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Abstract 
Much is still unknown about the neurobiology of Alzheimer’s disease (AD). To better understand 
AD, we generated 636 ATAC-seq libraries from cases and controls to construct detailed genome-40 
wide chromatin accessibility maps of neurons and non-neurons from two AD-affected brain 
regions, the entorhinal cortex and superior temporal gyrus. By analyzing a total of 19.6 billion read 
pairs, we expanded the known repertoire of regulatory sequences in the human brain. Multi-omic 
data integration associated global patterns of chromatin accessibility with gene expression and 
identified cell-specific enhancer-promoter interactions. Using inter-individual variation in 45 
chromatin accessibility, we define cis-regulatory domains capturing the 3D structure of the 
genome. Multifaceted analyses uncovered disease associated perturbations impacting chromatin 
accessibility, transcription factor regulatory networks and the 3D genome, and implicated 
transcriptional dysregulation in AD. Overall, we applied a systematic approach to understand the 
role of the 3D genome in AD and to illuminate novel disease biology that can advance diagnosis 50 
and therapy. 
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Alzheimer’s Disease (AD) is a chronic neurodegenerative disorder characterized, clinically, by 55 
cognitive decline and, neuropathologically, by accumulation of amyloid beta (Aβ) plaques and 
intracellular neurofibrillary tangles. Although a growing number of common and rare genetic risk 
variants have been identified (1), the neurobiological causes and substrates of AD in the vast 
majority of the population remain unknown. As such, additional approaches should be considered 
in an attempt to better understand the molecular mechanisms that mediate this debilitating disease. 60 
Abnormalities in the epigenomic regulation of brain function could result from primary genetic 
and non-genetic causal factors and epiphenomena, including changes secondary to disease 
progression. Thus, the epigenome could elucidate disease mechanisms, especially in late-onset 
AD, where there can be a gap of multiple decades before the initial changes in brain function 
become clinically apparent. 65 

A number of recent studies have identified AD-associated epigenomic changes (2–6). These 
studies, however, have been limited to bulk tissue and have only examined one brain region at a 
time. This, naturally, impedes identification of brain region and cell-type specific disease 
signatures. Furthermore, although analyses of bulk tissue can identify apparent changes in gene 
expression and the epigenome, bulk tissue level changes can reflect alterations in cell composition 70 
rather than changes in the function of individual cells. This is particularly important for 
neurodegenerative diseases, including AD, where disease progression involves neuronal loss.  

Due to the inherent difficulty in obtaining fresh specimens, most molecular studies of the human 
brain are restricted to frozen post-mortem samples. Working with frozen material is not without 
its challenges, including the loss of cytoplasm (and, with it, many cell-specific antigens) as a 75 
consequence of freeze-thawing. Nevertheless, an increasing number of human brain studies have 
employed cell-type specific nuclear markers to isolate nuclei of interest via Fluorescence-
Activated Nuclear Sorting (FANS) (7–9). Using FANS to study individual cell-types increases the 
power to identify cell-specific, disease-associated changes and, importantly, mitigates the 
aforementioned changes in cell type composition. 80 

In this study, we expanded the panel of genomic assays in the Mount Sinai Brain Bank AD 
(MSBB-AD) cohort (10), a collection of human post-mortem brain samples from individuals who 
have been deeply phenotyped, both clinically and histopathologically. In particular, we generated 
genome-wide maps of chromatin accessibility using ATAC-seq from neuronal and non-neuronal 
nuclei isolated by FANS from the entorhinal cortex (EC) and superior temporal gyrus (STG) of 85 
AD cases and controls. Both brain regions are affected in AD, with the EC showing earlier and 
more severe pathological changes and neuronal loss (11). We initially used these data to expand 
the repertoire of identified cell type specific regulatory regions and studied their relationship to 
gene expression. We then examined the shared and distinct molecular mechanisms associated with 
clinical dementia and neuropathological lesions. Subsequently, we identified regulatory genomic 90 
signatures associated with AD, including variability in discrete open chromatin regions (OCRs), 
transcription factor (TF) regulatory networks and cis-regulatory domains (CRDs). AD-associated 
signatures showed brain-region and cell-type specificity, implicating non-coding regulatory 
regions within AD genetic risk loci that participate in a variety of biological pathways as well as 
changes in transcription factor regulation. 95 
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Results 
Population-scale datasets of brain region and cell type specific chromatin accessibility 
expand the repertoire of known human brain regulatory elements 
We performed ATAC-seq profiling in neuronal (NeuN+) and non-neuronal (NeuN-) nuclei 100 
isolated by FANS from the STG and EC of AD cases (n=153) and controls (n=56) derived from 
the Mount Sinai NIH Brain and Tissue Repository (Fig. 1A). All samples were part of the MSBB-
AD cohort, which has been extensively analyzed as part of Accelerating Medicines Partnership - 
Alzheimer's Disease (AMP-AD) project and have additional functional omics data, including 
whole genome sequencing and multiregional RNA-seq profiling (10) (Data S1). The individuals 105 
were selected to represent the full spectrum of clinical and pathological severity (Data S2) based 
on the following phenotypes: (1) case-control status defined using the Consortium to Establish a 
Registry for Alzheimer’s Disease (CERAD) criteria (12); (2) Braak AD-staging score for 
progression of neurofibrillary neuropathology (Braak & Braak-score or BBScore) (13, 14); (3) 
mean density of neuritic plaques (plaque mean); and (4) assessment of dementia and cognitive 110 
status based on clinical dementia rating scale (CDR) (15). These phenotypes were moderately 
correlated (fig. S1), indicating shared and distinct disease processes. 

We processed 403 brain dissections from 2 brain regions to yield a total of 773 neuronal (NeuN+) 
and non-neuronal (NeuN-) FANS-sorted samples (fig. S2). Chromatin accessibility in each sample 
was then determined through ATAC-seq profiling. Extensive quality control of ATAC-seq 115 
libraries based on cell-type, sex, and genotype concordance, as well as sample quality metrics and 
sequencing depth, yielded a total of 636 samples constituting a total of 19.6 billion read pairs with 
an average of 30.8 million non-duplicated read pairs per library (fig. S3 and S4, Data S3). Given 
the large differences in chromatin accessibility profiles between the two cell types (Fig. 1B, fig. 
S5), neuronal and non-neuronal samples were considered separately for subsequent downstream 120 
analysis. A total of 315,630 neuronal and 205,120 non-neuronal open chromatin regions (OCRs) 
were identified, respectively. One reason for this high number of OCRs is the sequencing depth in 
the aggregated read files used for peak calling. The OCRs were proximal to genes (Fig. 1C) and, 
as expected, showed enrichment in known cell type markers (Fig. 1D). 

Next, we compared our extensive catalog of OCRs to previous reference studies from the Roadmap 125 
Epigenomics Project (18), Cancer Atlas (19), and the Brain Open Chromatin Atlas (20). We 
identified 157,944 novel OCRs (126,903 neuronal and 68,054, partially overlapping, non-neuronal 
OCRs), thereby expanding the repertoire of known OCRs in human brain tissue/cells by 58%. In 
addition, 61.1% of the OCRs identified in this study overlapped with previously observed 
regulatory elements detected in the OCR reference repositories (Fig. 1E), highlighting the 130 
consistency of our results with published datasets. We found a higher (median Jaccard J=0.21) 
overlap between OCRs from the reference studies and non-neuronal OCRs compared to neuronal 
OCRs (median Jaccard J=0.14), indicating that our open chromatin atlas significantly expands our 
knowledge of the neuroepigenome (Fig. 1F, fig. S6). Overall, we have generated the largest 
resource of chromatin accessibility in the central nervous system to date and expanded the 135 
repertoire of identified cell type specific regulatory sequences in the human brain. 

 

Proximal and distal chromatin accessibility explains variation in gene 
expression 
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Chromatin structure is integral to transcriptional regulation, with chromatin accessibility 140 
regulating gene expression by facilitating, or inhibiting, binding of the transcriptional machinery. 
Given the availability of RNA-seq data from the same individuals and brain region homogenates 
from which we generated our cell-type specific ATAC-seq data, we sought to quantify the relative 
contribution of proximal (i.e. promoter) and distal (i.e. enhancer) chromatin accessibility to 
transcriptional variance. We applied variance decomposition models to each of 20,709 expressed 145 
RNA-seq genes using the covariance of OCRs at transcription start sites (TSSs) and distal 
regulatory elements as inputs (fig. S7). We analyzed neuronal and non-neuronal OCRs separately, 
but included OCRs and gene expression from two brain regions (STG and EC) and corrected for 
donor effects by adding inter-individual covariance in the models. 

In this model, more than 70% of expression variance (76.1% for neuronal and 71.7% for non-150 
neuronal) was explained by promoter and enhancer OCRs, confirming that gene expression is 
broadly associated with chromatin accessibility (Fig. 2, A to B). To assess the validity of these 
findings, we permuted our dataset and, as expected, found that little variance was attributed to the 
epigenome in this shuffled analysis (fig. S8 and S9). The proportion of expression attributed to 
enhancer OCRs was twice as large in neuronal samples (Fig. 2C, Data S4), confirming a larger 155 
impact of distal regulatory mechanisms in neuronal cell types (20). In contrast, a higher proportion 
of expression variance in non-neuronal samples was attributed to promoter OCRs. Gene set 
enrichment analysis of the genes with the highest proportion of variance explained by promoter 
OCRs showed enrichment with known cell type markers (fig. S10A). 

The proportion of expression attributed to inter-individual covariance was similar for neuronal 160 
(mean 13.4%) and non-neuronal (mean 13.7%) samples. We hypothesized that the inter-individual 
covariance was, in part, driven by genetic regulation of gene expression (21). In order to test this 
hypothesis, we estimated, for each gene, the fraction of gene expression variation explained by the 
cis-genetic component via training transcriptomic imputation models with the EpiXcan method 
(17) in an independent RNA-seq + SNP-array dataset, comprised of human postmortem brains 165 
from the PsychENCODE Consortium (22); the cross validation R-squared (R2CV) model is known 
to be a good proxy for how much of the expression variance is driven by cis-genetic variation (23). 
Here we observed significant correlations between per-gene inter-individual covariance and R2CV 
in neuronal (Spearman ρ=0.22, P-value=1.3×10-54, fig. S10B) and non-neuronal (Spearman 
ρ=0.16, P-value=3.7×10-30, fig. S10C) OCRs. The remaining covariance was unexplained and was 170 
found to be larger in non-neuronal (mean 14.6%) compared to neuronal (mean 10.5%) samples. 
Overall, these results suggest that gene expression in human brain tissue is associated with global 
patterns of chromatin accessibility that differ between neuronal and non-neuronal cells. 

 

Neuronal and non-neuronal enhancer–promoter interactions regulate the 175 
majority of human brain expressed genes  
Having shown that our data capture the transcriptional regulation associated with global patterns 
of proximal and distal chromatin accessibility, we next sought to determine enhancer-promoter (E-
P) interactions. E-P contacts have, with some success, been inferred from genomic distance and 
Hi-C derived chromatin loops (24). To improve upon this, however, the “activity-by-contact” 180 
(ABC) approach (25) model was employed, which quantifies the regulatory impact of enhancers 
quantitatively by assuming proportionality with both E-P contact frequency (inferred from Hi-C) 
and enhancer activity (inferred from chromatin accessibility and H3K27ac histone modification). 
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To apply this approach using our ATAC-seq data, we generated cell type-specific ChIP-seq and 
Hi-C data.  185 

Across the neuronal and non-neuronal datasets, we identified 37,056 and 38,233 E-P interactions, 
respectively. We determined that at least 63% of the expressed genes (13,135 of 20,709) were 
linked to one or more distal OCR (OCRABC) (Fig. 3A, fig. S11A, Data S5). While the majority of 
these enhancers were predicted to interact with a single gene, about one quarter seemingly 
regulated two or more genes (Fig. 3B, fig. S11B). Jointly, the enhancers that participate in E-P 190 
interactions cover 13.2-13.3Mb in each cell type (0.45-0.46% of the genome). On average, 43-
47% of the E-P links were shared between neurons and non-neurons, whereas 83-90% of E-P links 
were shared across brain regions when comparing within the same cell type, with a high correlation 
of ABC score (fig. S11F). Among the predicted OCRABC enhancers, only 25% were linked to the 
nearest gene, clearly demonstrating the shortcomings of purely distance based regulatory 195 
annotation (Fig. 3F, fig. S11C). Still, the frequency of E-P links decreased sharply with distance 
and 86% were within 100kb (Fig. 3, C to E, fig. S11, D to E) (26).  

To corroborate the results of our regulatory analyses, we compared distal OCRs predicted to 
participate in E-P interactions (OCRABC) with a subset of distal OCRs not predicted to take part in 
such interactions but matched by distance to nearest TSS and OCR width (OCRother). We used 200 
orthogonal evidence for E-P interactions assigned based on fine mapping of GTEx eQTL analysis. 
OCRABC, but not OCRother, were found to be enriched in fine-mapped eQTLs from GTEx (27) (OR 
1.5-1.8, P-value < 10-45, fig. S12A, Data S6). When compared based on chromatin states from the 
Roadmap Epigenomics Project, OCRABC showed a relative depletion in repressed chromatin states 
as opposed to OCRother (fig. S12, B to C). Finally, chromatin accessibility at predicted promoter 205 
regions was significantly more highly correlated with accessibility at OCRABC than accessibility 
at OCRother (Fig. 3G, fig. S11G). 

 

AD associated epigenetic changes vary markedly by cell type and brain region 
To explore AD-associated changes in chromatin accessibility, we performed differential analyses 210 
across multiple phenotypes (case/control status, BBScore, plaque mean and CDR) considering the 
brain regions (STG/EC) separately, or in combination, to increase statistical power (Fig. 4A, fig. 
S13, Data S7). EC neurons showed the highest number of associations across all AD phenotypes, 
with 19,336 OCRs (6.1%) associated with one or more AD phenotype(s) (Fig. 4B). For STG 
neurons, the corresponding number was 10,490 (3.3%), highlighting the regional specificity of 215 
AD-associated epigenetic changes. For non-neurons, the number of significant associations was 
markedly smaller, with STG and EC non-neurons jointly showing an association in 4,625 OCRs 
(2.3%) for one or more AD phenotype(s). Thus, the epigenomic changes in AD vary markedly by 
cell type and brain region. In terms of phenotypes, CDR and PlaqueMean identified the highest 
number of differential OCRs (Fig. 4B, Data S7 and S8) and, furthermore, yielded the highest π1 220 
estimates, i.e. the highest estimates of the true proportion of differential OCRs (Data S9). These 
phenotypes, therefore, appear better powered to assay disease changes than the dichotomous case-
control status. 
Epigenetically perturbed regulatory regions in AD were located near transcripts as well as in 
intergenic regions, suggesting that a combination of proximal and distal regulatory elements 225 
contribute to AD (Fig. 4C, Data S7). For both neurons and non-neurons, we found a higher fraction 
of AD-associated OCRs in the promoter area compared to all OCRs tested (Fig. 4C, fig. S14). 
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However, a higher proportion of epigenetically perturbed regulatory regions in AD were located 
in proximity to the transcription start sites in non-neuronal compared to neuronal OCRs (Fisher's 
exact one-sided P-value=1.07×10-169). We then examined the robustness of our differential 230 
chromatin accessibility analysis by checking the concordance (based on correlation of OCR fold-
change) with three epigenetic studies of AD in human postmortem brains (3) and iPSC-derived 
neurons (3, 28) (fig. S15). We found significant concordance with an average Pearson coefficient 
of 0.31, while higher correlations were observed in neuronal compared to non-neuronal analysis 
(mean Pearson correlation of 0.38 vs 0.22).  235 

While it is well-established that AD genetic risk variants are enriched in OCRs in microglia and 
astrocyte genes (29), the relationship with quantitative regulation of chromatin accessibility in AD 
is less clear. Besides considering the relationship between AD risk variants and OCRs genome-
wide, the detailed phenotype data of our samples allowed us to explore the relationship between 
genetic risk variation and AD-associated OCRs using LD-score partitioned heritability (30). Here, 240 
we found the set of all non-neuronal OCRs and the PlaqueMean-associated non-neuronal OCRs to 
be significantly enriched in AD genetic variants, even when accounting for the general genetic 
context of the OCRs (Fig. 4D). Interestingly, disease-associated non-neuronal OCRs showed a 
higher heritability coefficient than other OCRs highlighting the overlap between AD genetic risk 
variants and the subsequent epigenetic perturbations seen in the disease. Finally, we saw moderate 245 
enrichment when we overlapped OCRs with common variants of AD co-heritable traits, such as 
neuroticism, insomnia or bipolar disorder (29) (fig. S16, Data S10). 

 

AD associated epigenetic changes are concordant with gene expression 
alterations  250 

To investigate changes in gene expression, we reprocessed 833 homogenate RNA-seq samples 
from four brain regions (including STG, EC, IFG - inferior frontal gyrus, and FP - frontal pole) in 
a highly overlapping set of individuals (fig. S17). The differential analysis was performed across 
multiple phenotypes as with the ATAC-seq data. A deconvolution parameter was added to account 
for differences in cell type composition in the bulk tissue, driven by the neuronal loss associated 255 
with disease progression (fig. S18 and S19). A higher proportion of genes was differentially 
expressed in EC and FP (24.4% and 21.5% of expressed genes, respectively), followed by STG 
and IFG (8.1% and 3.0% of expressed genes, respectively) (fig. S20, Data S11).  

Comparing the epigenomic changes at transcription start sites with the changes in gene expression, 
revealed strong correlations (Fig. 4E, fig. S21). This concordance was higher for non-neuronal 260 
than neuronal samples (Pearson correlation of 0.31 and 0.14, respectively), suggesting that bulk 
tissue transcriptome studies in AD capture expression changes in non-neurons better than in 
neurons. Two illustrative examples demonstrating decreased chromatin accessibility and gene 
expression for AD cases through differentially regulated OCRs in promoters and distal intergenic 
regions are shown in Fig. 4F. NYAP1 (Neuronal Tyrosine Phosphorylated Phosphoinositide-3-265 
Kinase Adaptor 1), represents a late onset AD GWAS-linked candidate gene (31) that plays a role 
in the regulation of PI3K signaling pathway in neurons and controls cytoskeletal remodeling in 
outgrowing neurites (32). Loss of CCKBR (Cholecystokinin B Receptor) negatively affects spatial 
reference memory (33) and has repeatedly been identified among the top hits in differential gene 
expression analyses between AD cases and controls (34–36). 270 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426303doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426303
http://creativecommons.org/licenses/by-nc/4.0/


8 
 

Epigenome and transcriptome AD perturbations are enriched for biological 
processes and canonical pathways 
To elucidate biological processes implicated in AD, we performed gene set enrichment analyses 
for our two ATAC-seq cell types, bulk RNA-seq, as well as the aforementioned GWAS study (29). 275 
We did this separately for each phenotype (fig. S22 and S23), and aggregated these by taking the 
most significant association across all phenotypes (Fig. 5, fig. S24). 
The AD-associated changes in gene expression seen in RNA-seq implicated very general 
molecular pathways, such as “Oxidative Phosphorylation” and “Translation”. On the other hand, 
chromatin accessibility pointed to more specific molecular pathways. For example, using neuronal 280 
ATAC-seq we identified “the endocytotic role of NDK, phosphins and dynamin” and “RHO 
GTPase activation of PAKs”, among the top associations. Interestingly, PAKs (p21-activated 
kinases) are abundant in the brain where they have been associated with cell death and survival 
signaling (37). The non-neuronal ATAC-seq samples implicated “establishment of the blood-brain 
barrier”, which was also nominally significant with neuronal ATAC-seq, RNA-seq, and the AD 285 
GWAS. The blood-brain barrier has a purported role in the initiation and maintenance of chronic 
inflammation during AD (38). Other pathways associated with multiple assays included 
“regulation of neutrophil activation” and “regulation of localization of FOXO transcription 
factors”. Of note, the latter is involved in cell death and longevity (39, 40), and one member of the 
gene set, FOXO3 (41), showed at least a nominal association across all assays. Within these top 290 
gene sets, the top genes (e.g. ABCA7, BIN1, and PICALM) often showed an association across 
multiple assays (Fig. 5). We further highlight the top genes regardless of whether they were a 
member of one of the top gene sets or not (fig. S25, Data S12). 
Finally, to examine changes in brain function, we performed a targeted gene set enrichment 
analysis using the synaptic gene ontology resource (42) (fig. S23 and S24). This implicated both 295 
pre- and post-synaptic dysfunction in post-mortem brain function. For the AD GWAS, synaptic 
dysfunction was also implicated, which, to the best of our knowledge, has not previously been 
reported. Of particular interest, “synaptic vesicle cycle” was significant in both the GWAS and 
RNA-seq, as well as in neuronal ATAC-seq, highlighting the shared enrichment of fundamental 
neuronal functions between the genetic drivers and subsequent chromatin accessibility and gene 300 
expression profiling in post-mortem brain. 
 

Cell type-specific transcription factor regulatory networks are perturbed in AD  
Using footprinting analyses (43) we systematically examined transcription factor (TF) activity 
patterns underlying cell type differences and AD-related chromatin changes. We utilized 431 TF 305 
motifs, which, due to sharing of binding motifs, represented 798 TFs. TFs clustered into two cell 
type-specific groups with predominantly neuronal and non-neuronal regulatory patterns, 
complemented by a third group lacking cell-type specificity (Fig. 6, A to B, fig. S26A, Data S13). 
The TF cell specificity identified here was broadly concordant with existing literature (Data S14). 
For instance, Fos and Jun family members form an AP-1 heterodimer that is implicated in neuronal 310 
activity linked to learning and memory processes (44, 45). In contrast, Activating Transcription 
Factor 3 (ATF3) transcriptionally represses and regulates pro-inflammatory astrocytic and 
microglial activity (46). Genomic screen homeobox (GSX2), as a further example, acts as a 
gatekeeper of adult neurogenesis by mediating the recruitment in to the cell cycle of multipotent 
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NSCs that can give rise to both neuronal and non-neuronal cells (47, 48). Corroborating our 315 
findings, the TF cell type specificities identified here were also highly concordant (Fig. 6A, 
Spearman ρ = 0.87, P-value < 10-15) with TF footprinting analyses performed in the BOCA study 
(Brain Open Chromatin Atlas, (20)). Next, we leveraged differences in footprinting signals from 
neuronal and non-neuronal samples (bound/unbound status per transcription factor binding site), 
to identify a set of 1,432 and 1,834 genes whose transcription were controlled exclusively by TFs 320 
in our neuronal and non-neuronal TF clusters, respectively (Data S15). Convincingly, these genes 
showed enrichment in known cell type markers of the appropriate cells (fig. S26B). 

Having broadly characterized TF activity in the two cell types, we then sought to examine TF 
dynamics in AD. For this, we constructed TF regulatory networks (TFRNs) for each cell type and 
brain region by analyzing actively bound TF motifs within proximal regulatory regions of genes 325 
representing the aforementioned 798 TFs. Due to high similarity of the network topology across 
brain regions (Jaccard J of 0.84 and 0.93 for neuronal and non-neuronal TFRNs, respectively), we 
subsequently merged TFRNs from the same cell type, resulting in a neuronal and a non-neuronal 
TFRN. Here, we identified a total of 26,976 and 40,348 unique, directed TF-to-TF interactions 
among the 431 analyzed TF motifs for neuronal and non-neuronal TFRNs, respectively, with a 330 
moderate overlap among the two networks (Jaccard J=0.56). 
Using the neuronal and non-neuronal TFRN topology of directed TF-to-TF interactions and TF 
risk scores based on RNA-seq (across four AD-related phenotypes) and GWAS (29) data, we 
identified high-scoring subnetworks associated with AD (based on empirical P-value<0.05) (Fig. 
6C). For each cell type, we subsequently combined the resulting subnetworks derived from the 335 
five TF risk scores into consensus subnetworks. Overall, we identified 46 and 45 TF motifs 
enriched in AD risk genes for the neuronal and non-neuronal TFRNs, respectively. To whittle 
down a list of candidate TF genes represented by the TF motifs prioritized by the TFRN analysis, 
we filtered out genes that were not differentially expressed between AD cases and controls (Fig. 
6C, fig. S27). The resultant set of 56 TF genes shows a notable overlap with three studies that 340 
sought to identify AD regulatory hubs based on transcriptomics and epigenomics data (49–51). 
We found the TF gene USF2 to be highlighted in all three studies, as well as in our data, where 
AD perturbation on TFRN was supported by both GWAS and RNA-seq evidence. 
Genes regulated by USF2 were enriched primarily in lysosomal dependent protein degradation 
pathways, which are processes known to be affected in AD (52) (Fig. 6D). While the literature on 345 
USF2 is very limited, there is evidence that USF2 plays a role in regulating lysosomal gene 
expression (53). To further support the link between USF2 and lysosomal dysfunction, we 
evaluated the effects of USF2 knockdown and over-expression on key components of the 
lysosomal pathway essential for maintaining lysosomal pH (54) and activity in a human neuronal 
cell line, SH-SY5Y. We found a reduction in the abundance of the members of the V0 (V0b, V0d1) 350 
and V1 (V1D, V1E1, V1G1, V1H) subunits of v-ATPase, which are responsible for maintaining 
intra-lysosomal pH (fig. S28, A to D), indicating impairments in lysosomal enzyme function. 
Convincingly, we observed changes in protein abundance in the opposite direction when USF2 
was overexpressed (fig. S28, E to H). v-ATPase hydrolyzes ATP via its V1 domain and uses the 
energy released to transport protons across membranes via its V0 domain. This activity is critical 355 
for pH homeostasis and generation of a membrane potential that drives cellular metabolism (55). 
Accordingly, reduced levels of V1 sector v-ATPase subunits on lysosomes isolated from USF2 
knockdown cells lowered the rate of ATP hydrolysis of v-ATPase by ~60% (fig. S28, I). The 
ATPase activity decline is expected to block proton translocation via the V0 sector (56) and impair 
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acidification of lysosomes, as we observed (fig. S28, J to K). The increased level of V0a1 may be 360 
a compensatory, but incomplete, response to the loss of V1 subunits. Taken together, these findings 
suggest that the TF USF2 plays a role in maintaining pH dependent lysosomal function via v-
ATPase activity. 

 

Three-dimensional chromatin interactions from population-level maps of 365 
chromatin accessibility 
Studying correlation structures in chromatin accessibility at the population level has yielded high-
resolution maps of cis-regulatory domains (CRDs) in lymphoblastoid cell lines (57). We employed 
this approach to explore the coordinated activity and chromatin organization of neuronal and non-
neuronal OCRs in the adult human brain and its perturbations in AD (Fig. 7A, fig. S29 to S31). 370 
Initially, we explored the correlation of chromatin accessibility between pairs of OCRs and found 
that they decrease in frequency with genomic distance, which is in accordance with our ABC 
analyses of enhancer-promoter interactions (fig. S32A). Subsequently, we used adjacency 
constrained hierarchical clustering (58, 59), across both brain regions, to identify 13,671 STG 
neuronal, 13,334 EC neuronal and 8,861 STG non-neuronal, 8,688 EC non-neuronal CRDs, which 375 
included 37-39% of all OCRs (Fig. 7B, Data S17). Each CRD contained an average of 8 OCRs, 
but this varied substantially (29-30% with 5 or fewer OCRs; 44-45% with 9 or more OCRs). As 
expected, CRDs showed higher similarity across brain regions (Jaccard J of 0.33 for neurons and 
0.34 for non-neurons) than across cell types (Jaccard J of 0.10 for STG and 0.10 for EC) (Fig. 7C). 
Next, we examined the composition of our CRDs and found 22% of OCRs within neuronal CRDs 380 
to be promoters, whereas 27% of OCRs within non-neuronal CRDs were promoters (fig. S32B). 
The remaining OCRs were enhancers. Further, a higher fraction of neuronal CRDs contained only 
enhancers, compared to non-neurons (fig. S32C). For example, ~40% of CRDs that include 8-10 
OCRs are only enhancers in neurons, while non-neurons have a lower fraction (~30%) (fig. S32D). 
On average, within each neuronal CRD, a promoter coordinated with ~3.5 enhancers, whereas an 385 
enhancer coordinated with ~0.93 promoters. For non-neuronal CRDs, a promoter coordinated with 
~3 enhancers, whereas an enhancer coordinated with ~1.1 promoters. Thus, the coordinated 
activity of OCRs within a CRD included a higher proportion of putative enhancers in neurons 
when compared to non-neuronal samples. 
Hi-C has been considered the gold standard in establishing the three-dimensional (3D) genomic 390 
structure (60). We compared CRDs to cell type-specific Hi-C-derived Topologically Associated 
Domains (TADs) to investigate the efficiency with which CRD captured the 3D genome. CCCTC-
binding factor (CTCF) binding sites at TAD boundaries enhance contact insulation between 
regulatory elements of adjacent TADs (61). Both CRD and TAD boundaries were enriched in 
CTCF binding sites, with the former showing the highest density (Fig. 7D). Furthermore, there 395 
was a marked overlap between CRD and TAD boundaries (fig. S32, E and G). While TADs capture 
the spatial organization of the genome at the scale of hundreds of kb (mean of 413kb in neurons; 
409kb in non-neurons), CRDs represent finer-scale regulatory clusters on the order of tens of kb 
(mean of 92kb in EC neurons; 87kb in STG neurons; 117kb in non-neurons; 123kb in non-neurons) 
(Fig. 7E). We leveraged Hi-C to divide the genome into A and B compartments, which are known 400 
to be associated with active and inactive chromatin, respectively (62), and confirmed that CRDs 
were enriched in type A compartments (fig. S32H). To explore the regulatory interactions within 
each CRD, we leveraged the outcome of the ABC analysis and found enrichment of E-P 
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interactions that are within the same CRDs (Fig. 7F). Enrichment of CRDs with E-P interactions 
decreased sharply with distance, and interactions were not significantly enriched beyond ~500kb 405 
for neurons and ~250kb for non-neurons. Additionally, the correlation was higher for OCR 
interactions that have support for Hi-C loops and diminished with distance (fig. S32I). 

In conclusion, interrogating inter-individual correlation between OCRs elucidates the coordinated 
activity of cis-regulatory elements and identified thousands of CRDs. These CRDs are highly 
concordant with, but substantially smaller than Hi-C-defined TADs, indicating that a CRD is a 410 
functional unit of the 3D genome, capturing intra-chromosomal interactions of active regulatory 
elements with higher spatial resolution. 
 

Differential analysis of CRDs defined perturbations of the three-dimensional 
genome in AD 415 

We next took advantage of the CRD outcome to explore the association of AD with perturbations 
of the 3D genome. We performed differential analyses of CRDs across all AD-related phenotypes 
considering the brain regions (STG/EC) separately (fig. S29, Data S17). The AD epigenomic 
changes in CRDs varied markedly by cell type, brain region, and phenotype (Fig. 8A, Data S18), 
and showed similar patterns with the changes observed in the single OCR analysis (Fig. 4A). For 420 
instance, EC neurons showed the highest number of associations across all AD phenotypes, 
followed by STG neurons and then non-neuronal CRDs. The highest number of significant CRDs 
(n=2,603) was observed for the CDR phenotype in EC neurons and involved 26,365 OCRs (21.6%) 
that were also dysregulated (Fig. 8A). On average, across every phenotype, brain region, and cell 
type, dysregulation of the 3D genome in AD spanned 92.5 Mb or 3% of the genome (fig. S33, A 425 
to B). For the Plaque mean phenotype, perturbations of CRDs in EC neurons spanned 362.7 Mbp, 
or 12.1% of the genome, suggesting that restructuring of the 3D genome is widespread in these 
regions of the AD brain.  

Having shown that the 3D genome is significantly altered in AD, we asked if AD-associated 
structural epigenomic perturbations cause transcriptional changes in nearby genes. For this, we 430 
mapped OCRs within CRDs to genes using the E-P interactions of our ABC analysis (Data S5). 
We next correlated changes in OCR accessibility with changes in gene expression and found our 
ABC-mapped CRD-derived OCRs to show a similar degree of correlation to genes when compared 
to the single OCR analysis (fig. S33, C to D). Using CRDs as the functional unit, we identified 
dysregulation of the transcriptome in AD (Fig. 8B, Data S18), which show similar cell type, brain 435 
region, and phenotype specificity as the epigenetically defined perturbations (Fig. 8A). 
Transcriptome-defined CRD perturbations were highly reproducible (range of π1 estimates from 
0.39 to 0.88) in an independent gene expression dataset from the Religious Orders Study and 
Memory and Aging Project cohort (63) (fig. S34A, B). Gene set enrichment analysis for the 
transcriptome-defined CRD perturbations identified significant associations for multiple canonical 440 
pathways, including AD, cell adhesion molecules from the immunoglobulin family, chemokine 
receptors CXCR3 and CXCR4, SHC adaptor proteins, glutamate metabolic processes, and G 
protein coupled receptors (fig. S34, C to D).  

A previous study reported a larger effect for tau-related changes in H3K9ac peaks located in Hi-C 
defined type A (active) compared to B (inactive) compartments (3). To elaborate on this finding, 445 
we characterized the spatial organization of differential CRDs in higher order chromatin structures 
i.e. type A vs. B compartments. Consistent with previous results (3), differentially upregulated 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426303doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426303
http://creativecommons.org/licenses/by-nc/4.0/


12 
 

CRDs in AD were enriched for type A compartments (Fig. 8C); in contrast, downregulated CRDs 
were enriched in B compartments. Spatial organization of differential CRDs was further 
corroborated by a negative correlation between the magnitude of AD-related phenotypic effects of 450 
CRDs that had no overlap with segments of nuclear lamina compared to those that had an overlap 
(lamina is associated with repressive chromatin) (64) (fig. S34E). An illustrative example of a 
differentially upregulated CRD in EC neurons associated with BBScore is shown in Fig. 8D. The 
spatial organization of this CRD was observed in type A (active) compartments in neurons and it 
involved proximal and distal OCRs regulating EPB41L1, which were all upregulated in more 455 
severe tau pathology (based on BBScores). The EPB41L1 gene, encoding the Band 4.1-like protein 
1 (also known as Neuronal protein 4.1) (65), links cell adhesion molecules to G protein coupled 
receptors at the neuronal plasma membrane (66) and has been associated with neurofibrillary 
tangles in AD brains (67). 

 460 
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Discussion 
Here we provide an extensive characterization of the cell type and regional chromatin regulatory 
landscape in human brain tissue derived from AD cases and controls. This resource increases our 
current understanding of the gene expression regulatory mechanisms in the human brain and 465 
deepens our understanding of AD etiopathogenesis. We initially utilized 19.6 billion read pairs 
from 636 individual ATAC-seq libraries to identify hundreds of thousands of cell type specific 
regulatory regions, expanding the annotation of the chromatin accessibility landscape in the brain 
from previous large-scale efforts (18–20).  

Studying the epigenome at the population level allowed for broad inferences about gene regulation 470 
in the human brain. In fact, chromatin accessibility explained, globally, over 70% of the variance 
in gene expression. Building on this observation, we generated additional epigenome datasets and 
performed integrative analysis to define cell-specific enhancer-promoter interactions. This 
analysis identified putative links for more than half of the protein-coding genes in the genome, 
expanding previous efforts to catalogue E-P interactions in the human brain (7) and further 475 
increasing our understanding of the cell type-specific regulome in brain tissue. This valuable 
resource can be leveraged in future studies to better understand how genetic variation can affect 
regulatory regions, and to link these risk variants to specific genes.  
AD is a highly complex disease, where both genetic and environmental factors, either directly or 
indirectly, shape the molecular perturbations that drive disease progression. In this study we 480 
explored the shared and distinct molecular mechanisms associated with clinical dementia and 
neuropathological lesions. We identified regulatory genomic signatures associated with AD, 
including variability in discrete open chromatin regions, TF regulatory networks and cis-regulatory 
domains.  
Disease-associated changes to chromatin accessibility were extensive, involving thousands of 485 
regulatory sequences, many of which displayed specificity for a given cell-type and/or brain 
region. In addition to overlapping with AD common risk variation and gene expression 
perturbations revealed by bulk tissue analysis, these epigenetic changes also revealed additional 
cell-type specific AD associated molecular perturbations. Of note, common genetic variants 
related to the non-neuronal epigenome showed the most pronounced changes in AD, particularly 490 
so for non-neurons of the entorhinal cortex. Importantly, our FANS strategy accounts for the 
neuronal loss in AD and more precisely quantifies epigenetic dysregulation compared to bulk 
tissue studies, which, without applying deconvolution approaches, cannot distinguish molecular 
signatures arising through changes in cell type composition. 
By applying footprinting analyses (43), we generated TFRNs and identified AD perturbations 495 
related to TF activity patterns that captured changes in gene expression and genetic variation in 
AD. This approach has the potential to elucidate biology as an aggregate of the multitudinous 
disease signals telling the story of gene dysregulation and dysfunction. As an example, we 
highlighted a putative role for USF2 in Alzheimer’s disease. This TF was predicted, in silico, to 
affect lysosomal genes, an observation that was supported by subsequent validation experiments 500 
using a human neuronal cell line. 

Further, we used covariance of epigenetic changes to infer cis-regulatory domains, where OCRs 
work in concert to regulate nearby or more distant genes. These domains also recaptured 
chromosomal conformation information as evidenced by their overlap with Hi-C derived TADs. 
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Using these domains to investigate changes in gene co-regulation structures turned out to be a 505 
powerful tool for interrogating epigenetic changes in AD. Of note, perturbed domains were 
enriched in active “A” compartments of the genome and depleted in inactive “B” compartments. 
On a more general level, we saw a disease associated decrease in both chromatin accessibility and 
gene expression for the lamina associated domains. This is in accordance with previous reports 
(3), but we do not yet understand the biological significance of this finding. 510 

Collectively, this study augments our knowledge of the pathogenesis of AD, but also represents a 
valuable omics resource. With this cell specific map of chromatin accessibility, the MSBB-AD 
cohort contains information at the level of genetics, epigenomics and gene expression, which can 
be applied to downstream studies both genome wide and the single gene level, and, in time, should 
contribute to improved diagnosis and/or treatment of the disease. 515 
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Materials and methods summary 
The dataset of 636 ATAC-seq samples generated from postmortem human brains of 209 
individuals represents a new addition to the panel of genomic assays in the Mount Sinai Brain 520 
Bank AD cohort. Brain tissue dissections spanning two brain regions were FANS-sorted to isolate 
DAPI positive neuronal (NeuN+) and non-neuronal (NeuN-) nuclei. ATAC-seq libraries were 
generated using an established protocol (68) and processed through our bioinformatics pipeline 
(fig. S2). We applied the variance component analysis (69) to quantify the proportion of gene 
expression variation that is attributable to promoter, enhancer and individual covariance. To 525 
predict enhancer-promoter interactions, we employed the “activity-by-contact” method that is 
based on the combination of frequency (derived from Hi-C) and enhancer activity (derived from 
ATAC-seq and H3K27ac ChIP-seq). To avoid the inflation of false discovery rate in the 
differential chromatin accessibility analysis, we applied dream (70), which properly accounts for 
correlation structures of repeated measures in the study designs utilizing cross-individual testing. 530 
For gene sets enrichment analysis with general (71) and synaptic (42) ontology gene sets, we 
employed cameraPR (72) that is taking into account test statistics from the differential analysis. 
Transcription factors involved in the regulation of gene expression were identified by footprinting 
analysis in TOBIAS (43) and modeled as a regulatory network. Then, HotNet (73) was used to find 
altered subnetworks containing TF motifs that are highly dysregulated between AD cases and 535 
controls based on transcriptomics and GWAS weights. Lastly, decorate (59) was used to identify 
co-regulated clusters of OCRs and run the differential analysis to find dysregulated AD-related 
clusters. 
 
  540 
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Fig. 1. Large-scale chromatin accessibility analysis in the human brain. (A) Description of the study design. 
ATAC-seq was performed on neuronal (NeuN+) and non-neuronal (NeuN-) nuclei isolated from two different brain 
regions (STG and EC) in MSBB-AD samples. Existing RNA-seq profiling in the same cohort was performed on bulk 760 
tissue derived from four different brain regions (EC, IFG, FP and STG). All samples have genomic and AD-related 
phenotypic data. (B) Venn diagrams by cell type and brain region summarizing the overlap in megabases of OCRs. 
“J” indicates the Jaccard index between the respective OCRs. (C) Proportions of neuronal and non-neuronal OCRs 
stratified by genomic context. (D) Heatmap showing enrichment of neuronal and non-neuronal OCRs with cell type 
specific markers from “Ze”: Zeisel (16) and “Zh”: Zhang (17). “#”: Test wide significant at FDR<0.05 “ · ”: Nominally 765 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426303doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426303
http://creativecommons.org/licenses/by-nc/4.0/


24 
 

significant at P-value<0.05. (E) Novelty of OCRs compared to known OCRs from the union of three broad OCR 
resources (Roadmap Epigenomics Consortium, The Cancer Genome Atlas, and a brain epigenome atlas). (F) Overlap 
of neuronal and non-neuronal OCRs with sets of reference studies (as in panel E). For this, we considered only the 
known OCRs. 
  770 
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Fig. 2. Variance component analysis of gene expression. The analysis was built upon (A) neuronal and (B) and non-
neuronal open chromatin dataset. Genes, i.e., columns, are sorted by decreasing proportion of variance explained by 
epigenome (enhancer and promoter), with the mean variance explained by each component shown in parentheses. (C) 
Comparison of variance explained by each component across all RNA-seq genes. A Wilcoxon signed-rank test was 775 
used to test the differences between models using neuronal and non-neuronal ATAC-seq. Horizontal lines in the violin 
plot indicate median values. 
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Fig. 3. Linking distal regulatory OCRs (OCRABC) to genes using Activity-By-Contact (ABC) method. (A) 780 
Histogram of the number of OCRABC linked per gene. (B) Histogram of the number of genes linked per OCRABC. (C) 
Histogram of distance of OCRABC to the TSS of regulated genes. (D-E) Scatterplot of genomic distance vs ABC score 
of enhancer-gene links for (D) neurons and (E) non-neurons. The dashed black line denotes the minimum ABC score 
for an enhancer-gene link to be reported as a valid association. The solid yellow line is LOESS (local regression) fit. 
(F) Histogram of the number of genes “skipped” by an OCRABC to reach their linked genes. (G) Correlation between 785 
enhancer OCRs and promoter OCRs of linked genes from the ABC method, for links that did not meet the cut-off 
(low scores, OCRother) versus those that did (high scores, OCRABC). P-values were calculated by t-test from correlation 
values converted to Z-scores. The center line indicates the median, the box shows the interquartile range, whiskers 
indicate the highest/lowest values within 1.5x the interquartile range, and potential outliers from this are shown as 
dots. 790 
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Fig. 4. Disease-associated chromatin changes. (A) Disease-associated OCRs stratified by cell type, brain regions, 
and AD-related phenotypes. (B) Disease-associated OCRs stratified by brain regions or AD-related phenotypes (C) 
genetic context of disease-associated OCRs. (D) Enrichment of common genetic variants in AD with disease-795 
associated OCRs when assayed by LD-score regression. Only sets of OCRs covering at least 0.05% of the genome 
were tested. Positive coefficients signify enrichment. “*”: FDR significant after correction across all tests. (E) 
Correlation between disease-associated chromatin changes at promoters (ATAC-seq) and disease-associated changes 
in gene expression (RNA-seq) at the corresponding genes. Pearson correlations were used and only comparisons with 
over 100 differential OCRs and genes were tested. (F) Examples of changes in chromatin accessibility and gene 800 
expression near the genes encoding NYAP1 and CCKBR. 
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Fig. 5. Gene set enrichment analysis using general gene sets. (A) Top five gene sets of the four overall assays and 805 
the top genes within these. Thickness indicates the strength of association. A full line indicates significance at 
FDR<5%, whereas a dashed line indicates nominal significance. Grey lines between genes and gene sets indicate gene 
set membership and the thickness is inversely proportional to the size of the gene set. The numbers in square brackets 
indicate the number of assays in which the gene or gene set was found significant at FDR<5%. The gene sets are 
clustered based on the constituent member genes. FDR throughout is calculated for all tests within one assay (e.g. all 810 
contrasts analyzed in ATAC Neuron times the number of gene sets tested). (B) heatmap of P-values for the associated 
gene sets. (C) Heatmap of fold changes in chromatin accessibility/gene expression and significance of change. The 
GWAS associations are genetic variants, which might increase or decrease or otherwise alter gene function. Thus no 
colors are applied to these. “#” Significance at FDR<5%. “ · ”: Nominal significance. “NA”: not available. “Bi”: 
Biocarta. “GO”: Gene Ontology. “KG”: Kegg. “Re”: Reactome. The ApoE- and MHC-loci were excluded from the 815 
GWAS analysis, as is customary. Not all genes have an OCR directly linked to it in neuron and non-neuron ATAC-
seq. 
  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426303doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426303
http://creativecommons.org/licenses/by-nc/4.0/


30 
 

 
 820 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.11.426303doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.11.426303
http://creativecommons.org/licenses/by-nc/4.0/


31 
 

Fig. 6. Mapping of transcription factors to cell types and AD-related phenotypes. (A) Hierarchical clustering of 
transcription factor motifs based on a cell type specificity score across neuronal and non-neuronal promoter OCRs. 
High specificity scores indicate high specificity to the given cell type. The concordance with Brain Open Chromatin 
Atlas is indicated as “BOCA score“ ranging from blue (strong non-neuronal signal) to red (strong neuronal signal). 
Select motifs are further described in Data S14. (B) Aggregated footprint scores across all potential transcription factor 825 
binding sites for three motifs that represent the three major clusters of TFs according to cell type specificity. (C) Left: 
Overview of TF motifs whose neuronal and/or non-neuronal TFRNs show enrichment in AD genes. Right: subsequent 
prioritization of specific TF genes. The TF genes highlighted here meet the criteria of (1) significant correlation of 
their RNA-seq with TF regulatory targets and (2) significantly different TF gene expression between AD cases and 
controls. “TF”: transcription factor. (D) Heatmap showing top ten pathways for neuronal and non-neuronal genes 830 
regulated by USF2 transcription factor with general gene sets. “#”: FDR < 0.05 “ · ”: nominal P-value < 0.05. (E) 
Top: Schematic of the V0 and V1 subunits of the v-ATPase complex responsible for maintaining lysosomal pH. 
Bottom: Summary of western blot data in SH-SY5Y human neuroblastoma cells transfected with siUSF2 or stable 
overexpression of USF2. Arrow direction indicates protein level increase or decrease while the number of arrows 
represents statistical significance by Student’s two-tailed unpaired t-test, i.e. one arrow: P-value<0.05; two arrows: P-835 
value<0.005; three arrows: P-value<0.0005. 
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Fig. 7. Definition of neuronal and non-neuronal cis-regulatory domains. (A) An example of cis-regulatory 
domains in STG neurons identified by estimating the interindividual correlation structure between nearby OCRs. From 840 
top to bottom: genes that are present in the locus; a single Hi-C TAD (dark gray horizontal bar) and Hi-C loops (red 
arcs); OCRs (gray vertical bars); CRDs, where each colorbar represents a different regulatory domain; correlation 
matrix of OCRs including colored triangles that highlight CRDs. (B) Number of CRDs stratified by cell type and brain 
region. The percentage is the fraction of OCRs that was within CRDs to the total number of OCRs. (C) Venn diagrams 
by cell type and brain region summarizing the overlap of CRDs. “J” indicates the Jaccard index between the respective 845 
CRDs. (D) CTCF density at and around CRD and TAD boundaries. (E) Size distribution of cell type and region 
specific CRDs and cell type specific TADs. (F) Associations of enhancer-promoter regions (ABC method) that are 
within the same CRDs. The odds ratios with their 95% confidence intervals are plotted as a function of the distance 
between enhancer and gene TSSs. P-values are estimated based on a two-sided Fisher’s exact test. CRD: cis-regulatory 
domain; TAD: topologically associating domain; kb: kilobase; and Mb: megabase. 850 
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Fig. 8. Disease-associated perturbations in CRDs. (A) Counts of CRDs and OCRs within CRDs that are associated 
with AD-related phenotypes stratified by cell type and brain regions. (B) Counts of CRDs and genes mapped to CRDs 
using the ABC model, that showed association with AD-related phenotypes in both epigenomic and transcriptomic 855 
levels using differential CRD test, stratified by brain region and cell type. (C) Odds ratios of disease associated EC 
neuronal CRDs to be in A compartments vs. B compartments, measured for each AD related phenotype. (D) Odds 
ratios of disease associated genes in EC neuronal CRDs to be in A compartments vs. B compartments, measured for 
each AD related phenotype. (E) Examples of changes in OCR expression and gene expression near the EPB41L1 gene 
in BBScore associated CRD in EC neurons. Promoter and enhancer annotations of OCRs were obtained from 860 
ChIPSeeker and ABC results. 
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