lack of a
common cross-tissue taxonomy, has limited the understanding of which pathways are shared by multiple
diseases. To investigate, we profiled patient-derived fibroblasts from inflamed and non-inflamed synovium,
intestine, lung, and salivary glands with single-cell RNA-sequencing. We integrated all fibroblasts into a multi-
tissue atlas to characterize shared and tissue-specific phenotypes. Two shared clusters, CXCL10"CCL19*
immune-interacting and SPARC*COL3A1" vascular-interacting fibroblasts were expanded in all inflamed
tissues and additionally mapped to dermal analogues in a public atopic dermatitis atlas. We further confirmed
these human pro-inflammatory fibroblasts in animal models of lung, joint, and intestinal inflammation. This work
represents the first cross-tissue, single-cell fibroblast atlas revealing shared pathogenic activation states across

four chronic inflammatory diseases.

Introduction

Fibroblasts are present in all tissues and adopt specialized phenotypes and activation states to perform both
essential functions in development, wound-healing, and maintenance of tissue architecture, as well as
pathological functions such as tissue inflammation, fibrosis, and cancer responses (Koliaraki et al., 2020).
Recent studies of chronic inflammatory disease have leveraged advances in high-throughput single-cell
genomics, particularly single-cell RNA-sequencing (scRNAseq) to identify molecularly distinct fibroblast
populations associated with pathological inflammation in different anatomical sites (Adams et al., 2020;
Habermann et al., 2020; Huang et al., 2019; Kinchen et al., 2018; Martin et al., 2019; Mizoguchi et al., 2018;
Smillie et al., 2019; Zhang et al., 2019). A study of the large intestine from patients with ulcerative colitis (UC)
identified stromal cells expressing Oncostatin-M receptor (OSMR) enriched in biopsies tracking with failure to
respond to anti-TNF therapy (West et al., 2017). Further studies suggested immunomodulatory roles for OSMR*
intestinal fibroblasts through interactions with inflammatory monocytes (Smillie et al., 2019) and neutrophils
(Friedrich et al., 2020). Lung investigations identified that COL3A1"ACTA2" myofibroblasts, PLIN2*

lipofibroblast-like cells, and FBN1"HAS1" fibroblasts are expanded in lung biopsies from patients with idiopathic
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pulmonary fibrosis (IPF) (Adams et al., 2020; Habermann et al., 2020). In the salivary gland, chronic destructive
inflammation in primary Sjogren’s syndrome (pSS) with tertiary lymphoid structures is linked to the expansion
of PDPN*CD34  fibroblasts (Nayar et al., 2019). In the synovial tissue, FAPa*CD90" fibroblasts are expanded
in patients with rheumatoid arthritis (RA) (Wei et al., 2020; Zhang et al., 2019) and drive leukocyte recruitment
and activation in an animal model of arthritis (Croft et al., 2019).

In each study, inflammation-associated fibroblasts are characterized by their ability to produce and
respond to inflammatory cytokines. These cytokines are often members of conserved families that signal
through similar downstream pathways and result in similar effector functions (West, 2019). For instance, the
inflammatory cytokines IL-6, Oncostatin M (OSM), leukemia inhibitory factor (LIF), and IL-11 all belong to the
gp130 family, whose cognate receptor molecules, including IL-6R, OSMR, LIFR, and IL-11R, contain the
Glycoprotein 130 (gp130) subunit. In UC, OSMR" fibroblasts express high levels of the IL-11 encoding gene
(Smillie et al., 2019). In RA, a subset of FAPa*CD90" synovial fibroblasts produce high levels of IL-6 (Zhang et
al., 2019) through an autocrine loop involving LIF and LIFR (Nguyen et al., 2017; Slowikowski et al., 2019). In
a mouse model for human IPF, IL-11 producing fibroblasts drive both fibrosis and chronic pulmonary
inflammation (Ng et al., 2020). These examples of gp130-family cytokines associated with pro-inflammatory
fibroblasts highlight that while individual factors may be tissue-specific, their downstream effects may be shared
across diseases. This pattern underlines an important question with clinical implications: are inflammation-
associated fibroblasts tissue-specific or do they represent shared activation states that manifest a common
phenotype across different diseases? A drug that targets a shared pathogenic phenotype can potentially be
used to treat multiple inflammatory diseases. Identifying such shared fibroblast programs presents a major
challenge, as these programs are likely to be transient and reversible activation states that vary over the course
of a disease, rather than representing a static, committed cell lineage (Wei et al., 2020).

The identification of shared cell states across tissues with scRNAseq has recently become possible with
advances in statistical methods for integrative clustering (Butler et al., 2018; Korsunsky et al., 2019; Tran et al.,
2020) and reference mapping (Andreatta et al., 2020; Kang et al., 2020; Lotfollahi et al., 2020). Integrative
clustering identifies similar cell states across a range of scRNAseq datasets, even when the datasets come
from different donors, species, or tissues. For example, using integrative clustering, Zhang et al., 2020 identified

shared macrophage activation states across five tissues, and Butler et al., 2018 identified shared pancreatic
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islet cells between mouse and human datasets. Reference mapping allows rapid comparison of data from a
new study to a well annotated reference, even if the study represents a tissue, disease, or species not present
in the reference atlas. For instance, Andreatta et al., 2020 mapped T cell subtypes to a scRNAseq atlas of
annotated tumor infiltrating T cells, while Lotfollahi et al., 2020 found disease-related immune states by mapping
PBMCs from patients with COVID19 to a healthy reference library of immune cells.

In this study, we generated single-cell RNAseq profiles of patient-derived CD45 stromal cells and then
characterized fibroblasts across multiple inflammatory diseases involving lung, intestine, salivary gland and
synovium. After confirming known fibroblast subtypes in our data, we built a de novo, integrated fibroblast atlas
and identified five shared phenotypes, two of which are consistently expanded in all four inflammatory diseases.
Using reference mapping, we map these to human dermal fibroblasts from inflamed and healthy skin and to
fibroblasts from mouse models of lung, synovial, and intestinal inflammation to demonstrate the generalizability
of our findings. Our integrated resource represents the first systematic examination of fibroblast subsets and
activation states in inflamed tissues. Our identification of two pathogenic fibroblast phenotypes that are shared
amongst four inflammatory diseases novel avenues for therapeutic targeting. By making available the necessary
computational tools to map new datasets to our annotated fibroblast atlas, we provide a common reference for

future studies of fibroblasts in tissues and diseases.
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Results

Single-cell transcriptional profiles of fibroblasts in human lung, salivary gland, synovium, and intestine.

We used droplet-based scRNAseq to profile individual fibroblasts from a total of 74 high quality samples in lung,
large intestine, lip salivary glands, and joint synovium, selecting donors with inflammatory diseases and controls
(Figure 1a). In synovium, we collected arthroplasties and biopsies from 18 patients with RA and 6 with
osteoarthritis (OA) (Supplementary Table 1). In the intestine, we collected large intestinal biopsies from
patients with UC (n=8) and control (n=5) donors (Supplementary Table 2). Included in the 8 UC samples were
4 patients for whom we had paired inflamed and adjacent non-inflamed tissue biopsies. For the lung analysis,
we acquired lung tissue samples from 19 patients with ILD and 4 control samples from donor lungs
(Supplementary Table 3). To examine salivary glands, we used lip biopsy tissue from 7 patients with primary
Sjogren’s Syndrome (pSS) and 6 patients with a non-Sjogren’s Sicca syndrome, characterized as non-
autoimmune dryness, as control-comparators (Supplementary Table 4). In order to enrich for stromal cells, we
used flow cytometry to sort live, CD45 EpCAM" cells from intestine and synovium samples (Figure 1a), depleting
CD45" immune and EpCAM" epithelial populations (Supplementary Figure 1a). We avoided this strategy in
the salivary gland, in order to optimize cell numbers in small biopsies, and in the lung, in which flow cytometry
compromised fibroblast cell yields. We performed droplet-based scRNAseq (10x Genomics) on all samples,
applied stringent QC to remove low quality libraries and cells (Supplementary Figure 1b-d), and combined all
data samples to analyze 221,296 high quality cells. Using clustering analysis (Methods), we identified 7 major
cell types (Figure 1b) with canonical markers (Figure 1c): CDH5" endothelial cells, COL1A71" fibroblasts,
EPCAM’ epithelial cells, GFRA3" glial cells, JCHAIN® plasma cells, MCAM" perivascular murals, and PTPRC"*
leukocytes. Consistent with our flow sorting strategy, non-stromal cells (epithelial, glial, and immune) were more
abundant in the salivary gland and lung (Supplementary Figure 1e). Importantly, we identified stromal
(endothelial, mural, and fibroblast) populations in all four tissues, allowing us to carry out a focused analysis of

fibroblasts across tissues.
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Figure 1. scRNAseq profiles of intestine, lung, salivary gland, and synovium. (a) Surgical samples were collected
from intestine, lung, salivary gland, and synovium, from patients with inflammatory-disease and appropriate controls. After
tissue disaggregation, all cells from lung and salivary gland and CD45-EpCAM- cells from synovium and intestine were
profiled with scRNAseq and (b) analyzed to identify fibroblasts and other major cell types. (c) Cell type annotation was
performed with known markers for each major population.

Fibroblast heterogeneity within tissues.
We next examined the heterogeneity of fibroblast cell states within individual tissues. We performed a separate
fine-grained clustering analysis for fibroblasts within each of the four tissues and annotated clusters with

previously identified states (Figure 2a) by comparing published marker genes (Supplementary Figure 2a-d)
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with cluster markers in our data (Supplementary Table 5). In the intestine, we were able to recapitulate 7 of 8
populations identified in (Smillie et al., 2019): crypt-associated WNT2B*Fos" and WNT2B*Fos"”, epithelial-
supportive WNT5B*-1 and WNT5B™-2, stem cell niche supporting RSPO3", inflammatory, and myofibroblasts.
We note that our data did not support the 2 subtypes of WNT2B*Fos" fibroblasts identified originally in (Smillie
et al., 2019). In the lung, Habermann et al., 2020 described 4 states: HAS1*, PLIN2*, fibroblasts, and
myofibroblasts. However, in their analysis, HAS1" cells were identified in only 1 of 30 donors. When we re-
analyzed their data to identify clusters shared by multiple donors, we could not distinguish the HAS1* from
PLIN2* population and thus merged these two in our annotation. In the salivary gland, the only single-cell study
of fibroblasts to date was performed with multi-channel flow cytometry (Nayar et al., 2019), not scRNAseq. The
findings here represent the first set of sScRNA-seq data in this context. In our single-cell clusters, we identified
the two populations previously described (CD34" and CCL19%) and confirmed the expression of key
distinguishing cytokines and morphogens that they measured by qPCR (Supplementary Figure 2b). In the
synovium, we clustered 55,143 fibroblasts into 5 major states described in three scRNAseq studies (Croft et al.,
2019; Mizoguchi et al., 2018; Zhang et al., 2019). These states are largely correlated with anatomical position:
THY1PRG4" cells in the synovial boundary lining layer and THY 1", DKK3*, HLA-DRA", and CD34" cells within
the sublining. In total, we labeled 17 fibroblast clusters defined across all four individual tissues.

Next, we asked whether fibroblast states defined within one tissue shared similar expression
profiles with states defined in other tissues. We performed cluster marker analysis within each tissue,
quantifying the overexpression of each gene in each cluster in terms of the log fold change with other
clusters. We plotted 4,897 genes that were overexpressed in at least one cluster and labeled the top
3 markers per cluster (Figure 2b). We noticed that many marker genes were present in clusters from
different tissues. To find which pairs of clusters across tissues were most similar, we correlated
(differential) expression profiles (Methods) for cross-tissue clusters (Figure 2¢). The most correlated
(Pearson r = 0.44, p = 10729) pair of clusters contained CD34* fibroblasts in the salivary gland and
CD34* sublining (SC-F1) fibroblasts in the synovium (Figure 2d). Although they shared multiple
marker genes (PAMR1, MFAPS, CD34, CD70, DPP4, FABP3, and FNDC1), they also had tissue-

related, cluster-specific genes (POSTN, RAMP1, PRG4, PI16, and TNMD). The shared markers
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suggest a shared function. The cluster-specific genes may have arisen from a technical artefact, such
as different clustering parameters in the tissue-specific analyses, or from true biological signal, such

as a tissue-specific microenvironment. In order to distinguish between the two possibilities, we decided

to perform a single integrative clustering analysis with fibroblasts from all tissues.
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Integrative clustering of fibroblast across tissues.

To construct a cross-tissue taxonomy of fibroblast states, we pooled 55,143 synovial, 15,089 intestinal, 7,474
salivary gland, and 1,442 pulmonary fibroblasts together and performed integrative clustering analysis. The
different numbers of fibroblasts from each tissue, arising from the fact that we enriched for stromal cells in
intestine and synovium but not in lung and salivary gland, presented a technical challenge. The results of many
analyses, including PCA, are biased towards tissues with more cells, rather than treating each tissue equally.
The second major analytical challenge arises from the fact that gene expression depends on a complex interplay
of tissue, donor, and cell state. As we have described in previous work (Korsunsky et al., 2019), such

confounding variation is particularly challenging to model in scRNAseq data, as the confounder can have both

global and cell-type specific effects on gene expression.
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We designed an analytical pipeline for integrative clustering to address the two concerns described
above (Figure 3a). In this pipeline, we select genes that were informative in the tissue-specific analyses
(Methods), associated with either cluster identity (Supplementary Table 5, n=7,123) or inflammatory status
(Supplementary Table 6, n=6,476) within tissue, for a total of 9,521 unique genes. To minimize the impact of
different cell numbers, we performed weighted PCA analysis, giving less weight to cells from over-represented
tissues (e.g. synovium) and more to cells from under-represented tissues (e.g. lung), such that the sum of
weights from each tissue is equivalent (Methods). Compared to unweighted PCA, this approach results in
principal components whose variation is more evenly distributed among tissues (Supplementary Figure 3a).
As expected, in this PCA space, cells group largely by donor and tissue (Supplementary Figure 3b,c). In order
to appropriately align cell types, we removed the effect of donor and tissue from the cells’ PCA embedding
coordinates with a novel, weighted implementation of the Harmony algorithm that we developed for this specific
application (Methods). UMAP visualization of the harmonized embeddings shows that cells from different
tissues are well mixed (Figure 3b). In contrast, fibroblast states identified in tissue-specific analyses are well
separated (Supplementary Figure 3d), suggesting that the integrated embedding faithfully preserves cellular
composition. In this integrated space, we performed standard graph-based clustering to partition the cells into
14 fibroblast states (Figure 3c) with representation from all 4 tissues (Supplementary Figure 3e). These 14
integrated clusters represent putative shared fibroblast states, each of which may be driven by a combination

of both shared and tissue-specific gene programs.
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Figure 3. Integrative clustering
and differential expression across
tissues. (a) We developed a pipeline
to integrate samples from multiple
donors and multiple tissues with
unbalanced cell numbers. The
pipeline starts with gene selection,
pooling together genes that were
informative in single-tissue analyses.
With these genes, we performed
weighted PCA, reweighting cells to
computationally account for the
unbalanced dataset sizes among the
tissues. These PCs are adjusted with
a novel formulation of the Harmony
integration algorithm and used to
perform graph-based clustering. We
applied this pipeline to all fibroblasts
across tissues. (b) The integrated
UMAP projection shows cells from all
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Identification of shared and tissue-specific marker genes in integrated clusters.
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Next, we modeled gene expression to define active gene programs in the 14 integrative fibroblast clusters. In
particular, we wanted to distinguish between two types of cluster markers: tissue-shared and tissue-specific.
Tissue-shared markers are highly expressed in the cluster for all four tissues. Tissue-specific markers are highly
expressed in the cluster for at least one tissue but not highly expressed in at least one other tissue. In our
expression modeling analysis, we needed to allow for the possibility that tissue gene expression will be

consistent in clusters and variable in others (Figure 3d). As we explain in our approach below, we will use
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ADAM12 expression in cluster C4 as an example of a tissue-shared gene and MYH11 expression in cluster
C13 as an example of a tissue-specific gene.

Typically, cluster marker analysis is done with regression, to associate gene expression with cluster
identity. To address the complex interaction between cluster and tissue identity in our data, we used mixed-
effects regression to perform hierarchical cluster marker analysis (Methods). This analysis estimated two sets
of differential expression statistics for each gene: mean log. fold change (e.g. cluster 0 vs all other clusters) and
tissue-specific logz fold change (e.g. cluster 0 in lung vs all other clusters in lung). This approach distinguishes
shared marker genes, defined by minimal tissue-specific contributions, from tissue-specific marker genes,
defined by large tissue-specific fold changes, relative to the mean fold change. To demonstrate, we plotted the
estimated log. fold changes, with a 95% confidence interval, for one shared (Figure 3e) and one tissue-specific
(Figure 3f) cluster marker. ADAM12, a shared marker for cluster C4, has significant (logz fold-change = 1.6,
p = 6.5 x 107%) mean differential expression in C4, while the tissue-specific effects (in color) are not significantly
different for any one tissue (Figure 3e). In contrast, MYH11, is differentially overexpressed in cluster C13 for
intestinal (log: fold-change = 3.7, p = 8.5 X 1071¢) and lung fibroblasts (log: fold-change = 2.6, p = 5.9 X 1077)
but not for synovial or salivary gland cells (Figure 3f). Because MYH11 is so strongly overexpressed in intestinal
and lung fibroblasts, the mean log. fold-change is also significant (log. fold-change = 1.7, p = 5.7 x 107°) and
therefore is not a good metric alone to determine whether a marker is shared or tissue-specific.

We defined tissue-shared cluster markers conservatively by requiring a marker gene to be significantly
overexpressed in all four tissues, such as ADAM12 above. With this criterion, we quantified the number of
shared marker genes per cluster (Figure 3g). Clusters CO, C1, C2, C3, C6, C7, C10, C12, and C13 each had
fewer than 20 shared markers. Based on this cutoff, we decided that these clusters had too little evidence of
shared marker genes to be reliably called shared clusters. We assigned names for the remaining clusters based
on their shared gene markers: SPARC*COL3A1* C4, FBLN1* C5, PTGS2"SEMA4A™ C8, CD34*"MFAP5" C9,
and CXCL10"CCL19" C11. We then plotted the log, fold change values of all 1,524 shared markers for these
clusters in Figure 3h and report the results of the full differential expression analysis in Supplementary Table

7.
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Identification of fibroblast states expanded in inflamed tissue.

We next addressed which cross-tissue fibroblast states were expanded in inflamed tissues. In order to perform
this association across tissues, we first needed to define a common measure of tissue inflammation. While
histology is often the gold standard to assess inflammation, histological features are inherently biased to tissue-
specific pathology. Instead, we decided to define inflammation in a tissue-agnostic way, as the relative
abundance of immune cells in each sample. While immune cell abundance alone oversimplifies complex
pathological processes, it is a ubiquitous and quantifiable measure of chronic inflammation. We quantified the
fraction of immune cells based on previously labeled scRNAseq clusters (Figure 1b), for salivary gland and
lung samples, and based on the proportion of CD45" cells by flow cytometry (Supplementary Figure 1a), for
synovium and intestine (Figure 4a). We note that these estimates are quantified with dissociated cells from
cryopreserved tissue (Methods) and thus lack granulocytes, such as neutrophils, which constitute an important

part of tissue inflammation. In order to get comparable results across tissues, we standardized the raw tissue-
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Figure 4. Sample level inflammation scores. We computed the relative abundance of CD45" immune cells to all cells in
each sample. (b) We standardized these frequencies across tissues into an inflammation score that ranges from 0 to 1
and removes distributional differences. (c) Association analysis results between fibroblast cluster abundance and
standardize inflammation scores. Here, each point represents the log fold change in fibroblast cluster abundance with
increasing inflammation and the line represents that point’'s 95% confidence interval. Red denotes estimates with one-
tailed FDR<5%. (d) The tissue specific results were summarized using meta-analysis. (e) For CXCL10+CCL19+ (C11) and
SPARC+COL3A1+ (C4) fibroblasts, scatterplots relating to standardized inflammation scores (x-axis) to relative fibroblast
frequency (y-axis).
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Using these standardized inflammation scores, we performed a separate association analysis with
mixed-effects logistic regression for each tissue. This analysis provided, for each tissue and fibroblast state, the
effect of increased inflammation on cluster abundance (Figure 4c). Positive log odds ratios denote expansion
with inflammation whereas negative ratios denote a diminishing population. Some clusters, such as C2, C3, C7,
PTGS2"'SEMA4A™ C8, and C12, were significantly (FDR<5%, red) expanded in only one tissue. Others, such
as CXCL10*CCL19" C11 and SPARC*COL3A1* C4, were significantly expanded in multiple tissues. We
confirmed that association with normalized inflammation scores did not change the qualitative results within
tissue but did make the results more interpretable across tissues (Supplementary Figure 4). We then
performed a meta-analysis of these tissue-specific effects (Methods) to prioritize clusters expanded
consistently across all tissues (Figure 4d). This meta-analysis identified two fibroblast states significantly
expanded in inflamed samples from all 4 tissues (Figure 4e): SPARC'COL3A1" (C4) (OR =
10.4,95% CI[6.6,16.2],p = 9.4 x 10725), and = CXCL10'CCL19*  (C11)  fibroblasts  (logOR =
32.7,95% CI [11.4,94.0],p = 9.6 x 10711). The reported odds ratio values denote the odds of a cell being in a
cluster (versus not) given that it came from an inflamed sample. Because the effects for these clusters were
similar across tissues, pooling in the meta-analysis increased the power to detect these abundance changes.
Distinct immune-interacting and vascular-interacting fibroblast states expanded in tissue inflammation.

The two fibroblast states consistently expanded in inflamed tissue are characterized by distinct gene programs
(Figure 5a) that reflect putative distinct functions during tissue inflammation. To explore these potential roles,
we performed gene set enrichment analysis with 6,369 Gene Ontology (Ashburner et al., 2000) and 50 MSigDB
hallmarks pathways (Liberzon et al., 2011) (Supplementary Table 8, Figure 5b). Marker genes for
CXCL10*CCL19" fibroblasts were enriched for pathways involved in direct interaction with immune cells,
including lymphocyte chemotaxis (GO:0048247, adjusted p< 0.005, includes CCL19, CCL2, CCL13), antigen
presentation (GO:0019882, adjusted p< 0.005, includes CD74, HLA-DRA, HLA-DRB1), and positive regulation
of T cell proliferation (GO:0042102, adjusted p< 0.005, includes TNFSF13B, VCAM1, CCL5). CXCL10"CCL19*
fibroblasts show broad evidence of response to key pro-inflammatory cytokines IFNy (G0O:0034341, adjusted
p=0.005), IFNa (GO:0035455, adjusted p=0.02), TNFa (GO:0034612, adjusted p< 0.005), IL-1 (GO:0070555,
adjusted p< 0.005), and IL-12 (GO:0070671, adjusted p< 0.005). While TNFa, IL-1, and IL-12 response are

broadly enriched in several fibroblast populations, an interferon response (IFNy and IFNa) is more specific to
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CXCL10*CCL19" fibroblasts. In contrast to these cytokine-signaling pathways, SPARC*COL3A1" fibroblast
marker genes were enriched in pathways centered around extracellular matrix binding (GO:0050840, adjusted
p< 0.005, includes COL11A1, SPARC, LRRC15) and disassembly (GO:0022617, adjusted p=0.005, includes
MMP13, MMP11, FAP) and numerous developmental pathways (GO:0035904, GO:0060348, GO:0061448,

G0:0007492, adjusted p< 0.005, includes COL3A1, COL1A1, COL5A1, TGFB1).

Figure 5. Distinct gene expression
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Together, this suggests that SPARC*COL3A1" fibroblasts may be driven by conserved developmental
pathways during tissue remodeling in chronically inflamed diseases. Given the extensive enrichment in
developmental pathways in these fibroblasts, we hypothesized that this state could be driven by morphogens
within the tissue microenvironment. Indeed, we observed enrichment in key morphogen signaling pathways
hedgehog (adjusted p=0.005), TGFB (GO:0007179, adjusted p< 0.005), WNT (canonical (GO:0060070,
adjusted p=0.007) and non-canonical (GO:0035567, adjusted p=0.005)), BMP (GO:0071772, adjusted p=0.01),
and Notch (G0O:0007219, adjusted p< 0.005). Of these pathways, Notch signaling was the most specific to
SPARC*COL3A1" fibroblasts (Figure 5b), with non-significant (raw p > 0.20) enrichment in all other clusters.

Since we have previously identified Notch3 signaling as a key driver in differentiation of disease-associated
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perivascular fibroblasts in RA synovia (Wei et al., 2020), we predict this cluster may represent a similar
endothelium-driven, activated fibroblast state across inflammatory diseases involving other organ tissues. We
explored this hypothesis with ligand receptor analysis (Methods). We started with manually curated cognate
ligand and receptor pairs (Ramilowski et al., 2015) and for each pair, looked for high expression of one gene in
endothelial cells within our libraries (Figure 1b) and its partner in each fibroblast state. Filtering for only
differentially expressed genes, we found a total of 63 putative signaling interactions (Figure 5c). Notably, 19 of
these interactions were between SPARC*COL3A1" fibroblasts and endothelial cells, including Notch activation
through the DLL4:NOTCH3 interaction, as described earlier in the synovium (Wei et al., 2020), as well as
morphogen TGFp, growth factor PDGFp, angiogenic factors Ephrin-a and Ephrin-# (Rudno-Rudzinska et al.,
2017), and angiogenic and mitogenic factors MDK and PTN (Weckbach et al., 2012). This large variety of
putative signaling interactions (Figure 5c¢), both from and to endothelial cells, suggests that SPARC+COL3A1+
fibroblasts participate in signaling crosstalk with endothelial cells. Together, these pathway and crosstalk
analyses suggest two independent, conserved populations that support tissue inflammation: namely immune
cell-interacting CXCL10"CCL19" immuno-fibroblasts and endothelium-interacting SPARC*COL3A1" vascular
associated fibroblasts.

Correspondence between fibroblast clusters defined in integrative analysis and single-tissue analyses.

We determined how the clusters labeled in the single-tissue analyses (Figure 2a) mapped to our new shared
cross-tissue taxonomy. Since we used the same cells for both within-tissue and cross-tissue analyses, we were
able to directly compare the overlap (Methods) between these two types of state definitions (Supplementary
Figure 5a). The immuno-fibroblast cluster C11 overlapped significantly (FDR < 5%) with THY 1" sublining (OR =
3.8,95% CI[2.2,6.7]) and HLA-DRA" synovial fibroblasts (OR = 39.2,95% CI[22.2,69.0]), with CCL19"
fibroblasts in the salivary gland (OR = 9.1,95% CI[6.3,13.0]), with RSPO3* (OR = 16.1,95% CI[12.0,21.7]) and
WNT2B*Fos™ (OR = 2.3 95% CI[1.7,3.1]) fibroblasts in the intestine, and did not overlap significantly with any
one cluster in the lung. Here, odds ratio refers to the probability of a cell being in a cross-tissue cluster (versus
not), given that the cell belongs to some within-tissue clusters. The vascular-fibroblast cluster C4 was split
between DKK3" and THY1" sublining fibroblasts in the synovium, mapped exclusively to myofibroblasts in the
lung, split between inflammatory fibroblasts and myofibroblasts in the intestine, and mapped to CD34"

fibroblasts in the salivary gland. Notably, none of these associations was one-to-one. HLA-DRA™ synovial
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fibroblasts, CCL19* salivary gland fibroblasts, and RSPO3+ and WNT2B*Fos" intestinal fibroblasts mapped to
multiple clusters that were expanded in one or more tissues: C3 (lung and synovium), C2 (synovium), C12
(intestine), and C8 (salivary gland and synovium). Similarly, the myofibroblasts in the lung and intestine, as well
as DKK3" synovial fibroblasts mapped to both C13 and to vascular fibroblasts (C4).

Cluster C13 aligned strikingly with intestinal and pulmonary myofibroblasts. Although C13 contained
cells from all tissues, it only expressed canonical myofibroblast genes MYH11, MYL9, and ACTAZ2 in intestinal
and pulmonary cells (Supplementary Figure 5b). While myofibroblasts are absent in synovium, synovial C13
cells may reflect an activated phenotype involved in tissue repair. This is supported by synovial specific
upregulation of bone and cartilage reparative genes TFF3, BMP6, HTRA1, and HBEGF (Supplementary
Figure 5¢).

In the synovium and intestine, several clusters have previously been shown to be associated with distinct
anatomical locations (Mizoguchi et al., 2018; Smillie et al., 2019; Zhang et al., 2019): PRG4" synovial lining
fibroblasts, THY1" sublining synovial fibroblasts, WNT5B" villus-associated fibroblasts, and WNT2B* crypt-
associated fibroblasts. Many of the integrated clusters we identified grouped along these anatomically defined
lines. Clusters CO, C6, C10, and C12 were most associated with PRG4+ lining-associated synovial and
WNT5B+ villus-associated gut fibroblasts, while clusters C1, C2, C3, and C8, mapped to THY1+ sublining-
associated synovial and WNT2B+ crypt-associated gut fibroblasts. Except for cluster C8, these clusters that
were strongly associated with anatomical locations in gut and synovium had fewer numbers of shared marker
genes across tissues, potentially reflecting tissue-specific functions dictated by the specific anatomical
constraints and physiological functions of the tissue.

FBLN1* C5 and CD34"MFAP5" C9 states mapped strongly to RSPO3" intestinal, HAS1*PLIN2*
pulmonary and CD34"THY1" synovial fibroblasts. The remaining cluster C7 did not map well to intestinal or
synovial clusters. Subsequent analysis of marker genes within tissues suggested enrichment in doublets:
epithelial markers KRT7 and ADGRF5 in lung and macrophage markers C1QB, C1QA, and SPP1 in the salivary
gland. This suggests that despite our best efforts to filter doublets during QC preprocessing, some

contaminating doublets were retained. This makes further inference about cluster C7 less reliable.
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Validation in an alternative tissue: dermal fibroblasts in atopic dermatitis.

As a proof of principle, we next explored whether the fibroblast states discovered in the four tissues could
generalize to a tissue not explored in this study by examining cells from an independent dataset. We analyzed
data from a study (He et al., 2020) of atopic dermatitis (AD), a chronic inflammatory condition of the skin (Figure
6a). The authors performed droplet-based scRNAseq on all cells from cryopreserved skin biopsies of 5 patients
with AD (4 samples from skin lesions and 5 samples from skin outside of lesions) and 7 healthy donors. After
removing low-quality (Methods) cells and 3 samples with fewer than 500 high-quality cells, we clustered 29,625

cells from 13 samples to identify the following major cell types (Supplementary Figure 6a-b): MLANA*
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diseased controls (Figure 6b).

Figure 6. Dermal fibroblast scRNAseq profiles mapped to cross-tissue fibroblast atlas. (a) To validate our results,
we mapped scRNAseq profiles of dermal fibroblasts from lesion biopsies from atopic dermatitis (AD) patients, non-lesional
biopsies from AD patients, and control skin biopsies from healthy donors. (b) Based on the relative frequency of immune
cells in each biopsy, we computed standardized inflammation scores from 0 to 1. (c) We mapped dermal fibroblasts to our
fibroblast atlas and (d) labeled dermal fibroblasts according to their most similar atlas cluster. (e) We confirmed that the
gene expression profiles of inferred dermal fibroblast clusters correlated with expression profiles of their reference fibroblast
clusters. This is demonstrated for clusters C4 and C11 by plotting the (differential) gene expression in dermal (x-axis) vs
reference (y-axis) clusters and calling out the top marker genes identified in the reference clusters. (f) Only
CXCL10*CCL19* (C11) fibroblast frequency was significantly (FDR<5%) associated with dermal inflammation. (g) Cells
from skin with lesions (blue) had considerably less evidence of vasculature, measured by the abundance of perivascular
mural cells and vascular endothelial cells. (h) Relative abundance of mural and endothelial cells was most strongly
associated with cluster C4. Red denotes one-tailed FDR<5%.
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We wanted to compare dermal fibroblasts directly to clusters defined in our fibroblast atlas. To do this,
we leveraged a novel algorithm, Symphony (Kang et al., 2020) (Methods), designed to quickly and accurately
map new scRNAseq profiles into a harmonized atlas to compare them with annotated reference cells. Using
Symphony, we mapped dermal fibroblasts into our multi-tissue fibroblast atlas and projected them into the
reference UMAP space for visual comparison (Figure 6c). For quantitative comparison of fibroblast subtypes,
we labeled individual dermal fibroblasts by their most similar reference clusters (Figure 6d). Dermal fibroblasts
mapped primarily to all clusters except C6, C12, and C13, three clusters which we identified as more tissue-
specific (Figure 3g). We computed marker genes for these clusters in skin (Supplementary Table 9) and
compared them to the markers we computed in the cross-tissue analysis. Encouragingly, the gene expression
profile of each dermal fibroblast cluster most closely resembled that of its corresponding reference cluster
(Supplementary Figure 6c). As two examples of this expression concordance, we plotted gene expression of
immune (C4) and vascular (C11) fibroblasts inferred in the skin dataset versus those labeled in the reference
(Figure 6e), highlighting the top 10 marker genes upregulated in each of the fibroblast clusters in the reference
(Figure 6e).

We associated the abundance of inferred dermal fibroblast clusters with the sample-level inflammation
score (Figure 6f). CXCL10"CCL19" (C11) fibroblasts were the most significantly expanded in inflamed skin
samples (OR = 57,95% CI [6.5,503],p = 2 x 10™*), even when performing the association within histological
groups OR > 1000, p = 1.8 x 10711) (Supplementary Figure 6d). Interestingly, SPARC*COL3A1" fibroblasts,
expanded in the original four tissues, were less abundant in inflamed skin. Given the previous association of
SPARC*COL3A1" fibroblasts with vasculature, we explored the relative degree of vascular cell types in each
skin sample. Intriguingly, lesional samples had significantly fewer vascular endothelial (one-tailed t-test p =
0.004) and perivascular mural (one-tailed t-test p = 0.07) cells (Figure 6g), as compared to non-lesional and
healthy samples together. The lack of vascular fibroblast expansion in inflamed samples from skin lesions is
consistent with this decreased vascularization. In fact, the abundance of vascular fibroblasts is associated
nominally with the abundance of vascular endothelial cells (logOR = 2.5, p = 0.04) and strongly with
perivascular mural cells (log OR = 3.2, p = 1.8 x 10~5), when taking into account the histological status (Figure

6h).
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Cross-species mapping identifies shared fibroblast activation states in disease animal models of pulmonary,
synovial, and intestinal inflammation.

Next, we tested whether our two shared inflammation associated fibroblast subtypes were identifiable in single-
cell datasets from mouse models of tissue inflammation. By defining which aspects of fibroblast-driven
pathology are reproduced in mouse models, it may be possible to elucidate which pathological processes in
murine models best parallel human fibroblast cell states. We found three single-cell RNAseq data sets that
included both inflamed and non-inflamed samples in matched mouse tissues, which we could use to analyze
both the conservation of cluster markers and the expansion of inflammation-associated immuno-fibroblasts and
vascular fibroblasts (Figure 7a): Kinchen et al., 2018 profiled 8,113 cells, CD45 gated to enrich for stroma,
from 3 healthy and 3 mice with Dextran Sulfate Sodium (DSS)-induced colitis. Tsukui et al., 2020 profiled 15,095
cells, Col1a1* gated to enrich for fibroblasts, from 2 healthy and 2 bleomycin-induced lung injury mouse lungs.
Wei et al., 2020 profiled 8,738 total synovial cells from mice with K/BxN serum transfer induced arthritis, half

with active inflammation and half with abated disease by inhibition of Notch3 signaling, by genetic knockout
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Figure 7. Replication in disease models of pulmonary, intestinal, and synovial inflammation. (a) We collected
studies of inflammation in mouse models of human disease: bleomycin induced ILD, DSS-induced colitis, and serum
transfer arthritis. (b) Fibroblasts from each study were mapped to the human fibroblast atlas and labeled with their most
closely mapped clusters. (c) Frequencies of the human inflammatory states C4 and C11 in each study sample, colored to
denote samples from animals with high (red) and low (black) inflammation. (d) Gene set enrichment analysis with modules
associated with early, acute, and recovery phases of DSS-induced colitis shows that C4 and C11 gene signatures are
activated at distinct stages of inflammation. (e) Time course expression profiles of key C4 and C11 marker genes that
overlap with the early (yellow) and acute (orange) phase associated modules. Dotted line denotes timepoint (day 7) at
which DSS was removed from mice.

Within each study, we identified fibroblasts (6,979 intestinal, 10,320 pulmonary, and 5,704 synovial) with
clustering and marker analyses (Supplementary Figure 7a,b). We then mapped these fibroblasts to our human
cross-tissue reference with the Symphony pipeline (Methods) and labeled mouse cells with the most similar
reference fibroblast subtypes (Figure 7b). While most clusters were well-represented across tissues, two
appeared more tissue-specific (Supplementary Figure 7c). Myofibroblast-enriched C13 was mostly absent in
synovium, which is known to lack myofibroblasts. Cluster C12, which mapped well to the intestinal WNT5B* 2
cluster in our initial analyses (Supplementary Figure 5a), was enriched in intestinal fibroblasts in this mouse
analysis. To test the degree to which gene markers are conserved between mouse and human, we performed
cluster marker analysis in the mouse fibroblasts (Supplementary Table 10) and compared cluster expression
profiles between mouse genes and human orthologs (Supplementary Figure 7d). Importantly, the most similar
gene expression profiles were between corresponding clusters in mouse and human. Moreover, for most
clusters, expression profiles were even more similar between matched tissues.

We next asked whether the same fibroblast subtypes were expanded in inflamed tissues in human
disease and mouse models. Thus, we performed differential abundance analysis within each mouse dataset
(Supplementary Figure 7e), comparing inflamed cases to matched controls (Methods) to determine whether
the SPARC'COL3A1" and CXCL10"CCL19" populations expanded in human tissues were also expanded in
mouse models (Figure 7c). In bleomycin treated lungs, the most expanded populations were SPARC*COL3A1*
(OR = 5.2,95% CI [4.5,6.0], p<1078) and CXCL10*CCL19* (OR = 3.8,95% CI[2.2,6.6], p = 2.5 x 1079)
fibroblasts. In arthritis models, the Notch signaling enriched (Figure 5b) SPARC*COL3A1" cluster was greatly
diminished with therapeutic Notch3 inhibition (OR = 3.8,95% CI[1.5,9.4], p = 4.1 X 1073). On the other hand,
the frequency of lymphocyte-interacting CXCL10"CCL19" fibroblasts was not associated with disease activity
in arthritic mice (OR = 1.2,95% CI[0.47,3.3],p = 0.6). This result is consistent with the known lymphocyte
independence of the serum transfer model etiology (Monach et al., 2007). In DSS-induced colitis,

CXCL10"CCL19" fibroblasts were significantly expanded (OR = 6.1,95% CI[1.9,19.3], p = 2.3 x 1073), as
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reported previously (Kinchen et al., 2018), while SPARC*COL3A1" fibroblasts were actually diminished (OR =

0.5,95% CI[0.4,0.7], p = 9.2 x 10~7) in frequency.

Temporal ordering of C4 and C11 activation in DSS-induced colitis.

We were surprised that SPARC*COL3A1" fibroblasts were not significantly expanded in a DSS-induced colitis
model, despite their significance in the human cohorts. The lack of SPARC*COL3A1" signal could mean that
DSS-induced colitis utilizes an alternative inflammatory process. However, the difference may also reflect the
kinetics of disease. Since DSS-induced inflammation is an acute process, reversible with removal of the
chemical irritant, cross-sectional cellular compositions in that model may differ from compositions of chronically
inflamed UC intestine. Specifically, if SPARC*COL3A1" fibroblasts are responsible for tissue remodeling to
enable leukocyte infiltration, then genes associated with SPARC*COL3A1" fibroblasts should precede those
associated with CXCL10"CCL19" fibroblasts. To test this hypothesis, we used recently published time course
transcriptional profiles of DSS-induced colitis, which tracks gene expression changes with the induction and
resolution of inflammation (Czarnewski et al., 2019). The authors induced intestinal inflammation in female 8-
12 week old C57BL/6J mice by putting DSS in their drinking water for 7 days and allowed resolution of
inflammation by removing DSS for another 7. Measuring gene expression profiles with RNAseq approximately
every 2 days, the authors defined gene modules M5 and M9 associated with early inflammation (2-4 days), M1,
M3, and M4 with acute inflammation (6-8 days), and M5 and M6 with resolution (10-14 days). We analyzed the
enrichment of these phase-associated modules in our fibroblast marker profiles to associate the expansion of
fibroblast subtypes with distinct phases of DSS-induced inflammation and resolution (Supplementary Table
11). Strikingly, CXCL10"CCL 19" fibroblasts exclusively mapped to the three acute phase modules, M1, M3, and
M4, while SPARC*COL3A1" fibroblasts mapped to two early phase modules, M5 and M9 and only the M1 acute
phase module (Figure 7d). Time course profiles of representative genes demonstrate the early and resolution
phase activation of SPARC'COL3A1"-associated genes and acute phase activation of CXCL10"CCL19*-
associated genes (Figure 7e). Given our hypothesis that SPARC*COL3A1" fibroblasts are involved in vascular
remodeling while CXCL10*CCL19" fibroblasts interact with infiltrating immune cells, the early upregulation of
SPARC*COL3A1"-association gene suggests that vascular remodeling precedes leukocyte infiltration in the

DSS-colitis model.
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Discussion

In this study, we sought to define whether shared fibroblast states exist across four diverse tissues affected by
clinically distinct inflammatory diseases. We postulated that defining shared pathogenic, inflammation-
associated fibroblast states across diseases will help inform the possibility of common therapeutic strategies
targeting fibroblasts across different inflammatory diseases. Comparison of pathogenic fibroblast phenotypes
across diseases that manifest in different tissues is hampered by the lack of an accepted, tissue-independent
taxonomy enjoyed by immune and vascular cells. We thus approached this question by generating novel single-
cell RNAseq profiles of fibroblasts and analyzing the fibroblasts together to identify shared phenotypes across
diseases. Cross-tissue analysis of gene expression is a challenging task, as evidenced by the plethora of
statistical methods introduced to analyze even non-single-cell, multi-tissue data generated by the Genotype-
Tissue Expression (GTEXx) project (GTEx Consortium, 2015). By using sophisticated statistical methods for
cross-tissue analysis, we were able to identify fibroblast phenotypes that were shared by all tissues as well as
fibroblast adaptations unique to a subset of tissues.

The lack of universal definitions for key concepts such as fibroblast identity and inflammation scoring
that apply equally well to all tissues presented a major challenge to our effort to associate fibroblast phenotypes
with inflammation. In particular, the lack of a universal, pan-fibroblast surface marker prevented us from directly
isolating fibroblasts with flow cytometry. We addressed this problem with negative selection, using specific
markers to filter out non-fibroblast populations, and thus defining fibroblasts based on high-dimensional single-
cell-RNA-seq data as non-epithelial, non-immune, non-endothelial, and non-mural cells with some known
tissue-specific fibroblast markers, such as PDPN, PDGFRA, and COL1A1. The lack of a quantifiable score for
inflammation impeded us from directly using standard tools from meta-analysis, which assume a standardized
phenotype that can be measured equally well across all organ tissues. Inflammation in each disease is defined
by disease-specific pathological processes, reflected in tissue-specific histological scores, such as the Krenn
inflammation score in RA (Krenn et al., 2006) and Nancy index in UC (Marchal-Bressenot et al., 2017). We
approached this challenge by intentionally selecting four chronic inflammatory diseases with distinct
pathological and inflammatory processes. By analyzing fibroblasts from a range of diverse pathologies, we
maximized the chances of identifying fibroblast phenotypes common to inflammation in four tissues. We chose

the simplest aspect of inflammation that can be measured in all tissues, namely the proportion of immune cells
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infiltrating each tissue sample. Despite this simplicity, our definition robustly identified two shared fibroblast
states, CXCL10+CCL19+ (C11) and SPARC+COL3A1+ (C4), associated with inflammation across tissues. A
caveat of our definition of inflammation is that the other fibroblast clusters may be associated with distinct
aspects of inflammation. For instance, PTGS2+SEM4A+ (C8) fibroblasts express neutrophil recruiting genes
CXCL1 and CXCL2, are critical to inflammation in UC (Friedrich et al., 2020), and likely associated with
neutrophil infiltration.

The complexity of our study design, with cells measured from multiple donors, tissues, and diseases,
presented a second major challenge to our study. Algorithms to identify shared clusters in scRNAseq datasets
from multiple donors and tissues do not address key issues such as data imbalance or downstream analysis of
gene expression in multi-tissue studies of human disease. Analyses that don’t account for these factors in this
complex setting may result in diminished power and spurious associations. Here we use weighted PCA and
weighted Harmony to account for imbalanced datasets and mixed effects Poisson regression to account for the
effect of complex interactions between covariates on gene expression. Our analytical approach to decipher
tissue-shared and tissue-specific gene expression serves as a template for well-powered and robust analysis
of single-cell cluster markers, particularly relevant with the growing number of studies designed to identify
shared etiology across tissues and diseases (Nieto et al., 2020; Szabo et al., 2019; Zhang et al., 2020).

Based on marker gene profiles, we believe that some of the clusters named in our analysis have been
previously described in single-cell and functional studies of individual tissues, potentially with the exception of
pSS, in which a scRNAseq atlas has not been described to date. For the first time, we provide a common frame
of reference to cross-compare these diverse populations objectively across tissues. As a powerful corollary, we
can draw upon functional studies performed in individual tissues to interpret the biological significance of our
clusters.

CXCL10+CCL19+ (C11) fibroblasts closely resemble functionally well-characterized CCL19+PDPN+
immunofibroblasts in the salivary gland. These CCL19" fibroblasts co-localize with CD3+ T cells and underlie
the formation of salivary gland tertiary lymphoid structures in both human tissue and in an animal model (Nayar
et al., 2019). This putative interaction with T cells is suggested by the expression of HLA genes in the synovial
fibroblasts expanded in RA patients (Zhang et al., 2019). Here, HLA-DRA+ fibroblasts show strong evidence of

response to IFNy and functional work demonstrated that IFNy is mostly produced by CD8+ T cells in inflamed
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synovium. Kinchen et al., 2018 also identified CCL19" fibroblasts in the inflamed UC intestine, and numerous
studies (Bisping et al., 2001; Breese et al., 1993) have associated T cells as the primary source of IFNy in
intestinal inflammation. This suggests that T cell recruitment driven by CCL19+ fibroblasts and IFN-activated
fibroblasts is a shared feature of inflammation across multiple diseases. Additional functional studies are
required to investigate the complex interactions between T cells and fibroblasts in individual inflammatory
diseases. Our integrative results provide generalizable markers that may identify such T cell interacting
fibroblasts across tissues.

SPARC+COL3A1+ (C4) fibroblasts closely resemble the CD90™ NOTCH3-activated synovial fibroblasts
that are located near arterial blood vessels and pericytes and expanded in RA (Wei et al., 2020). Despite their
perivascular location, NOTCH3" fibroblasts, like our SPARC*COL3A1" fibroblasts, are distinct from pericytes,
as evidenced by their lack of canonical pericyte genes ACTA2 and MCAM (Armulik et al., 2011). Our cross-
tissue analysis suggests that these vascular fibroblasts, which clustered separately from MCAM® pericytes
(Figure 1), may also play a role in vascular remodeling in the lung, intestine, and salivary gland. In the time-
series analysis of acute inflammation in the mouse intestine, we found that the expansion of vascular fibroblasts
preceded the expansion of CXCL10"CCL19" immune-interacting fibroblasts. If this temporal ordering holds
tissues, it suggests a two-stage mechanism for fibroblast-mediated regulation of inflammation, initiated by
vascular remodeling that enables greater leukocyte infiltration into the tissue. Further mechanistic studies are
needed to elucidate both the additional endothelium-derived, or angiocrine factors (Rafii et al., 2016) that
mediate perivascular fibroblast differentiation and the mechanistic relationship between vascular and immune-
interacting fibroblasts.

In interpreting clusters with more tissue-specific than tissue-shared genes, we noticed that tissue-
specific programs often express genes with tissue repair functions. This observation may reflect the tissue-
specific needs for maintenance and repair, defined by that tissue’s unique anatomical structures (Chang et al.,
2002). In contrast, clusters with more tissue-shared genes were enriched in biological processes, such as
immune cell recruitment (C11 and C8), processes which are independent of tissue architecture, and interaction
with blood vessels (C4), structures which are present in all tissues. This dichotomy between functions tailored
to a tissue’s structural composition versus functions common to all tissues explain why some fibroblasts

phenotypes in scRNAseq appear more tissue-specific and others more tissue-shared.
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We used a novel type of analysis from single-cell analysis called Symphony reference mapping (Kang
et al., 2020) to compare human dermal fibroblasts and mouse lung, synovial, and lung fibroblasts to our
annotated cross-tissue atlas. Reference mapping let us avoid intensive and error-prone manual interpretation
steps in de novo analysis of the external datasets. We anticipate that this strategy can improve reproducibility
in single-cell analysis in general and particularly in fibroblasts, whose phenotypes are often difficult to identify
with one or two canonical marker genes. To promote reproducible research and cross-disease insights in
fibroblast biology, we made both the fibroblast atlas (github.com/immunogenomics/fibroblastlas) and the tools
needed to map data (github.com/immunogenomics/symphony) publicly available.

Fibroblasts are essential players in inflammatory disease, fibrotic disease, and cancer. The potential to
target fibroblasts therapeutically is growing with the number of single-cell and functional studies on fibroblast
heterogeneity (Dakin et al., 2018). While early studies of fibroblast heterogeneity focused on positional identity,
more recent studies focus on functional states that mediate pathological processes. Our study provides the first
cross-tissue analysis that rigorously distinguishes tissue-specific from tissue-shared identity in fibroblasts. In
doing so, we described two fibroblast states that may be universal to inflammatory disease across tissues. In
the process, we created the first single-cell reference atlas of fibroblast heterogeneity to unify fibroblast research
and prevent a babelesque sprawl of fibroblast names across disciplines. Finally, we have proposed an analytical
pipeline for studying shared pathological processes across diseases that can readily be applied to all cell types

and tissues.
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Figure Legends

Figure 1. scRNAseq profiles of intestine, lung, salivary gland, and synovium. (a) Surgical samples were
collected from intestine, lung, salivary gland, and synovium, from patients with inflammatory-disease and
appropriate controls. After tissue disaggregation, all cells from lung and salivary gland and CD45-EpCAM- cells
from synovium and intestine were profiled with scRNAseq and (b) analyzed to identify fibroblasts and other

maijor cell types. (c) Cell type annotation was performed with known markers for each major population.

Figure 2. Fibroblast heterogeneity within tissues. (a) We analyzed fibroblasts separately from each tissue
to identify tissue-specific subsets described in previous single-cell studies. Each panel shows a UMAP
representation of fibroblasts from one tissue, labeled with clustering and marker analysis. (b) All (n=7,380)
genes nominally upregulated in any cluster were plotted in a heatmap. Color denotes the log fold change,
normalized by estimated standard deviation, of a gene in a cluster (versus other clusters in that tissue). Top
genes for each cluster were named above the heatmap. Each row denotes a fibroblast cluster, colored by the
tissue in which it was identified. (c) To compare the expression profiles of clusters across tissues, we correlated
the expression values from (b) for all pairs of clusters. Here, color denotes Pearson’s correlation coefficient. (d)
One highly correlated pair of clusters from salivary gland (x-axis) and synovium (y-axis) represented by scatter
plots of (differential) gene expression. Blue genes are shared by the two clusters, while red genes are unique

to one cluster.

Figure 3. Integrative clustering and differential expression across tissues. (a) We developed a pipeline to
integrate samples from multiple donors and multiple tissues with unbalanced cell numbers. The pipeline starts
with gene selection, pooling together genes that were informative in single-tissue analyses. With these genes,
we performed weighted PCA, reweighting cells to computationally account for the unbalanced dataset sizes
among the tissues. These PCs are adjusted with a novel formulation of the Harmony integration algorithm and
used to perform graph-based clustering. We applied this pipeline to all fibroblasts across tissues. (b) The
integrated UMAP projection shows cells from all tissues mixed in one space. For clarity, we down-sampled each

tissue to the smallest tissue, the lung, choosing 1,442 random fibroblasts from intestine, synovium, and salivary
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gland. (c) Graphed-based clustering proposed 14 fibroblast clusters in the integrated embedding. (d) Gene-
level analysis to find upregulated marker genes for clusters was done with hierarchical regression, to model
complex interactions between clusters and tissues. This strategy distinguishes cluster marker genes that are
(e) tissue-specific, such as MYH11 in C13, from those that are (f) shared among tissues, such as ADAM12 in
C14. Points denote log fold change (cluster vs other fibroblast) and error bars mark the 95% confidence interval
for the fold change estimate. (g) The number of shared genes for each cluster, ranked from most to least,
prioritizes clusters with large evidence of shared gene expression (in red) from those with little (in black). Marker
genes for the 5 shared clusters plotted in a heatmap. Each block represents the (differential) gene expression

of a gene (column) in a cluster, for a tissue (row).

Figure 4. Sample level inflammation scores. We computed the relative abundance of CD45" immune cells
to all cells in each sample. (b) We standardized these frequencies across tissues into an inflammation score
that ranges from 0 to 1 and removes distributional differences. (c) Association analysis results between
fibroblast cluster abundance and standardize inflammation scores. Here, each point represents the log fold
change in fibroblast cluster abundance with increasing inflammation and the line represents that point’s 95%
confidence interval. Red denotes estimates with one-tailed FDR<5%. (d) The tissue specific results were
summarized using meta-analysis. (¢) For CXCL10+CCL19+ (C11) and SPARC+COL3A1+ (C4) fibroblasts,

scatterplots relating to standardized inflammation scores (x-axis) to relative fibroblast frequency (y-axis).

Figure 5. Distinct gene expression profiles for CXCL10*CCL19* and SPARC'COL3A1" states. (a)
Comparison of differential gene expression between CXCL10*CCL19" and SPARC*COL3A1" fibroblasts shows
that these two inflammation-expanded clusters are characterized by distinct genes. Top 10 markers for each
cluster are named. (b) Gene set enrichment analysis with Gene Ontology and MSigDB Hallmark pathways
shows distinct functions for the C4 (orange) and C11 (lime) states. These states may be explained by response
to distinct sets of signaling molecules: inflammatory cytokines for C4 (brown) and tissue modeling morphogens
for C11 (tan). Heatmap shows normalized enrichment scores from GSEA, focusing on only positive enrichment
for clarity. (c) Ligand receptor analysis of endothelial cell crosstalk with fibroblast populations. Each column is

a putative ligand receptor cognate pair, faceted by fibroblast subtype. Y-axis represents the strength of the
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putative crosstalk, while color denotes direction of interaction: (blue) endothelial ligand to fibroblast receptor or

(red) fibroblast ligand to endothelial receptor.

Figure 6. Dermal fibroblast scRNAseq profiles mapped to cross-tissue fibroblast atlas. (a) To validate
our results, we mapped scRNAseq profiles of dermal fibroblasts from lesion biopsies from atopic dermatitis (AD)
patients, non-lesional biopsies from AD patients, and control skin biopsies from healthy donors. (b) Based on
the relative frequency of immune cells in each biopsy, we computed standardized inflammation scores from 0
to 1. (c) We mapped dermal fibroblasts to our fibroblast atlas and (d) labeled dermal fibroblasts according to
their most similar atlas cluster. (e) We confirmed that the gene expression profiles of inferred dermal fibroblast
clusters correlated with expression profiles of their reference fibroblast clusters. This is demonstrated for
clusters C4 and C11 by plotting the (differential) gene expression in dermal (x-axis) vs reference (y-axis) clusters
and calling out the top marker genes identified in the reference clusters. (f) Only CXCL10*CCL19" (C11)
fibroblast frequency was significantly (FDR<5%) associated with dermal inflammation. (g) Cells from skin with
lesions (blue) had considerably less evidence of vasculature, measured by the abundance of perivascular mural
cells and vascular endothelial cells. (h) Relative abundance of mural and endothelial cells was most strongly

associated with cluster C4. Red denotes one-tailed FDR<5%.

Figure 7. Replication in disease models of pulmonary, intestinal, and synovial inflammation. (a) We
collected studies of inflammation in mouse models of human disease: bleomycin induced ILD, DSS-induced
colitis, and serum transfer arthritis. (b) Fibroblasts from each study were mapped to the human fibroblast atlas
and labeled with their most closely mapped clusters. (c) Frequencies of the human inflammatory states C4 and
C11 in each study sample, colored to denote samples from animals with high (red) and low (black) inflammation.
(d) Gene set enrichment analysis with modules associated with early, acute, and recovery phases of DSS-
induced colitis shows that C4 and C11 gene signatures are activated at distinct stages of inflammation. (e) Time
course expression profiles of key C4 and C11 marker genes that overlap with the early (yellow) and acute
(orange) phase associated modules. Dotted line denotes timepoint (day 7) at which DSS was removed from

mice.
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Supplementary Figure 1. scRNAseq profiles of intestine, lung, salivary gland, and synovium. (a) Flow
sorting synovial and intestinal surgical samples to enrich for live (FVD"), EpCAM CD45" stromal cells. Cell level
quality control summaries for scRNAseq libraries, represented with density plots of (b) percentage of
mitochondrial reads and (c) the number of unique genes in a cell. (d) percentage of cells that were inferred to
be doublets, of those that passed QC filtering (%MT< 20, nGene=500). (e) Number of stromal and non-stromal

cells identified in each tissue.

Supplementary Figure 2. Labeling of previously defined fibroblast subtypes in each tissue. Heatmaps
represent the differential expression (one cluster vs all other clusters) z-scores of markers previously associated
with published fibroblast subtypes in (a) synovium, (b) salivary gland, (c) intestine, and (d) lung. Columns

(genes) colored by the fibroblast subtypes they are associated with.

Supplementary Figure 3. Integrated cross-tissue fibroblast reference atlas. (a) Breakdown of variance
captured in the first 10 principle components for unweighted PCA and weighted PCA shows that weighted PCA
creates a more balanced embeddings among tissues. (b) Before Harmony integration, UMAP embedding of
fibroblasts separates entirely by tissue. (c) Within each tissue, there is substantial separation by donor, denoted
by a different hue of the corresponding tissue’s color. UMAP coordinates are the same as in (b), zoomed in to
focus on each tissue separately. (d) After Harmony integration, the clusters identified in tissue-specific analyses
are still separated, suggesting that the Harmony embedding preserves within tissue variation. (e) Relative

abundance integrative fibroblast clusters within each tissue.

Supplementary Figure 4. Inflammation scores. Comparison of differential abundance analysis using raw
tissue-specific scores (x-axis) and normalized cross-tissue scores (y-axis). Error bars denote 95% confidence
intervals.

Supplementary Figure 5. Correspondence analysis. (a) We associated cluster identity derived in single-
tissue analyses (columns) to cluster identity derived in the integrative clustering analysis (rows). Color denotes

(scaled) log odds from logistic regression. (b) Gene expression fold change of genes associated with
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myofibroblast lineage in cluster C13 (vs other clusters). (c) Same, for genes associated with bone and cartilage

repair.

Supplementary Figure 6. Dermal fibroblast scRNAseq profiles mapped to cross-tissue fibroblast atlas.
(a) UMAP embedding of scRNAseq profiles of skin biopsies, colored by major cell types, using (b) canonical
markers: KRT15+ epithelial cells, COL1A1+ fibroblasts, PROX1+ lymphatic endothelial cells, MLANA+
melanocytes, C1QB+ myeloid cells, ACTA2+ mural cells, CD3G+ T cells, and ACKR1+ vascular endothelial
cells. (c) Correlation of gene expression profiles of dermal fibroblast clusters (y-axis) against reference clusters
in multi-tissue atlas (x-axis). Color denotes Pearson’s correlation coefficient. (d) Differential abundance of
mapped dermal fibroblast clusters with inflammation score, with 95% confidence intervals. Red denotes

FDR<5%.

Supplementary Figure 7. Replication in disease models. (a) UMAP embedding of mouse scRNAseq libraries
from CD45 sorted colon samples, unsorted synovial samples, and Col1a1* sorted lung samples, colored by
major cell types, identified with (b) canonical markers: Cdh5+ vascular endothelial cells, Col1a1+ fibroblasts,
Lyve1+ lymphatic endothelial cells, Mcam+ mural cells, Myh11+ myofibroblasts, Ki67 proliferating cells, and
Ptprc+ immune cells. (c) Relative abundance of inferred fibroblast clusters in each mouse dataset. (d)
Comparison of mouse cluster gene expression profiles (y-axis) to human reference cluster profiles (x-axis).
Heatmap color denotes Pearson’s correlation coefficient. Columns and rows are colored first by cluster identity
and then by tissue. (e) Differential abundance of mapped mouse fibroblast clusters in case vs control mouse

samples, with 95% confidence intervals. Red denotes FDR<5%.

Supplementary Table 1. Clinical characteristic for synovial tissue samples. Columns denote unique sample ID
for each sample, clinical diagnosis, sex, age (in years), anatomical joint of surgical sample, and seropositivity
status.

Supplementary Table 2. Clinical characteristic for lung tissue samples. Columns denote unique sample ID for

each sample, clinical diagnosis, age (in years), sex, and serology.
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Supplementary Table 3. Clinical characteristic for salivary gland tissue samples. Columns denote unique
sample ID for each sample, sex, clinical diagnosis, presence or absence of anti-Ro antibodies, focus score, and
free-text histology notes.

Supplementary Table 4. Clinical characteristic for intestine tissue samples. Columns denote unique sample ID
for each sample, corresponding donor ID for repeat samples, histological status, year of birth, sex, Nancy score,
and anatomical location of biopsy.

Supplementary Table 5. Cluster marker statistics for fibroblast cluster in single-tissue analyses.
LogFoldChange is the differential expression of the gene (Feature) in the cluster (Cluster) against the mean of
the remaining clusters within the tissue. Sigma is the estimated standard deviation around the log fold change
statistic. Zscore is the standardized log fold change, divided by Sigma. Pval is the one tailed p value for the
corresponding z score.

Supplementary Table 6. Association of inflammation score with pseudobulk fibroblast profiles. Columns same
as in Supplementary Table 4, except for Slope, since inflammation score is a continuous and not a categorical
covariate.

Supplementary Table 7. Cluster marker statistics for fibroblast subtypes defined in integrated analysis.
Columns same as in Supplementary Table 4.

Supplementary Table 8. Gene set enrichment analysis of integrated fibroblast cluster markers. Columns are
standard output of fgsea function. Pval is the nominal p value, padj is the adjusted p value, ES is the raw
enrichment score, NES is the normalized enrichment score, nMoreExtreme is the number of more extreme
observations in permutation tests, size is number of genes in the pathway, leadingEdge is the set of genes that
contribute to the enrichment score.

Supplementary Table 9. Cluster marker statistics for dermal fibroblast subtypes. Columns same as in
Supplementary Table 4.

Supplementary Table 10. Cluster marker statistics for mouse synovium, lung, and intestine fibroblast subtypes.
Columns same as in Supplementary Table 4.

Supplementary Table 11. Gene set enrichment analysis of integrated fibroblast cluster markers. Columns

same as in Supplementary Table 8.
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STAR Methods

Human research and sample acquisition

Synovial study samples for transcriptomic studies were obtained from Brigham and Women’s Hospital, Hospital
for Special Surgery, and the University of Birmingham under IRB-approved protocols. Synovial tissue from
patients with clinically diagnosed rheumatoid arthritis were obtained from ultrasound-guided joint biopsy
(University of Birmingham) or arthroplasty or synovectomy procedures (Brigham and Women’s Hospital and
Hospital for Special Surgery). For arthroplasty and synovectomy tissue samples, the diagnosis of rheumatoid
arthritis was confirmed clinically through clinical chart review. Synovial tissue from patients with osteoarthritis
were obtained from arthroplasty procedures. Synovial tissues were cryopreserved on-site in Cryostor CS10,
then shipped to BWH under a BWH IRB-approved protocol PROSET for tissue dissociation and single-cell
transcriptomic analysis.

Intestinal samples were obtained from Ulcerative colitis (UC) or from healthy individuals by endoscopic
biopsy. Healthy patients were recruited as a part of the research tissue bank ethics 16/YH/0247 and
Inflammatory Bowel Diseases (IBD) patients among the Inflammatory Bowel Cohort 09/H1204/30 by the
Translational Gastroenterology Unit Biobank at the John Radcliffe Hospital in Oxford. All patients gave informed
consent and collection was approved by NHS National Research Ethics Service. Samples were immediately
placed on ice (RPMI1640 medium) and processed within 3 hours.

Labial minor salivary gland samples were obtained from patients recruited in the Optimising Assessment
in Sjogren’s Syndrome (OASIS) cohort (Machowicz et al., 2020) which recruits new patients attending the
multidisciplinary Sjogren’s clinic at the Queen Elizabeth Hospital Birmingham, UK for assessment. Sjogren’s
syndrome patients had a physician diagnosis of primary Sjoégren’s syndrome and fulfilled the 2016 ACR/EULAR
classification criteria. Participants with non-Sjégren’s sicca syndrome had signs and/or symptoms of dryness
but did not have a physician diagnosis of SS or fulfill 2016 classification criteria. Salivary gland biopsy samples
were divided in two: one for the scRNAseq study and the second for histological analysis to confirm diagnosis.
Histological diagnosis is summarized in Supplementary Table 3 and reported as presence of focal lymphocytic
sialadenitis (FLS, suggestive of Primary Sjogren’s Syndrome, PSS) or non-specific chronic sialadenitis (NSCS),

in the case of non-Sjoégren’s sicca syndrome. Focus score (FSC, number of inflammatory foci/4mm? of tissue)
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is also reported in Table 1. All OASIS participants provided written informed consent and the study was
approved by the Wales Research Ethics Committee 7 (WREC 7) formerly Dyfed Powys REC; 13/WA/0392.
Lung samples were obtained from patients recruited at the Brigham and Women’s Hospital with
informed consent under protocols approved by the Mass General Brigham IRB (PROSET). As enumerated in
Supplementary Table 2, samples coded Lung1-15 (control donor lung, IPF, Rheumatoid Arthritis [RA]-ILD) were
explants from lung transplant surgery. Samples coded Lung 16-23 (unclassifiable (u)ILD, IPF, NSIP) were from
Video-assisted thoracoscopic surgical (VATS) lung biopsies for diagnosis of ILD. The patient condition is the
diagnosis determined by clinical providers after their inter-disciplinary review of patient history, exam, clinical
laboratory testing (e.g., serologies), imaging and histopathology of the explanted or biopsied lung tissue. The

presence or absence of anti-CCP antibodies is noted.

Cell isolation for single-cell RNA-sequencing.

Synovial tissues were cryopreserved on site, thawed and disaggregated into single-cell suspension as
previously described (Donlin et al., 2018). Four pairs of intestinal biopsies were pooled, minced and frozen in
1mL of CryoStor® CS10 (StemCell Technologies) at -80°C then transferred in LN2 within 24 hours. Single-cell
suspensions from these endoscopic biopsies were then prepared by thawing, washing and subsequent mincing
of the tissue using surgical scissors. Minced tissue was then subjected to rounds of digestion in RPM-1640
medium (Sigma) containing 5% Fetal Bovine Serum (FBS, Life Technologies), 5mM HEPES (Sigma), antibiotics
as above, and Liberase TL (Sigma), with DNAse |. After 30 minutes, digestion supernatant was taken off, filtered
through a cell strainer, spun down, and resuspended in 10ml of PBS containing 5% BSA and 5mM EDTA.
Remaining tissue was then topped up with fresh digestion medium until no more cells were liberated from the
tissue. Cells were then stained and FACS-sorted for live EPCAM CD45 cells, before being taken for microfluidic
partitioning.

Lung tissues were cryopreserved on site, thawed and disaggregated into single-cell suspension. Each
lung tissue was frozen in 1mL of CryoStor CS10 in -80°C with a controlled rate of freezing and then transferred
to LN2 within two weeks. On the day of single-cell analysis, the cryopreserved lung tissue was rapidly thawed,
serially rinsed with DMEM (GIBCO) supplemented with 10% FBS and then DMEM with 2% FBS on ice. Lung
tissue was minced using surgical scissors and then transferred to a polypropylene tube with digestion media

containing Liberase TL, hyaluronidase (Worthington Biochemical Corporation), Elastase (Worthington
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Biochemical Corporation), DNAse (Sigma) and 1% FBS. The addition of FBS improved cell viability without
reducing yield of viable stromal cells. After 20 minutes of incubation at 37°C warm room with agitation by stir
bar, the supernatant containing single cells was collected, and fresh digestion media was added. After 20
minutes of addition digestion, the tissue and supernatant were filtered through a 70 micron cell strainer and
washed in DMEM with 2% FBS twice. Dead cells were removed using a magnetic column based method per
manufacturers protocols (Dead Cell Removal kit, Miltenyi Biotec). Then single cells were taken for microfluidic
partitioning.

Minor salivary gland biopsies were taken surgically from the lip and frozen in 1mL of CryoStor® CS10
(StemCell Technologies) at -80°C. For preparation of single-cell suspension, firstly the frozen tissue sample in
Cryotube were quickly thawed in water bath at 37°C and washed twice in pre-warmed 5%FBS RPMI media.
The salivary gland biopsies were then enzymatically digested as previously described (PMID: 31213547). Dead
cells were removed using the EasySepTM Dead Cell Removal (Annexin V) kit from the digested samples
following manufacturer’s instructions before proceeding for the scRNA sequencing using the 10x platform.
RNA-sequencing.

Single-cell RNA-sequencing experiments for lung, intestine, and synovium samples were performed through
the Brigham and Women’s Hospital Single Cell Genomics Core. Viable cells in single-cell suspension were
resuspended in 0.4% BSA in PBS at a concentration of 1,000 cells per ul. 7,000 cells were loaded onto a single
lane (Chromium chip, 10X Genomics) followed by encapsulation in lipid droplet, with the 10x Genomics Single-
Cell 3’ kit (Version 2 for synovium and intestine, Version 3 for lung) followed by cDNA and library generation
per manufacturer protocol. cDNA libraries were sequenced to an average of 50,000 reads per cell using lllumina
Nextseq 500. Single-cell RNA-sequencing experiments for salivary gland samples were performed at Oxford
University. For each library, 10,000 cells were counted using the automated cell counter Bio-Rad TC20 and
loaded onto a single 10x lane and processed with the 10x Genomics Single Cell 3’ kit (Version 3). Sequencing
was done using lllumina NovaSeq 6000 and libraries were sequenced to a minimum of 50000 reads/cell.
scRNAseq gene quantification.

For all scRNAseq datasets analyzed in this manuscript, we quantified gene expression ab initio from FASTQ
files. Human reads were mapped to the GRCh38 (Schneider et al., 2017) reference and genes annotated with

Gencode (Frankish et al., 2019) v33. Mouse reads were mapped to mm10 reference and genes annotated with
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Gencode v25. For both human and mouse data, we filtered transcripts for the annotation “protein_coding” and
ignored the rest. Reads from distinct transcripts of the same gene were collapsed by summation. We used
kallisto (Bray et al., 2016) v0.46.0 to map reads to transcriptomes and bustools (Melsted et al., 2019) v0.39.3
to collapse duplicate reads by UMI and return gene-cell count matrices. We downloaded read level data for the
following publicly available scRNAseq datasets: PRIJNA614539 (He et al., 2020) (atopic dermatitis),
PRJNA542350 (Kinchen etal., 2018) (DSS model), and PRINA548947 (Tsukui et al., 2020) (Bleomycin model).
After contacting the authors, the PRINA542350 data turned out to be BAM files rather than FASTQ. Per their
suggestion, we used the 10X Cell Ranger (Zheng et al., 2017) bamtofastq utility (version 1.3.2), with default
parameters, to convert the BAMs back into FASTQs for remapping. doc. The code to perform all steps of this

mapping are implemented as functions in the github repository for this manuscript.

scRNAseq quality control, pre-processing, and normalization.

After quantifying gene count matrices with kallisto and bustools (above), we filtered out poor quality cells with
three metrics. (1) Cells must have at least 500 unique genes. (2) Cells must have more than 20% of the total
UMIs mapped to non-mitochondrial genes. (3) Cells must be inferred as singlets by algorithmic doublet
identification. For doublet identification, we used the scDblFinder algorithm(Germain, 2020), with default

parameters, separately within each 10X library. We normalized for read depth with the standard logCP10K

normalization procedure for gene g and cell i: ¥;; = log (1 + 10* x ZU%)
h Yhi

Inflammation score normalization across tissues.

Inflammation scores computed within each tissue had ranges and distributions. To be able to compare
inflammation associated phenotypes across tissues, we normalized the distributions by performing quantile
normalization. Because the number of samples was relatively small, we did not use an empirical distribution.
Instead, we normalized to the quantiles of a parametric distribution. We chose the beta distribution (a = 3,8 =

3) to map the scores to an interpretable interval, between 0 (low inflammation) and 1 (high inflammation).

Gene selection

For analyses with one tissue, we used the VST method for variable gene selection, reimplemented from the
Seurat package (Butler et al, 2018) as a stand along function in our github at
immunogenomics/singlecellmethods. We used default parameters and kept the top 2000 genes, ranked by

standardized variance. For the multi-tissue integrated analysis, we used genes that we found informative in at
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least one of the tissue-specific analyses of lung, salivary gland, intestine, and synovium. We defined informative
genes with two analyses. The first analysis is differential expression of cluster-markers for tissue-specific
fibroblast subtypes (Figure 4a). We kept cluster-informative genes with p < 0.05 and |8| = 0.5. The second
analysis found broadly inflammation associated genes by fitting a Poisson log-normal GLMMs to each gene.
We kept inflammation associated genes with p < 0.05 and || > 0.1.

Weighted PCA.

We implemented principle components analysis that gives equal weight to each tissue while preserving the total
cell number (3; w; = N). The weights given to each cell were determined to meet this equal weight condition.

These weights were then used in the scaling and SVD steps. For scaling, we computed weighted means and

2
Xiw 2iWiYVgi 2 Ziwi(Ygi_”g)

, Of = . For SVD, we modified the PCA
N-1 N-1

variance with the following formulas: p, =

covariance decomposition formula to allow for observation weights with a diagonal matrix W: XWXxT = UDUT.
This decomposition is achieved by performing SVD on the weighted matrix XW?'/?2 = UDVT. Because W is
diagonal, its square root is the element-wise square root. This SVD solution now represents the original data
as X = UDVTW /2 with gene loadings U and cell embeddings VTW~1/2. Weighted PCA is implemented on
our github at immunogenomics/singlecellmethods with the weighted_pca function.

Weighted Harmony.

We modified the Harmony algorithm to include observation weights. To achieve this, we modified the clustering
objective function and rederiving the optimization steps for this function. The new objective function modifies

the original only by multiply the per-cell cost (inside the summation) by w;: Igiyn YiewilR2(1-YIZ) +

oRy; logRy;] +w; [aHRkl log (0’“) gb] The rest of the formula is unchanged and described in detail in the

original Harmony manuscript (Korsunsky et al., 2019). This modified Harmony implementation is available on
our github at immunogenomics/harmony, under the weights branch.

UMAP visualization.

We used the UMAP algorithm to visualize cells in two dimensional embeddings. We used the uwot R package
(Melville, 2020) with parameters n_neighbors=30L, metric="Euclidean’, init="Laplacian’, spread=0.3,
min_dist=0.05, set_op_mix_ratio=1.0, local_connectivity=1L, repulsion_strength=1, and

negative_sample_rate=1. For all other parameters, we used default values. In the symphony pipeline, we
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visualized mapped query cells by using the UMAP object learned for the reference analysis. The umap reference

projection was done with the umap_transform function in uwot.

Clustering.

We performed graph based clustering with the Louvain algorithm (Blondel et al., 2008), implemented in Seurat
(Butler et al., 2018). Instead of constructing the kNN and sNN graphs from scratch, we used the uniform manifold
graph estimated in the UMAP algorithm. In the uwot package(Melville, 2020), this data structure is directly
available in the fgraph field when umap is run with option ret_extra = c('fgraph’).

Hierarchical gene expression modeling.

Statistical model. We modeled the expression of each gene using Poisson lognormal GLMM regression. This
framework allows us to model the hierarchical design in our multi-tissue, multi-donor dataset. We fit the following

GLMM for the integrated, multi-tissue analysis, regressing to the frequency of gene g in observation i.

lOg .ugi ~,80 + ,BCluster + ,BDonor + ,BDonor:Cluster + ,BTissue + ,BTissue:Cluster + Offset(logE Uhi)
h

We chose to model the cluster interaction terms with donor and tissue. As many papers have observed
(Haghverdi et al., 2018; Korsunsky et al., 2019), the effect of biological and technical covariates are often cell
type specific. This is why integration algorithms cannot adjust every cell type by the same amount to account
for batch, donor, or tissue variability. Unfortunately, the absence of some donors and tissues in some clusters
means that interaction terms may be very poorly estimated. To address this issue, we model all terms except
for the global intercept (B,) with Gaussian priors, allowing each effect to have a different size, denoted by 72,
the variance of the priors. These priors shrink 8s towards zero, stabilizing estimation for terms with little data to
draw from.

We performed cluster marker analysis with the estimated fs, estimating both marginal effects and

tissue-specific effects. Marginal cluster effects are only concerned with the Bquster term. For instance, the

differential expression for cluster 3 is fc-3 — ﬁ X (Be=1 + Bc=2 + Bc=4 + -+ Bc=n)- This comparison can be

1 1 1

compactly represented with the contrast vector A = [_E'_E' 1,—;, ...,—ﬁ] such that the differential

expression can be computed with the linear operation B25E = ABcjuster- Following the example of significance

testing in DESeq2, the standard errors of contrasts are in the diagonal elements of VAZAT, in which X is the
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covariance matrix of 8 levels. In our example, X is a cluster by cluster covariance matrix and the standard error
for cluster 3 would be o2Sf = w/AZczusterAT3_3- There is generally no analytical way to compute X for random

effects, so we estimate it with simulation, using the arm R package(Gelman and Su, 2020), with 1000
simulations. Tissue-specific cluster effects take into account both the cluster and tissue-cluster interaction term.

For instance, if we wanted to know how a gene is associated with cluster 3 in the lung, we would compute

1

1
Bg:GIf,T:Lung = PBc=3 — X (Be=1 + Bc=2 + Bc=sa + =+ Bc=n) + Bc=31=1ung — X (IBC:LT:Lung +

Bc=2r=1ung + Bc=ar=1ung + -+ Bczn,T:Lung). The contrast vector now includes terms that represent the fs

estimated for lung tissue as well. The statistical procedures to compute BE%5r_1ung and 6855 1_ 1y are the

same as before. For both marginal and tissue-specific effects, we use a Gaussian approximation to estimate p
values for each effect: BLCE~N(AB, AZciysterAT).

Implementation. We fit GLMMs with the glmer function in the Ime4 R package (Bates et al., 2015) and
estimated random effect covariance with the sim function in the R arm package(Gelman and Su, 2020). Initially,
we found it difficult to tie model fitting and simulation seamlessly with differential expression analysis. For
instance, building contrasts for nested effects and estimating significance for multiple gene queries was difficult
to do. Moreover, the memory footprint of Ime4 models makes it impractical to fit and save models for 1000s of
genes for downstream inference. To make Ime4 and arm more accessible for gene expression analysis, we
created the Presto package. Presto extracts the necessary components from Ime4 models, saves them in
efficient data structures, and has all necessary functions to do efficient contrast analysis for differential
expression. We made Presto available as an R package, available on github at immunogenomics/presto under
the GLMM branch.

To make the models more numerically stable, we enforced a minimum value for the size of random
effects: 0 > 0.5. This prevented degenerate solutions with ¢ = 0, local minima which may arise in GLMM
optimization. As a side effect, this Bayesian variance prior also enforces a conservative null model on random
effects, effectively setting the null effect size to 0.5 rather than 0. This results in higher estimated uncertainty
thus more conservative p values. In developing this software, QQ plot analysis was deflated and resembled
post-hoc adjusted (e.g. Bonferroni) p values more than nominal p values from independent tests. Others have

noted a similarity between post hoc correction and shrinkage integrated into the model (Gelman et al., 2012).
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For our analyses, we consider significance with respect to these shrunken p values, estimated with random
effects, without doing additional post hoc shrinkage.

We made two decisions to make Presto scale to large datasets. First, we fit the model with pseudobulk,
rather than single-cell RNAseq profiles. Note that in the formula above, the cluster, tissue, and donor covariates
are not unique to single cells. Therefore, we collapse reads from cells with same cluster, donor, and tissue
identity into one observation. This approach has strong precedent(Lun and Marioni, 2017). It is important to
note that in this strategy, the number of parameters to estimate is equal to the number of observations. With
fixed effects, this model is under-determined. However, because we shrink estimates to 0 with Gaussian priors,
the effective number of independent parameters shrinks too. The second decision is with the choice of
generative model. Many RNAseq differential expression tools used the Negative Binomial distribution, which
uses Gamma rather than lognormal priors to model over-dispersion. For completeness, we also included
negative binomial GLMMs in Presto. In practice, we found that this error model yielded almost identical results
but took ten times longer to run.

Tissue heterogeneity. We took a very simple approach to labeling genes as conserved or heterogeneous
cluster makers. Conserved markers were significantly (p < 0.05) overexpressed (8 > 0) in all four tissues. If a
gene was not upregulated in at least one tissue, we considered it to be a heterogeneous marker. Effect
heterogeneity has a rich statistical treatment, especially in meta-analysis. We decided to not use these more
sophisticated techniques, although the parameters learned in Presto could be used for such analyses.
Analyses. To find marker genes for dermal fibroblasts, we fit the same model as above but omitted the Tissue
terms: log pg; ~Bo + Bciuster + Bponor t Bponor:cluster + 0f fset(log X, Up;). For the mouse scRNAseq analyses,
we used the same hierarchical formula with all Tissue terms.

Pathway analysis.

All formal geneset enrichment was done with the GSEA algorithm, implemented in the fgsea R
package(Sergushichev, 2016). To enrich pathways for marker analyses (Figure 5d), we used the H (hallmarks)
and C5 (Gene Ontology) genesets from MSigDB, accessed with the msigdbr R package(Dolgalev, 2018). To
enrich for different phases of inflammatory response in DSS-induced colitis (Figure 7e), we used the published

genesets, provided as supplemental materials in the manuscript (Czarnewski et al., 2019).
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Abundance modeling

We associated inflammation score with cluster abundance using logistic regression, following the MASC method

Pr (Cluster=k)

(Fonseka et al., 2018), with the following formula: logpr(cmsterik)

~1+ Score + (1|Library) + (MT +

DS|LibraryID). As in MASC, the response variable models the log odds of being in cluster k vs not, to test for
which factors contribute to cluster k abundance. This probability is a function of (1) an intercept, which reflects
the average abundance of cluster k in the data, (2) fixed effect for Score, the normalized inflammation score for
each sample, (3) random effect for 10X library, to account for dependence of cells within a library, and (4) cell
quality statistics MT (percent mitochondrial reads) and DS (doublet score), separately within each library. The
association between inflammation and cluster abundance is captured in the S statistic. We computed
significance for each g with the following Gaussian approximation, using the standard error o provided by Ime4:
S~N(0,52). To combine MASC results from individual tissue analyses, we used inverse variance weighted meta
analysis with random effects. The variance from random effects was estimated with the DerSimonian and Laird
(DL) method (DerSimonian and Laird, 1986; Veroniki et al., 2016).

Cluster correspondence analysis.

To compare the co-occurrence of the fibroblast cluster labels, within-tissue (Figure 3) and integrative (Figure

4), we used a similar framework to abundance modeling above. We used the following formula:

Pr (ClusterIntegrated _p
Pr (ClusterIntegrated 4

log ~1 + (1|ClusterTss¥€) + (1|Library) + (MT + DS|LibraryID). The contrast term of

interest is the random effect (1|ClusterT'ss¥€), a categorical variables that encodes the within-tissue cluster
identity. We chose to model this with a random effect for numerical stability. To estimate significance, we used
Wald’s approximation and simulated covariance for the levels of (1|Cluster™ss*¢) with the R arm package.
Symphony projection.

The Symphony pipeline is described in detail in a separate manuscript (Kang et al., 2020). In order to infer
reference cluster identity in query cells, we used a k-NN classifier. K=10 nearest neighbors were estimated with
Symphony projected low dimensional embeddings, based on cosine distance (o = 0.1).

Ligand receptor analysis.

We started with a curated list of known interacting ligand-receptor pairs, from Ramilowski et al., 2015. To predict

putative interactions between endothelial cells and fibroblast subsets, we performed differential expression on


https://doi.org/10.1101/2021.01.11.426253

49

50

51

52

53

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.11.426253; this version posted January 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

the pooled dataset of endothelial cells and fibroblasts. We filtered for differentially expressed genes and kept
interaction pairs in which the ligand was overexpressed (p < 0.05,8 > 0) in endothelial cells and the receptor
in a fibroblast subset, or vice versa. For these pairs, we computed the interaction scores (Figure 4e) as the

mean of the ligand’s and receptor’s z-scores.
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