1

1 Deficiency of gluconeogenic enzyme PCK1 promotes murine NASH

2 progression and fibrosis by activation PI3K/AKT/PDGF axis

- 3 Qian Ye^{1,#}, Yi Liu^{1,#}, Guiji Zhang^{1,#}, Haijun Deng^{1,#}, Xiaojun Wang^{2,#}, Chang
- 4 Chen³, Xuanming Pan¹, Kang Wu¹, Jiangao Fan⁴, Qin Pan⁴, Kai Wang^{1,*},

- 6
- ⁷ ¹Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of
- 8 Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The
- 9 Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- ¹⁰²Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical
- 11 University (Army Medical University), Chongqing, China
- ¹² ³Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- ¹³ ⁴Department of Gastroenterology, Xin Hua Hospital, School of Medicine,
- 14 Shanghai Jiao Tong University, Shanghai, China
- ¹⁵ [#]These authors contributed equally to this work.

¹⁶ *Corresponding author: Ni Tang, Ailong Huang, Kai Wang, Key Laboratory of

- 17 Molecular Biology for Infectious Diseases (Ministry of Education), Institute for
- 18 Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated
- Hospital, Chongqing Medical University, Chongqing 400016, China. Tel:
- 20 86-23-68486780, Fax: 86-23-68486780, E-mail: nitang@cqmu.edu.cn (N.T.),
- ahuang@cqmu.edu.cn (A.H.), wangkai@cqmu.edu.cn (K.W.)
- 22

23 Abstract:

24 Background and Aims:

- 25 Nonalcoholic steatohepatitis (NASH) is a chronic liver disease characterized
- 26 by hepatic lipid accumulation, inflammation, and progressive fibrosis. However,
- the pathomechanisms underlying NASH are incompletely explored.
- 28 Phosphoenolpyruvate carboxykinase 1 (PCK1) catalyzes the first rate-limiting
- step of gluconeogenesis. This study was designed to determine the role of
- 30 PCK1 in regulating NASH progression.

31 Methods:

- Liver metabolism, hepatic steatosis, and fibrosis were evaluated at 24 weeks
- in liver-specific *Pck1*-knockout mice fed with NASH diet or chow diet. Gain- or
- loss-of-function approaches were used to explore the underlying mechanism *in*
- *vitro*. AKT and RhoA inhibitors were evaluated for NASH treatment *in vivo*.

36 **Results:**

- 37 Hepatic PCK1 was downregulated in patients with NASH and mouse models
- of NASH. Mice with liver *Pck1* deficiency displayed hepatic lipid disorder and
- ³⁹ liver injury fed with normal diet, while showed aggravated fibrosis and
- 40 inflammation when fed NASH diet. Mechanistically, PCK1 deficiency
- 41 upregulated genes involved in fatty acid transport and lipid droplet formation.
- 42 Moreover, metabolomics analysis showed the accumulation of glycerol
- 43 3-phosphate, the substrate of triglyceride synthesis. Furthermore, the loss of
- 44 hepatic PCK1 could activate the RhoA/PI3K/AKT pathway, which leads to

- 45 increased secretion of PDGF-AA and promotes the activation of hepatic
- 46 stellate cells. Accordingly, treatment with RhoA and AKT inhibitors alleviated
- 47 NASH progression in the presence of *Pck1* deletion *in vivo*.
- 48 **Conclusions:**
- 49 PCK1 deficiency plays a key role in the development of hepatic steatosis and
- 50 fibrosis by facilitating the RhoA/PI3K/AKT/PDGF-AA axis. These findings
- 51 provide a novel insight into therapeutic approaches for the treatment of NASH.
- 52
- 53 **Keywords:** phosphoenolpyruvate carboxykinase 1; gluconeogenesis;
- non-alcoholic steatohepatitis; PI3K/AKT pathway; platelet-derived growth
- 55 factor AA
- 56

4

57 Introduction

58	Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver
59	disease worldwide affecting nearly 25% of U.S. and European adults. ¹ NAFLD
60	is characterized by aberrant lipid accumulation in hepatocytes in the absence
61	of excessive alcohol consumption. NAFLD may progress to non-alcoholic
62	steatohepatitis (NASH), a more serious form of liver damage hallmarked by
63	irreversible pathological changes such as inflammation, varying degrees of
64	fibrosis, and hepatocellular damage, which is more likely to develop into
65	cirrhosis and hepatocellular carcinoma (HCC). ² Although multiple parallel
66	insults, including oxidative damage, endoplasmic reticulum stress, and hepatic
67	stellate cell (HSC) activation have been proposed to explain the pathogenesis
68	of NASH, the underlying mechanisms remain incompletely elucidated. ³
69	
70	Gluconeogenesis is the process of generating glucose from non-carbohydrate
71	substrates such as glycerol, lactate, pyruvate, and glucogenic amino acids,
72	which occurs mainly in the liver to maintain glucose levels and energy
73	homeostasis. Phosphoenolpyruvate carboxykinase 1 (PCK1) is the first
74	rate-limiting enzyme in the gluconeogenesis which converts oxaloacetate
75	(OAA) to phosphoenolpyruvate (PEP) in the cytoplasm. ⁴ Our previous studies
76	
	have shown that PCK1 deficiency promotes HCC progression by enhancing
77	have shown that PCK1 deficiency promotes HCC progression by enhancing the hexosamine-biosynthesis pathway. ⁵ However, PCK1 has been found to

79	regulatory element-binding proteins (SREBPs). ⁶ Patients lacking PCK1
80	function present diffuse hepatic macrosteatosis concomitant with
81	hypoglycemia and hyperlactacidemia. ⁷ Likewise, mice with reduced Pck1
82	expression develop insulin resistance and exhibit hypoglycemia as well as
83	hepatic steatosis, indicating an important role of PCK1 in regulating both
84	glucose homeostasis and lipid metabolism. ^{8,9} However, the exact role of
85	PCK1 during NASH progression is incompletely understood.
86	
87	The phosphoinositide 3-kinase/protein kinase B (PI3K/ATK) pathway plays a
88	critical role in regulating cell growth and metabolism. This pathway can be
89	activated in response to insulin, growth factors, energy, and cytokines, and in
90	turn, regulates key metabolic processes, including glucose and lipid
91	metabolism, as well as protein synthesis. ¹⁰ AKT promotes <i>de novo</i> lipogenesis
92	(DNL) primarily through SREBP activation. ¹¹ PI3K/AKT dysregulation leads to
93	many pathological metabolic conditions, including obesity and type 2
94	diabetes. ¹² NAFLD is characterized by disordered glucose and lipid
95	metabolism in liver. Although PI3K/AKT pathway is a key regulator for sensing
96	metabolic stress, its exact role in NAFLD/NASH progression is unclear. ^{13, 14}
97	
98	In this study, we explored the role of <i>Pck1</i> in a mouse NASH model. We
99	unraveled the molecular mechanisms underlying disordered lipid metabolism,
100	inflammation, and fibrosis induced by Pck1 depletion. We also delineated the

- 101 functional importance of the PI3K/AKT pathway and its effectors in
- steatohepatitis, providing a potential therapeutic strategy for treating NASH.

7

103 Materials and Methods

104 Animal models.

- 105 *Pck1*^{loxp/loxp} mice with a 129S6/SvEv background were purchased from the
- 106 Mutant Mouse Resource & Research Centers (MMRRC: 011950-UNC) and
- 107 Alb-Cre mice with a C57BL/6 background were purchased from Model Animal
- 108 Research Center of Nanjing University. To generate liver-specific
- 109 *Pck1*-knockout mice (L-KO), *Alb-Cre* mice were crossed with *Pck1*^{loxp/loxp} mice.
- 110 $Pck 1^{loxp/loxp}$ mice from the same breeding were used as control (wild-type, WT).
- 111 Male WT and L-KO mice, 7-9-week-old, were fed NASH diet (Research Diets,
- 112 D12492: 60% Kcal fat, with drinking water containing 23.1 g/L fructose and
- 113 18.9 g/L glucose) (n=11 per group) or a control chow diet (Research Diets,
- 114 D12450J: 10% Kcal fat, with tap water) (n=10 per group) for 24 weeks. Food
- and drinking water were provided *ad libitum*. All mice were housed in
- temperature-controlled (23°C) pathogen-free facilities with a 12-hour light-dark
- 117 cycle. For the male L-KO mice in the treatment group, after fed with NASH diet
- for 16 weeks, mice were divided into 3 groups and intraperitoneally (*i.p.*)
- injected with vehicle solution (n=6), MK2206 (AKT inhibitor, 50 mg/kg, every 3
- days) (n=5) or Rhosin (RhoA inhibitor, 20 mg/kg, every 3 days) (n=6) for 8
- 121 weeks, respectively. All mice were executed for further study after fed with
- 122 NASH diet for 24 weeks. Animal experiments were approved by Animal
- 123 Experimentation Ethics Committees of Chongqing Medical University and
- were carried out in accordance with the Guide for the Care and Use of

125 Laboratory Animals.

- 126
- 127 Liver tissues collection, ELISA, immunoblotting, transcriptomic analyses,
- 128 untargeted metabolomics, primer sequences, reagents, antibodies,
- 129 ChIP-qPCR, and other *in vitro* studies are provided in the **Supplementary**
- 130 Materials and Methods.

	-
•	2

PCK1 is downregulated in patients with NASH and mouse models of

- 134 **NASH**
- 135 To determine whether PCK1 is involved in NAFLD, we first examined hepatic
- 136 gene expression in a published transcriptome dataset (GEO: GSE126848)
- 137 containing samples from 14 healthy, 12 obese, 15 NAFLD, and 16 NASH
- ¹³⁸ patients.¹⁵ Bioinformatics analysis showed that 32 genes were markedly
- changed in obesity, NAFLD, and NASH; 12 genes were considerably
- downregulated and 20 genes were upregulated (Supplementary Figure 1A-C).
- 141 Notably, *PCK1* was gradually reduced in obesity, NAFLD, and NASH patients
- 142 (Figure 1A and B). Downregulation of *PCK1* mRNA was also found in a similar
- dataset (GSE89632) (Figure 1B). Moreover, q-PCR, immunoblotting, and
- 144 immunohistochemistry (IHC) assays showed that PCK1 expression were
- dramatically downregulated in liver samples derived from NASH patients and

146 NASH model mice (Figure 1C-E).

147

148	Next, paimitic acid (PA) was used to mimic the liver steatosis of NAFLD
149	patients in vitro. ¹⁶ Cell growth was assessed by CCK8 assay after treatment
150	with different concentration of PA (Supplementary Figure 1D). Interestingly,
151	PCK1 mRNA and protein levels were downregulated in a dose-dependent
152	manner during 24-hour PA stimulation (Figure 1F and G), suggesting that
153	transcription of PCK1 may be inhibited in response to lipid overload. We

154	screened several known regulators of <i>PCK1</i> (Supplementary Figure 1E and F)
155	and determined ATF3, a transcriptional repressor of PCK1, ¹⁷ was upregulated
156	upon PA stimulation (Figure 1H). Similarly, ATF3 expression was remarkably
157	upregulated in liver samples derived from NASH patients and NASH model
158	mice (Supplementary Figure 1G-I). Chromatin immunoprecipitation assays
159	revealed that the binding of ATF3 to PCK1 promoter was increased by PA
160	administration (Figure 1I). ATF3 knockdown restored the expression of PCK1
161	in human hepatocytes under PA treatment (Figure 1J). These results indicate
162	that increased lipids caused upregulation of the repressor ATF3, impairing
163	PCK1 transcription in NASH patients and mouse models.
164	
165	L-KO mice exhibit a distinct hepatic steatosis phenotype
165 166	L-KO mice exhibit a distinct hepatic steatosis phenotype To explore the role of <i>Pck1</i> in fatty liver disease, WT and L-KO mice were fed
166	To explore the role of <i>Pck1</i> in fatty liver disease, WT and L-KO mice were fed
166 167	To explore the role of <i>Pck1</i> in fatty liver disease, WT and L-KO mice were fed with chow diet for 24 weeks (Supplementary Figure 2A). From 16 weeks, L-KO
166 167 168	To explore the role of <i>Pck1</i> in fatty liver disease, WT and L-KO mice were fed with chow diet for 24 weeks (Supplementary Figure 2A). From 16 weeks, L-KO mice showed increased body weight compared with WT mice, however, there
166 167 168 169	To explore the role of <i>Pck1</i> in fatty liver disease, WT and L-KO mice were fed with chow diet for 24 weeks (Supplementary Figure 2A). From 16 weeks, L-KO mice showed increased body weight compared with WT mice, however, there was no significant difference in the glucose tolerance test (GTT) and insulin
166 167 168 169 170	To explore the role of <i>Pck1</i> in fatty liver disease, WT and L-KO mice were fed with chow diet for 24 weeks (Supplementary Figure 2A). From 16 weeks, L-KO mice showed increased body weight compared with WT mice, however, there was no significant difference in the glucose tolerance test (GTT) and insulin tolerance test (ITT) (Supplementary Figure 2B). Moreover, significant
166 167 168 169 170 171	To explore the role of <i>Pck1</i> in fatty liver disease, WT and L-KO mice were fed with chow diet for 24 weeks (Supplementary Figure 2A). From 16 weeks, L-KO mice showed increased body weight compared with WT mice, however, there was no significant difference in the glucose tolerance test (GTT) and insulin tolerance test (ITT) (Supplementary Figure 2B). Moreover, significant hepatomegaly and increased liver weight were observed in L-KO mice
166 167 168 169 170 171 172	To explore the role of <i>Pck1</i> in fatty liver disease, WT and L-KO mice were fed with chow diet for 24 weeks (Supplementary Figure 2A). From 16 weeks, L-KO mice showed increased body weight compared with WT mice, however, there was no significant difference in the glucose tolerance test (GTT) and insulin tolerance test (ITT) (Supplementary Figure 2B). Moreover, significant hepatomegaly and increased liver weight were observed in L-KO mice (Supplementary Figure 2C). Alanine transaminase (ALT) and aspartate

176	L-KO mice (Supplementary Figure 2E and F). Histochemistry and ELISA
177	showed that L-KO mice exhibited prominent hepatic steatosis and higher
178	levels of TNF- α (Supplementary Figure 2G-I). These data suggest that L-KO
179	mice exhibited a distinct hepatic steatosis phenotype and liver injury even
180	when fed normal chow.
181	
182	Hepatic loss of <i>Pck1</i> promotes inflammation and fibrogenesis in NASH
183	mice
184	To explore whether an unhealthy diet could exacerbate the pathologic
185	changes in L-KO mice, WT and L-KO mice were fed with high-fat diet with
186	drinking water containing fructose and glucose (NASH diet) for 24 weeks
187	(Figure 2A). ^{18, 19} From 4 weeks, L-KO mice showed significant weight gain
188	(Figure 2B). GTT and ITT showed that L-KO mice developed a more severe
189	form of glucose intolerance and insulin resistance (Figure 2C and D). L-KO
190	mice had pale and heavier livers (Figure 2E), although there was no significant
191	difference in liver weight ratio (Supplementary Figure 3A). Insulin, AST, ALT,
192	TC, TG, and FFAs were increased in serum or liver homogenates of L-KO
193	mice, suggesting more serious liver injury and lipid metabolism disorder
194	(Figure 2F; Supplementary Figure 3B and C). Analyses of L-KO liver sections
195	revealed increased fat droplets, more severe fibrosis, and greater macrophage
196	infiltration (Figure 2G and H). Furthermore, L-KO mice had higher NAFLD
197	activity score (NAS score), and higher TNF- α and IL-6 levels (Figure 2I and J).

198	In addition, the	he expression	of inflammatory	factors,	lipogenic	enzymes,	and
-----	------------------	---------------	-----------------	----------	-----------	----------	-----

- 199 fibrogenesis associated genes were upregulated in L-KO mice
- 200 (Supplementary Figure 3D-F). In summary, mice lacking hepatic *Pck1* showed
- substantial liver inflammation and fibrosis when fed NASH diet.
- 202

Transcriptomic and metabolomics analyses confirm loss of *Pck1*

204 promotes hepatic lipid accumulation

- To comprehensively investigate the role of *Pck1* in NASH, we performed
- 206 RNA-seq analysis of liver samples from L-KO and WT mice fed normal chow
- 207 or NASH diet for 24 weeks. Gene ontology analysis indicated that lipid
- ²⁰⁸ metabolic processes were remarkably upregulated in L-KO mice fed with
- NASH diet (Figure 3A). Volcano plot showed that genes involved in fatty acid
- uptake, such as *Slc27a1* and *Cd36*, and lipid droplet synthesis, such as *Cidec*
- and *Cidea*, were upregulated in response to NASH diet (Figure 3B). Gene Set
- 212 Enrichment Analysis (GSEA) revealed that the PPAR signaling pathway was
- prominently upregulated in L-KO mice fed either diet (Figure 3C;

Supplementary Figure 4A and B). Several genes selected from the data set

- were independently validated by q-PCR and immunoblotting and found to be
- significantly overexpressed in L-KO mice (Figure 3D and E). Furthermore,
- 217 genes involved in the glycerol 3-phosphate (G3P) pathway were also
- ²¹⁸ upregulated in L-KO mice (Figure 3F). Metabolomics analysis showed that
- compared with WT mice fed NASH diets, L-KO mice had significantly higher

220	G3P and PA levels (Figure 3G and H). Since G3P is a substrate for TG
221	synthesis and PA is a key intermediate metabolite in DNL, these data
222	suggested that Pck1 ablation could promote the substrates accumulation for
223	lipid synthesis.
224	
225	To further examine the function of PCK1 on steatosis in vitro, we
226	overexpressed (PCK1-OE) using the AdEasy adenoviral vector system and
227	knocked out PCK1 (PCK1-KO) using the CRISPR-Cas9 system in human
228	hepatocytes (Supplementary Figure 4C and D), and found that PCK1-OE
229	attenuated the accumulation of lipid droplets, whereas PCK1-KO facilitated
230	lipid accumulation (Supplementary Figure 4E and F). Collectively, these results
231	suggested that hepatic Pck1 deficiency leads to lipid accumulation by
232	promoting the expression of lipogenic genes and the accumulation of
	substrates related to lisid surthesis (Querlessenter (Figure 4Q)
233	substrates related to lipid synthesis (Supplementary Figure 4G).
233 234	substrates related to lipid synthesis (Supplementary Figure 4G).
	Hepatic <i>Pck1</i> deficiency leads to HSC activation via PI3K/AKT pathway
234	
234 235	Hepatic <i>Pck1</i> deficiency leads to HSC activation via PI3K/AKT pathway
234 235 236	Hepatic <i>Pck1</i> deficiency leads to HSC activation via PI3K/AKT pathway RNA-seq analysis indicated that the PI3K/AKT pathway was also specifically
234 235 236 237	Hepatic <i>Pck1</i> deficiency leads to HSC activation via PI3K/AKT pathway RNA-seq analysis indicated that the PI3K/AKT pathway was also specifically activated in L-KO mice fed NASH diet (Figure 4A and B). Immunoblotting
234 235 236 237 238	Hepatic <i>Pck1</i> deficiency leads to HSC activation via PI3K/AKT pathway RNA-seq analysis indicated that the PI3K/AKT pathway was also specifically activated in L-KO mice fed NASH diet (Figure 4A and B). Immunoblotting revealed p-AKT (S473) and p-AKT (T308), two activated forms of AKT, and

242	(S473 and T308) significantly decreased in human PCK1-OE cells, but
243	increased in PCK1-KO cells after 0.2 mM PA treatment (Figure 4D and E).
244	
245	To clarify the role of PI3K/AKT pathway activation, transcriptome data were
246	further analyzed. Interestingly, Col1a1, Col3a1, and Lama2, which are primary
247	components of the extracellular matrix (ECM), were upregulated as shown in
248	the heat map of the PI3K/AKT pathway (Supplementary Figure 5B). Moreover,
249	GSEA analysis revealed that ECM-receptor interaction was upregulated in
250	L-KO mice (Supplementary Figure 5C). Since ECM deposition is usually
251	considered as the key event underlying liver fibrosis, we suspected that
252	activation of the PI3K/AKT pathway may promote fibrosis in L-KO mice.
253	Considering HSCs are major ECM secretors, we performed human hepatocyte
254	(MIHA) and HSC (LX-2) co-culture assays (Figure 4F). Interestingly, mRNA
255	levels of ACTA2 (α -SMA, an HSC activation marker), COL1A1, and COL3A1
256	were increased in HSCs co-cultured with PCK1-KO cells, but were decreased
257	in HSCs co-cultured with PCK1-OE cells (Figure 4G and H). Likewise,
258	COL1A1, COL3A1, and α -SMA expression was increased in liver tissues and
259	primary HSCs of L-KO mice, which was confirmed by IHC analysis of COL3A1
260	(Figure 4I-K). However, these increases could be partially reversed by
261	MK2206, an AKT inhibitor (Figure 4L and M). Collectively, these data
262	suggested that loss of PCK1 in hepatocytes induces HSCs activation and ECM
263	formation via activating the PI3K/AKT pathway.

265	Paracrine PDGF-AA from hepatocytes promotes HSC activation
266	Hepatocytes elicit several fibrogenic actions in a paracrine fashion to promote
267	the activation of HSCs. ²⁰ Thus, PCK1-mediated hepatic fibrosis may be
268	involved in paracrine disorders. To test this hypothesis, several pro-fibrotic
269	factors were screened, and Pdgfa was significantly elevated in liver tissues of
270	L-KO mice (Figure 5A). Bioinformatics analysis confirmed that PDGFA were
271	significantly increased in NAFLD and NASH patients (Figure 5B). Pdgfa
272	encodes a dimer disulfide-linked polypeptide (PDGF-AA), and the chronic
273	elevation of PDGF-AA in mice liver induces fibrosis. ²¹ Immunoblotting and
274	ELISA demonstrated increased PDGF-AA expression in liver tissues and
275	primary hepatocytes of L-KO mice (Figure 5C-E). Moreover, PDGF-AA
276	concentration was markedly increased in the culture medium of PCK1-KO
277	cells, but decreased in that of PCK1-OE cells treated with 0.2 mM PA (Figure
278	5F). Correspondingly, platelet-derived growth factor receptor alpha (PDGFRA),
279	which encodes the PDGF-AA receptor, was increased in HSCs co-cultured
280	with PCK1-KO cells, while decreased in HSCs co-cultured with PCK1-OE cells
281	(Figure 5G). To determine whether the pro-fibrogenic effect was mediated by
282	PDGF-AA secretion, we used a neutralizing antibody against PDGF-AA. As
283	expected, the increase of α -SMA, COL1A1, and COL3A1 in HSCs co-cultured
284	with PCK1-KO cells can be reversed by anti-PDGF-AA treatment (Figure 5H).
285	

286	Reviewing transcriptome data, we found that Pdgfa appeared in the heat map
287	of the PI3K/AKT pathway (Supplementary Figure 5B). IHC results showed that
288	p-AKT (S473) was positively correlated with PDGF-AA (Figure 5I). The AKT
289	inhibitor MK2206 significantly blocked the increase of PDGFA expression
290	levels in the supernatants and cells lysates of PCK1-KO cells (Figure 5J and
291	K). Taken together, these data confirmed that PCK1 deficiency promoted the
292	expression of PDGF-AA through the PI3K/AKT pathway, and activated HSCs
293	through hepatocyte-HSC crosstalk.
294	
295	PCK1 deficiency promotes the activation of the PI3K/AKT/PDGF-AA axis
296	by activating RhoA signaling in hepatocytes
297	Rho GTPases, which cycle between active GTP-bound and inactive
297 298	Rho GTPases, which cycle between active GTP-bound and inactive GDP-bound conformations, are known to activate the PI3K/AKT pathway. ²²⁻²⁴
298	GDP-bound conformations, are known to activate the PI3K/AKT pathway. ²²⁻²⁴
298 299	GDP-bound conformations, are known to activate the PI3K/AKT pathway. ²²⁻²⁴ Considering PCK1 catalyzes the conversion of OAA to PEP, consuming GTP
298 299 300	GDP-bound conformations, are known to activate the PI3K/AKT pathway. ²²⁻²⁴ Considering PCK1 catalyzes the conversion of OAA to PEP, consuming GTP to generate GDP, we speculated that PCK1 deficiency may alter intracellular
298 299 300 301	GDP-bound conformations, are known to activate the PI3K/AKT pathway. ²²⁻²⁴ Considering PCK1 catalyzes the conversion of OAA to PEP, consuming GTP to generate GDP, we speculated that PCK1 deficiency may alter intracellular GTP homeostasis. To test this hypothesis, we examined several Rho GTPase
298 299 300 301 302	GDP-bound conformations, are known to activate the PI3K/AKT pathway. ²²⁻²⁴ Considering PCK1 catalyzes the conversion of OAA to PEP, consuming GTP to generate GDP, we speculated that PCK1 deficiency may alter intracellular GTP homeostasis. To test this hypothesis, we examined several Rho GTPase protein levels in mice liver tissues and found that GTP-bound RhoA
298 299 300 301 302 303	GDP-bound conformations, are known to activate the PI3K/AKT pathway. ²²⁻²⁴ Considering PCK1 catalyzes the conversion of OAA to PEP, consuming GTP to generate GDP, we speculated that PCK1 deficiency may alter intracellular GTP homeostasis. To test this hypothesis, we examined several Rho GTPase protein levels in mice liver tissues and found that GTP-bound RhoA significantly increased but inactivated RhoA, p-RhoA (S188) reduced in L-KO
298 299 300 301 302 303 304	GDP-bound conformations, are known to activate the PI3K/AKT pathway. ²²⁻²⁴ Considering PCK1 catalyzes the conversion of OAA to PEP, consuming GTP to generate GDP, we speculated that PCK1 deficiency may alter intracellular GTP homeostasis. To test this hypothesis, we examined several Rho GTPase protein levels in mice liver tissues and found that GTP-bound RhoA significantly increased but inactivated RhoA, p-RhoA (S188) reduced in L-KO mice (Figure 6A-6C). Consistently, after PA treatment, levels of GTP-bound

308	RhoA.	Immunoblotting,	ELISA,	and q	-PCR	assays	showed	that Rhosin

- 309 blocked the increase of activated forms of AKT and PDGF-AA in PCK1-KO cell
- ³¹⁰ lysate and supernatant, as well as ACTA2, COL1A1, and COL3A1 expression
- in HSCs co-cultured with *PCK1*-KO hepatocytes (Figure 6H-J). Moreover,
- 312 PCK1 and p-RhoA (S188) were downregulated in NASH patient samples,
- 313 while p-AKT (S473) and PDGF-AA levels were upregulated (Figure 6K). Taken
- together, these data indicate that PCK1 ablation stimulated the
- 315 PI3K/AKT/PDGF-AA axis by activating RhoA.
- 316
- 317 Therapeutic treatment with RhoA and AKT inhibitors reduced
- 318 progressive liver fibrosis in vivo
- To explore whether blocking RhoA/PI3K/AKT could rescue the NASH
- phenotype in L-KO mice, Rhosin and MK2206 were used *in vivo* (Figure 7A).
- 321 Treatment of L-KO mice with Rhosin or MK2206 showed improved glucose
- intolerance (Supplementary Figure 6A) and insulin resistance (Supplementary
- Figure 6B). Furthermore, the increased liver weight was also prevented
- 324 (Figure 7B), whereas body weight was reduced only in the MK2206 treatment
- group (Supplementary Figure 6C). Additionally, Rhosin or MK2206
- administration attenuated AST and ALT levels, as well as TG and FFA levels in
- serum and liver tissues (Figure 7C; Supplementary Figure 6D and E). Similarly,
- histochemistry showed reduced liver steatosis, inflammation, and fibrosis in
- Rhosin or MK2206 treated mice (Figure 7D; Supplementary Figure 6F), which

- was confirmed by decline in liver TNF- α and IL-6 levels (Figure 7E).
- 331 Additionally, α-SMA, COL1A1, COL3A1, PDGF-AA, p-AKT (S473, T308)
- expression and GTP-bound RhoA levels were also decreased, while the
- expression of p-RhoA (S188) was increased in treatment group (Figure 7F;
- 334 Supplementary Figure 6G). MK2206 or Rhosin treatment also reduced the
- expression of genes related to inflammation and fibrosis (Figure 7G). These
- data suggested that the RhoA/PI3K/AKT axis plays a key role in NASH
- 337 progression in L-KO mice.

338 Discussion

339	This study revealed that the hepatic gluconeogenic enzyme PCK1 plays an
340	important role in NASH progression. The expression of PCK1 was diminished
341	in livers from patients or mice with NASH. Moreover, deletion of PCK1
342	significantly exacerbated hepatic steatosis, fibrosis, and inflammation in
343	mouse models fed NASH diet. Mechanistically, loss of PCK1 not only
344	promotes steatosis by enhancing lipid deposition, but also induces fibrosis by
345	HSC activation via the PI3K/AKT/PDGF-AA axis, thus promoting the
346	progression of NASH.
347	
348	Abnormal lipid metabolism is a characteristic of NAFLD and NASH. Previous
349	studies assumed that altered lipid homeostasis was usually caused by
350	abnormal expression of genes related to lipid metabolism. ²⁵ However, recent
351	studies have demonstrated that disruption of gluconeogenesis also leads to
352	abnormal lipid metabolism. Deficiency of fructose-1,6-bisphosphatase 1 (FBP1)
353	and glucose-6-phosphatase catalytic subunit (G6PC), key enzymes of
354	gluconeogenesis, results in severe hepatic steatosis and hypoglycemia,
355	indicating that suppression of gluconeogenesis could also disrupt lipid
356	homeostasis. ^{26, 27} As the first rate-limiting enzyme in gluconeogenesis, it is
357	currently not clear whether PCK1 plays a critical role in NAFLD/NASH
358	development. In this study, we identified a robust decrease in PCK1
359	expression in the livers of NASH mice and NAFLD/NASH patients, causing

20

360 severe hepatic steatosis and confirming that disordered hepatic

- 361 gluconeogenesis can affect lipid homeostasis.
- 362

363	Previous reports have shown that PCK1 expression is increased in several
364	obesity/diabetes mouse models, such as ZDF rats, ob/ob and db/db mice, and
365	the disease progression of NASH is positively correlated with obesity and type
366	2 diabetes mellitus (T2DM). ²⁸⁻³⁰ Interestingly, we found that PCK1 expression
367	was down-regulated in diet-induced murine NASH model. Such a discrepancy
368	might be due to the differences in animal models. The widely used rodent
369	models of genetic forms of obesity and diabetes, such as <i>ob/ob</i> and <i>db/db</i>
370	mice, have increased plasma glucocorticoids, which may drive PCK1
371	expression. ^{30, 31} Another explanation is that high-fat diet supplemented with
372	high fructose/glucose in drinking water is capable of suppressing PCK1
373	expression, which is consistent with the previous report. ³² Furthermore, we
374	identified ATF3, a member of the basic leucine zipper (bZIP) family of
375	transcription factors, ³³ transcriptionally repressed PCK1 upon PA overload in
376	vitro or in NASH mouse model. This is in line with previous studies suggesting
377	that ATF3 was upregulated in NAFLD patients and murine NASH model, and
378	could inhibit the expression of PCK1 in alcoholic fatty liver disease. $^{16, 34, 35}$
379	Therefore, in the current study, we found that PCK1 markedly decreased in
380	NASH, and PA inhibited PCK1 transcription via the upregulation of ATF3.
381	

382	Accumulating studies using PCK1 agonists or whole-body Pck1 knockdown
383	mice have verified that PCK1 may affect lipid metabolism. ^{36, 37} In the present
384	study, we found that liver-specific Pck1 knockout induced significant hepatic
385	steatosis even under normal feeding conditions. This is a very important
386	phenomenon, since it is uncommon for a single gene ablation to cause
387	spontaneous steatosis unless a high-fat diet is used. Moreover, we observed
388	that mice with liver Pck1 deficiency showed aggravated inflammation when fed
389	high-fat high-fructose diet, which was completely different from a previous
390	study showing that whole-body Pck1 knockdown prevented hepatic
391	inflammation. ³⁸ We speculate that this discrepancy is possibly due to
392	differences between diet plan and animal models, since whole-body Pck1
393	knockdown may have unforeseen effects on glucolipid metabolism.
393 394	knockdown may have unforeseen effects on glucolipid metabolism.
	knockdown may have unforeseen effects on glucolipid metabolism. Lipid accumulation is the essence of steatosis. Emerging evidence has
394	
394 395	Lipid accumulation is the essence of steatosis. Emerging evidence has
394 395 396	Lipid accumulation is the essence of steatosis. Emerging evidence has indicated that increased fatty acid uptake is associated with lipid
394 395 396 397	Lipid accumulation is the essence of steatosis. Emerging evidence has indicated that increased fatty acid uptake is associated with lipid accumulation. ^{39, 40} In this study, genes involved in fatty acid uptake such as
394 395 396 397 398	Lipid accumulation is the essence of steatosis. Emerging evidence has indicated that increased fatty acid uptake is associated with lipid accumulation. ^{39, 40} In this study, genes involved in fatty acid uptake such as <i>Cd36</i> and <i>Slc27a1</i> were highly expressed in L-KO mice. In addition, <i>Cidec,</i> a
394 395 396 397 398 399	Lipid accumulation is the essence of steatosis. Emerging evidence has indicated that increased fatty acid uptake is associated with lipid accumulation. ^{39, 40} In this study, genes involved in fatty acid uptake such as <i>Cd36</i> and <i>Slc27a1</i> were highly expressed in L-KO mice. In addition, <i>Cidec</i> , a lipid droplet-associated protein that promotes their formation, was increased
394 395 396 397 398 399 400	Lipid accumulation is the essence of steatosis. Emerging evidence has indicated that increased fatty acid uptake is associated with lipid accumulation. ^{39, 40} In this study, genes involved in fatty acid uptake such as <i>Cd36</i> and <i>Slc27a1</i> were highly expressed in L-KO mice. In addition, <i>Cidec,</i> a lipid droplet-associated protein that promotes their formation, was increased by both chow and NASH diets, and recently it was claimed to upregulated in

404	synthesis.43 Since our metabolomics data showed that G3P and PA were
405	significantly upregulated in L-KO mice, we propose that PCK1 deficiency
406	promotes hepatic lipid accumulation by enhancing the expression of Cd36,
407	SIc27a1, and Cidec and the levels of metabolic substrates such as G3P and
408	PA. However, the exact mechanism by which PCK1 regulates G3P pathway
409	and the expression levels of Cd36, Slc27a1 remains to be further explored.
410	
411	Fibrosis is another characteristic of NASH and drives the transition from simple
412	steatosis to NASH. Activation of HSCs through the secretion of profibrotic
413	cytokines, such as TGF- β and PDGF, is a key event in liver fibrosis. 44 A recent
414	study identified high mobility group protein B1 (HMGB1), secreted by
415	FBP1-deficient hepatocytes, as the main mediator to activate HSCs, showing
416	the important crosstalk between hepatocytes and HSCs via paracrine
417	signaling. ²⁶ Herein, we found that PDGF-AA was secreted by PCK1-deficient
418	hepatocytes and acted in a paracrine manner to activate HSCs. Increased
419	deposition of extracellular matrix and activation of HSCs were shown in
420	PDGFA-transgenic mice, however, the underlying mechanism mediating
421	PDGF-AA upregulation in fibrosis remains unclear. ²¹ Here, we demonstrated
422	that PCK1 deficiency promoted PDGF-AA secretion via activation of the
423	RhoA/PI3K/AKT pathway. Mechanistically, we hypothesize that PCK1 deletion
424	may increase intracellular GTP levels, thus promoting the activation of RhoA
425	and further activating the PI3K/AKT pathway. Based on our in vitro findings,

23

426	we used pharmacological AKT and RhoA inhibitors, MK2206 and Rhosin
427	respectively, in L-KO NASH mice. Hepatic steatosis, fibrosis, and inflammation
428	were significantly attenuated in treated mice. Although RhoA and AKT
429	inhibitors are currently only in phase 3 trials or preclinical studies for the
430	treatment of liver fibrosis or clinical tumors, these compounds may also have a
431	promising therapeutic potential for NASH.45-47
432	
432 433	In conclusion, this study demonstrated that hepatic PCK1 deficiency could
	In conclusion, this study demonstrated that hepatic PCK1 deficiency could promote lipid deposition and fibrosis in murine NASH model. Moreover,
433	
433 434	promote lipid deposition and fibrosis in murine NASH model. Moreover,

438 NASH treatment.

439 Acknowledgements

440	We would like to thank Dr. TC He (University of Chicago, USA) and Prof. Ding
441	Xue (Tsinghua University, China) for providing the pAdEasy and CRISPR/Cas9
442	system, respectively. We thank Prof. Youde Cao and Yalan Wang (Chongqing
443	Medical University, China) for providing samples and pathological analysis
444	support.
445	
446	Grant support: This work was supported by the National Natural Science
447	Foundation of China (grant no. U20A20392, 82073251, 82072286, 81872270),
448	the 111 Project (No. D20028), the Natural Science Foundation Project of
449	Chongqing (cstc2018jcyjAX0254, cstc2019jscx-dxwtBX0019,
450	cstc2019jcyj-msxmX0587), the Major National S&T program
451	(2017ZX10202203-004), the Leading Talent Program of CQ CSTC
452	(CSTCCXLJRC201719), the Science and Technology Research Program of
453	Chongqing Municipal Education Commission (KJZD-M202000401,
454	KJQN201900429, CY200406), the Kuanren talents program of the second
455	affiliated hospital of Chongqing Medical University, and the Scientific Research
456	Innovation Project for Postgraduate in Chongqing (CYB19168, CYS19193).
457	
458	Conflict of interest: The authors disclose no conflicts.
459	

460 **Transcript Profiling**: Raw data were deposited in the GEO database

25

461 (GSE162211).

- 463 **Author contributions:** NT, AH, and KW conceived and designed the study.
- 464 QY, YL and GZ performed most experiments and analyzed the data. HD, CC
- and KW conducted bioinformatics analysis. XP assisted with mice experiments.
- 466 XW, JF, and QP provided human NAFLD/NASH samples. QY, KW, and NT
- 467 wrote the manuscript with all authors providing feedback. The order of the
- 468 co-first authors was assigned on the basis of their relative contributions to the
- 469 study.
- 470
- 471

26

472

473 **Abbreviations:**

- 474 AKT, protein kinase B; ALT, Alanine transaminase; AST, aspartate
- transaminase; α-SMA, alpha-smooth muscle actin (ACTA2); ATF3, Activating
- 476 Transcription Factor 3; bZIP, Basic Leucine Zipper; ChIP, chromatin
- 477 immunoprecipitation; CIDEC and CIDEA, cell death inducing DFFA like
- 478 effector C and A; COL1A1, COL1A3, recombinant collagen type I alpha 1 and
- alpha 3; CD36, fatty acid translocase; DNL, *de novo* lipogenesis; FFA, free
- fatty acid; G3P, glycerol 3-phosphate; GTT, glucose tolerance test; GSEA,
- 481 Gene Set Enrichment Analysis; HE, hematoxylin and eosin; IHC,
- immunohistochemistry; ITT, insulin tolerance test; Lama2, laminin subunit
- alpha 2; L-KO, liver-specific *Pck1*-knockout mice; NASH, non-alcoholic
- 484 steatohepatitis; NAFLD, non-alcoholic fatty liver disease; NAS, NAFLD activity
- 485 score; PCK1, Phosphoenolpyruvate carboxykinase 1; PCK1,
- 486 Phosphoenolpyruvate carboxykinase 1; PDGF-AA, platelet-derived growth
- 487 factor AA; PI3K, phosphatidylinositol 3-kinase; PPAR, Peroxisome
- 488 Proliferator-Activated Receptor; RhoA, Ras homolog family member A;
- 489 SLC27A1, solute carrier family 27 member 1; TC, total cholesterol; TG,
- 490 Triglyceride

491

493 **References**

- Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and
 NASH: trends, predictions, risk factors and prevention. Nat Rev
 Gastroenterol Hepatol 2018;15:11-20.
- 497 2. Schuster S, Cabrera D, Arrese M, et al. Triggering and resolution of
 498 inflammation in NASH. Nat Rev Gastroenterol Hepatol
 499 2018;15:349-364.
- 3. Arab JP, Arrese M, Trauner M. Recent Insights into the Pathogenesis of
- 501 Nonalcoholic Fatty Liver Disease. Annu Rev Pathol 2018;13:321-350.
- Tuo L, Xiang J, Pan X, et al. PCK1 negatively regulates cell cycle
 progression and hepatoma cell proliferation via the AMPK/p27(Kip1)
 axis. J Exp Clin Cancer Res 2019;38:50.
- 5055.Xiang J, Chen C, Liu R, et al. Gluconeogenic enzyme PCK1 deficiency506promotes CHK2 O-GlcNAcylation and hepatocellular carcinoma growth

⁵⁰⁷ upon glucose deprivation. J Clin Invest 2021 Apr 15;131(8):144703.

- 508 6. **Xu D**, **Wang Z**, Xia Y, et al. The gluconeogenic enzyme PCK1 509 phosphorylates INSIG1/2 for lipogenesis. Nature 2020;580:530-535.
- 510 7. Santra S, Cameron JM, Shyr C, et al. Cytosolic phosphoenolpyruvate
 511 carboxykinase deficiency presenting with acute liver failure following
 512 gastroenteritis. Mol Genet Metab 2016;118:21-7.
- 513 8. She P, Shiota M, Shelton KD, et al. Phosphoenolpyruvate 514 carboxykinase is necessary for the integration of hepatic energy

28

516	9.	Millward CA, Desantis D, Hsieh CW, et al. Phosphoenolpyruvate
517		carboxykinase (Pck1) helps regulate the triglyceride/fatty acid cycle and
518		development of insulin resistance in mice. J Lipid Res 2010;51:1452-63.
519	10.	Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of
520		oncogenic signalling and cancer metabolism. Nat Rev Cancer
521		2020;20:74-88.
522	11.	Porstmann T, Griffiths B, Chung YL, et al. PKB/Akt induces transcription
523		of enzymes involved in cholesterol and fatty acid biosynthesis via
524		activation of SREBP. Oncogene 2005;24:6465-81.
525	12.	Huang X, Liu G, Guo J, et al. The PI3K/AKT pathway in obesity and
526		type 2 diabetes. Int J Biol Sci 2018;14:1483-1496.
527	13.	Chen J, Chen J, Huang J, et al. HIF-2 α upregulation mediated by
528		hypoxia promotes NAFLD-HCC progression by activating lipid synthesis
529		via the PI3K-AKT-mTOR pathway. Aging (Albany NY)
530		2019;11:10839-10860.
531	14.	Chi Y, Gong Z, Xin H, et al. Long noncoding RNA IncARSR promotes
532		nonalcoholic fatty liver disease and hepatocellular carcinoma by

promoting YAP1 and activating the IRS2/AKT pathway. J Transl Med2020;18:126.

535 15. **Suppli MP**, **Rigbolt KTG**, Veidal SS, et al. Hepatic transcriptome 536 signatures in patients with varying degrees of nonalcoholic fatty liver

29

537	disease compared with healthy normal-weight individuals. Am J Physiol
538	Gastrointest Liver Physiol 2019;316:G462-g472.

- 16. Fang J, Ji YX, Zhang P, et al. Hepatic IRF2BP2 Mitigates Nonalcoholic
- 540 Fatty Liver Disease by Directly Repressing the Transcription of ATF3.
- 541 Hepatology 2020;71:1592-1608.
- Allen-Jennings AE, Hartman MG, Kociba GJ, et al. The roles of ATF3 in
 liver dysfunction and the regulation of phosphoenolpyruvate
 carboxykinase gene expression. J Biol Chem 2002;277:20020-5.
- Asgharpour A, Cazanave SC, Pacana T, et al. A diet-induced animal
 model of non-alcoholic fatty liver disease and hepatocellular cancer. J
 Hepatol 2016;65:579-88.
- 19. Liu XJ, Duan NN, Liu C, et al. Characterization of a murine nonalcoholic
- steatohepatitis model induced by high fat high calorie diet plus fructose
 and glucose in drinking water. Lab Invest 2018;98:1184-1199.
- 551 20. Kucukoglu O, Sowa JP, Mazzolini GD, et al. Hepatokines and 552 adipokines in NASH-related hepatocellular carcinoma. J Hepatol 553 2021;74:442-457.
- Thieringer F, Maass T, Czochra P, et al. Spontaneous hepatic fibrosis
 in transgenic mice overexpressing PDGF-A. Gene 2008;423:23-8.
- 556 22. Higuchi M, Masuyama N, Fukui Y, et al. Akt mediates
 557 Rac/Cdc42-regulated cell motility in growth factor-stimulated cells and
 558 in invasive PTEN knockout cells. Curr Biol 2001;11:1958-62.

559	23.	Dou C, Liu Z, Tu K, et al. P300 Acetyltransferase Mediates
560		Stiffness-Induced Activation of Hepatic Stellate Cells Into
561		Tumor-Promoting Myofibroblasts. Gastroenterology
562		2018;154:2209-2221.e14.
563	24.	Calvayrac O, Mazières J. The RAS-related GTPase RHOB confers
564		resistance to EGFR-tyrosine kinase inhibitors in non-small-cell lung
565		cancer via an AKT-dependent mechanism. EMBO Mol Med
566		2017;9:238-250.
567	25.	Snaebjornsson MT, Janaki-Raman S, Schulze A. Greasing the Wheels
568		of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell
569		Metab 2020;31:62-76.
570	26.	Li F, Huangyang P, Burrows M, et al. FBP1 loss disrupts liver
571		metabolism and promotes tumorigenesis through a hepatic stellate cell
572		senescence secretome. Nature 2020;22:728-739.
573	27.	Vily-Petit J, Soty-Roca M, Silva M, et al. Intestinal gluconeogenesis
574		prevents obesity-linked liver steatosis and non-alcoholic fatty liver
575		disease. Gut 2020;69:2193-2202.
576	28.	Yoon JC, Puigserver P, Chen G, et al. Control of hepatic
577		gluconeogenesis through the transcriptional coactivator PGC-1. Nature
578		2001;413:131-8.
579	29.	Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of

580 NAFLD development and therapeutic strategies. Nat Med

581 2018;24:908-922.

582	30.	Samuel VT, Beddow SA, Iwasaki T, et al. Fasting hyperglycemia is not
-----	-----	--

- associated with increased expression of PEPCK or G6Pc in patients
- with Type 2 Diabetes. Proc Natl Acad Sci U S A 2009;106:12121-6.
- 585 31. Imai E, Stromstedt PE, Quinn PG, et al. Characterization of a complex
- glucocorticoid response unit in the phosphoenolpyruvate carboxykinasegene. Mol Cell Biol 1990;10:4712-9.
- 588 32. Lundsgaard AM, Holm JB, Sjøberg KA, et al. Mechanisms Preserving
- Insulin Action during High Dietary Fat Intake. Cell Metab2019;29:50-63.e4.
- 33. Hai T, Wolfgang CD, Marsee DK, et al. ATF3 and stress responses.
 Gene Expr 1999;7:321-35.
- Tu C, Xiong H, Hu Y, et al. Cardiolipin Synthase 1 Ameliorates NASH
 Through Activating Transcription Factor 3 Transcriptional Inactivation.
 Hepatology 2020;72:1949-1967.
- Tsai WW, Matsumura S, Liu W, et al. ATF3 mediates inhibitory effects of
 ethanol on hepatic gluconeogenesis. Proc Natl Acad Sci U S A
 2015;112:2699-704.
- Gut P, Baeza-Raja B, Andersson O, et al. Whole-organism screening for
 gluconeogenesis identifies activators of fasting metabolism. Nat Chem
 Biol 2013;9:97-104.
- 602 37. Hakimi P, Johnson MT, Yang J, et al. Phosphoenolpyruvate

32

603	carboxykinase	and	the	critical	role	of	cataplerosis	in	the	control	of
604	hepatic metabo	lism.	Nut	r Metab	(Lon	d) 2	2005;2:33.				

- Satapati S, Kucejova B, Duarte JA, et al. Mitochondrial metabolism
 mediates oxidative stress and inflammation in fatty liver. J Clin Invest
 2015;125:4447-62.
- 608 39. Miquilena-Colina ME, Lima-Cabello E, Sánchez-Campos S, et al. Hepatic fatty acid translocase CD36 upregulation is associated with 609 610 insulin resistance, hyperinsulinaemia and increased steatosis in 611 non-alcoholic steatohepatitis and chronic hepatitis C. Gut 2011;60:1394-402. 612
- 40. Doege H, Grimm D, Falcon A, et al. Silencing of hepatic fatty acid 613 614 transporter protein 5 in vivo reverses diet-induced non-alcoholic fatty liver hyperglycemia. 615 disease and improves J Biol Chem 616 2008;283:22186-92.
- 41. Langhi C, Baldán Á. CIDEC/FSP27 is regulated by peroxisome
 proliferator-activated receptor alpha and plays a critical role in fastingand diet-induced hepatosteatosis. Hepatology 2015;61:1227-38.
- 42. Xu MJ, Cai Y, Wang H, et al. Fat-Specific Protein 27/CIDEC Promotes
 Development of Alcoholic Steatohepatitis in Mice and Humans.
 Gastroenterology 2015;149:1030-41.e6.
- 43. Alves-Bezerra M, Cohen DE. Triglyceride Metabolism in the Liver.
 624 Compr Physiol 2017;8:1-8.

33

44. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation.

- Nat Rev Gastroenterol Hepatol 2017;14:397-411.
- 45. Chien AJ, Tripathy D, Albain KS, et al. MK-2206 and Standard
 Neoadjuvant Chemotherapy Improves Response in Patients With
 Human Epidermal Growth Factor Receptor 2-Positive and/or Hormone
 Receptor-Negative Breast Cancers in the I-SPY 2 Trial. J Clin Oncol
 2020;38:1059-1069.
- 46. Schmid P, Abraham J, Chan S, et al. Capivasertib Plus Paclitaxel
 Versus Placebo Plus Paclitaxel As First-Line Therapy for Metastatic
 Triple-Negative Breast Cancer: The PAKT Trial. J Clin Oncol
 2020;38:423-433.
- 47. Yoon C, Cho SJ, Aksoy BA, et al. Chemotherapy Resistance in
- ⁶³⁷ Diffuse-Type Gastric Adenocarcinoma Is Mediated by RhoA Activation

in Cancer Stem-Like Cells. Clin Cancer Res 2016;22:971-83.

639

640 Author names in bold designate shared co-first authorship.

34

641 Figure legends

Figure 1. PCK1 is downregulated in patients with NASH and mouse

- 643 **models of NASH.** (A) Genes downregulated in patients with obesity (n=12),
- NAFLD (n=15), and NASH (n=16) from GSE126848 dataset. (B) Relative
- 645 PCK1 mRNA levels in GSE126848 and GSE89632 datasets. (C) PCK1
- expression in normal individuals and patients with NASH. Scale bars: 50 μm.
- (D-E) mRNA and protein levels of PCK1 in the livers of WT mice fed with chow
- diet or NASH diet. (F-G) PCK1 mRNA and protein levels in MIHA cells treated
- with palmitic acid (PA) or BSA. (H) Relative levels of indicated genes in MIHA
- cells treated with 0.2 mM PA. (I) ChIP assays were performed in MIHA cells
- with or without PA treatment using an antibody against ATF3, IgG or H3. (J)
- Protein levels of PCK1 in MIHA cells infected with either shControl or shATF3
- treated with 0.2 mM PA. Data expressed as mean \pm SEM; *P < 0.05, ** P <
- 654 0.01, ****P* < 0.001. *P* values obtained via 2-tailed unpaired Student's t tests or
- one-way ANOVA with Tukey's post hoc test.

35

Figure 2. PCK1 ablation accelerates inflammation and fibrogenesis in

- 657 **NASH model.** (A) Schematic diagram of mouse model fed with NASH diet.
- (B-D) Body weight, GTT, and ITT were measured in WT and L-KO mice (n=11).
- (E) Representative gross liver morphology, whole body photo, and liver weight.
- (F) Serum levels of insulin, ALT and AST were measured. (G)
- Paraffin-embedded liver sections were stained with H&E, Sirius Red, α-SMA
- and F4/80. Frozen sections stained with Oil Red O. Scale bars: 50 µm. (H)
- 663 Quantifications of Oil red O staining, Sirius red staining, and IHC staining. (I)
- NAS scores of each group. (J) Levels of TNF- α and IL-6 in liver tissues were
- examined using ELISA (n=8). Data expressed as mean \pm SEM; *P < 0.05, ** P
- 666 < 0.01, ***P < 0.001. P values obtained via 2-tailed unpaired Student's t tests.</p>

36

667	Figure 3. Lo	ss of PCK1	promotes I	ipid accumu	lation c	onfirmed by

668	transcriptome and metabolome. RNA sequencing was performed on livers
669	of WT and L-KO mice fed NASH diet (n=4-5). (A) Gene ontology analysis of all
670	significantly changed genes in top 10 biological processes. (B) Volcano plot
671	representation of significantly up- and downregulated genes. (C) GSEA plot
672	(left) of enrichment in "PPAR signaling pathway" signature; Heatmap (right)
673	presentation of significantly upregulated PPAR target genes. (D-E) q-PCR and
674	immunoblot analysis of indicated genes or protein expression in mice liver
675	tissues. (F) Relative mRNA expression of key genes in G3P pathway (n=8). (G)
676	Upregulated metabolites detected by untargeted metabolomics (n=6). (H) The
677	relative level of G3P and PA in mice liver tissues ($n=6$). Data expressed as
678	mean ± SEM; * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001. <i>P</i> values obtained via
679	2-tailed unpaired Student's t tests.

6/9 2-tailed unpaired Student's t tests.

37

680	Figure 4. Hepatic PCK1 deficiency leads to HSC activation via PI3K/AKT
681	pathway. (A) Pathway enrichment analysis of significantly upregulated genes
682	in L-KO mice. (B) GSEA plot of enrichment in PI3K/AKT pathway. (C-E)
683	Immunoblot analysis of AKT and p-AKT (S473 or T308) in mice liver tissues or
684	PCK1-OE and PCK1-KO MIHA cells with or without 0.2 mM PA treatment. (F)
685	Schematic flow chart of co-culture models. (G-H) q-PCR analysis of fibrosis
686	related gene in HSC (LX-2) cells co-cultured with PCK1-KO or PCK1-OE MIHA
687	cells. (I-J) Western blot of fibrosis related protein in liver tissues or primary
688	HSCs (n=3). (K) COL3A1 immunostaining in mice liver sections. Scale bars:
689	50 $\mu m.$ (L-M) Relative mRNA expression and immunofluorescence images of
690	ACTA2/ α -SMA, COL1A1 and COL3A1 in LX-2 cells co-cultured with PCK1-KO
691	MIHA cells treated with AKT inhibitor MK2206 (10 μM). Scale bars: 25 $\mu m.$
692	Data expressed as mean \pm SEM; * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001. <i>P</i> values
693	obtained via 2-tailed unpaired Student's t tests or one-way ANOVA with

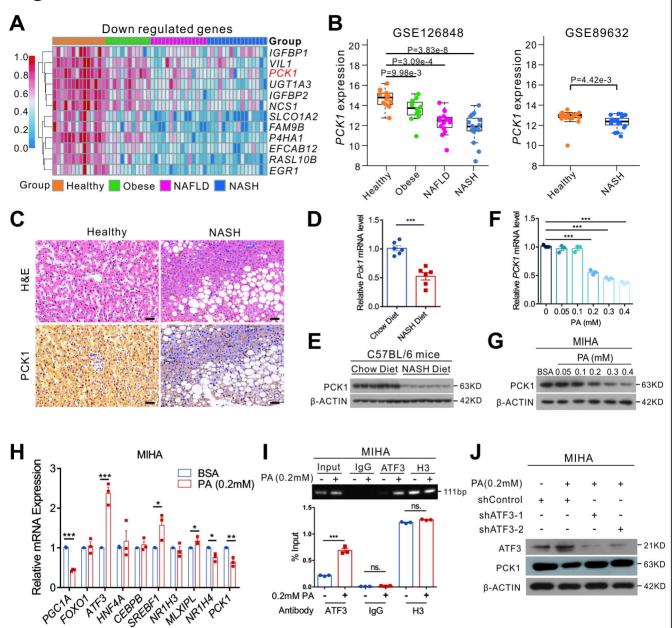
694 Tukey's post hoc test.

696	Figure 5. Paracrine PDGF-AA from	hepatocytes promotes HSC activation.
-----	----------------------------------	--------------------------------------

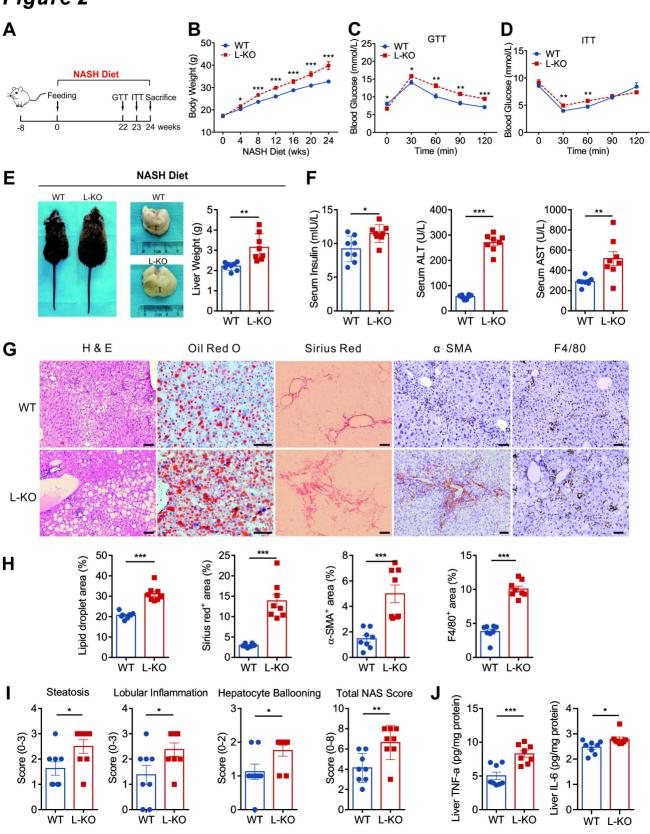
697	(A) Expression le	evels of genes r	elated to fibrogenesis.	(B) Relative <i>PDGFA</i>
-----	-------------------	------------------	-------------------------	---------------------------

- 698 mRNA levels in GSE126848 and GSE89632 datasets. (C-D) PDGF-AA protein
- levels in liver tissue detected by Western blot and ELISA. (E) PDGF-AA protein
- ⁷⁰⁰ levels in primary hepatocytes (n=3). (F) Secreted PDGF-AA levels in the
- 701 conditional medium of PCK1-KO or PCK1-OE MIHA cells with 0.2mM PA
- treatment. (G) mRNA levels of *PDGFRA* in cell lysate of LX-2 co-cultured with
- 703 PCK1-KO or PCK1-OE MIHA cells treated with PA. (H) Indicated protein level
- in LX-2 cells co-cultured with *PCK1*-KO MIHA cells containing nonspecific
- rabbit IgG or a PDGF-AA blocking antibody. (I) IHC analysis of PCK1, p-AKT
- 706 (S473) and PDGF-AA in mice liver sections. Scale bars: 50 μm. (J) Levels of
- 707 PDGF-AA or PDGFA in the conditional medium or cell lysate of PCK1-KO
- MIHA cells treated with AKT inhibitor MK2206 (10 µM). (K) Indicated protein
- ⁷⁰⁹ levels in *PCK1*-KO MIHA cells treated with AKT inhibitor MK2206 (10 μ M).
- Data expressed as mean \pm SEM; **P* < 0.05, ** *P* < 0.01, ****P* < 0.001. *P* values
- obtained via 2-tailed unpaired Student's t tests or one-way ANOVA with
- 712 Tukey's post hoc test.

39


713 Figure 6. PCK1 deficiency promotes the activation of PI3K/AKT/PDGF-AA

- axis by activating RhoA in hepatocytes. (A) Immunoblotting analysis of
- indicated protein in mice liver tissues. (B) IHC analysis of p-RhoA (S188) in
- mice liver tissues. Scale bars: 50 µm. (C-E) Relative levels of active RhoA
- ⁷¹⁷ were measured by G-LISA in mice liver tissues, *PCK1*-OE and *PCK1*-KO
- 718 MIHA cells treated with 0.2 mM PA. (F-G) Immunoblots of p-RhoA (S188) and
- 719 RhoA in *PCK1*-OE and *PCK1*-KO MIHA cells with or without 0.2 mM PA
- treatment. (H) Expression of indicated proteins in *PCK1*-KO MIHA cells after
- addition of Rhosin (30 μM). (I) Levels of PDGF-AA in the supernatant of
- 722 PCK1-KO MIHA cells treated with Rhosin (30 μM). (J) Relative mRNA
- expression of ACTA2, COL1A1, and COL3A1 in LX-2 cells co-cultured with
- PCK1-KO MIHA cells treated with Rhosin (30 μ M). (K) IHC analysis of PCK1,
- p-RhoA (S188), p-AKT (S473), and PDGF-AA in normal individuals and
- patients with NASH. Scale bars: 50 μ m. Data expressed as mean \pm SEM; *P <
- P < 0.05, ** P < 0.01, ***P < 0.001. P values obtained via one-way ANOVA with
- 728 Tukey's post hoc test.


729 Figure 7. AKT and RhoA inhibitors prevent the development of NASH in

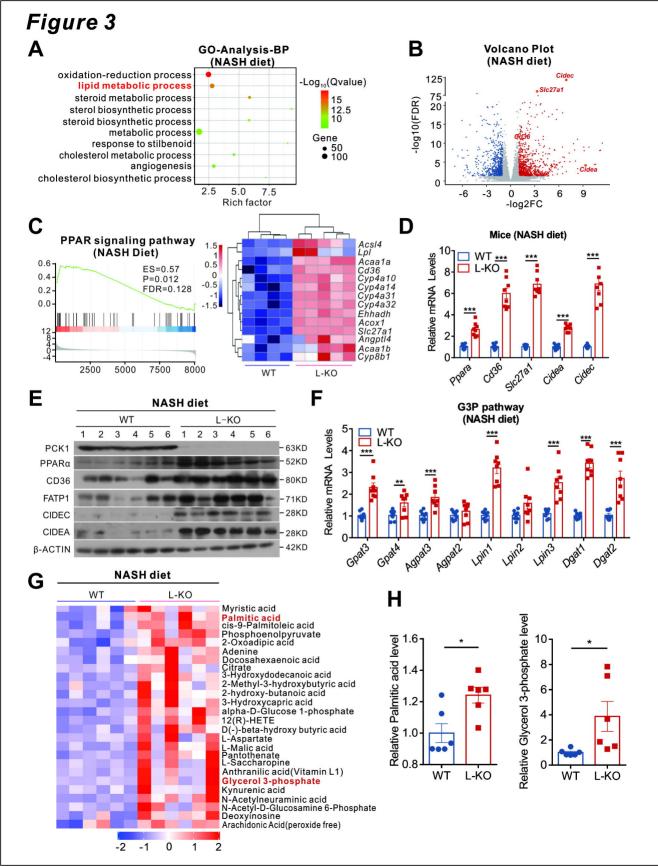

- vivo. L-KO mice were fed NASH diet for 24 weeks, and therapeutic treatment
- vith AKT or RhoA inhibitor was initiated at 16 weeks. (A) Schematic diagram of
- L-KO mice treated with DMSO (n=6), Rhosin (n=6) or MK2206 (n=5). (B-C)
- 733 Representative whole body, gross liver morphology, liver weight, and serum
- ALT and AST. (D) Paraffin-embedded liver sections were stained with HE, or
- immunostained for F4/80, COL3A1 and α -SMA. Frozen sections stained with
- 736 Oil Red O. Scale bars: 50 μm. (E) Levels of TNF-α, IL-6 in liver tissues. (F)
- 737 Expression of indicated protein in mice liver tissues. (G) mRNA levels of genes
- associated with lipid metabolism, fibrogenesis, and inflammatory infiltration.
- 739 Data expressed as mean \pm SEM; **P* < 0.05, ** *P* < 0.01, ****P* < 0.001; n.s., not
- statistically significant. P values obtained via one-way ANOVA with Tukey's
- 741 post hoc test.

Figure 1

Figure 2

Figure 4

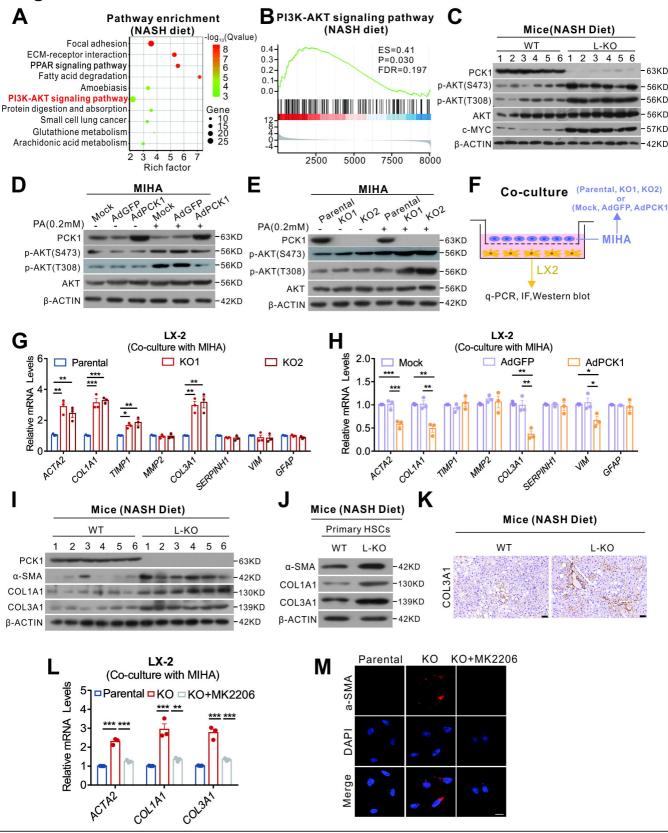
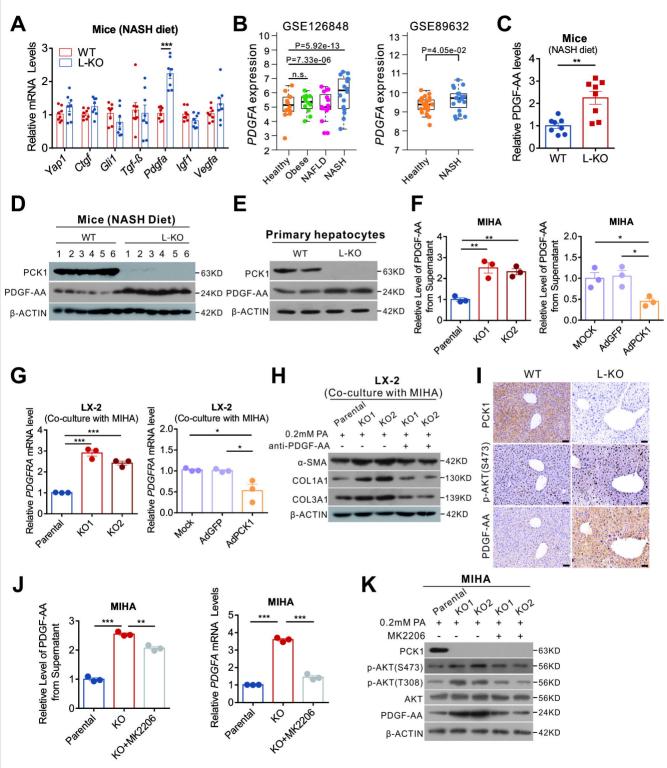
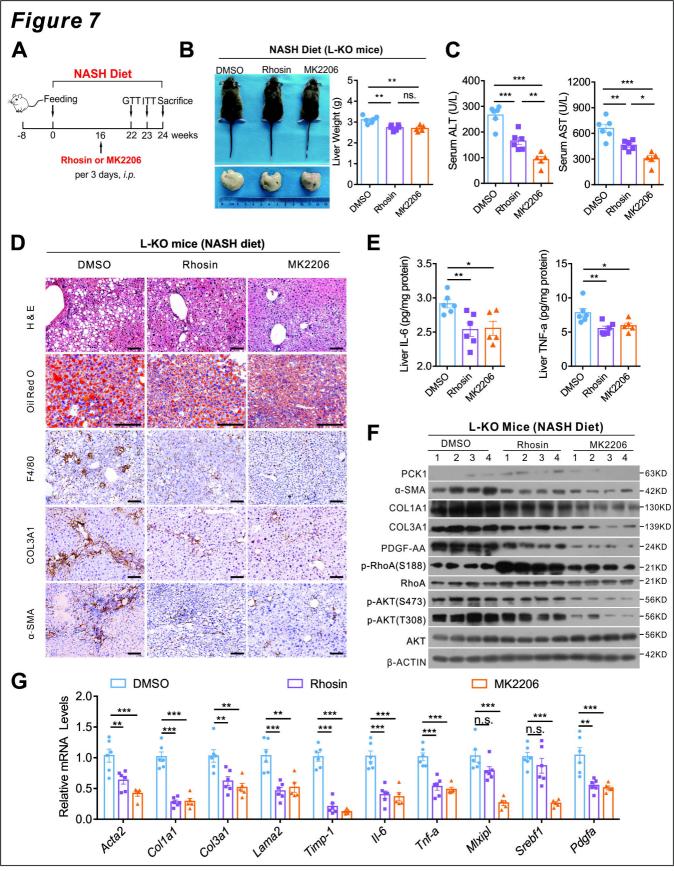




Figure 5

