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Abstract 

Cell patterning in epithelia is critical for the establishment of tissue function during development. The 

organization of patterns in these tissues is mediated by the interpretation of signals operating across 

multiple length scales. How epithelial tissues coordinate changes in cell identity across these length 

scales to orchestrate cellular rearrangements and fate specification remains poorly understood. Here, 

we use human neural tube organoids as model systems to interrogate epithelial patterning principles 

that guide domain specification. In silico modeling of the patterning process by cellular automata, 

validated by in vitro experiments, reveal that the initial positions of floor plate cells, coupled with 

activator-inhibitor signaling interactions, deterministically dictate the patterning outcome according 

to a discretized Turing reaction-diffusion mechanism. This model predicts an enhancement of 

organoid patterning by modulating inhibitor levels. Receptor-ligand interaction analysis of scRNAseq 

data from multiple organoid domains reveals WNT-pathway ligands as the specific inhibitory agents, 

thereby allowing for the experimental validation of model predictions. These results demonstrate that 

neuroepithelia employ reaction-diffusion-based mechanisms during early embryonic human 

development to organize cellular identities and morphogen sources to achieve patterning. The wider 

implementation of such in vitro organoid models in combination with in-silico agent-based modeling 

coupled to receptor-ligand analysis of scRNAseq data opens avenues for a broader understanding of 

dynamic tissue patterning processes.      
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Introduction 

During embryonic development, complex tissue morphologies emerge from rearrangements 

of simpler modules. One such module is the single-cell-thick epithelial sheet, which, through precise 

and timely patterning and morphogenetic events, allows for the specification of cellular identity and 

tissue growth. To orchestrate the morphology of epithelia in time and space, tissue-wide spatial 

reference frames are established by biochemical and mechanical signals1, which are interpreted by 

individual cells to determine fate decisions and ultimately result in short and long range intercellular 

interactions. The specification of cell fate in the developing neural tube presents a canonical 

illustration of epithelial pattern formation, where multiple domains are dynamically specified in 

response the strength, exposure time and cross talk between diffusible signaling factors such as sonic 

hedgehog (SHH), bone morphogenic protein 4  (BMP4) and retinoic acid (RA). Our understanding of 

these patterning processes have thus far largely relied on animal models which, while highly 

reproducible and predictive, nonetheless comprise multiple layers of feedback and redundancy, 

making it challenging to uncover the underlying regulatory mechanisms.  

Due to their capacity for in vivo-like multicellular organization2, organoids have emerged as 

tractable in vitro platforms to study patterning and morphogenesis in tissues as varied as the optic 

cup3,4, the intestine5,6, and the cortical plate7, and in gastrulation of the mammalian embryo8. Neural 

tube organoids (NTOs) derived from pluripotent stem cells (PSCs) are a promising model system to 

explore epithelial patterning, as they have been shown to recapitulate aspects of dorsoventral (DV)9 

and anteroposterior (AP)10 patterning of the neural tube though morphogen stimulation. Given 

specific morphogen stimulation, NTOs exhibit a floor plate (FP) domain11 corresponding to the 

organizing region of the ventral neural tube and a source of a SHH gradient which encodes DV domain 

specification. The establishment of this FP domain is not fully explainable by cytoskeleton-mediated 

symmetry breaking events11,12 or by the applied signaling factors, as these cultures lack a notochord, 

which in vivo establishes a reference frame for the initiation of SHH-mediated patterning9,11,13,14. This 
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raises the question as to the nature of FP patterning in vitro, and how this may relate more generally 

to the establishment of epithelial patterning. 

To describe patterning dynamics, positional information (PI)15 as well as reaction-diffusion 

(RD)16 models have been extensively studied ex vivo, in vitro and in silico. While these two principles 

have been portrayed as contradictory and mutually exclusive14,17, recent studies have seen the 

application of combined PI-RD approaches to explain digit patterning18 as well as epithelial NT domain 

orchestration19. These studies suggests that morphogen source position, in combination with  the 

characteristics of interacting diffusible species, are needed to explain epithelial patterning.  

Here, we use a human NTO (hNTO) in vitro platform and a cellular automaton (CA) in silico 

model to investigate FP patterning dynamics. We establish the model’s fidelity by benchmarking to in 

vitro experiments and systematically explore the parameter space which is permissive for 

recapitulating hNTO pattern types and frequencies across various length scales. We also investigate 

model parameters to predict in vitro routes to enhance patterning in hTNOs, and identify 

concentration of inhibitor species as a powerful modulator of patterning phenotype. An analysis of 

receptor-ligand interactions of single cell RNA-sequencing (scRNA-seq) data is used to identify the 

specific inhibitor species. Finally, we perform perturbation experiments to validate model predictions. 

The use of simple and tunable CA model in combination with analysis of transcriptomic data reveals 

insights into mechanisms of human neural tube patterning, and may be extendable to other epithelia. 

 

Human neural tube organoids: an in vitro platform for epithelial patterning 

In order to study patterning processes in epithelial tissues, we rely on a highly defined in vitro 

platform in which single hPSCs are differentiated into pseudostratified epithelial hNTOs within a 

synthetic polyethylene glycol (PEG) hydrogel matrix supplemented with laminin20 (Fig 1a). In the 

absence of signaling factors, these organoids remain largely unpatterned and have a forebrain 

identity. To initiate a FP domain, organoids are treated with RA to caudalize the default forebrain 

identity11,12 and with smoothened agonist (SAG) to provide a ventralizing signal through the activation 
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of the SHH pathway9. By day 11 of differentiation, hNTOs display various FP expression phenotypes, 

as identified by the FP marker FOXA2 (Fig 1a). These could be categorized into three groups: those 

that exhibited a patterned FP, a scattered FP, and those that were devoid of the fate.  FOXA2+ hNTOs 

represented ~60% of all organoids, of which ~34% were patterned (Fig 1b). FP patterning in these 

organoids was initiated after RA-SAG treatment by the emergence of FOXA2+ cells. These cells were 

initially scattered within the organoid in a largely disorganized manner, and over time rearranged such 

that some FOXA2+ domains gradually underwent patterning21 (Supplementary Fig 1). Despite all 

starting from single cells, organoids were observed to reach different sizes by day 11. No significant 

difference in organoid size was observed between patterned and scattered organoids (Fig 1c), and 

average patterning frequency was independent of organoid size (Fig 1d), suggesting that the 

occurrence of patterning in this system is independent of domain size.  

 

1-D Turing model for patterning human neural tube organoids 

To explore mechanisms that could explain FP patterning in hNTOs we sought to develop an in 

silico model that could best describe in vitro observations. We reasoned that a RD approach16 could 

be suited to model the transition between an initially scattered expression profile towards a gradually 

patterned domain based on previous approaches which have used RD to describe patterning in peri-

gastrulation tissues22 and retinal organoids23 in vitro.  

To tailor the model to our hNTO, we relied on a simple 1-D activator-inhibitor RD system with 

second-order production rates and first-order decay terms, similar in general form to those previously 

used in other organoid model systems16,24–26 (Supplementary Fig 2a). Periodic boundary conditions 

were implemented in order to mimic the epithelial morphology of hNTOs9,20, and parameters of the 

partial differential equations were chosen based on those previously applied for RD organoid models 

to describe the production and decay rates of morphogens23 (Supplementary Fig 2a). Cells in the 

domain could be either FOXA2+, represented as source cells (SCs), or FOXA2-, represented as inactive 

cells (ICs). To simulate the initially scattered FP expression, a random perturbation was imposed on 
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the activator signal (Φa,m). Once perturbed, the reaction between activator and inhibitor species led 

to the assignment of each cell in the model as a SC wherever the associated Φa,m was larger than the 

average overall activator signal Φa,avg, or as an IC where Φa,m was lower than Φa,avg (Supplementary Fig 

2b). The calculated expression profiles across the domain at each time step are deterministic in this 

model, with this RD system converging into a specific pattern for a given set of parameters such as 

domain size, and activator and inhibitor diffusion coefficients Da and Di .  

It is known that domain size plays an important role in RD systems, with patterning typologies 

being domain size dependent24,25. Indeed we observed that an increase in domain size resulted in 

larger number of SC poles (Supplementary Fig 2c), indicating that the model led to pattern size-

dependence which contradicted in vitro observations. Most importantly, we observed significant 

phenotype heterogeneity in vitro, with a mix of patterned, scattered and unpatterned organoids 

within the same culture, whereas this in-silico model rather functioned as an “all-or-nothing” switch, 

resulting in either fully patterned or fully negative (i.e. unpatterned with no SCs remaining) 

phenotypes for a given set of physical parameters (Supplementary Fig 2c). Altogether, this suggests 

that a canonical RD approach cannot fully recapitulate observed in vitro expressions. This led us to 

investigate modeling approaches that could allow for SC expression profiles similar to those seen in-

vitro, including varied patterning phenotypes, heterogeneous phenotypes within an organoid 

population, and where these findings would be domain-size independent.  

 

Cellular automata model recapitulates in vitro floorplate expression heterogeneity  

In our model the only source of stochasticity that can lead to expression  heterogeneity is the 

initial perturbation and location of SCs. We therefore considered the use of a cellular automaton27 

(CA) model, which would allow to specify the initial positions of SCs which drive the evolution and 

dynamics of the system. We implemented an in silico 1-D elementary CA model (Fig 2a), where 

simulations are run for ten time steps and the identity of each unit cell (SC or IC) in the domain is 

updated at each time step. Here, SCs are allowed to emit fate-activating and fate-inhibiting signals 
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with concentrations Φa and Φi respectively (Fig 2a). The change in the concentration of these signals 

after every time step is governed by the equation Φ = Be-λx, where B represents a constant morphogen 

concentration maintained through replenishment at the source, and decay constant λ represents 

morphogen diffusion characteristics through the tissue. Together, B and λ govern the interaction 

range of SCs with their cellular neighborhoods (Fig 2a). Cells in which the net resulting interaction 

between activator and inhibitor (Σ(Φa,n  - Φi,n)) is less than a minimum threshold become (or remain) 

ICs, whereas those above the threshold become (or remain) SCs. Survivor cells are by default SCs and, 

when surviving through all ten steps, contribute to the final SC expression, which can then be classified 

as patterned, scattered or negative (Fig 2a).  

We hypothesized that the in vitro expression of individual cells and the ensuing generation of 

domains could be minimally described in terms of concentration (Ba, Bb), as well as the diffusion 

characteristics (λa, λb) of activation and inhibition signaling molecules. We therefore combinatorially 

explored parameters of B and λ for both inhibitor and activator to identify conditions that could lead 

to patterning of SCs. Out of 1,600 conditions analyzed, only 157 led to SC patterning (Fig 2b). Notably, 

the highest patterning frequencies (red cluster in Fig 2b) occurred when the activator diffusivity was 

lower than that of the inhibitor species (in terms of decay constants: λa > λi) (Fig 2c).  

To test the CA model in a neural tube-specific context, we chose λa = 0.04, reflecting the 

observed decay length values for SHH ex vivo28, and found that patterning occurred for k > 1, where k 

= λa/λi is the decay constant ratio  (Supplementary Fig 3). These are conditions within the short range 

activator and long range inhibitor regime, representing Turing instability scenarios known to favor 

patterning during morphogenesis16. Therefore the CA approach we develop here can be interpreted 

as a discretized Turing patterning model, which has as a defining feature the ability to capture specific 

SC expression patterns given a fixed set of parameters (Supplementary Fig 4). 

By mapping the in vitro rate of patterned organoids to model outputs we found the specific 

ratio between activator and inhibitor decay constants (k ≈ 1.29) which best describes the 

heterogeneity observed in vitro (patterning events ~34%) (Fig 2d). This indicates that our CA model 
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captures both specific organoid phenotypes, as well as their heterogeneous distribution within a 

population, suggesting that FP patterning in these epithelial organoids follows a discretized Turing 

patterning approach, as predicted by our CA model. 

As our model relies on previously reported morphogen diffusion values derived from in vivo 

experiments, we sought to compare the diffusion dynamics of hNTOs to previously reported in vivo 

observations. We therefore performed fluorescence recovery after photobleaching (FRAP) 

experiments on day 5 hNTOs, which best describe the microenvironmental state at the onset of 

patterning (Supplementary Fig 5) and found a diffusion coefficient of DFL = 61.8 µm2.s-1 . This result 

confirmed that hNTOs have similar diffusion dynamics as those reported in vivo                                                          

(DFL ~ 50 - 100 µm2.s-1) 29 30.  

An important characteristic of this model is its ability to demonstrate size-independent 

patterning, where the frequency of pattering remains relatively constant across different domain sizes 

(Supplementary Fig 3). This allowed the CA model to predict in vitro FP expressions across various 

length scales where the average change in patterning frequency given a change in organoid size was 

negligible (Supplementary Fig 6a). Notably, the model matched FP domain size trends in scattered 

and patterned hNTOs (Supplementary Fig 6b), suggesting that this modeling approach recapitulates 

the dynamics leading to each expression type. Moreover, the CA model can not only discriminate 

between scattered and patterned expressions, but also between patterning subtypes. Here, we 

accurately recapitulated the relatively rare 2-pole and 3-pole pattern subtypes (Supplementary Fig 

7a), with in vitro observations of pole location and frequency quantitatively matching in silico 

predictions (Supplementary Fig 7b, c).   

 This model predicts that patterning frequencies can not only be changed by varying molecule 

diffusion characteristics λ, which are difficult to modulate in vitro, but equally through activator or 

inhibitor magnitudes (Fig 2e), which can be readily manipulated through pharmacological 

perturbations. Indeed, by fixing the diffusion characteristics of activator and inhibitor molecules, the 
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model predicted that an increase in patterning frequency is possible through an increase of the 

inhibitor magnitude Bi (Fig 2f).   

 

Receptor-ligand interaction analysis reveals WNT as putative inhibitor of the RD system  

In order to identify the inhibitor species in the hNTO system, we performed receptor-ligand interaction 

analysis31 on an scRNAseq dataset obtained from dissociated hNTOs at day 5, corresponding to hNTOs 

after RA-SAG exposure but before FP induction, and at day 11, after FP induction and patterning20. 

From this dataset, only those cells which could be identified as having dorsal (D), intermediate (I) or 

ventral (V) fates were retained, and were represented on UMAPs highlighting their states at different 

time points (Fig 3a) and by D-I-V assignments (Fig 3b). These cells also displayed domain-specific 

hallmark genes corresponding to expected in vivo expression profiles (Fig 3c). We next focused our 

analysis on understanding the interactions between cells in the D-V domains, which represent  the 

known morphogen sources in the neural tube, and between cells in the V-V domain, which represent 

domain self-interaction with the potential to highlight inhibitory molecule candidates.  

This analysis revealed  59 and 37 significant interactions for D-V and V-V respectively on day 

5, compared to 145 and 32 interactions for D-V and V-V respectively on day 11 (Fig 3d). We further 

grouped these interactions and categorized them by their major participating ligand or receptor, and 

highlighted only these interactions that involve known modulators of the FP and ventral domains 

including antagonists (WNT32,33 and BMP34) and agonists (NOTCH35,36 and FGF37,38) (Fig 3d). 

 At day 5, we observed FGF, NOTCH, and BMP activity in D-V interactions and FGF and NOTCH 

in V-V ones (Fig 3d). FGF activity was transient as its fraction declined from day 5 to 11, which is in line 

with a previous in vivo report of transient FGF signaling being required for FP induction34. The presence 

of BMP suggested that dorsal cells, although representing only a small population at day 5, already 

played at this early time point a critical role as sources of BMP required for DV patterning. The top 5 

NOTCH activities at day 5 all involved DLK1, a known inhibitor of the NOTCH pathway35. After the 

induction and patterning of FOXA2 at day 11, DLL3, another inhibitor of NOTCH, was also involved in 
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both interacting pairs. The introduction of WNT signaling in both D-V and in V-V interactions at day 11 

represents a significant change in the receptor-ligand makeup compared to day 5. This suggests that 

WNT signaling and not NOTCH, FGF, or BMP is a marker of a maturing organoid characterized by FP 

induction and patterning. Furthermore, since FOXA2+ hNTOs are largely devoid of dorsal cells20, it is 

likely that WNT, and not BMP from dorsal cells, represents the inhibition signaling within single 

organoids.  

 

WNT signaling promotes floorplate patterning through inhibition 

Our CA model predicted that changes to the abundance of inhibitory molecules would affect 

patterning frequency (Fig 2f). In order to test this prediction experimentally with our newly identified 

putative inhibitor, we chose to modulate WNT signaling in our cultures using CHIR99021, a small 

molecule WNT activator (via GSK3β inhibition). We supplemented the growth medium with GSK3βi at 

different concentrations ranging from 0 to 4 µM (Fig 4a) from day 7, immediately after the induction 

of the FP, until endpoint day 11 (Fig 4a). Increasing WNT activity resulted in a decrease in the 

frequency of the scattering phenotype, an increase in the negative (i.e. no FOXA2+ cells) phenotype, 

and a rise (up to 2uM) then decline in the patterned phenotype (Fig 4a). These in vitro values matched 

with our CA model, with the increase in GSK3βi concentration from 0 to 4 µM corresponding to an 

increase in inhibitor magnitude Bi from 1 to 1.14. 

We hypothesized that such an increase in patterning events would be accompanied by a larger 

domain diversity, including the presence of more dorsal domains within the same organoid, which 

would better recapitulate in vivo conditions. We therefore interrogated the presence of more dorsal 

identities such as PAX6, and found that increasing GSK3βi concentrations resulted in a gradual 

decrease of FOXA2+ hNTOs, with a converse increase in PAX6+ organoids (Fig 4b). This is in line with 

the reported promotion of in vitro dorsal identity in the neural tube by WNT activation34. Furthermore, 

with increasing GSK3βi concentrations, we found that the fraction of dorsoventral patterning in PAX6+ 

hNTOs follows a similar trend to in silico patterning (Fig 4c). This underscores the close link between 
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FP patterning and dorsoventral patterning events, and, in the context of organoids, argues for a 

control mechanism where multiple domains coexist within the same organoid when secondary 

sources of inhibition or activation are created as a result of domain-domain interactions28,35. 

Due to the increase in dorsal fates upon exposure to GSK3βi, and since dorsal fates can be 

sources of WNT secretion (Fig 4d), we next thought to investigate the effect on expression trends with 

ICs as surrogates for dorsal cells and as secondary sources of inhibition signals (Supplementary Fig 

8a). When comparing the contributions to inhibition signaling from SC (x1) and IC (x2), we found that 

the best correlation to in vitro data were achieved in conditions where SCs were the sole sources of 

inhibition (Supplementary Fig 8b,c,d). This in silico result suggests that FP patterning does not require 

dorsal domains. At first this seemed contradictory to our previous observation (Fig 4c) given the close 

relation between FP patterning and dorsoventral patterning events with increasing WNT activity. 

However, we reason that upon WNT activation, FP patterning events are increased through enhanced 

inhibitor interactions, but that concomitantly, WNT exposure promotes PAX6 expression in FOXA2- 

regions in the organoid, resulting in dorsoventrally patterned hTNOs. Therefore, our model setup 

predicted that while FP patterning did not require dorsal domains, dorsal domain patterning 

depended on patterned FP expressions. Indeed, hNTOs with patterned FPs at a GSK3βi concentration 

of 0 µM were largely (~66%) devoid of the PAX6 fate (data not shown), further underscoring that FP 

patterning does not require, neither does it necessarily result in, PAX6 expression within the same 

organoid. The results, therefore, argue that FP patterning is a self-regulated process as predicted by 

the model. 

 Finally, after exploring the upregulation of WNT activity, we tested whether the converse 

downregulation of WNT activity would have an opposite effect on patterning. The IWP2 small 

molecule (PROCN inhibitor) was used to decrease WNT activity, resulting in decreased FP patterning 

frequencies (Supplementary Fig 9a) as predicted by the model (Fig 2e,f). A concentration of 2 µM of 

IWP2 correlated best with Bi = 0.96, which corresponds to a reduction in inhibitor magnitude 

(Supplementary Fig 9b).  
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Altogether in silico and in vitro results suggest that WNT activity plays an important role in 

shaping FP expression in hNTOs, in accordance with an underlying spatially discretized RD-based 

model of the system. Importantly, our model predicted that epithelial domains could be rendered 

largely patterned through an increase of WNT activity, which we verified experimentally. The model 

suggests that this process occurs by enhancing inhibition signaling. This renders it more difficult for 

cells to meet the activation threshold which leads to more concise and separated grouping of cells, 

namely fate polarization or patterns. Increasing WNT activity also allows FOXA2- cells to become 

PAX6+ which can result in dorsoventral patterning but only at intermediate WNT activities since high 

levels can eliminate favorable regions, abrogating the FP fate altogether (Fig 5). 

 

Discussion 

Cell patterning in epithelia is a key event for proper tissue development during early 

embryogenesis39,40. To better understand the underlying mechanisms for the establishment of such 

patterns, in silico models such as PI and RD have been employed15,16,24. In a PI approach, cells recognize 

their position with respect to a source by interpreting the graded morphogens emanating from that 

source allowing them to pattern according the signal strength and thus their respective distances to 

the source. This emphasize the importance of morphogen source position in a PI patterning model. By 

contrast, an RD approach ignores morphogen positions and relies instead on tissue wide secretion and 

interaction between morphogen species, which allows initially random expressions to converge to 

predictable pattern configurations. Here, we use an epithelial organoid model of neural tube 

patterning to show that FP patterning emerges though a discretized Turing mechanism. Specifically, 

we use a CA-based approach to show that morphogen source position in the tissue and diffusion 

characteristics of activators and inhibitors control the organization of cells within the domain space, 

and are thus likely modulators of FP expression in organoids.  

Organoids have often been used as simplified models of patterning and have allowed insight 

into the underlying biochemical41–44 and mechanical1,20,45,46 factors that control cell fate specification 
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and morphogenesis. We and others have shown that NTOs display patterned FPs9,11,12,20 which 

emerge, remarkably, despite the lack of the notochord, which in vivo acts as a spatial reference frame 

for FP patterning28,47,48 through the secretion of SHH morphogens. This suggests that in vitro epithelial 

patterning follows mechanisms that might differ from those employed in vivo.  

Previous work with epithelial organoids suggests that patterning phenomena can be described 

solely by an RD approach. For example, as in the case of retinal organoids involving Pax6, Fst, and 

Tgfb223. This simple gene regulatory network was shown to sufficiently explain how organoids 

spontaneously self-organize to reflect retinal development. Our study demonstrates that such a 

canonical form of RD could not explain FP pattering in epithelial hNTOs, as key in vitro  observations 

such as patterning heterogeneity and domain size independence could not be recapitulated . Because 

FP cells are specified by interpreting PI from the notochord SHH source before becoming sources of 

SHH themselves28,34, we hypothesized that a different modelling framework which considered the 

initial position of FP cells in the RD model would be necessary to better explain our observations.   

Models which combine RD with PI have been shown to predict patterning better than either 

model separately, notably in the context of digit patterning18. Here, graded Fgf concentrations (PI) 

control patterning wavelengths stemming from the interactions (RD) between Sox9, Bmp and Wnt 

across the domain space, allowing for more robust recapitulation of in vivo digit patterning. 

Furthermore, an in silico PI-RD NT model demonstrates how the introduction of intercellular 

homeoprotein diffusion in the model better orchestrates domain specification by generating more 

delineated in vivo-like domain boundaries19.  

Our study shows that only when the initial positions of SCs are considered can FP patterns be 

generated with high fidelity. The developed CA model demonstrated patterning in regimes consistent 

with a Turing instability mechanism and even exhibited multi-poles patterning as is expected from a 

RD system. However, only by introducing the activator and inhibitor species at specific SC positions 

could the reaction between them create highly discretized regions which could persist to maintain a 

stable pattern. Our results suggest that this discretization adapts the RD system to allow for expression 
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heterogeneity, which ultimately recapitulate in vitro FP observations. This model therefore expands 

on previous models of epithelial patterning and demonstrates that a CA approach can combine the 

importance of morphogen source position as well as diffusion characteristics to describe epithelial 

patterning. 

Patterning in epithelial tissues rely on complex and dynamic signaling4,39,49. In the neural 

tube28,34,43,44,48, WNT32,33, BMP34, NOTCH35,36, FGF37,38 and SHH28 have been recognized as main 

modulators of patterning which orchestrate domain specification along the dorsoventral as well as 

anteroposterior axis. Once these morphogens establish a patterning reference frame, inter-domain 

signaling assist with domain boundary specification. For example, mediated by SHH, NKX2.2 in the p3 

domain prevents the progression of the adjacent pMN domain through OLIG2 inhibition in the ventral 

NT28,38 and in NTOs9. Moreover, intra-domain signaling is required for maintenance of cell identity, 

similar to the role of SHH in the FP44. Our modelling results argue that intra-domain signaling is 

required not only for self-maintenance and activation, but also for self-inhibition. Our receptor-ligand 

interaction analysis suggests that FP patterning is modulated by WNT, a known inhibitor of ventral 

identities33,34,50. Indeed, FOXA2 abundance variation in response to WNT activity has been previously 

demonstrated in a microfluidic system10, where moderate levels of WNT were necessary for FP 

induction but higher ones resulted in loss of FOXA2 and SHH. To investigate whether FP patterning is 

modulated by inhibition, we performed in silico modeling and validated the outcome though 

perturbation experiments to show that increasing FP patterning through inhibitory means is possible, 

but that high inhibition levels cause loss of FP fate in the majority of cultured hNTOs. We further 

showed that FP patterning is a self-regulated process that does not require the presence of other 

inhibitory domains since the best correlation to in vitro observations occurs when SCs are the sole 

sources of inhibition and activation. Interestingly, the expected activator signaling, SHH, was absent 

in the receptor ligand interaction analysis, which may hint to a different activator in vitro. Therefore, 

while FP induction occurs through a RA-SAG pulse, later pattern maintenance may rely on pathways 
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other than SHH, such as NOTCH signaling, which has recently been shown to regulate ventral domains 

in vivo35,36. 

Our in silico analysis relies on a simplified 1-D CA model without considering cytoskeleton 

rearrangement11, growth42, matrix stiffness11, or morphogen exposure time28, which are known to 

regulate patterning in the NT in vivo and NTOs in vitro. Our model can accommodate more complex 

activator-inhibitor configurations through the addition of new signaling parameters. These changes 

could also enable feedback from different cell types and even from neighboring organoids, as well as 

incorporate signal sequestration, which has been shown to play a role in ventral domain 

organization42. Given its simplicity, this model nevertheless recapitulates with remarkable fidelity the 

observed FP patterning phenomena. These findings underscore how the integration of in silico 

modelling, in vitro experimentation and transcriptomic analysis can be used as a powerful and widely 

applicable approach to identify the mechanisms and molecular players governing epithelial 

patterning.  
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Figures 

 

Figure 1. Human neural tube organoid floor plate characterization. a Organoids derived from single 

hiPSCs in synthetic matrices result in patterned, scattered or negative FP expressions. Representative 

brightfield images of hNTOs at various timepoints, with representative expression of FOXA2 and F-

actin at day 11 endpoint (nuclei: Hoechst). b FP induction and patterning frequencies (n = 4, 269 

hNTOs assessed). c Quantification of organoid size (diameter) for scattered and pattered 

hNTOs. d Quantification of patterning efficiency as a function of organoid size (dark blue line 

represents average at each size range, light blue lines represent individual replicates). Scale bars: 50 

μm. 
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Figure 2. In silico modeling of FP patterning in NTOs. a A cellular automata model combines 

morphogen source position and associated diffusion characteristics. SCs emit activation and inhibition 

signals and interact with adjacent cells over 10 steps resulting in various SC expressions. b 

Combinatorial parametric analysis of in silico 1600 conditions, with 157 conditions that result in 

patterning expressions of SCs. c Hierarchical clustering of parametric analysis output for patterning 

conditions. d Mapping In vitro pattering efficiencies (white and green circles from Fig 1d) across 

various sizes to in silico data for various values of k and λa = 0.04. e SC expression output as a function 

of various  activator and inhibitor magnitudes. f Mapping in vitro pattering efficiencies (white and 

green circles from Fig 1d) across various sizes to in silico data for various values of inhibitor 

magnitudes, k = 1.289 and λa = 0.04. (for every simulated data point, n = 3 for a total of 1,500 in silico 

NTOs) 
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Figure 3. Receptor-ligand interaction in hNTOs. a UMAP highlighting day 5 and 11 of D, I, and V hNTO 

cells color coded by days. b UMAP color coded by domain identity D, I, and V. c Selected marker genes 

for dorsoventral identities. d Receptor-ligand analysis of day 5 and day 11 hNTOs. Interactions 

belonging to NOTCH, FGF, BMP and WNT signaling pathways are color coded blue, yellow, green, and 

red respectively. 
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Figure 4. WNT activation affects FP patterning. a Scattered, patterned and negative event frequencies 

for various concentrations of GSK3βi  (n = 4 for a total of >300 hNTOs). b Correlation analysis between 

in vitro observations for varying concentrations of GSK3βi and in silico results for varying inhibitor 

magnitudes (Pearson r = 0.88), (n = 3 for a total of 1,500 in silico NTOs per data point and in vitro data 

from a). c Effect of WNT activity on FOXA2 and PAX6 expressions (n = 4 for a total of >300 hNTOs). d 

Trend comparison of DV patterning in FOXA2+/PAX6+ hNTOs for various concentrations of GSK3βi and 

in silico patterning for various inhibitor magnitudes (In silico data from b and in vitro data from c). 

Scale bars: 50 μm. 
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Figure 5. Patterning in epithelial neural tube organoids follow a discretized Turing patterning 

approach. A model describing epithelial patterning in hNTOs following a cellular automata approach  

that incorporates morphogen source positions and associated diffusive characteristics. Inhibition 

modulation though WNT signaling alters final expressions (dashed arrows represent less likely events). 
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Supplementary figures 

 

 

Supplementary figure 1. FP expression dynamics in hNTOs. Representative images of FP dynamics in 

hNTOs. FP induction occurs at day 7 following RA-SAG pulse. Some FP expression gradually pattern 

over time. Scalebar 50 μm. 
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Supplementary figure 2. Reaction-Diffusion model for FP patterning in NTOs. a A 1-D two-node RD 

model where cells are labeled SCs (green) at periodic peaks of activation signals, Φa > threshold, where 

the threshold is equal to the average of the activation signal, Φa,avg. b Initial perturbations of Φa create 

an instability that starts the reaction between the morphogen species eventually forcing the domain 

space to pattern. c Expression output of SCs for various inhibitor diffusion coefficients and domain 

sizes were the activator diffusion coefficient is 24 µm2/s. Associated number of poles for the same 

parameter configurations. 
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Supplementary figure 3. Patterned, scattered and negative in silico events as a function of activator 

and inhibitor decay constant ratio k = λa/ λi and domain size, where λa = 0.04. (for every simulated data 

point, n = 3 for a total of 1,500 in silico NTOs) 
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Supplementary figure 4. The CA model allows for expression heterogeneity. Different initial seed 

positions of SCs allow for scattering, patterning or negative expressions of SCs using the same 

parameters (k = 1.289 and λa = 0.04)  and within the same domain space (46 cells). 
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Supplementary figure 5. Diffusion characteristics of hNTOs matches in vivo conditions. A 

representative micrograph displaying a day 5 hNTO where the lumen region is marked with a red 

circle. The FL channel highlights the bleaching spot with a white dashed circle. Normalized FL intensity 

(solid dark purple line) and Ellenberg diffusion equation data fitting (dashed black line) as a function 

of time (n = 10 organoids, light purple represents SD). Scalebar 25 μm. 
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Supplementary figure 6. CA model predicts size-independent patterning. a In silico and in vitro 

changes in patterning for 10% increments in hNTO size or in silico domain size (in silico data from Fig 

2d, in vitro data from Fig 1d). b Trends of in vitro ARs of day 11 hNTOs and in silico SCRs of final steps 

(n = 1,500 in silico NTOs and in vitro data from Fig 1d, whiskers are max and min values, hinges 25th to 

75th percentile and horizontal line indicate the median, *** p < 0.001). 
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Supplementary figure 7. CA model accurately predicts patterning subtypes. a Patterning subtypes 

observed in in silico NTOs and corresponding in vitro observations. Normalized count of inter-pole 

angle α for in silico and in vitro cases (in silico NTOs 2-poles = 3,857, 3-poles = 219, in vitro hNTOs 2-

poles = 15, 3-poles = 9). b In silico  and in vitro abundance of different expression subtypes as a function 

of size (n = 3 for a total of 1500  in silico NTOs per size group, in vitro data from Fig 1d). c In silico 

pattern subtype correlation with in vitro observations (R2 = 0.9639). Scalebars 50 μm. 
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Supplementary figure 8. Secondary sources of inhibition do not correlate with in vitro data. a ICs 

participate in in silico signaling as secondary sources of inhibition. b In silico correlation with in vitro 

data at different SC and IC inhibition signal contributions (n = 3 for a total of 1,500 in silico NTOs for 

each in silico case. In vitro data from Fig 4a). c Summary of correlation analysis of the cases in b. d 

Principal component analysis of the cases in b. 
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Supplementary figure 9. WNT inhibition reduces patterning as predicted by the model. a Inhibition 

of WNT activity by small molecule IWP2 modulates FP expression in vitro (n = 3 for a total of 294 

hNTOs). b Correlation of control and IWP2 treated hNTOs with in silico predictions when varying 

inhibitor magnitude Bi (n = 3 for a total of 1,500 in silico NTOs per data point and in vitro data from a, 

Error bars are SD, *** p < 0.001) 
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Materials and Methods 

In silico reaction-diffusion (RD) hNTO patterning model. We used an in silico 1-D RD model with one 

activator and one inhibitor species. The partial differential equations (PDEs) where formulated 

following previously defined forms23,25. 

Activator 
∂Φa

∂t
= Aa

Φa
2

Φi
− BaΦa + Da∇2Φa 

Inhibitor 
∂Φi

∂t
= AiΦa

2 − BiΦi + Di∇
2Φi 

Where Φa and Φi denote the concentrations of the activator and inhibitor species respectively. The 

second order generation terms are defined for the activator and inhibitor as Aa(Φa
2/Φi) and AiΦa

2 

respectively. The first order decay terms of the activator and inhibitor are BaΦa and BiΦi. Values for Aa 

= 0.25, Ai = 1, Ba = 0.1 and Bi = 0.5, are not based on physical parameter values but are chosen to be in 

the range of previously used values23. The diffusivities of the activator and inhibitors are Da and Di  

respectively. The diffusivity of the activator molecule was set to that of SHH, a likely activator 

morphogen28 (Da = 24 µm2/s51,52). 

 To simulate the RD model we used MATLAB (MATLAB, R2018b, The MathWorks Inc.) where a 

domain space was divided into 6 µm-wide units, reflecting the width of one cell. The timestep was 

chosen to be 1 s. For each timestep, the PDEs were solved in a forward implicit manner. The simulation 

is started by an initial random perturbation to the activator concentration at t = 0 s. The simulation is 

run for 10000 s, an adequate time for a stable pattern to form which is visually verified as non-

changing over time. To evaluate patterning, cellular regions are binarized such that regions where Φa 

> Φa,avg are evaluated as source cells (SCs) and given a value of 1 and elsewhere as inactive cells (ICs) 

and given a value of 0. 

To assign expression type, we adapted the scheme we used for our in vitro assessment. We 

first consider a SC domain as occupying a continuous region of SCs along the series, where ICs occupy 

the space (gaps) between these regions. We then evaluate the SC ratio (SCR = n(SCs) / n(total-cells) ). 

Patterning is assigned when 1) SCR < 0.4, and 2) SCR < 0.5 but with fewer than 5 gaps. This is because 
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upon visual inspection, we observed that for 0.4 < SCR < 0.5,  SC distribution is never polarized to one 

side to be considered as patterned when the number of domain gaps is >5, but becomes polarized for 

gaps <5. For all other cases scattering is assigned. We enumerated the number of poles in our model 

by the number of domains detected in each simulation. By varying Di and the length of the domain 

space, the patterning, scattering or negative expressions and the number of poles for each conditions 

are used to create the heatmaps (Supplementary Fig 2c).  

 

In silico cellular automaton (CA) hNTO patterning model. We used an in silico 1-D elementary cellular 

automaton27 model to simulate patterning in hNTOs (MATLAB, R2018b, The MathWorks Inc.). Each 

cell is represented by a discreate element in a circular series of interacting elements. Cells are allowed 

two possible identities, 1) SCs, and 2) ICs. Source cells act as sources for 1) activation, Φa, and 2) 

inhibition, Φi, signals. Each signal (Φ = Be-λx) has a constant profile, where B is the source magnitude, 

λ is the exponential decay constant that controls signal decay over discreate cell positions x, and where 

high λ values result in rapid decay compared to lower ones. Cells are able to interact by having their 

respective signal profiles extend over multiple cells. The model processes 10 steps, where in each step 

cell interactions take place, creating a new generation of cells with modified states according to 1) 

activation of ICs, 2) inhibition of SCs, or 3) retention of SC and IC states. Each step advancement creates 

a new generation as input for the following step until the end step. 

To begin the process, at step 1, cells are assigned an IC or SC identity at random, with each 

having equal chance of becoming either identity. Next The sums of all inhibition signals is subtracted 

from the sum of activation signals to obtain a net activation profile that extends over the entire cell 

series. A reassignment of cell states is performed and depends on the net activation value at each cell 

position, where values higher than a threshold th allows 1) ICs to assume a SC identity, or 2) SCs to 

retain their state. By contrast, net activation values lower than th 1) inactivates a SC, and 2) maintains 

the identity of ICs. Once all cell states have been processes, a new generation of cell series is created 

and passed the a new step which repeats the process. In total 10 steps are executed with the final 
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generation evaluated for patterning using the same algorithm as in the RD model. The percentage of 

patterned and scattered in silico NTOs are evaluated per run, where a run is composed of 500 in silico 

NTOs. Three runs are evaluated (total 1,500 in silico NTOs) for each condition to obtain an average 

value for scattered, patterned and negative expression frequencies. 

The in silico NTO sizes were evaluated by first deriving a circumference from the in vitro size 

bins (Fig 1d) and subsequently divide by the observed widths of nuclei  (~6 µm), thereby mapping in 

vitro hTNO sizes of 50-60, 60-70, 70-80, 80-90, 90-100, 100-110 and > 110 µm to in silico hNTO sizes 

of ~28, 34, 40, 46, 52, 58 and 64 cell elements respectively.  

The parameter space (Fig 2b), was obtained by varying Ba and Bi from 1 to 3 in increments of 

0.5, and λa and λi from 0 to 0.1 in increments of 0.01 while using a domain size of 46 cells (average size 

after in vitro size mapping), producing 1,600 different parameter combinations where 157 cases result 

in patterning. Each condition comprised of 1,500 in silico NTOs where their outputs are evaluated to 

obtain average values for patterning, scattering and negative events. A table comprising Ba, Bi, λa, λi, 

Ba/Bi, k = λa/λi, patterning, scattering and negative frequencies for each condition is passed to the 

Seurat pipeline for data normalization and scaling53. Graph-based clustering was performed using the 

FindNeighbors function using the top 5 principle components (PCs) and the FindCluster function 

(resolution of 0.5) was used to group the cells with similar transcriptional profiles together. For data 

visualization, the dimensionality reduction technique, Uniform Manifold Approximation and 

Projection (UMAP), was performed with the RunUMAP function using the top 5 PCs. 

Heatmaps (Fig 2d-f) were generated using heatmap.2 function in R. In Fig 2d, the domain size 

varied from 28 to 64 cells as per the above-mentioned in vitro size mapping. The activator decay 

constant λa = 0.04 was held constant while k was varied from 1.2 to 1.4 by varying λi while Ba = 2 and 

Ba/Bi = 2. In Fig 2e, The domain size was held constant at 46 with λa = 0.04 and k = 1.289. The activator 

and inhibitor magnitudes were centered around 2 and 1 respectively and varied above and below their 

respective values by 0.05 magnitude points for each increment. The three expression types were then 

presented separately. In Fig 2f, the domain size varied from 28 to 64 cells as per the above-mentioned 
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in vitro size mapping, with λa = 0.04 and k = 1.289. Activator magnitude was held constant at Ba = 2, 

while Ba/Bi varied from 1.81 to 2.5 by varying Bi. 

The position of each pole in the patterned in silico NTOs was evaluated as the position of its 

center element. Next the distance between different pole positions was evaluated and converted to 

an angle (Supplementary Fig 7a). 

 

Culture medium. Essential 8 (E8) - Flex Medium Kit (ThermoFisher Scientific) was supplemented with 

1% Penicillin Streptomycin (GIBCO) and used as growth medium for hiPSC culture. Neurobasal medium 

(GIBCO) and DMEM/F12 (GIBCO) were mixed 1:1 for the neural differentiation medium, which was 

supplemented with 1% N2 (GIBCO), 2% B-27 (GIBCO), 1 mM sodium pyruvate MEM (GIBCO), 1 mM 

glutamax (GIBCO), 1 mM non-essential amino acids (GIBCO) and 2% Penicillin Streptomycin (GIBCO).   

 

Human iPSC culture. Human iPSCs were cultured in Matrigel coated 6 well plates to a confluency of 

60-70%, before passage every 72 h. Newly passaged colonies were exposed to Y-27632 Rock inhibitor 

(ROCKi) (Hellobio) at a concentration of 10 μM for the first 24 h. 

 

Human NTO culture in nondegradable PEG hydrogels. Human iPSC derived hNTOs were cultured in 

nondegrerdable polyethylene glycol (PEG) hydrogels, as previously described20. Briefly, hiPSCs were 

dissociated into single cells and embedded in a PEG hydrogel premixture. 10 μM droplets of the cell-

matrix mixture were added to wells of a 96-well plate and after 20 m of gelation time, neural 

differentiation medium was added supplemented with 10 μM of ROCKi for the first 3 days.  Retinoic 

acid (Stemcell Technologies) at 0.25 nM and smoothened agonist (Stemcell Technologies) at 1 μM 

were added to the growth medium for 2 days between days 3 and 5. This was followed by regular 

medium changes every 2 days until end point day 11.  

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2021. ; https://doi.org/10.1101/2021.01.11.426254doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426254
http://creativecommons.org/licenses/by-nc-nd/4.0/


WNT perturbation experiments. Day 7 hNTOs, representing earliest FOXA2 expression, were treated 

with GSK3β inhibitor (Tocris, CHIR99021, 4423), an activator of WNT, until endpoint day 11 with 

concentrations of 1, 2, 3 and 4 µM. For WNT inhibition, IWP2 (Peprotech, 6866167-1MG) was used 

from day 7 at a concentration of 2 µM until endpoint day 11. Controls were treated with DMSO at 

dilutions similar to the highest tested concentration of GSK3βi (1:2500). 

 

Immunohistochemistry. Paraformaldehyde (4%) (Sigma-Aldrich) is used to fix hNTOs for 2 hours and 

then washed by PBS three times. Human NTOs were permeabilized and blocked using .3% Triton X 

(PanREAC AppliChem) and 0.5% BSA solution (Sigma-Aldrich) for 30 m. FOXA2 primary antibody mouse 

(Santacruz, sc-374376, 1:200) or rabbit (abcam, ab108422, 1:200) was used to stain for FP expression 

for 24 h and PAX6 primary antibody (DSHB, PAX6, 1:200) for more dorsal identities. This was followed 

by 24 h of PBS washes. For an additional 24 h, secondary antibody donkey-anti mouse Alexa Fluor 

555/647 (Invitrogen) and donkey-anti rabbit Alexa Fluor 647 were used. Alexa Fluor 647 conjugated 

phalloidin (Abcam, 1:500) was used for filamentous actin visualization. Hoechst (1:2000) was used to 

nuclei visualization. Finally, this was followed by another 24 h of PBS washes.  

 

Imaging and image analysis. Images obtained for quantification were obtained using Zeiss Axio 

Observer Z1 (Carl Zeiss MicroImaging) with a Colibri LED light sources and a 10x air objective. 

Representative images where obtained using a Leica SP8 DIVE (Leica Microsystems) using confocal or 

multiphoton modes and a 25x water objective. 

 Pattern quantification are described elsewhere20. Distinguishing between 1, 2 and 3 poles 

relied on visual evaluation of each hNTO.  

 

Fluorescein recovery experiment. To in situ observe fluorescein diffusion within hNTOs, we first 

cultured hNTOs until day 5 following the hNTO protocol (Fig 1a). Day 5 measurements ensured 

capturing the ECM state at the onset of FP induction and patterning. After the RA-SAG treatment (day 
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5) we supplied the media with fluorescein to obtain a final concentration of 20 µM. The samples were 

then incubated for 30 m at 37ºC and 5% CO2 to allow fluorescein diffusion throughout the matrix and 

hNTOs. We employed a confocal microscope (Leica SP8 DIVE, Leica Microsystems) to perform targeted 

bleaching of fluorescein molecules using 1 s burst of 480 nm laser at full power. A 10x air objective 

was used and a 60 s observation period of fluorescein recovery immediately followed. The bleach spot 

was chosen to be off-centered to avoid the acellular lumen, ensuring diffusion observations in cell-

filled regions within the hNTOs. The resultant time series were analyzed using the Time Series Analyzer 

V3 plugin on ImageJ. For each condition, the intensity values were normalized with reference to the 

maximum value before bleaching. The normalized values were then averaged for each condition, and 

the resultant values plotted. The Ellenberg diffusion equation29 was used to estimate the diffusion 

coefficient of fluorescein. 

 

Single Cell RNA sequencing data processing. Data manipulation and subsequent steps were 

performed using the Seurat53 tool for single cell genomics version 3 in R version 3.4. Single Cell data 

were obtained from a hNTO data set20 that will become available at GEO. First, we subset the data to 

retain previously described cells with dorsal (D), intermediate (I) and ventral (V)20 identities summing 

to 1251 cells of days 5 and 11 of the hNTO differentiation protocol. The criteria for identifying dorsal, 

intermediate and ventral cells are described elsewhere20. The data was processed to find 2,000 highly 

variable genes using the FindVariableFeatures function. Cell cycle regression was performed. Data 

autoscaling was performed and reported using principal component analysis (PCA) using the RunPCA 

function. 

 

Data Clustering. Graph-based clustering was performed using the FindNeighbors function using the 

top 5 principle components (PCs) and the FindCluster function (resolution of 0.5) was used to group 

the cells with similar transcriptional profiles together. For data visualization, the dimensionality 

reduction technique, Uniform Manifold Approximation and Projection (UMAP), was performed with 
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the RunUMAP function using the top 5 PCs. Cluster annotation focused on identifying D, I and V cells 

on the UMAPs. 

 

Receptor ligand interaction analysis. To systematically interrogate receptor-ligand interactions 

between clusters, we took advantage of the Python implementation of CellPhoneDB (v2.1.1)31. A 

pooled normalized count matrix containing all cells present within the scRNA-seq dataset was used as 

input to the algorithm. The following parameters were used: counts-data = hgnc_symbol; iterations = 

1,000; threshold = 0.10. Only significant interactions (p-value < 0.05) were considered for further 

analysis. The receptor ligand interaction scores were ranked while highlighting those than involved 

known modulators of the SHH pathway, namely FGF, NOTCH, WNT, and BMP only in cases where they 

respectively represent more than 5% of all interactions identified per case. The Circos R package was 

used for visualization to display a maximum of 5 interactions per group. 

 

Quantification and Statistical Analysis. We used two-way ANOVA statistical tests on grouped data, 

and an unpaired two-tailed t-test where appropriate with a 95% confidence interval and appropriate 

corrections (GraphPad Prism 6, Version 6.01, GraphPad Software, Inc.). When determining patterning 

and scattering significance, the patterned values of the various conditions were used in statistical 

analysis. Similarly FOXA2+ hNTO values of the various conditions were used when determining the 

FOXA2+/- hNTOs statistical significance.  Pearson correlations were performed to evaluate linear 

regression where appropriate. Statistical significance was considered for all comparisons with p < 0.05. 

The cor R function was used to generation the correlation maps. For hierarchical clustering and 

heatmap generation, we employed the R package heatmap.2. 

 

Data availability. This study did not generate new raw scRNAseq sequencing data. The original 

processed and metadata files will be made available at GEO. 
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