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Summary  34 

Pro-inflammatory fibroblasts are critical to pathogenesis in rheumatoid arthritis, inflammatory bowel disease, 35 

interstitial lung disease, and Sjögren’s syndrome, and represent a novel therapeutic target for chronic 36 

inflammatory disease. However, the heterogeneity of fibroblast phenotypes, exacerbated by the lack of a 37 

common cross-tissue taxonomy, has limited the understanding of which pathways are shared by multiple 38 

diseases. To investigate, we profiled patient-derived fibroblasts from inflamed and non-inflamed synovium, 39 

intestine, lung, and salivary glands with single-cell RNA-sequencing. We integrated all fibroblasts into a multi-40 

tissue atlas to characterize shared and tissue-specific phenotypes. Two shared clusters, CXCL10+CCL19+ 41 

immune-interacting and SPARC+COL3A1+ vascular-interacting fibroblasts were expanded in all inflamed 42 

tissues and additionally mapped to dermal analogues in a public atopic dermatitis atlas. We further confirmed 43 

these human pro-inflammatory fibroblasts in animal models of lung, joint, and intestinal inflammation. This work 44 

represents the first cross-tissue, single-cell fibroblast atlas revealing shared pathogenic activation states across 45 

four chronic inflammatory diseases.  46 

Introduction 47 

Fibroblasts are present in all tissues and adopt specialized phenotypes and activation states to perform both 48 

essential functions in development, wound-healing, and maintenance of tissue architecture, as well as 49 

pathological functions such as tissue inflammation, fibrosis, and cancer responses (Koliaraki et al., 2020). 50 

Recent studies of chronic inflammatory disease have leveraged advances in high-throughput single-cell 51 

genomics, particularly single-cell RNA-sequencing (scRNAseq) to identify molecularly distinct fibroblast 52 

populations associated with pathological inflammation in different anatomical sites (Adams et al., 2020; 53 

Habermann et al., 2020; Huang et al., 2019; Kinchen et al., 2018; Martin et al., 2019; Mizoguchi et al., 2018; 54 

Smillie et al., 2019; Zhang et al., 2019). A study of the large intestine from patients with ulcerative colitis (UC) 55 

identified stromal cells expressing Oncostatin-M receptor (OSMR) enriched in biopsies tracking with  failure to 56 

respond to anti-TNF therapy (West et al., 2017). Further studies suggested immunomodulatory roles for OSMR+ 57 

intestinal fibroblasts through interactions with inflammatory monocytes (Smillie et al., 2019) and neutrophils 58 

(Friedrich et al., 2020). Lung investigations identified that COL3A1+ACTA2+ myofibroblasts, PLIN2+ 59 

lipofibroblast-like cells, and FBN1+HAS1+ fibroblasts are expanded in lung biopsies from patients with idiopathic 60 
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pulmonary fibrosis (IPF) (Adams et al., 2020; Habermann et al., 2020). In the salivary gland, chronic destructive 61 

inflammation in primary Sjögren’s syndrome (pSS) with tertiary lymphoid structures is linked to the expansion 62 

of PDPN+CD34- fibroblasts (Nayar et al., 2019). In the synovial tissue, FAP𝛼+CD90+ fibroblasts are expanded 63 

in patients with rheumatoid arthritis (RA) (Wei et al., 2020; Zhang et al., 2019) and drive leukocyte recruitment 64 

and activation in an animal model of arthritis (Croft et al., 2019).  65 

In each study, inflammation-associated fibroblasts are characterized by their ability to produce and 66 

respond to inflammatory cytokines. These cytokines are often members of conserved families that signal 67 

through similar downstream pathways and result in similar effector functions (West, 2019). For instance, the 68 

inflammatory cytokines IL-6, Oncostatin M (OSM), leukemia inhibitory factor (LIF), and IL-11 all belong to the 69 

gp130 family, whose cognate receptor molecules, including IL-6R, OSMR, LIFR, and IL-11R, contain the 70 

Glycoprotein 130 (gp130) subunit. In UC, OSMR+ fibroblasts express high levels of the IL-11 encoding gene 71 

(Smillie et al., 2019). In RA, a subset of FAP𝛼+CD90+ synovial fibroblasts produce high levels of IL-6 (Zhang et 72 

al., 2019) through an autocrine loop involving LIF and LIFR (Nguyen et al., 2017; Slowikowski et al., 2019). In 73 

a mouse model for human IPF, IL-11 producing fibroblasts drive both fibrosis and chronic pulmonary 74 

inflammation (Ng et al., 2020). These examples of gp130-family cytokines associated with pro-inflammatory 75 

fibroblasts highlight that while individual factors may be tissue-specific, their downstream effects may be shared 76 

across diseases. This pattern underlines an important question with clinical implications: are inflammation-77 

associated fibroblasts tissue-specific or do they represent shared activation states that manifest a common 78 

phenotype across different diseases? A drug that targets a shared pathogenic phenotype can potentially be 79 

used to treat multiple inflammatory diseases. Identifying such shared fibroblast programs presents a major 80 

challenge, as these programs are likely to be transient and reversible activation states that vary over the course 81 

of a disease, rather than representing a static, committed cell lineage (Wei et al., 2020).  82 

The identification of shared cell states across tissues with scRNAseq has recently become possible with 83 

advances in statistical methods for integrative clustering (Butler et al., 2018; Korsunsky et al., 2019; Tran et al., 84 

2020) and reference mapping (Andreatta et al., 2020; Kang et al., 2020; Lotfollahi et al., 2020). Integrative 85 

clustering identifies similar cell states across a range of scRNAseq datasets, even when the datasets come 86 

from different donors, species, or tissues. For example, using integrative clustering, Zhang et al., 2020 identified 87 

shared macrophage activation states across five tissues, and Butler et al., 2018 identified shared pancreatic 88 
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islet cells between mouse and human datasets. Reference mapping allows rapid comparison of data from a 89 

new study to a well annotated reference, even if the study represents a tissue, disease, or species not present 90 

in the reference atlas. For instance, Andreatta et al., 2020 mapped T cell subtypes to a scRNAseq atlas of 91 

annotated tumor infiltrating T cells, while Lotfollahi et al., 2020 found disease-related immune states by mapping 92 

PBMCs from patients with COVID19 to a healthy reference library of immune cells.  93 

In this study, we generated single-cell RNAseq profiles of patient-derived CD45- stromal cells and then 94 

characterized fibroblasts across multiple inflammatory diseases involving lung, intestine, salivary gland and 95 

synovium. After confirming known fibroblast subtypes in our data, we built a de novo, integrated fibroblast atlas 96 

and identified five shared phenotypes, two of which are consistently expanded in all four inflammatory diseases. 97 

Using reference mapping, we map these to human dermal fibroblasts from inflamed and healthy skin and to 98 

fibroblasts from mouse models of lung, synovial, and intestinal inflammation to demonstrate the generalizability 99 

of our findings. Our integrated resource represents the first systematic examination of fibroblast subsets and 100 

activation states in inflamed tissues. Our identification of two pathogenic fibroblast phenotypes that are shared 101 

amongst four inflammatory diseases novel avenues for therapeutic targeting. By making available the necessary 102 

computational tools to map new datasets to our annotated fibroblast atlas, we provide a common reference for 103 

future studies of fibroblasts in tissues and diseases.   104 
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Results  105 

Single-cell transcriptional profiles of fibroblasts in human lung, salivary gland, synovium, and intestine.  106 

We used droplet-based scRNAseq to profile individual fibroblasts from a total of 74 high quality samples in lung, 107 

large intestine, lip salivary glands, and joint synovium, selecting donors with inflammatory diseases and controls 108 

(Figure 1a). In synovium, we collected arthroplasties and biopsies from 18 patients with RA and 6 with 109 

osteoarthritis (OA) (Supplementary Table 1). In the intestine, we collected large intestinal biopsies from 110 

patients with UC (n=8) and control (n=5) donors (Supplementary Table 2). Included in the 8 UC samples were 111 

4 patients for whom we had paired inflamed and adjacent non-inflamed tissue biopsies. For the lung analysis, 112 

we acquired lung tissue samples from 19 patients with ILD and 4 control samples from donor lungs 113 

(Supplementary Table 3). To examine salivary glands, we used lip biopsy tissue from 7 patients with primary 114 

Sjögren’s Syndrome (pSS) and 6 patients with a non-Sjögren’s Sicca syndrome, characterized as non-115 

autoimmune dryness, as control-comparators (Supplementary Table 4). In order to enrich for stromal cells, we 116 

used flow cytometry to sort live, CD45-EpCAM- cells from intestine and synovium samples (Figure 1a), depleting 117 

CD45+ immune and EpCAM+ epithelial populations (Supplementary Figure 1a). We avoided this strategy in 118 

the salivary gland, in order to optimize cell numbers in small biopsies, and in the lung, in which flow cytometry 119 

compromised fibroblast cell yields. We performed droplet-based scRNAseq (10x Genomics) on all samples, 120 

applied stringent QC to remove low quality libraries and cells (Supplementary Figure 1b-d), and combined all 121 

data samples to analyze 221,296 high quality cells. Using clustering analysis (Methods), we identified 7 major 122 

cell types (Figure 1b) with canonical markers (Figure 1c): CDH5+ endothelial cells, COL1A1+ fibroblasts, 123 

EPCAM+ epithelial cells, GFRA3+ glial cells, JCHAIN+ plasma cells, MCAM+ perivascular murals, and PTPRC+ 124 

leukocytes. Consistent with our flow sorting strategy, non-stromal cells (epithelial, glial, and immune) were more 125 

abundant in the salivary gland and lung (Supplementary Figure 1e). Importantly, we identified stromal 126 

(endothelial, mural, and fibroblast) populations in all four tissues, allowing us to carry out a focused analysis of 127 

fibroblasts across tissues.  128 
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Figure 1. scRNAseq profiles of intestine, lung, salivary gland, and synovium. (a) Surgical samples were collected 129 
from intestine, lung, salivary gland, and synovium, from patients with inflammatory-disease and appropriate controls. After 130 
tissue disaggregation, all cells from lung and salivary gland and CD45-EpCAM- cells from synovium and intestine were 131 
profiled with scRNAseq and (b) analyzed to identify fibroblasts and other major cell types. (c) Cell type annotation was 132 
performed with known markers for each major population. 133 
 134 
Fibroblast heterogeneity within tissues.  135 

We next examined the heterogeneity of fibroblast cell states within individual tissues. We performed a separate 136 

fine-grained clustering analysis for fibroblasts within each of the four tissues and annotated clusters with 137 

previously identified states (Figure 2a) by comparing published marker genes (Supplementary Figure 2a-d) 138 
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with cluster markers in our data (Supplementary Table 5). In the intestine, we were able to recapitulate 7 of 8 139 

populations identified in (Smillie et al., 2019): crypt-associated WNT2B+Foshi and WNT2B+Foslo, epithelial-140 

supportive WNT5B+-1 and WNT5B+-2, stem cell niche supporting RSPO3+, inflammatory, and myofibroblasts. 141 

We note that our data did not support the 2 subtypes of WNT2B+Foslo fibroblasts identified originally in (Smillie 142 

et al., 2019). In the lung, Habermann et al., 2020 described 4 states: HAS1+, PLIN2+, fibroblasts, and 143 

myofibroblasts. However, in their analysis, HAS1+ cells were identified in only 1 of 30 donors. When we re-144 

analyzed their data to identify clusters shared by multiple donors, we could not distinguish the HAS1+ from 145 

PLIN2+ population and thus merged these two in our annotation. In the salivary gland, the only single-cell study 146 

of fibroblasts to date was performed with multi-channel flow cytometry (Nayar et al., 2019), not scRNAseq. The 147 

findings here represent the first set of scRNA-seq data in this context. In our single-cell clusters, we identified 148 

the two populations previously described (CD34+ and CCL19+) and confirmed the expression of key 149 

distinguishing cytokines and morphogens that they measured by qPCR (Supplementary Figure 2b). In the 150 

synovium, we clustered 55,143 fibroblasts into 5 major states described in three scRNAseq studies (Croft et al., 151 

2019; Mizoguchi et al., 2018; Zhang et al., 2019). These states are largely correlated with anatomical position: 152 

THY1-PRG4+ cells in the synovial boundary lining layer and THY1+, DKK3+, HLA-DRA+, and CD34+ cells within 153 

the sublining. In total, we labeled 17 fibroblast clusters defined across all four individual tissues.  154 

Next, we asked whether fibroblast states defined within one tissue shared similar expression 155 

profiles with states defined in other tissues. We performed cluster marker analysis within each tissue, 156 

quantifying the overexpression of each gene in each cluster in terms of the log2 fold change with other 157 

clusters. We plotted 4,897 genes that were overexpressed in at least one cluster and labeled the top 158 

3 markers per cluster (Figure 2b). We noticed that many marker genes were present in clusters from 159 

different tissues. To find which pairs of clusters across tissues were most similar, we correlated 160 

(differential) expression profiles (Methods) for cross-tissue clusters (Figure 2c). The most correlated 161 

(Pearson 𝑟 = 0.44, 𝑝 = 10)*+) pair of clusters contained CD34+ fibroblasts in the salivary gland and 162 

CD34+ sublining (SC-F1) fibroblasts in the synovium (Figure 2d). Although they shared multiple 163 

marker genes (PAMR1, MFAP5, CD34, CD70, DPP4, FABP3, and FNDC1), they also had tissue-164 

related, cluster-specific genes (POSTN, RAMP1, PRG4, PI16, and TNMD). The shared markers 165 
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suggest a shared function. The cluster-specific genes may have arisen from a technical artefact, such 166 

as different clustering parameters in the tissue-specific analyses, or from true biological signal, such 167 

as a tissue-specific microenvironment. In order to distinguish between the two possibilities, we decided 168 

to perform a single integrative clustering analysis with fibroblasts from all tissues.  169 

Figure 2. Fibroblast heterogeneity 170 
within tissues. (a) We analyzed 171 
fibroblasts separately from each tissue to 172 
identify tissue-specific subsets described 173 
in previous single-cell studies. Each panel 174 
shows a UMAP representation of 175 
fibroblasts from one tissue, labeled with 176 
clustering and marker analysis. (b) All 177 
(n=7,380) genes nominally upregulated in 178 
any cluster were plotted in a heatmap. 179 
Color denotes the log fold change, 180 
normalized by estimated standard 181 
deviation, of a gene in a cluster (versus 182 
other clusters in that tissue). Top genes 183 
for each cluster were named above the 184 
heatmap. Each row denotes a fibroblast 185 
cluster, colored by the tissue in which it 186 
was identified. (c) To compare the 187 
expression profiles of clusters across 188 
tissues, we correlated the expression 189 
values from (b) for all pairs of clusters. 190 
Here, color denotes Pearson’s correlation 191 
coefficient. (d) One highly correlated pair 192 
of clusters from salivary gland (x-axis) and 193 
synovium (y-axis) represented by scatter 194 
plots of (differential) gene expression. 195 
Blue genes are shared by the two 196 
clusters, while red genes are unique to 197 
one cluster. 198 
Integrative clustering of fibroblast across tissues.  199 

To construct a cross-tissue taxonomy of fibroblast states, we pooled 55,143 synovial, 15,089 intestinal, 7,474 200 

salivary gland, and 1,442 pulmonary fibroblasts together and performed integrative clustering analysis. The 201 

different numbers of fibroblasts from each tissue, arising from the fact that we enriched for stromal cells in 202 

intestine and synovium but not in lung and salivary gland, presented a technical challenge. The results of many 203 

analyses, including PCA, are biased towards tissues with more cells, rather than treating each tissue equally. 204 

The second major analytical challenge arises from the fact that gene expression depends on a complex interplay 205 

of tissue, donor, and cell state. As we have described in previous work (Korsunsky et al., 2019), such 206 

confounding variation is particularly challenging to model in scRNAseq data, as the confounder can have both 207 

global and cell-type specific effects on gene expression.  208 
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We designed an analytical pipeline for integrative clustering to address the two concerns described 209 

above (Figure 3a). In this pipeline, we select genes that were informative in the tissue-specific analyses 210 

(Methods), associated with either cluster identity (Supplementary Table 5, n=7,123) or inflammatory status 211 

(Supplementary Table 6, n=6,476) within tissue, for a total of 9,521 unique genes. To minimize the impact of 212 

different cell numbers, we performed weighted PCA analysis, giving less weight to cells from over-represented 213 

tissues (e.g. synovium) and more to cells from under-represented tissues (e.g. lung), such that the sum of 214 

weights from each tissue is equivalent (Methods). Compared to unweighted PCA, this approach results in 215 

principal components whose variation is more evenly distributed among tissues (Supplementary Figure 3a). 216 

As expected, in this PCA space, cells group largely by donor and tissue (Supplementary Figure 3b,c). In order 217 

to appropriately align cell types, we removed the effect of donor and tissue from the cells’ PCA embedding 218 

coordinates with a novel, weighted implementation of the Harmony algorithm that we developed for this specific 219 

application (Methods). UMAP visualization of the harmonized embeddings shows that cells from different 220 

tissues are well mixed (Figure 3b). In contrast, fibroblast states identified in tissue-specific analyses are well 221 

separated (Supplementary Figure 3d), suggesting that the integrated embedding faithfully preserves cellular 222 

composition. In this integrated space, we performed standard graph-based clustering to partition the cells into 223 

14 fibroblast states (Figure 3c) with representation from all 4 tissues (Supplementary Figure 3e). These 14 224 

integrated clusters represent putative shared fibroblast states, each of which may be driven by a combination 225 

of both shared and tissue-specific gene programs.  226 
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 227 
Figure 3. Integrative clustering 228 
and differential expression across 229 
tissues. (a) We developed a pipeline 230 
to integrate samples from multiple 231 
donors and multiple tissues with 232 
unbalanced cell numbers. The 233 
pipeline starts with gene selection, 234 
pooling together genes that were 235 
informative in single-tissue analyses. 236 
With these genes, we performed 237 
weighted PCA, reweighting cells to 238 
computationally account for the 239 
unbalanced dataset sizes among the 240 
tissues. These PCs are adjusted with 241 
a novel formulation of the Harmony 242 
integration algorithm and used to 243 
perform graph-based clustering. We 244 
applied this pipeline to all fibroblasts 245 
across tissues. (b) The integrated 246 
UMAP projection shows cells from all 247 
tissues mixed in one space. For 248 
clarity, we down-sampled each 249 
tissue to the smallest tissue, the 250 
lung, choosing 1,442 random 251 
fibroblasts from intestine, synovium, 252 
and salivary gland. (c) Graphed-253 
based clustering proposed 14 254 
fibroblast clusters in the integrated 255 
embedding. (d) Gene-level analysis 256 
to find upregulated marker genes for 257 
clusters was done with hierarchical 258 
regression, to model complex 259 
interactions between clusters and 260 
tissues. This strategy distinguishes 261 
cluster marker genes that are (e) 262 
tissue-specific, such as MYH11 in 263 
C13, from those that are (f) shared 264 
among tissues, such as ADAM12 in 265 
C14. Points denote log fold change (cluster vs other fibroblast) and error bars mark the 95% confidence interval for the 266 
fold change estimate. (g) The number of shared genes for each cluster, ranked from most to least, prioritizes clusters with 267 
large evidence of shared gene expression (in red) from those with little (in black). Marker genes for the 5 shared clusters 268 
plotted in a heatmap. Each block represents the (differential) gene expression of a gene (column) in a cluster, for a tissue 269 
(row).  270 
Identification of shared and tissue-specific marker genes in integrated clusters.  271 

Next, we modeled gene expression to define active gene programs in the 14 integrative fibroblast clusters. In 272 

particular, we wanted to distinguish between two types of cluster markers: tissue-shared and tissue-specific. 273 

Tissue-shared markers are highly expressed in the cluster for all four tissues. Tissue-specific markers are highly 274 

expressed in the cluster for at least one tissue but not highly expressed in at least one other tissue. In our 275 

expression modeling analysis, we needed to allow for the possibility that tissue gene expression will be 276 

consistent in clusters and variable in others (Figure 3d). As we explain in our approach below, we will use 277 
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ADAM12 expression in cluster C4 as an example of a tissue-shared gene and MYH11 expression in cluster 278 

C13 as an example of a tissue-specific gene.  279 

Typically, cluster marker analysis is done with regression, to associate gene expression with cluster 280 

identity. To address the complex interaction between cluster and tissue identity in our data, we used mixed-281 

effects regression to perform hierarchical cluster marker analysis (Methods). This analysis estimated two sets 282 

of differential expression statistics for each gene: mean log2 fold change (e.g. cluster 0 vs all other clusters) and 283 

tissue-specific log2 fold change (e.g. cluster 0 in lung vs all other clusters in lung). This approach distinguishes 284 

shared marker genes, defined by minimal tissue-specific contributions, from tissue-specific marker genes, 285 

defined by large tissue-specific fold changes, relative to the mean fold change. To demonstrate, we plotted the 286 

estimated log2 fold changes, with a 95% confidence interval, for one shared (Figure 3e) and one tissue-specific 287 

(Figure 3f) cluster marker. ADAM12, a shared marker for cluster C4, has significant (log2 fold-change = 1.6, 288 

𝑝 = 6.5 × 10)+) mean differential expression in C4, while the tissue-specific effects (in color) are not significantly 289 

different for any one tissue (Figure 3e). In contrast, MYH11, is differentially overexpressed in cluster C13 for 290 

intestinal (log2 fold-change = 3.7, 𝑝 = 8.5 × 10)23) and lung fibroblasts (log2 fold-change = 2.6, 𝑝 = 5.9 × 10)6) 291 

but not for synovial or salivary gland cells (Figure 3f). Because MYH11 is so strongly overexpressed in intestinal 292 

and lung fibroblasts, the mean log2 fold-change is also significant (log2 fold-change = 1.7, 𝑝 = 5.7 × 10)+) and 293 

therefore is not a good metric alone to determine whether a marker is shared or tissue-specific.  294 

We defined tissue-shared cluster markers conservatively by requiring a marker gene to be significantly 295 

overexpressed in all four tissues, such as ADAM12 above. With this criterion, we quantified the number of 296 

shared marker genes per cluster (Figure 3g). Clusters C0, C1, C2, C3, C6, C7, C10, C12, and C13 each had 297 

fewer than 20 shared markers. Based on this cutoff, we decided that these clusters had too little evidence of 298 

shared marker genes to be reliably called shared clusters. We assigned names for the remaining clusters based 299 

on their shared gene markers: SPARC+COL3A1+ C4, FBLN1+ C5, PTGS2+SEMA4A+ C8, CD34+MFAP5+ C9, 300 

and CXCL10+CCL19+ C11. We then plotted the log2 fold change values of all 1,524 shared markers for these 301 

clusters in Figure 3h and report the results of the full differential expression analysis in Supplementary Table 302 

7.  303 
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Identification of fibroblast states expanded in inflamed tissue.  304 

We next addressed which cross-tissue fibroblast states were expanded in inflamed tissues. In order to perform 305 

this association across tissues, we first needed to define a common measure of tissue inflammation. While 306 

histology is often the gold standard to assess inflammation, histological features are inherently biased to tissue-307 

specific pathology. Instead, we decided to define inflammation in a tissue-agnostic way, as the relative 308 

abundance of immune cells in each sample. While immune cell abundance alone oversimplifies complex 309 

pathological processes, it is a ubiquitous and quantifiable measure of chronic inflammation. We quantified the 310 

fraction of immune cells based on previously labeled scRNAseq clusters (Figure 1b), for salivary gland and 311 

lung samples, and based on the proportion of CD45+ cells by flow cytometry (Supplementary Figure 1a), for 312 

synovium and intestine (Figure 4a). We note that these estimates are quantified with dissociated cells from 313 

cryopreserved tissue (Methods) and thus lack granulocytes, such as neutrophils, which constitute an important 314 

part of tissue inflammation. In order to get comparable results across tissues, we standardized the raw tissue-315 

specific immune cell 316 

frequencies to a common 317 

scale from 0 (not inflamed) 318 

to 1 (inflamed) (Figure 4b). 319 

Importantly, this 320 

transformation (Methods) 321 

removes the impact of 322 

distributional differences 323 

among tissues and 324 

preserves the order of 325 

scores within each tissue.  326 

Figure 4. Sample level inflammation scores. We computed the relative abundance of CD45+ immune cells to all cells in 327 
each sample. (b) We standardized these frequencies across tissues into an inflammation score that ranges from 0 to 1 328 
and removes distributional differences. (c) Association analysis results between fibroblast cluster abundance and 329 
standardize inflammation scores. Here, each point represents the log fold change in fibroblast cluster abundance with 330 
increasing inflammation and the line represents that point’s 95% confidence interval. Red denotes estimates with one-331 
tailed FDR<5%. (d) The tissue specific results were summarized using meta-analysis. (e) For CXCL10+CCL19+ (C11) and 332 
SPARC+COL3A1+ (C4) fibroblasts, scatterplots relating to standardized inflammation scores (x-axis) to relative fibroblast 333 
frequency (y-axis).  334 
 335 
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Using these standardized inflammation scores, we performed a separate association analysis with 336 

mixed-effects logistic regression for each tissue. This analysis provided, for each tissue and fibroblast state, the 337 

effect of increased inflammation on cluster abundance (Figure 4c). Positive log odds ratios denote expansion 338 

with inflammation whereas negative ratios denote a diminishing population. Some clusters, such as C2, C3, C7, 339 

PTGS2+SEMA4A+ C8, and C12, were significantly (FDR<5%, red) expanded in only one tissue. Others, such 340 

as CXCL10+CCL19+ C11 and SPARC+COL3A1+ C4, were significantly expanded in multiple tissues. We 341 

confirmed that association with normalized inflammation scores did not change the qualitative results within 342 

tissue but did make the results more interpretable across tissues (Supplementary Figure 4). We then 343 

performed a meta-analysis of these tissue-specific effects (Methods) to prioritize clusters expanded 344 

consistently across all tissues (Figure 4d). This meta-analysis identified two fibroblast states significantly 345 

expanded in inflamed samples from all 4 tissues (Figure 4e): SPARC+COL3A1+ (C4) (𝑂𝑅 =346 

10.4, 95%	𝐶𝐼[6.6, 16.2], 𝑝 = 9.4 × 10)*@), and CXCL10+CCL19+ (C11) fibroblasts (log 𝑂𝑅 =347 

32.7, 95%	𝐶𝐼	[11.4, 94.0], 𝑝 = 9.6 × 10)22). The reported odds ratio values denote the odds of a cell being in a 348 

cluster (versus not) given that it came from an inflamed sample. Because the effects for these clusters were 349 

similar across tissues, pooling in the meta-analysis increased the power to detect these abundance changes.  350 

Distinct immune-interacting and vascular-interacting fibroblast states expanded in tissue inflammation.  351 

The two fibroblast states consistently expanded in inflamed tissue are characterized by distinct gene programs 352 

(Figure 5a) that reflect putative distinct functions during tissue inflammation. To explore these potential roles, 353 

we performed gene set enrichment analysis with 6,369 Gene Ontology (Ashburner et al., 2000) and 50 MSigDB 354 

hallmarks pathways (Liberzon et al., 2011) (Supplementary Table 8, Figure 5b). Marker genes for 355 

CXCL10+CCL19+ fibroblasts were enriched for pathways involved in direct interaction with immune cells, 356 

including lymphocyte chemotaxis (GO:0048247, adjusted p< 0.005, includes CCL19, CCL2, CCL13), antigen 357 

presentation (GO:0019882, adjusted p< 0.005, includes CD74, HLA-DRA, HLA-DRB1), and positive regulation 358 

of T cell proliferation (GO:0042102, adjusted p< 0.005, includes TNFSF13B, VCAM1, CCL5). CXCL10+CCL19+ 359 

fibroblasts show broad evidence of response to key pro-inflammatory cytokines IFN𝛾 (GO:0034341, adjusted 360 

p=0.005), IFN𝛼 (GO:0035455, adjusted p=0.02), TNF𝛼 (GO:0034612, adjusted p< 0.005), IL-1 (GO:0070555, 361 

adjusted p< 0.005), and IL-12 (GO:0070671, adjusted p< 0.005). While TNF𝛼, IL-1, and IL-12 response are 362 

broadly enriched in several fibroblast populations, an interferon response (IFN𝛾 and IFN𝛼) is more specific to 363 
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CXCL10+CCL19+ fibroblasts. In contrast to these cytokine-signaling pathways, SPARC+COL3A1+ fibroblast 364 

marker genes were enriched in pathways centered around extracellular matrix binding (GO:0050840, adjusted 365 

p< 0.005, includes COL11A1, SPARC, LRRC15) and disassembly (GO:0022617, adjusted p=0.005, includes 366 

MMP13, MMP11, FAP) and numerous developmental pathways (GO:0035904, GO:0060348, GO:0061448, 367 

GO:0007492, adjusted p< 0.005	, includes COL3A1, COL1A1, COL5A1, TGFB1).  368 

Figure 5. Distinct gene expression 369 
profiles for CXCL10+CCL19+ and 370 
SPARC+COL3A1+ states. (a) 371 
Comparison of differential gene 372 
expression between 373 
CXCL10+CCL19+ and 374 
SPARC+COL3A1+ fibroblasts shows 375 
that these two inflammation-376 
expanded clusters are characterized 377 
by distinct genes. Top 10 markers 378 
for each cluster are named. (b) Gene 379 
set enrichment analysis with Gene 380 
Ontology and MSigDB Hallmark 381 
pathways shows distinct functions 382 
for the C4 (orange) and C11 (lime) 383 
states. These states may be 384 
explained by response to distinct 385 
sets of signaling molecules: 386 
inflammatory cytokines for C4 387 
(brown) and tissue modeling 388 
morphogens for C11 (tan). Heatmap 389 
shows normalized enrichment 390 
scores from GSEA, focusing on only 391 
positive enrichment for clarity. (c) 392 
Ligand receptor analysis of 393 
endothelial cell crosstalk with 394 
fibroblast populations. Each column 395 
is a putative ligand receptor cognate 396 
pair, faceted by fibroblast subtype. 397 
Y-axis represents the strength of the putative crosstalk, while color denotes direction of interaction: (blue) endothelial ligand 398 
to fibroblast receptor or (red) fibroblast ligand to endothelial receptor.  399 
 400 

Together, this suggests that SPARC+COL3A1+ fibroblasts may be driven by conserved developmental 401 

pathways during tissue remodeling in chronically inflamed diseases. Given the extensive enrichment in 402 

developmental pathways in these fibroblasts, we hypothesized that this state could be driven by morphogens 403 

within the tissue microenvironment. Indeed, we observed enrichment in key morphogen signaling pathways 404 

hedgehog (adjusted p=0.005), TGF𝛽 (GO:0007179, adjusted p< 0.005), WNT (canonical (GO:0060070, 405 

adjusted p=0.007) and non-canonical (GO:0035567, adjusted p=0.005)), BMP (GO:0071772, adjusted p=0.01), 406 

and Notch (GO:0007219, adjusted p< 0.005). Of these pathways, Notch signaling was the most specific to 407 

SPARC+COL3A1+ fibroblasts (Figure 5b), with non-significant (raw 𝑝 > 0.20) enrichment in all other clusters. 408 

Since we have previously identified Notch3 signaling as a key driver in differentiation of disease-associated 409 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426253doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426253


 
perivascular fibroblasts in RA synovia (Wei et al., 2020), we predict this cluster may represent a similar 410 

endothelium-driven, activated fibroblast state across inflammatory diseases involving other organ tissues. We 411 

explored this hypothesis with ligand receptor analysis (Methods). We started with manually curated cognate 412 

ligand and receptor pairs (Ramilowski et al., 2015) and for each pair, looked for high expression of one gene in 413 

endothelial cells within our libraries (Figure 1b) and its partner in each fibroblast state. Filtering for only 414 

differentially expressed genes, we found a total of 63 putative signaling interactions (Figure 5c). Notably, 19 of 415 

these interactions were between SPARC+COL3A1+ fibroblasts and endothelial cells, including Notch activation 416 

through the DLL4:NOTCH3 interaction, as described earlier in the synovium (Wei et al., 2020), as well as 417 

morphogen TGF𝛽, growth factor PDGF𝛽, angiogenic factors Ephrin-𝛼 and Ephrin-𝛽 (Rudno-Rudzińska et al., 418 

2017), and angiogenic and mitogenic factors MDK and PTN (Weckbach et al., 2012). This large variety of 419 

putative signaling interactions (Figure 5c), both from and to endothelial cells, suggests that SPARC+COL3A1+ 420 

fibroblasts participate in signaling crosstalk with endothelial cells. Together, these pathway and crosstalk 421 

analyses suggest two independent, conserved populations that support tissue inflammation: namely immune 422 

cell-interacting CXCL10+CCL19+ immuno-fibroblasts and endothelium-interacting SPARC+COL3A1+ vascular 423 

associated fibroblasts.  424 

Correspondence between fibroblast clusters defined in integrative analysis and single-tissue analyses.  425 

We determined how the clusters labeled in the single-tissue analyses (Figure 2a) mapped to our new shared 426 

cross-tissue taxonomy. Since we used the same cells for both within-tissue and cross-tissue analyses, we were 427 

able to directly compare the overlap (Methods) between these two types of state definitions (Supplementary 428 

Figure 5a). The immuno-fibroblast cluster C11 overlapped significantly (𝐹𝐷𝑅 < 5%) with THY1+ sublining (𝑂𝑅 =429 

3.8, 95%	𝐶𝐼[2.2, 6.7]) and HLA-DRAhi synovial fibroblasts (𝑂𝑅 = 39.2, 95%	𝐶𝐼[22.2, 69.0]), with CCL19+ 430 

fibroblasts in the salivary gland (𝑂𝑅 = 9.1, 95%	𝐶𝐼[6.3, 13.0]), with RSPO3+ (𝑂𝑅 = 16.1, 95%	𝐶𝐼[12.0, 21.7]) and 431 

WNT2B+Foshi (𝑂𝑅 = 2.3	95%	𝐶𝐼[1.7, 3.1]) fibroblasts in the intestine, and did not overlap significantly with any 432 

one cluster in the lung. Here, odds ratio refers to the probability of a cell being in a cross-tissue cluster (versus 433 

not), given that the cell belongs to some within-tissue clusters. The vascular-fibroblast cluster C4 was split 434 

between DKK3+ and THY1+ sublining fibroblasts in the synovium, mapped exclusively to myofibroblasts in the 435 

lung, split between inflammatory fibroblasts and myofibroblasts in the intestine, and mapped to CD34+ 436 

fibroblasts in the salivary gland. Notably, none of these associations was one-to-one. HLA-DRA+ synovial 437 
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fibroblasts, CCL19+ salivary gland fibroblasts, and RSPO3+ and WNT2B+Foshi intestinal fibroblasts mapped to 438 

multiple clusters that were expanded in one or more tissues: C3 (lung and synovium), C2 (synovium), C12 439 

(intestine), and C8 (salivary gland and synovium). Similarly, the myofibroblasts in the lung and intestine, as well 440 

as DKK3+ synovial fibroblasts mapped to both C13 and to vascular fibroblasts (C4).  441 

Cluster C13 aligned strikingly with intestinal and pulmonary myofibroblasts. Although C13 contained 442 

cells from all tissues, it only expressed canonical myofibroblast genes MYH11, MYL9, and ACTA2 in intestinal 443 

and pulmonary cells (Supplementary Figure 5b). While myofibroblasts are absent in synovium, synovial C13 444 

cells may reflect an activated phenotype involved in tissue repair. This is supported by synovial specific 445 

upregulation of bone and cartilage reparative genes TFF3, BMP6, HTRA1, and HBEGF (Supplementary 446 

Figure 5c).  447 

 In the synovium and intestine, several clusters have previously been shown to be associated with distinct 448 

anatomical locations (Mizoguchi et al., 2018; Smillie et al., 2019; Zhang et al., 2019): PRG4+ synovial lining 449 

fibroblasts, THY1+ sublining synovial fibroblasts, WNT5B+ villus-associated fibroblasts, and WNT2B+ crypt-450 

associated fibroblasts. Many of the integrated clusters we identified grouped along these anatomically defined 451 

lines. Clusters C0, C6, C10, and C12 were most associated with PRG4+ lining-associated synovial and 452 

WNT5B+ villus-associated gut fibroblasts, while clusters C1, C2, C3, and C8, mapped to THY1+ sublining-453 

associated synovial and WNT2B+ crypt-associated gut fibroblasts. Except for cluster C8, these clusters that 454 

were strongly associated with anatomical locations in gut and synovium had fewer numbers of shared marker 455 

genes across tissues, potentially reflecting tissue-specific functions dictated by the specific anatomical 456 

constraints and physiological functions of the tissue.  457 

FBLN1+ C5 and CD34+MFAP5+ C9 states mapped strongly to RSPO3+ intestinal, HAS1+PLIN2+ 458 

pulmonary and CD34+THY1+ synovial fibroblasts. The remaining cluster C7 did not map well to intestinal or 459 

synovial clusters. Subsequent analysis of marker genes within tissues suggested enrichment in doublets: 460 

epithelial markers KRT7 and ADGRF5 in lung and macrophage markers C1QB, C1QA, and SPP1 in the salivary 461 

gland. This suggests that despite our best efforts to filter doublets during QC preprocessing, some 462 

contaminating doublets were retained. This makes further inference about cluster C7 less reliable.  463 
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Validation in an alternative tissue: dermal fibroblasts in atopic dermatitis.  464 

As a proof of principle, we next explored whether the fibroblast states discovered in the four tissues could 465 

generalize to a tissue not explored in this study by examining cells from an independent dataset. We analyzed 466 

data from a study (He et al., 2020) of atopic dermatitis (AD), a chronic inflammatory condition of the skin (Figure 467 

6a). The authors performed droplet-based scRNAseq on all cells from cryopreserved skin biopsies of 5 patients 468 

with AD (4 samples from skin lesions and 5 samples from skin outside of lesions) and 7 healthy donors. After 469 

removing low-quality (Methods) cells and 3 samples with fewer than 500 high-quality cells, we clustered 29,625 470 

cells from 13 samples to identify the following major cell types (Supplementary Figure 6a-b): MLANA+ 471 

melanocytes, KRT15+ epithelial 472 

cells, CD3G+ T cells, C1QB+ myeloid 473 

cells, PROX1+ lymphatic endothelial 474 

cells, ACKR1+ vascular endothelial 475 

cells, ACTA2+ mural cells, and 476 

COL1A1+ fibroblasts. As before, we 477 

used immune cell abundance to 478 

quantify a relative inflammation 479 

score in each sample (Figure 6b). 480 

Immune cell abundance correlated 481 

with histological classification, 482 

highest in samples from skin lesions 483 

and lowest in samples from non-484 

diseased controls (Figure 6b).  485 

Figure 6. Dermal fibroblast scRNAseq profiles mapped to cross-tissue fibroblast atlas. (a) To validate our results, 486 
we mapped scRNAseq profiles of dermal fibroblasts from lesion biopsies from atopic dermatitis (AD) patients, non-lesional 487 
biopsies from AD patients, and control skin biopsies from healthy donors. (b) Based on the relative frequency of immune 488 
cells in each biopsy, we computed standardized inflammation scores from 0 to 1. (c) We mapped dermal fibroblasts to our 489 
fibroblast atlas and (d) labeled dermal fibroblasts according to their most similar atlas cluster. (e) We confirmed that the 490 
gene expression profiles of inferred dermal fibroblast clusters correlated with expression profiles of their reference fibroblast 491 
clusters. This is demonstrated for clusters C4 and C11 by plotting the (differential) gene expression in dermal (x-axis) vs 492 
reference (y-axis) clusters and calling out the top marker genes identified in the reference clusters. (f) Only 493 
CXCL10+CCL19+ (C11) fibroblast frequency was significantly (FDR<5%) associated with dermal inflammation. (g) Cells 494 
from skin with lesions (blue) had considerably less evidence of vasculature, measured by the abundance of perivascular 495 
mural cells and vascular endothelial cells. (h) Relative abundance of mural and endothelial cells was most strongly 496 
associated with cluster C4. Red denotes one-tailed FDR<5%.  497 
 498 
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We wanted to compare dermal fibroblasts directly to clusters defined in our fibroblast atlas. To do this, 499 

we leveraged a novel algorithm, Symphony (Kang et al., 2020) (Methods), designed to quickly and accurately 500 

map new scRNAseq profiles into a harmonized atlas to compare them with annotated reference cells. Using 501 

Symphony, we mapped dermal fibroblasts into our multi-tissue fibroblast atlas and projected them into the 502 

reference UMAP space for visual comparison (Figure 6c). For quantitative comparison of fibroblast subtypes, 503 

we labeled individual dermal fibroblasts by their most similar reference clusters (Figure 6d). Dermal fibroblasts 504 

mapped primarily to all clusters except C6, C12, and C13, three clusters which we identified as more tissue-505 

specific (Figure 3g). We computed marker genes for these clusters in skin (Supplementary Table 9) and 506 

compared them to the markers we computed in the cross-tissue analysis. Encouragingly, the gene expression 507 

profile of each dermal fibroblast cluster most closely resembled that of its corresponding reference cluster 508 

(Supplementary Figure 6c). As two examples of this expression concordance, we plotted gene expression of 509 

immune (C4) and vascular (C11) fibroblasts inferred in the skin dataset versus those labeled in the reference 510 

(Figure 6e), highlighting the top 10 marker genes upregulated in each of the fibroblast clusters in the reference 511 

(Figure 6e).  512 

We associated the abundance of inferred dermal fibroblast clusters with the sample-level inflammation 513 

score (Figure 6f). CXCL10+CCL19+ (C11) fibroblasts were the most significantly expanded in inflamed skin 514 

samples (𝑂𝑅 = 57, 95%	𝐶𝐼	[6.5, 503], 𝑝 = 2 × 10)K), even when performing the association within histological 515 

groups 𝑂𝑅 > 1000, 𝑝 = 1.8 × 10)22) (Supplementary Figure 6d). Interestingly, SPARC+COL3A1+ fibroblasts, 516 

expanded in the original four tissues, were less abundant in inflamed skin. Given the previous association of 517 

SPARC+COL3A1+ fibroblasts with vasculature, we explored the relative degree of vascular cell types in each 518 

skin sample. Intriguingly, lesional samples had significantly fewer vascular endothelial (one-tailed t-test 𝑝 =519 

0.004) and perivascular mural (one-tailed t-test 𝑝 = 0.07) cells (Figure 6g), as compared to non-lesional and 520 

healthy samples together. The lack of vascular fibroblast expansion in inflamed samples from skin lesions is 521 

consistent with this decreased vascularization. In fact, the abundance of vascular fibroblasts is associated 522 

nominally with the abundance of vascular endothelial cells (log 𝑂𝑅 = 2.5, 𝑝 = 0.04) and strongly with 523 

perivascular mural cells (log 𝑂𝑅 = 3.2, 𝑝 = 1.8 × 10)@), when taking into account the histological status (Figure 524 

6h).  525 
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Cross-species mapping identifies shared fibroblast activation states in disease animal models of pulmonary, 526 

synovial, and intestinal inflammation.  527 

Next, we tested whether our two shared inflammation associated fibroblast subtypes were identifiable in single-528 

cell datasets from mouse models of tissue inflammation. By defining which aspects of fibroblast-driven 529 

pathology are reproduced in mouse models, it may be possible to elucidate which pathological processes in 530 

murine models best parallel human fibroblast cell states. We found three single-cell RNAseq data sets that 531 

included both inflamed and non-inflamed samples in matched mouse tissues, which we could use to analyze 532 

both the conservation of cluster markers and the expansion of inflammation-associated immuno-fibroblasts and 533 

vascular fibroblasts (Figure 7a): Kinchen et al., 2018 profiled 8,113 cells, CD45- gated to enrich for stroma, 534 

from 3 healthy and 3 mice with Dextran Sulfate Sodium (DSS)-induced colitis. Tsukui et al., 2020 profiled 15,095 535 

cells, Col1a1+ gated to enrich for fibroblasts, from 2 healthy and 2 bleomycin-induced lung injury mouse lungs. 536 

Wei et al., 2020 profiled 8,738 total synovial cells from mice with K/BxN serum transfer induced arthritis, half 537 

with active inflammation and half with abated disease by inhibition of Notch3 signaling, by genetic knockout 538 

(Notch3-/-) and blocking antibody 539 

(anti-Notch3 mAB). Of note, while 540 

the K/BxN transgenic model 541 

generates autoreactive antibodies 542 

through a lymphocyte-mediated 543 

etiology, mice receiving those 544 

autoreactive antibodies through 545 

serum transfer develop arthritis 546 

through a lymphocyte-547 

independent etiology (Monach et 548 

al., 2007). Therefore, we did not 549 

expect to see changes in the 550 

frequency of T cell interacting 551 

immuno-fibroblasts with this 552 

model.  553 
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Figure 7. Replication in disease models of pulmonary, intestinal, and synovial inflammation. (a) We collected 554 
studies of inflammation in mouse models of human disease: bleomycin induced ILD, DSS-induced colitis, and serum 555 
transfer arthritis. (b) Fibroblasts from each study were mapped to the human fibroblast atlas and labeled with their most 556 
closely mapped clusters. (c) Frequencies of the human inflammatory states C4 and C11 in each study sample, colored to 557 
denote samples from animals with high (red) and low (black) inflammation. (d) Gene set enrichment analysis with modules 558 
associated with early, acute, and recovery phases of DSS-induced colitis shows that C4 and C11 gene signatures are 559 
activated at distinct stages of inflammation. (e) Time course expression profiles of key C4 and C11 marker genes that 560 
overlap with the early (yellow) and acute (orange) phase associated modules. Dotted line denotes timepoint (day 7) at 561 
which DSS was removed from mice. 562 
 563 

Within each study, we identified fibroblasts (6,979 intestinal, 10,320 pulmonary, and 5,704 synovial) with 564 

clustering and marker analyses (Supplementary Figure 7a,b). We then mapped these fibroblasts to our human 565 

cross-tissue reference with the Symphony pipeline (Methods) and labeled mouse cells with the most similar 566 

reference fibroblast subtypes (Figure 7b). While most clusters were well-represented across tissues, two 567 

appeared more tissue-specific (Supplementary Figure 7c). Myofibroblast-enriched C13 was mostly absent in 568 

synovium, which is known to lack myofibroblasts. Cluster C12, which mapped well to the intestinal WNT5B+ 2 569 

cluster in our initial analyses (Supplementary Figure 5a), was enriched in intestinal fibroblasts in this mouse 570 

analysis. To test the degree to which gene markers are conserved between mouse and human, we performed 571 

cluster marker analysis in the mouse fibroblasts (Supplementary Table 10) and compared cluster expression 572 

profiles between mouse genes and human orthologs (Supplementary Figure 7d). Importantly, the most similar 573 

gene expression profiles were between corresponding clusters in mouse and human. Moreover, for most 574 

clusters, expression profiles were even more similar between matched tissues.  575 

We next asked whether the same fibroblast subtypes were expanded in inflamed tissues in human 576 

disease and mouse models. Thus, we performed differential abundance analysis within each mouse dataset 577 

(Supplementary Figure 7e), comparing inflamed cases to matched controls (Methods) to determine whether 578 

the SPARC+COL3A1+ and CXCL10+CCL19+ populations expanded in human tissues were also expanded in 579 

mouse models (Figure 7c). In bleomycin treated lungs, the most expanded populations were SPARC+COL3A1+ 580 

(𝑂𝑅 = 5.2, 95%	𝐶𝐼	[4.5, 6.0], 𝑝 < 10)L) and CXCL10+CCL19+ (𝑂𝑅 = 3.8, 95%	𝐶𝐼[2.2, 6.6], 𝑝 = 2.5 × 10)3) 581 

fibroblasts. In arthritis models, the Notch signaling enriched (Figure 5b) SPARC+COL3A1+ cluster was greatly 582 

diminished with therapeutic Notch3 inhibition (𝑂𝑅 = 3.8, 95%	𝐶𝐼[1.5, 9.4], 𝑝 = 4.1 × 10)M). On the other hand, 583 

the frequency of lymphocyte-interacting CXCL10+CCL19+ fibroblasts was not associated with disease activity 584 

in arthritic mice (𝑂𝑅 = 1.2, 95%	𝐶𝐼[0.47, 3.3], 𝑝 = 0.6). This result is consistent with the known lymphocyte 585 

independence of the serum transfer model etiology (Monach et al., 2007). In DSS-induced colitis, 586 

CXCL10+CCL19+ fibroblasts were significantly expanded (𝑂𝑅 = 6.1, 95%	𝐶𝐼[1.9, 19.3], 𝑝 = 2.3 × 10)M), as 587 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426253doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426253


 
reported previously (Kinchen et al., 2018), while SPARC+COL3A1+ fibroblasts were actually diminished (𝑂𝑅 =588 

0.5, 95%	𝐶𝐼[0.4, 0.7], 𝑝 = 9.2 × 10)6) in frequency.  589 

Temporal ordering of C4 and C11 activation in DSS-induced colitis.  590 

We were surprised that SPARC+COL3A1+ fibroblasts were not significantly expanded in a DSS-induced colitis 591 

model, despite their significance in the human cohorts. The lack of SPARC+COL3A1+ signal could mean that 592 

DSS-induced colitis utilizes an alternative inflammatory process. However, the difference may also reflect the 593 

kinetics of disease. Since DSS-induced inflammation is an acute process, reversible with removal of the 594 

chemical irritant, cross-sectional cellular compositions in that model may differ from compositions of chronically 595 

inflamed UC intestine. Specifically, if SPARC+COL3A1+ fibroblasts are responsible for tissue remodeling to 596 

enable leukocyte infiltration, then genes associated with SPARC+COL3A1+ fibroblasts should precede those 597 

associated with CXCL10+CCL19+ fibroblasts. To test this hypothesis, we used recently published time course 598 

transcriptional profiles of DSS-induced colitis, which tracks gene expression changes with the induction and 599 

resolution of inflammation (Czarnewski et al., 2019). The authors induced intestinal inflammation in female 8-600 

12 week old C57BL/6J mice by putting DSS in their drinking water for 7 days and allowed resolution of 601 

inflammation by removing DSS for another 7. Measuring gene expression profiles with RNAseq approximately 602 

every 2 days, the authors defined gene modules M5 and M9 associated with early inflammation (2-4 days), M1, 603 

M3, and M4 with acute inflammation (6-8 days), and M5 and M6 with resolution (10-14 days). We analyzed the 604 

enrichment of these phase-associated modules in our fibroblast marker profiles to associate the expansion of 605 

fibroblast subtypes with distinct phases of DSS-induced inflammation and resolution (Supplementary Table 606 

11). Strikingly, CXCL10+CCL19+ fibroblasts exclusively mapped to the three acute phase modules, M1, M3, and 607 

M4, while SPARC+COL3A1+ fibroblasts mapped to two early phase modules, M5 and M9 and only the M1 acute 608 

phase module (Figure 7d). Time course profiles of representative genes demonstrate the early and resolution 609 

phase activation of SPARC+COL3A1+-associated genes and acute phase activation of CXCL10+CCL19+-610 

associated genes (Figure 7e). Given our hypothesis that SPARC+COL3A1+ fibroblasts are involved in vascular 611 

remodeling while CXCL10+CCL19+ fibroblasts interact with infiltrating immune cells, the early upregulation of 612 

SPARC+COL3A1+-association gene suggests that vascular remodeling precedes leukocyte infiltration in the 613 

DSS-colitis model.  614 

  615 
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Discussion 616 

In this study, we sought to define whether shared fibroblast states exist across four diverse tissues affected by 617 

clinically distinct inflammatory diseases. We postulated that defining shared pathogenic, inflammation-618 

associated fibroblast states across diseases will help inform the possibility of common therapeutic strategies 619 

targeting fibroblasts across different inflammatory diseases. Comparison of pathogenic fibroblast phenotypes 620 

across diseases that manifest in different tissues is hampered by the lack of an accepted, tissue-independent 621 

taxonomy enjoyed by immune and vascular cells. We thus approached this question by generating novel single-622 

cell RNAseq profiles of fibroblasts and analyzing the fibroblasts together to identify shared phenotypes across 623 

diseases. Cross-tissue analysis of gene expression is a challenging task, as evidenced by the plethora of 624 

statistical methods introduced to analyze even non-single-cell, multi-tissue data generated by the Genotype-625 

Tissue Expression (GTEx) project (GTEx Consortium, 2015). By using sophisticated statistical methods for 626 

cross-tissue analysis, we were able to identify fibroblast phenotypes that were shared by all tissues as well as 627 

fibroblast adaptations unique to a subset of tissues.  628 

 The lack of universal definitions for key concepts such as fibroblast identity and inflammation scoring 629 

that apply equally well to all tissues presented a major challenge to our effort to associate fibroblast phenotypes 630 

with inflammation. In particular, the lack of a universal, pan-fibroblast surface marker prevented us from directly 631 

isolating fibroblasts with flow cytometry. We addressed this problem with negative selection, using specific 632 

markers to filter out non-fibroblast populations, and thus defining fibroblasts based on high-dimensional single-633 

cell-RNA-seq data as non-epithelial, non-immune, non-endothelial, and non-mural cells with some known 634 

tissue-specific fibroblast markers, such as PDPN, PDGFRA, and COL1A1. The lack of a quantifiable score for 635 

inflammation impeded us from directly using standard tools from meta-analysis, which assume a standardized 636 

phenotype that can be measured equally well across all organ tissues. Inflammation in each disease is defined 637 

by disease-specific pathological processes, reflected in tissue-specific histological scores, such as the Krenn 638 

inflammation score in RA (Krenn et al., 2006) and Nancy index in UC (Marchal-Bressenot et al., 2017). We 639 

approached this challenge by intentionally selecting four chronic inflammatory diseases with distinct 640 

pathological and inflammatory processes. By analyzing fibroblasts from a range of diverse pathologies, we 641 

maximized the chances of identifying fibroblast phenotypes common to inflammation in four tissues. We chose 642 

the simplest aspect of inflammation that can be measured in all tissues, namely the proportion of immune cells 643 
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infiltrating each tissue sample. Despite this simplicity, our definition robustly identified two shared fibroblast 644 

states, CXCL10+CCL19+ (C11) and SPARC+COL3A1+ (C4), associated with inflammation across tissues. A 645 

caveat of our definition of inflammation is that the other fibroblast clusters may be associated with distinct 646 

aspects of inflammation. For instance, PTGS2+SEM4A+ (C8) fibroblasts express neutrophil recruiting genes 647 

CXCL1 and CXCL2, are critical to inflammation in UC (Friedrich et al., 2020), and likely associated with 648 

neutrophil infiltration.  649 

The complexity of our study design, with cells measured from multiple donors, tissues, and diseases, 650 

presented a second major challenge to our study. Algorithms to identify shared clusters in scRNAseq datasets 651 

from multiple donors and tissues do not address key issues such as data imbalance or downstream analysis of 652 

gene expression in multi-tissue studies of human disease. Analyses that don’t account for these factors in this 653 

complex setting may result in diminished power and spurious associations. Here we use weighted PCA and 654 

weighted Harmony to account for imbalanced datasets and mixed effects Poisson regression to account for the 655 

effect of complex interactions between covariates on gene expression. Our analytical approach to decipher 656 

tissue-shared and tissue-specific gene expression serves as a template for well-powered and robust analysis 657 

of single-cell cluster markers, particularly relevant with the growing number of studies designed to identify 658 

shared etiology across tissues and diseases (Nieto et al., 2020; Szabo et al., 2019; Zhang et al., 2020).  659 

Based on marker gene profiles, we believe that some of the clusters named in our analysis have been 660 

previously described in single-cell and functional studies of individual tissues, potentially with the exception of 661 

pSS, in which a scRNAseq atlas has not been described to date. For the first time, we provide a common frame 662 

of reference to cross-compare these diverse populations objectively across tissues. As a powerful corollary, we 663 

can draw upon functional studies performed in individual tissues to interpret the biological significance of our 664 

clusters.  665 

CXCL10+CCL19+ (C11) fibroblasts closely resemble functionally well-characterized CCL19+PDPN+ 666 

immunofibroblasts in the salivary gland. These CCL19+ fibroblasts co-localize with CD3+ T cells and underlie 667 

the formation of salivary gland tertiary lymphoid structures in both human tissue and in an animal model (Nayar 668 

et al., 2019). This putative interaction with T cells is suggested by the expression of HLA genes in the synovial 669 

fibroblasts expanded in RA patients (Zhang et al., 2019). Here, HLA-DRA+ fibroblasts show strong evidence of 670 

response to IFN𝛾 and functional work demonstrated that IFN𝛾 is mostly produced by CD8+ T cells in inflamed 671 
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synovium. Kinchen et al., 2018 also identified CCL19+ fibroblasts in the inflamed UC intestine, and numerous 672 

studies (Bisping et al., 2001; Breese et al., 1993) have associated T cells as the primary source of IFN𝛾 in 673 

intestinal inflammation. This suggests that T cell recruitment driven by CCL19+ fibroblasts and IFN-activated 674 

fibroblasts is a shared feature of inflammation across multiple diseases. Additional functional studies are 675 

required to investigate the complex interactions between T cells and fibroblasts in individual inflammatory 676 

diseases. Our integrative results provide generalizable markers that may identify such T cell interacting 677 

fibroblasts across tissues.  678 

SPARC+COL3A1+ (C4) fibroblasts closely resemble the CD90hi NOTCH3-activated synovial fibroblasts 679 

that are located near arterial blood vessels and pericytes and expanded in RA (Wei et al., 2020). Despite their 680 

perivascular location, NOTCH3+ fibroblasts, like our SPARC+COL3A1+ fibroblasts, are distinct from pericytes, 681 

as evidenced by their lack of canonical pericyte genes ACTA2 and MCAM (Armulik et al., 2011). Our cross-682 

tissue analysis suggests that these vascular fibroblasts, which clustered separately from MCAM+ pericytes 683 

(Figure 1), may also play a role in vascular remodeling in the lung, intestine, and salivary gland. In the time-684 

series analysis of acute inflammation in the mouse intestine, we found that the expansion of vascular fibroblasts 685 

preceded the expansion of CXCL10+CCL19+ immune-interacting fibroblasts. If this temporal ordering holds 686 

tissues, it suggests a two-stage mechanism for fibroblast-mediated regulation of inflammation, initiated by 687 

vascular remodeling that enables greater leukocyte infiltration into the tissue. Further mechanistic studies are 688 

needed to elucidate both the additional endothelium-derived, or angiocrine factors (Rafii et al., 2016) that 689 

mediate perivascular fibroblast differentiation and the mechanistic relationship between vascular and immune-690 

interacting fibroblasts.  691 

In interpreting clusters with more tissue-specific than tissue-shared genes, we noticed that tissue-692 

specific programs often express genes with tissue repair functions. This observation may reflect the tissue-693 

specific needs for maintenance and repair, defined by that tissue’s unique anatomical structures (Chang et al., 694 

2002). In contrast, clusters with more tissue-shared genes were enriched in biological processes, such as 695 

immune cell recruitment (C11 and C8), processes which are independent of tissue architecture, and interaction 696 

with blood vessels (C4), structures which are present in all tissues. This dichotomy between functions tailored 697 

to a tissue’s structural composition versus functions common to all tissues explain why some fibroblasts 698 

phenotypes in scRNAseq appear more tissue-specific and others more tissue-shared.  699 
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We used a novel type of analysis from single-cell analysis called Symphony reference mapping (Kang 700 

et al., 2020) to compare human dermal fibroblasts and mouse lung, synovial, and lung fibroblasts to our 701 

annotated cross-tissue atlas. Reference mapping let us avoid intensive and error-prone manual interpretation 702 

steps in de novo analysis of the external datasets. We anticipate that this strategy can improve reproducibility 703 

in single-cell analysis in general and particularly in fibroblasts, whose phenotypes are often difficult to identify 704 

with one or two canonical marker genes. To promote reproducible research and cross-disease insights in 705 

fibroblast biology, we made both the fibroblast atlas (github.com/immunogenomics/fibroblastlas) and the tools 706 

needed to map data (github.com/immunogenomics/symphony) publicly available.  707 

Fibroblasts are essential players in inflammatory disease, fibrotic disease, and cancer. The potential to 708 

target fibroblasts therapeutically is growing with the number of single-cell and functional studies on fibroblast 709 

heterogeneity (Dakin et al., 2018). While early studies of fibroblast heterogeneity focused on positional identity, 710 

more recent studies focus on functional states that mediate pathological processes. Our study provides the first 711 

cross-tissue analysis that rigorously distinguishes tissue-specific from tissue-shared identity in fibroblasts. In 712 

doing so, we described two fibroblast states that may be universal to inflammatory disease across tissues. In 713 

the process, we created the first single-cell reference atlas of fibroblast heterogeneity to unify fibroblast research 714 

and prevent a babelesque sprawl of fibroblast names across disciplines. Finally, we have proposed an analytical 715 

pipeline for studying shared pathological processes across diseases that can readily be applied to all cell types 716 

and tissues.  717 

  718 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426253doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426253


 
Acknowledgements 719 

We thank David Lee for having the vision and organizing this Roche network to study stromal biology across 720 

tissues. K.W. is supported by a NIH-NIAMS Clinical Investigator Award (1K08AR077037-01) and a BWH 721 

Department of Medicine Innovation Evergreen Award. B.A.F and S.J.B. have received support from the National 722 

Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and the NIHR/Wellcome Trust 723 

Birmingham Clinical Research Facility. S.R. is supported by funding from the National Institutes of Health 724 

(U19AI111224, U01 HG009379, and R01AI049313). K.R. is supported by the NIHR Birmingham 725 

Biomedical Research Centre. 726 

  727 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426253doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426253


 
Author contributions 728 

I.K., K.W., and M.P. conceptualized study and co-wrote manuscript under supervision of S.R., M.B.B., 729 

C.D.B., and F.P.. I.K. and J.B.K. performed analyses. K.W., M.P., E.Y.K., M.F., J.T., and S.N. 730 

performed experiments. E.Y.K., .A.F., K.R., F.B., B.A.F., S.J.B., C.D.B., and A.P.C. performed sample 731 

acquisition. All authors discussed results and commented on manuscript.   732 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426253doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426253


 
Declaration of Interests 733 

The authors have no declarations of interest to report. 734 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426253doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426253


 
  735 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426253doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426253


 
Data Statement 736 
All FASTQ files and gene count matrices will be made available on NIAID ImmPort servers upon publication.   737 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426253doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426253


 
 738 

Figure Legends 739 

Figure 1. scRNAseq profiles of intestine, lung, salivary gland, and synovium. (a) Surgical samples were 740 

collected from intestine, lung, salivary gland, and synovium, from patients with inflammatory-disease and 741 

appropriate controls. After tissue disaggregation, all cells from lung and salivary gland and CD45-EpCAM- cells 742 

from synovium and intestine were profiled with scRNAseq and (b) analyzed to identify fibroblasts and other 743 

major cell types. (c) Cell type annotation was performed with known markers for each major population.  744 

 745 

Figure 2. Fibroblast heterogeneity within tissues. (a) We analyzed fibroblasts separately from each tissue 746 

to identify tissue-specific subsets described in previous single-cell studies. Each panel shows a UMAP 747 

representation of fibroblasts from one tissue, labeled with clustering and marker analysis. (b) All (n=7,380) 748 

genes nominally upregulated in any cluster were plotted in a heatmap. Color denotes the log fold change, 749 

normalized by estimated standard deviation, of a gene in a cluster (versus other clusters in that tissue). Top 750 

genes for each cluster were named above the heatmap. Each row denotes a fibroblast cluster, colored by the 751 

tissue in which it was identified. (c) To compare the expression profiles of clusters across tissues, we correlated 752 

the expression values from (b) for all pairs of clusters. Here, color denotes Pearson’s correlation coefficient. (d) 753 

One highly correlated pair of clusters from salivary gland (x-axis) and synovium (y-axis) represented by scatter 754 

plots of (differential) gene expression. Blue genes are shared by the two clusters, while red genes are unique 755 

to one cluster.  756 

 757 

Figure 3. Integrative clustering and differential expression across tissues. (a) We developed a pipeline to 758 

integrate samples from multiple donors and multiple tissues with unbalanced cell numbers. The pipeline starts 759 

with gene selection, pooling together genes that were informative in single-tissue analyses. With these genes, 760 

we performed weighted PCA, reweighting cells to computationally account for the unbalanced dataset sizes 761 

among the tissues. These PCs are adjusted with a novel formulation of the Harmony integration algorithm and 762 

used to perform graph-based clustering. We applied this pipeline to all fibroblasts across tissues. (b) The 763 

integrated UMAP projection shows cells from all tissues mixed in one space. For clarity, we down-sampled each 764 

tissue to the smallest tissue, the lung, choosing 1,442 random fibroblasts from intestine, synovium, and salivary 765 
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gland. (c) Graphed-based clustering proposed 14 fibroblast clusters in the integrated embedding. (d) Gene-766 

level analysis to find upregulated marker genes for clusters was done with hierarchical regression, to model 767 

complex interactions between clusters and tissues. This strategy distinguishes cluster marker genes that are 768 

(e) tissue-specific, such as MYH11 in C13, from those that are (f) shared among tissues, such as ADAM12 in 769 

C14. Points denote log fold change (cluster vs other fibroblast) and error bars mark the 95% confidence interval 770 

for the fold change estimate. (g) The number of shared genes for each cluster, ranked from most to least, 771 

prioritizes clusters with large evidence of shared gene expression (in red) from those with little (in black). Marker 772 

genes for the 5 shared clusters plotted in a heatmap. Each block represents the (differential) gene expression 773 

of a gene (column) in a cluster, for a tissue (row).  774 

 775 

Figure 4. Sample level inflammation scores. We computed the relative abundance of CD45+ immune cells 776 

to all cells in each sample. (b) We standardized these frequencies across tissues into an inflammation score 777 

that ranges from 0 to 1 and removes distributional differences. (c) Association analysis results between 778 

fibroblast cluster abundance and standardize inflammation scores. Here, each point represents the log fold 779 

change in fibroblast cluster abundance with increasing inflammation and the line represents that point’s 95% 780 

confidence interval. Red denotes estimates with one-tailed FDR<5%. (d) The tissue specific results were 781 

summarized using meta-analysis. (e) For CXCL10+CCL19+ (C11) and SPARC+COL3A1+ (C4) fibroblasts, 782 

scatterplots relating to standardized inflammation scores (x-axis) to relative fibroblast frequency (y-axis).  783 

 784 

Figure 5. Distinct gene expression profiles for CXCL10+CCL19+ and SPARC+COL3A1+ states. (a) 785 

Comparison of differential gene expression between CXCL10+CCL19+ and SPARC+COL3A1+ fibroblasts shows 786 

that these two inflammation-expanded clusters are characterized by distinct genes. Top 10 markers for each 787 

cluster are named. (b) Gene set enrichment analysis with Gene Ontology and MSigDB Hallmark pathways 788 

shows distinct functions for the C4 (orange) and C11 (lime) states. These states may be explained by response 789 

to distinct sets of signaling molecules: inflammatory cytokines for C4 (brown) and tissue modeling morphogens 790 

for C11 (tan). Heatmap shows normalized enrichment scores from GSEA, focusing on only positive enrichment 791 

for clarity. (c) Ligand receptor analysis of endothelial cell crosstalk with fibroblast populations. Each column is 792 

a putative ligand receptor cognate pair, faceted by fibroblast subtype. Y-axis represents the strength of the 793 
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putative crosstalk, while color denotes direction of interaction: (blue) endothelial ligand to fibroblast receptor or 794 

(red) fibroblast ligand to endothelial receptor.  795 

 796 

Figure 6. Dermal fibroblast scRNAseq profiles mapped to cross-tissue fibroblast atlas. (a) To validate 797 

our results, we mapped scRNAseq profiles of dermal fibroblasts from lesion biopsies from atopic dermatitis (AD) 798 

patients, non-lesional biopsies from AD patients, and control skin biopsies from healthy donors. (b) Based on 799 

the relative frequency of immune cells in each biopsy, we computed standardized inflammation scores from 0 800 

to 1. (c) We mapped dermal fibroblasts to our fibroblast atlas and (d) labeled dermal fibroblasts according to 801 

their most similar atlas cluster. (e) We confirmed that the gene expression profiles of inferred dermal fibroblast 802 

clusters correlated with expression profiles of their reference fibroblast clusters. This is demonstrated for 803 

clusters C4 and C11 by plotting the (differential) gene expression in dermal (x-axis) vs reference (y-axis) clusters 804 

and calling out the top marker genes identified in the reference clusters. (f) Only CXCL10+CCL19+ (C11) 805 

fibroblast frequency was significantly (FDR<5%) associated with dermal inflammation. (g) Cells from skin with 806 

lesions (blue) had considerably less evidence of vasculature, measured by the abundance of perivascular mural 807 

cells and vascular endothelial cells. (h) Relative abundance of mural and endothelial cells was most strongly 808 

associated with cluster C4. Red denotes one-tailed FDR<5%.  809 

 810 

Figure 7. Replication in disease models of pulmonary, intestinal, and synovial inflammation. (a) We 811 

collected studies of inflammation in mouse models of human disease: bleomycin induced ILD, DSS-induced 812 

colitis, and serum transfer arthritis. (b) Fibroblasts from each study were mapped to the human fibroblast atlas 813 

and labeled with their most closely mapped clusters. (c) Frequencies of the human inflammatory states C4 and 814 

C11 in each study sample, colored to denote samples from animals with high (red) and low (black) inflammation. 815 

(d) Gene set enrichment analysis with modules associated with early, acute, and recovery phases of DSS-816 

induced colitis shows that C4 and C11 gene signatures are activated at distinct stages of inflammation. (e) Time 817 

course expression profiles of key C4 and C11 marker genes that overlap with the early (yellow) and acute 818 

(orange) phase associated modules. Dotted line denotes timepoint (day 7) at which DSS was removed from 819 

mice.  820 

 821 
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Supplementary Figure 1. scRNAseq profiles of intestine, lung, salivary gland, and synovium. (a) Flow 822 

sorting synovial and intestinal surgical samples to enrich for live (FVD-), EpCAM-CD45- stromal cells. Cell level 823 

quality control summaries for scRNAseq libraries, represented with density plots of (b) percentage of 824 

mitochondrial reads and (c) the number of unique genes in a cell. (d) percentage of cells that were inferred to 825 

be doublets, of those that passed QC filtering (%MT≤	20, nGene≥500). (e) Number of stromal and non-stromal 826 

cells identified in each tissue.  827 

 828 

Supplementary Figure 2. Labeling of previously defined fibroblast subtypes in each tissue. Heatmaps 829 

represent the differential expression (one cluster vs all other clusters) z-scores of markers previously associated 830 

with published fibroblast subtypes in (a) synovium, (b) salivary gland, (c) intestine, and (d) lung. Columns 831 

(genes) colored by the fibroblast subtypes they are associated with.  832 

 833 

Supplementary Figure 3. Integrated cross-tissue fibroblast reference atlas. (a) Breakdown of variance 834 

captured in the first 10 principle components for unweighted PCA and weighted PCA shows that weighted PCA 835 

creates a more balanced embeddings among tissues. (b) Before Harmony integration, UMAP embedding of 836 

fibroblasts separates entirely by tissue. (c) Within each tissue, there is substantial separation by donor, denoted 837 

by a different hue of the corresponding tissue’s color. UMAP coordinates are the same as in (b), zoomed in to 838 

focus on each tissue separately. (d) After Harmony integration, the clusters identified in tissue-specific analyses 839 

are still separated, suggesting that the Harmony embedding preserves within tissue variation. (e) Relative 840 

abundance integrative fibroblast clusters within each tissue.  841 

 842 

Supplementary Figure 4. Inflammation scores. Comparison of differential abundance analysis using raw 843 

tissue-specific scores (x-axis) and normalized cross-tissue scores (y-axis). Error bars denote 95% confidence 844 

intervals.  845 

Supplementary Figure 5. Correspondence analysis. (a) We associated cluster identity derived in single-846 

tissue analyses (columns) to cluster identity derived in the integrative clustering analysis (rows). Color denotes 847 

(scaled) log odds from logistic regression. (b) Gene expression fold change of genes associated with 848 
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myofibroblast lineage in cluster C13 (vs other clusters). (c) Same, for genes associated with bone and cartilage 849 

repair.  850 

 851 

Supplementary Figure 6. Dermal fibroblast scRNAseq profiles mapped to cross-tissue fibroblast atlas. 852 

(a) UMAP embedding of scRNAseq profiles of skin biopsies, colored by major cell types, using (b) canonical 853 

markers: KRT15+ epithelial cells, COL1A1+ fibroblasts, PROX1+ lymphatic endothelial cells, MLANA+ 854 

melanocytes, C1QB+ myeloid cells, ACTA2+ mural cells, CD3G+ T cells, and ACKR1+ vascular endothelial 855 

cells. (c) Correlation of gene expression profiles of dermal fibroblast clusters (y-axis) against reference clusters 856 

in multi-tissue atlas (x-axis). Color denotes Pearson’s correlation coefficient. (d) Differential abundance of 857 

mapped dermal fibroblast clusters with inflammation score, with 95% confidence intervals. Red denotes 858 

FDR<5%.  859 

 860 

Supplementary Figure 7. Replication in disease models. (a) UMAP embedding of mouse scRNAseq libraries 861 

from CD45- sorted colon samples, unsorted synovial samples, and Col1a1+ sorted lung samples, colored by 862 

major cell types, identified with (b) canonical markers: Cdh5+ vascular endothelial cells, Col1a1+ fibroblasts, 863 

Lyve1+ lymphatic endothelial cells, Mcam+ mural cells, Myh11+ myofibroblasts, Ki67 proliferating cells, and 864 

Ptprc+ immune cells. (c) Relative abundance of inferred fibroblast clusters in each mouse dataset. (d) 865 

Comparison of mouse cluster gene expression profiles (y-axis) to human reference cluster profiles (x-axis). 866 

Heatmap color denotes Pearson’s correlation coefficient. Columns and rows are colored first by cluster identity 867 

and then by tissue. (e) Differential abundance of mapped mouse fibroblast clusters in case vs control mouse 868 

samples, with 95% confidence intervals. Red denotes FDR<5%.  869 

 870 

Supplementary Table 1. Clinical characteristic for synovial tissue samples. Columns denote unique sample ID 871 

for each sample, clinical diagnosis, sex, age (in years), anatomical joint of surgical sample, and seropositivity 872 

status.  873 

Supplementary Table 2. Clinical characteristic for lung tissue samples. Columns denote unique sample ID for 874 

each sample, clinical diagnosis, age (in years), sex, and serology.  875 
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Supplementary Table 3. Clinical characteristic for salivary gland tissue samples. Columns denote unique 876 

sample ID for each sample, sex, clinical diagnosis, presence or absence of anti-Ro antibodies, focus score, and 877 

free-text histology notes.  878 

Supplementary Table 4. Clinical characteristic for intestine tissue samples. Columns denote unique sample ID 879 

for each sample, corresponding donor ID for repeat samples, histological status, year of birth, sex, Nancy score, 880 

and anatomical location of biopsy.  881 

Supplementary Table 5. Cluster marker statistics for fibroblast cluster in single-tissue analyses. 882 

LogFoldChange is the differential expression of the gene (Feature) in the cluster (Cluster) against the mean of 883 

the remaining clusters within the tissue. Sigma is the estimated standard deviation around the log fold change 884 

statistic. Zscore is the standardized log fold change, divided by Sigma. Pval is the one tailed p value for the 885 

corresponding z score.  886 

Supplementary Table 6. Association of inflammation score with pseudobulk fibroblast profiles. Columns same 887 

as in Supplementary Table 4, except for Slope, since inflammation score is a continuous and not a categorical 888 

covariate.  889 

Supplementary Table 7. Cluster marker statistics for fibroblast subtypes defined in integrated analysis. 890 

Columns same as in Supplementary Table 4.  891 

Supplementary Table 8. Gene set enrichment analysis of integrated fibroblast cluster markers. Columns are 892 

standard output of fgsea function. Pval is the nominal p value, padj is the adjusted p value, ES is the raw 893 

enrichment score, NES is the normalized enrichment score, nMoreExtreme is the number of more extreme 894 

observations in permutation tests, size is number of genes in the pathway, leadingEdge is the set of genes that 895 

contribute to the enrichment score.  896 

Supplementary Table 9. Cluster marker statistics for dermal fibroblast subtypes. Columns same as in 897 

Supplementary Table 4.  898 

Supplementary Table 10. Cluster marker statistics for mouse synovium, lung, and intestine fibroblast subtypes. 899 

Columns same as in Supplementary Table 4.  900 

Supplementary Table 11. Gene set enrichment analysis of integrated fibroblast cluster markers. Columns 901 

same as in Supplementary Table 8.   902 
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STAR Methods 903 

Human research and sample acquisition 904 

Synovial study samples for transcriptomic studies were obtained from Brigham and Women’s Hospital, Hospital 905 

for Special Surgery, and the University of Birmingham under IRB-approved protocols. Synovial tissue from 906 

patients with clinically diagnosed rheumatoid arthritis were obtained from ultrasound-guided joint biopsy 907 

(University of Birmingham) or arthroplasty or synovectomy procedures (Brigham and Women’s Hospital and 908 

Hospital for Special Surgery). For arthroplasty and synovectomy tissue samples, the diagnosis of rheumatoid 909 

arthritis was confirmed clinically through clinical chart review. Synovial tissue from patients with osteoarthritis 910 

were obtained from arthroplasty procedures. Synovial tissues were cryopreserved on-site in Cryostor CS10, 911 

then shipped to BWH under a BWH IRB-approved protocol PROSET for tissue dissociation and single-cell 912 

transcriptomic analysis.  913 

Intestinal samples were obtained from Ulcerative colitis (UC) or from healthy individuals by endoscopic 914 

biopsy. Healthy patients were recruited as a part of the research tissue bank ethics 16/YH/0247 and 915 

Inflammatory Bowel Diseases (IBD) patients among the Inflammatory Bowel Cohort 09/H1204/30 by the 916 

Translational Gastroenterology Unit Biobank at the John Radcliffe Hospital in Oxford. All patients gave informed 917 

consent and collection was approved by NHS National Research Ethics Service. Samples were immediately 918 

placed on ice (RPMI1640 medium) and processed within 3 hours.  919 

Labial minor salivary gland samples were obtained from patients recruited in the Optimising Assessment 920 

in Sjögren’s Syndrome (OASIS) cohort (Machowicz et al., 2020) which recruits new patients attending the 921 

multidisciplinary Sjögren’s clinic at the Queen Elizabeth Hospital Birmingham, UK for assessment. Sjögren’s 922 

syndrome patients had a physician diagnosis of primary Sjögren’s syndrome and fulfilled the 2016 ACR/EULAR 923 

classification criteria. Participants with non-Sjögren’s sicca syndrome had signs and/or symptoms of dryness 924 

but did not have a physician diagnosis of SS or fulfill 2016 classification criteria. Salivary gland biopsy samples 925 

were divided in two: one for the scRNAseq study and the second for histological analysis to confirm diagnosis. 926 

Histological diagnosis is summarized in Supplementary Table 3 and reported as presence of focal lymphocytic 927 

sialadenitis (FLS, suggestive of Primary Sjögren’s Syndrome, PSS) or non-specific chronic sialadenitis (NSCS), 928 

in the case of non-Sjögren’s sicca syndrome. Focus score (FSC, number of inflammatory foci/4mm2 of tissue) 929 
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is also reported in Table 1. All OASIS participants provided written informed consent and the study was 930 

approved by the Wales Research Ethics Committee 7 (WREC 7) formerly Dyfed Powys REC; 13/WA/0392. 931 

     Lung samples were obtained from patients recruited at the Brigham and Women’s Hospital with 932 

informed consent under protocols approved by the Mass General Brigham IRB (PROSET). As enumerated in 933 

Supplementary Table 2, samples coded Lung1-15 (control donor lung, IPF, Rheumatoid Arthritis [RA]-ILD) were 934 

explants from lung transplant surgery. Samples coded Lung 16-23 (unclassifiable (u)ILD, IPF, NSIP) were from 935 

Video-assisted thoracoscopic surgical (VATS) lung biopsies for diagnosis of ILD. The patient condition is the 936 

diagnosis determined by clinical providers after their inter-disciplinary review of patient history, exam, clinical 937 

laboratory testing (e.g., serologies), imaging and histopathology of the explanted or biopsied lung tissue. The 938 

presence or absence of anti-CCP antibodies is noted.  939 

 Cell isolation for single-cell RNA-sequencing. 940 

Synovial tissues were cryopreserved on site, thawed and disaggregated into single-cell suspension as 941 

previously described (Donlin et al., 2018). Four pairs of intestinal biopsies were pooled, minced and frozen in 942 

1mL of CryoStor® CS10 (StemCell Technologies) at -80°C then transferred in LN2 within 24 hours. Single-cell 943 

suspensions from these endoscopic biopsies were then prepared by thawing, washing and subsequent mincing 944 

of the tissue using surgical scissors. Minced tissue was then subjected to rounds of digestion in RPM-1640 945 

medium (Sigma) containing 5% Fetal Bovine Serum (FBS, Life Technologies), 5mM HEPES (Sigma), antibiotics 946 

as above, and Liberase TL (Sigma), with DNAse I. After 30 minutes, digestion supernatant was taken off, filtered 947 

through a cell strainer, spun down, and resuspended in 10ml of PBS containing 5% BSA and 5mM EDTA. 948 

Remaining tissue was then topped up with fresh digestion medium until no more cells were liberated from the 949 

tissue. Cells were then stained and FACS-sorted for live EPCAM-CD45- cells, before being taken for microfluidic 950 

partitioning.  951 

Lung tissues were cryopreserved on site, thawed and disaggregated into single-cell suspension. Each 952 

lung tissue was frozen in 1mL of CryoStor CS10 in -80°C with a controlled rate of freezing and then transferred 953 

to LN2 within two weeks. On the day of single-cell analysis, the cryopreserved lung tissue was rapidly thawed, 954 

serially rinsed with DMEM (GIBCO) supplemented with 10% FBS and then DMEM with 2% FBS on ice. Lung 955 

tissue was minced using surgical scissors and then transferred to a polypropylene tube with digestion media 956 

containing Liberase TL, hyaluronidase (Worthington Biochemical Corporation), Elastase (Worthington 957 
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Biochemical Corporation), DNAse (Sigma) and 1% FBS. The addition of FBS improved cell viability without 958 

reducing yield of viable stromal cells. After 20 minutes of incubation at 37°C warm room with agitation by stir 959 

bar, the supernatant containing single cells was collected, and fresh digestion media was added. After 20 960 

minutes of addition digestion, the tissue and supernatant were filtered through a 70 micron cell strainer and 961 

washed in DMEM with 2% FBS twice. Dead cells were removed using a magnetic column based method per 962 

manufacturers protocols (Dead Cell Removal kit, Miltenyi Biotec). Then single cells were taken for microfluidic 963 

partitioning. 964 

Minor salivary gland biopsies were taken surgically from the lip and frozen in 1mL of CryoStor® CS10 965 

(StemCell Technologies) at -80°C. For preparation of single-cell suspension, firstly the frozen tissue sample in 966 

Cryotube were quickly thawed in water bath at 37°C and washed twice in pre-warmed 5%FBS RPMI media. 967 

The salivary gland biopsies were then enzymatically digested as previously described (PMID: 31213547). Dead 968 

cells were removed using the EasySepTM Dead Cell Removal (Annexin V) kit from the digested samples 969 

following manufacturer’s instructions before proceeding for the scRNA sequencing using the 10x platform. 970 

RNA-sequencing.  971 

Single-cell RNA-sequencing experiments for lung, intestine, and synovium samples were performed through 972 

the Brigham and Women’s Hospital Single Cell Genomics Core. Viable cells in single-cell suspension were 973 

resuspended in 0.4% BSA in PBS at a concentration of 1,000 cells per ul. 7,000 cells were loaded onto a single 974 

lane (Chromium chip, 10X Genomics) followed by encapsulation in lipid droplet, with the 10x Genomics Single-975 

Cell 3’ kit (Version 2 for synovium and intestine, Version 3 for lung) followed by cDNA and library generation 976 

per manufacturer protocol. cDNA libraries were sequenced to an average of 50,000 reads per cell using Illumina 977 

Nextseq 500. Single-cell RNA-sequencing experiments for salivary gland samples were performed at Oxford 978 

University. For each library, 10,000 cells were counted using the automated cell counter Bio-Rad TC20 and 979 

loaded onto a single 10x lane and processed with the 10x Genomics Single Cell 3’ kit (Version 3). Sequencing 980 

was done using Illumina NovaSeq 6000 and libraries were sequenced to a minimum of 50000 reads/cell. 981 

scRNAseq gene quantification.  982 

For all scRNAseq datasets analyzed in this manuscript, we quantified gene expression ab initio from FASTQ 983 

files. Human reads were mapped to the GRCh38 (Schneider et al., 2017) reference and genes annotated with 984 

Gencode (Frankish et al., 2019) v33. Mouse reads were mapped to mm10 reference and genes annotated with 985 
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Gencode v25. For both human and mouse data, we filtered transcripts for the annotation “protein_coding” and 986 

ignored the rest. Reads from distinct transcripts of the same gene were collapsed by summation. We used 987 

kallisto (Bray et al., 2016) v0.46.0 to map reads to transcriptomes and bustools (Melsted et al., 2019) v0.39.3 988 

to collapse duplicate reads by UMI and return gene-cell count matrices. We downloaded read level data for the 989 

following publicly available scRNAseq datasets: PRJNA614539 (He et al., 2020) (atopic dermatitis), 990 

PRJNA542350 (Kinchen et al., 2018) (DSS model), and PRJNA548947 (Tsukui et al., 2020) (Bleomycin model). 991 

After contacting the authors, the PRJNA542350 data turned out to be BAM files rather than FASTQ. Per their 992 

suggestion, we used the 10X Cell Ranger (Zheng et al., 2017) bamtofastq utility (version 1.3.2), with default 993 

parameters, to convert the BAMs back into FASTQs for remapping. doc. The code to perform all steps of this 994 

mapping are implemented as functions in the github repository for this manuscript.  995 

scRNAseq quality control, pre-processing, and normalization.  996 

After quantifying gene count matrices with kallisto and bustools (above), we filtered out poor quality cells with 997 

three metrics. (1) Cells must have at least 500 unique genes. (2) Cells must have more than 20% of the total 998 

UMIs mapped to non-mitochondrial genes. (3) Cells must be inferred as singlets by algorithmic doublet 999 

identification. For doublet identification, we used the scDblFinder algorithm(Germain, 2020), with default 1000 

parameters, separately within each 10X library. We normalized for read depth with the standard logCP10K 1001 

normalization procedure for gene 𝑔 and cell 𝑖: 𝑌TU = log V1 + 10K ×
XYZ

∑ X\Z\
	].	 1002 

Inflammation score normalization across tissues.  1003 

Inflammation scores computed within each tissue had ranges and distributions. To be able to compare 1004 

inflammation associated phenotypes across tissues, we normalized the distributions by performing quantile 1005 

normalization. Because the number of samples was relatively small, we did not use an empirical distribution. 1006 

Instead, we normalized to the quantiles of a parametric distribution. We chose the beta distribution (𝛼 = 3, 𝛽 =1007 

3) to map the scores to an interpretable interval, between 0 (low inflammation) and 1 (high inflammation).  1008 

Gene selection 1009 

For analyses with one tissue, we used the VST method for variable gene selection, reimplemented from the 1010 

Seurat package (Butler et al., 2018) as a stand along function in our github at 1011 

immunogenomics/singlecellmethods. We used default parameters and kept the top 2000 genes, ranked by 1012 

standardized variance. For the multi-tissue integrated analysis, we used genes that we found informative in at 1013 
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least one of the tissue-specific analyses of lung, salivary gland, intestine, and synovium. We defined informative 1014 

genes with two analyses. The first analysis is differential expression of cluster-markers for tissue-specific 1015 

fibroblast subtypes (Figure 4a). We kept cluster-informative genes with 𝑝 < 0.05	and |𝛽| ≥ 0.5. The second 1016 

analysis found broadly inflammation associated genes by fitting a Poisson log-normal GLMMs to each gene. 1017 

We kept inflammation associated genes with 𝑝 < 0.05	and |𝛽| ≥ 0.1. 1018 

Weighted PCA.  1019 

We implemented principle components analysis that gives equal weight to each tissue while preserving the total 1020 

cell number (∑ 𝑤UU = 𝑁). The weights given to each cell were determined to meet this equal weight condition. 1021 

These weights were then used in the scaling and SVD steps. For scaling, we computed weighted means and 1022 

variance with the following formulas: 𝜇T =
∑ bZcYZZ

d)2
, 𝜎T* =

∑ bZfcYZ)gYh
i

Z

d)2
. For SVD, we modified the PCA 1023 

covariance decomposition formula to allow for observation weights with a diagonal matrix 𝑊:	𝑋𝑊𝑋m = 𝑈𝐷𝑈m. 1024 

This decomposition is achieved by performing SVD on the weighted matrix 𝑋𝑊2/*	 = 𝑈𝐷𝑉m. Because 𝑊 is 1025 

diagonal, its square root is the element-wise square root. This SVD solution now represents the original data 1026 

as 𝑋 = 𝑈𝐷𝑉m𝑊)2/*, with gene loadings 𝑈 and cell embeddings 𝑉m𝑊)2/*. Weighted PCA is implemented on 1027 

our github at immunogenomics/singlecellmethods with the weighted_pca function.  1028 

Weighted Harmony.  1029 

We modified the Harmony algorithm to include observation weights. To achieve this, we modified the clustering 1030 

objective function and rederiving the optimization steps for this function. The new objective function modifies 1031 

the original only by multiply the per-cell cost (inside the summation) by 𝑤U: mint,u
∑ 𝑤U[𝑅vU2(1 − 𝑌vm𝑍U) +U,v1032 

𝜎𝑅vU log𝑅vU] + 𝑤U z𝜎𝜃𝑅vU log V
|}Z
~}Z
] 𝜙U�. The rest of the formula is unchanged and described in detail in the 1033 

original Harmony manuscript (Korsunsky et al., 2019). This modified Harmony implementation is available on 1034 

our github at immunogenomics/harmony, under the weights branch.  1035 

UMAP visualization.  1036 

We used the UMAP algorithm to visualize cells in two dimensional embeddings. We used the uwot R package 1037 

(Melville, 2020) with parameters n_neighbors=30L, metric=’Euclidean’, init=’Laplacian’, spread=0.3, 1038 

min_dist=0.05, set_op_mix_ratio=1.0, local_connectivity=1L, repulsion_strength=1, and 1039 

negative_sample_rate=1. For all other parameters, we used default values. In the symphony pipeline, we 1040 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426253doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426253


 
visualized mapped query cells by using the UMAP object learned for the reference analysis. The umap reference 1041 

projection was done with the umap_transform function in uwot.  1042 

 1043 

Clustering.  1044 

We performed graph based clustering with the Louvain algorithm (Blondel et al., 2008), implemented in Seurat 1045 

(Butler et al., 2018). Instead of constructing the kNN and sNN graphs from scratch, we used the uniform manifold 1046 

graph estimated in the UMAP algorithm. In the uwot package(Melville, 2020), this data structure is directly 1047 

available in the fgraph field when umap is run with option ret_extra = c('fgraph').  1048 

Hierarchical gene expression modeling.  1049 

Statistical model. We modeled the expression of each gene using Poisson lognormal GLMM regression. This 1050 

framework allows us to model the hierarchical design in our multi-tissue, multi-donor dataset. We fit the following 1051 

GLMM for the integrated, multi-tissue analysis, regressing to the frequency of gene 𝑔 in observation 𝑖.  1052 

log 𝜇TU ~𝛽� +	𝛽������� + 𝛽����� + 𝛽�����:������� + 𝛽mU���� + 𝛽mU����:������� + 𝑜𝑓𝑓𝑠𝑒𝑡(log�𝑈�U
�

) 1053 

We chose to model the cluster interaction terms with donor and tissue. As many papers have observed 1054 

(Haghverdi et al., 2018; Korsunsky et al., 2019), the effect of biological and technical covariates are often cell 1055 

type specific. This is why integration algorithms cannot adjust every cell type by the same amount to account 1056 

for batch, donor, or tissue variability. Unfortunately, the absence of some donors and tissues in some clusters 1057 

means that interaction terms may be very poorly estimated. To address this issue, we model all terms except 1058 

for the global intercept (𝛽�) with Gaussian priors, allowing each effect to have a different size, denoted by 𝜏*, 1059 

the variance of the priors. These priors shrink 𝛽s towards zero, stabilizing estimation for terms with little data to 1060 

draw from.  1061 

We performed cluster marker analysis with the estimated 𝛽s, estimating both marginal effects and 1062 

tissue-specific effects. Marginal cluster effects are only concerned with the 𝛽������� term. For instance, the 1063 

differential expression for cluster 3 is 𝛽��M −
2

�)2
× (𝛽��2 + 𝛽��* + 𝛽��K + ⋯+ 𝛽���). This comparison can be 1064 

compactly represented with the contrast vector Δ = [− 2
�)2

, − 2
�)2

, 1, − 2
�)2

, … ,− 2
�)2

] such that the differential 1065 

expression can be computed with the linear operation 𝛽��M��~ = Δ𝛽�������. Following the example of significance 1066 

testing in DESeq2, the standard errors of contrasts are in the diagonal elements of √ΔΣΔ�, in which Σ is the 1067 
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covariance matrix of 𝛽 levels. In our example, Σ is a cluster by cluster covariance matrix and the standard error 1068 

for cluster 3 would be 𝜎��M��~ = �ΔΣ�������ΔmM,M. There is generally no analytical way to compute Σ for random 1069 

effects, so we estimate it with simulation, using the arm R package(Gelman and Su, 2020), with 1000 1070 

simulations. Tissue-specific cluster effects take into account both the cluster and tissue-cluster interaction term. 1071 

For instance, if we wanted to know how a gene is associated with cluster 3 in the lung, we would compute 1072 

𝛽��M,m����T��~ = 𝛽��M −
2

�)2
× (𝛽��2 + 𝛽��* + 𝛽��K + ⋯+ 𝛽���) + 𝛽��M,m����T −

2
�)2

× f𝛽��2,m����T +1073 

𝛽��*,m����T + 𝛽��K,m����T + ⋯+ 𝛽���,m����Th. The contrast vector now includes terms that represent the 𝛽s 1074 

estimated for lung tissue as well. The statistical procedures to compute 𝛽��M,m����T��~  and 𝜎��M,m����T��~  are the 1075 

same as before. For both marginal and tissue-specific effects, we use a Gaussian approximation to estimate p 1076 

values for each effect: 𝛽��~~𝑁(Δ𝛽, ΔΣ�������Δm).  1077 

Implementation. We fit GLMMs with the glmer function in the lme4 R package (Bates et al., 2015) and 1078 

estimated random effect covariance with the sim function in the R arm package(Gelman and Su, 2020). Initially, 1079 

we found it difficult to tie model fitting and simulation seamlessly with differential expression analysis. For 1080 

instance, building contrasts for nested effects and estimating significance for multiple gene queries was difficult 1081 

to do. Moreover, the memory footprint of lme4 models makes it impractical to fit and save models for 1000s of 1082 

genes for downstream inference. To make lme4 and arm more accessible for gene expression analysis, we 1083 

created the Presto package. Presto extracts the necessary components from lme4 models, saves them in 1084 

efficient data structures, and has all necessary functions to do efficient contrast analysis for differential 1085 

expression. We made Presto available as an R package, available on github at immunogenomics/presto under 1086 

the GLMM branch.  1087 

To make the models more numerically stable, we enforced a minimum value for the size of random 1088 

effects: 𝜎 ≥ 0.5. This prevented degenerate solutions with 𝜎 = 0, local minima which may arise in GLMM 1089 

optimization. As a side effect, this Bayesian variance prior also enforces a conservative null model on random 1090 

effects, effectively setting the null effect size to 0.5 rather than 0. This results in higher estimated uncertainty 1091 

thus more conservative p values. In developing this software, QQ plot analysis was deflated and resembled 1092 

post-hoc adjusted (e.g. Bonferroni) p values more than nominal p values from independent tests. Others have 1093 

noted a similarity between post hoc correction and shrinkage integrated into the model (Gelman et al., 2012). 1094 
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For our analyses, we consider significance with respect to these shrunken p values, estimated with random 1095 

effects, without doing additional post hoc shrinkage.  1096 

 We made two decisions to make Presto scale to large datasets. First, we fit the model with pseudobulk, 1097 

rather than single-cell RNAseq profiles. Note that in the formula above, the cluster, tissue, and donor covariates 1098 

are not unique to single cells. Therefore, we collapse reads from cells with same cluster, donor, and tissue 1099 

identity into one observation. This approach has strong precedent(Lun and Marioni, 2017). It is important to 1100 

note that in this strategy, the number of parameters to estimate is equal to the number of observations. With 1101 

fixed effects, this model is under-determined. However, because we shrink estimates to 0 with Gaussian priors, 1102 

the effective number of independent parameters shrinks too. The second decision is with the choice of 1103 

generative model. Many RNAseq differential expression tools used the Negative Binomial distribution, which 1104 

uses Gamma rather than lognormal priors to model over-dispersion. For completeness, we also included 1105 

negative binomial GLMMs in Presto. In practice, we found that this error model yielded almost identical results 1106 

but took ten times longer to run.  1107 

Tissue heterogeneity. We took a very simple approach to labeling genes as conserved or heterogeneous 1108 

cluster makers. Conserved markers were significantly (𝑝 < 0.05) overexpressed (𝛽 > 0) in all four tissues. If a 1109 

gene was not upregulated in at least one tissue, we considered it to be a heterogeneous marker. Effect 1110 

heterogeneity has a rich statistical treatment, especially in meta-analysis. We decided to not use these more 1111 

sophisticated techniques, although the parameters learned in Presto could be used for such analyses.  1112 

Analyses. To find marker genes for dermal fibroblasts, we fit the same model as above but omitted the Tissue 1113 

terms: log 𝜇TU ~𝛽� +	𝛽������� + 𝛽����� + 𝛽�����:������� + 𝑜𝑓𝑓𝑠𝑒𝑡(log ∑ 𝑈�U� ). For the mouse scRNAseq analyses, 1114 

we used the same hierarchical formula with all Tissue terms.  1115 

Pathway analysis.  1116 

All formal geneset enrichment was done with the GSEA algorithm, implemented in the fgsea R 1117 

package(Sergushichev, 2016). To enrich pathways for marker analyses (Figure 5d), we used the H (hallmarks) 1118 

and C5 (Gene Ontology) genesets from MSigDB, accessed with the msigdbr R package(Dolgalev, 2018). To 1119 

enrich for different phases of inflammatory response in DSS-induced colitis (Figure 7e), we used the published 1120 

genesets, provided as supplemental materials in the manuscript (Czarnewski et al., 2019).  1121 
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Abundance modeling  1122 

We associated inflammation score with cluster abundance using logistic regression, following the MASC method 1123 

(Fonseka et al., 2018), with the following formula: log � 	(��������v)
� 	(�������¡v)

~1 + 𝑆𝑐𝑜𝑟𝑒 + (1|𝐿𝑖𝑏𝑟𝑎𝑟𝑦) + (𝑀𝑇 +1124 

𝐷𝑆|𝐿𝑖𝑏𝑟𝑎𝑟𝑦𝐼𝐷). As in MASC, the response variable models the log odds of being in cluster 𝑘 vs not, to test for 1125 

which factors contribute to cluster 𝑘 abundance. This probability is a function of (1) an intercept, which reflects 1126 

the average abundance of cluster 𝑘 in the data, (2) fixed effect for 𝑆𝑐𝑜𝑟𝑒, the normalized inflammation score for 1127 

each sample, (3) random effect for 10X library, to account for dependence of cells within a library, and (4) cell 1128 

quality statistics 𝑀𝑇 (percent mitochondrial reads) and 𝐷𝑆 (doublet score), separately within each library. The 1129 

association between inflammation and cluster abundance is captured in the 𝛽 statistic. We computed 1130 

significance for each 𝛽 with the following Gaussian approximation, using the standard error 𝜎 provided by lme4: 1131 

𝛽~𝑁(0, 𝜎*).	To combine MASC results from individual tissue analyses, we used inverse variance weighted meta 1132 

analysis with random effects. The variance from random effects was estimated with the DerSimonian and Laird 1133 

(DL) method (DerSimonian and Laird, 1986; Veroniki et al., 2016).  1134 

Cluster correspondence analysis.  1135 

To compare the co-occurrence of the fibroblast cluster labels, within-tissue (Figure 3) and integrative (Figure 1136 

4), we used a similar framework to abundance modeling above. We used the following formula: 1137 

log � 	(�������
«¬­®Y¯°­®±�v)

� 	(�������«¬­®Y¯°­®±¡v)
~1 + (1|𝐶𝑙𝑢𝑠𝑡𝑒𝑟mU����) + (1|𝐿𝑖𝑏𝑟𝑎𝑟𝑦) + (𝑀𝑇 + 𝐷𝑆|𝐿𝑖𝑏𝑟𝑎𝑟𝑦𝐼𝐷). The contrast term of 1138 

interest is the random effect (1|𝐶𝑙𝑢𝑠𝑡𝑒𝑟mU����), a categorical variables that encodes the within-tissue cluster 1139 

identity. We chose to model this with a random effect for numerical stability. To estimate significance, we used 1140 

Wald’s approximation and simulated covariance for the levels of (1|𝐶𝑙𝑢𝑠𝑡𝑒𝑟mU����) with the R arm package.  1141 

Symphony projection.  1142 

The Symphony pipeline is described in detail in a separate manuscript (Kang et al., 2020). In order to infer 1143 

reference cluster identity in query cells, we used a k-NN classifier. K=10 nearest neighbors were estimated with 1144 

Symphony projected low dimensional embeddings, based on cosine distance (𝜎 = 0.1).  1145 

Ligand receptor analysis.  1146 

We started with a curated list of known interacting ligand-receptor pairs, from Ramilowski et al., 2015. To predict 1147 

putative interactions between endothelial cells and fibroblast subsets, we performed differential expression on 1148 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426253doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426253


 
the pooled dataset of endothelial cells and fibroblasts. We filtered for differentially expressed genes and kept 1149 

interaction pairs in which the ligand was overexpressed (𝑝 < 0.05, 𝛽 > 0) in endothelial cells and the receptor 1150 

in a fibroblast subset, or vice versa. For these pairs, we computed the interaction scores (Figure 4e) as the 1151 

mean of the ligand’s and receptor’s z-scores.  1152 

  1153 
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