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Abstract18

A eusocial colony typically consists of two main castes: queens that reproduce and ster-

ile workers that help them. This division of labour however is vulnerable to genetic20

elements that favour the development of their carriers into queens. Several factors,

such as intra-colonial relatedness, can modulate the spread of such caste-biasing geno-22

types. Here we investigate the e�ects of a notable yet understudied ecological setting:

where larvae produced by hybridization develop into sterile workers. Using mathemat-24

ical modelling, we show that the coevolution of hybridization with caste determination

readily triggers an evolutionary arms race between non-hybrid larvae that increasingly26

develop into queens, and queens that increasingly hybridize to produce workers. Even

where hybridization reduces worker function and colony �tness, this race can lead to28

the loss of developmental plasticity and to genetically hard-wired caste determination.

Overall, our results may help understand the repeated evolution towards remarkable30

reproductive systems (e.g. social hybridogenesis) observed in many ant species.
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1 Introduction32

Eusociality is characterized by a striking division of reproductive labour between two castes: queens

and workers (Crespi and Yanega, 1995). Queens monopolize reproduction, while typically sterile34

workers specialize on other colony tasks such as foraging and tending to the brood. The sterility of

workers initially seemed so inconsistent with natural selection that Darwin referred to eusociality36

as his “one special di�culty” (Darwin, 1859, ch. 7). This apparent paradox was resolved in the

1960’s with W. D. Hamilton’s theory of kin selection (Hamilton, 1964). Hamilton demonstrated38

that natural selection can favour eusociality when workers preferentially help relatives (who can

transmit the same genetic material). In addition to laying the theoretical basis for the evolution of40

eusociality, Hamilton’s work led to the insight that caste determination should be plastic to allow

identical gene copies to be in workers and in the queen they help (Seger, 1981). In line with this42

notion, the developmental fate of female larvae in many eusocial insects depends on environmental

factors (Trible and Kronauer, 2017), such as food quantity and quality (Brian, 1956; Brian, 1973),44

temperature and seasonality (Brian, 1974; Schwander et al., 2008) or signals emitted by adults of the

colony (Penick and Liebig, 2012; Libbrecht et al., 2013). Probably the most iconic example of such46

plasticity is found in honeybees where queens arise only from larvae reared in royal cells and fed

with royal jelly. For long, this and many other empirical �ndings strengthened the idea that caste48

determination is under strict environmental control and largely free from genetic e�ects.

More recently however, substantial genetic variation for caste determination has been described50

across a number of eusocial species (Winter and Buschinger, 1986; Moritz et al., 2005; Hartfelder

et al., 2006; Linksvayer, 2006; Schwander and Keller, 2008; Smith et al., 2008; Frohschammer and52

Heinze, 2009; Schwander et al., 2010). This variation is thought to derive from caste-biasing geno-

types which bias the development of their carrier towards a particular caste (Moritz et al., 2005;54

Hughes and Boomsma, 2008). Those genotypes that favour larval development towards the repro-

ductive caste have sometimes been referred to as “royal cheats” as they cause the individuals that56

carry them to increase their own direct reproduction at the expense of other colony members (e.g.

Anderson et al., 2008; Hughes and Boomsma, 2008). The segregation of such royal cheats should58

depend on a balance between: (1) direct bene�ts from increased representation in the reproductive

caste; and (2) indirect costs due to reduced worker production and colony productivity (Hamilton,60

1964). As highlighted by abundant theory, several factors can in�uence these bene�ts and costs and

thus tip the balance for or against the evolution of royal cheats. For instance, low relatedness be-62
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tween larvae due to polyandry (when queens mate withmultiple males) or polygyny (when colonies

have multiple queens) increases competition between genetic lineages within colonies and thereby64

favours royal cheating (e.g. Reuter andKeller, 2001). Conversely, selection against cheats is bolstered

by low dispersal abilities and high within-group relatedness (e.g. Hamilton, 1964; Lehmann et al.,66

2008; Boomsma, 2009), bivoltinism and asymetrical sex-ratio (e.g. Trivers and Hare, 1976; Seger,

1983; Alpedrinha et al., 2014; González-Forero, 2015; Quiñones and Pen, 2017), coercion (i.e. polic-68

ing, Wenseleers et al., 2004; Dobata, 2012), queen longevity and competition between queens (e.g.

Queller, 1994; Bourke and Chan, 1999; Avila and Fromhage, 2015), or where workers reproduce70

following queen death (Field and Toyoizumi, 2020).

One intriguing factor that has been proposed to in�uence the cost of royal cheating is sperm par-72

asitism, a behavior consisting in queens using the sperm of another species or lineage to produce

hybrid workers (Linksvayer, 2006; Anderson et al., 2008). Both morphological and genetic data74

suggest that this behaviour is common in many ant species (e.g. in multiple Temnothorax popula-

tions, the majority of queens were found to produce some hybrid workers, Douwes and Stille, 1991;76

Umphrey, 2006 and Feldhaar et al., 2008 for reviews). In these species, sperm parasitism results in

hybrid larvae that rarely, if ever, develop as fertile queens and rather become sterile workers (pre-78

sumably due to genetic incompatibilities between parental lineages, Feldhaar et al., 2008; Trible and

Kronauer, 2017). Such hybrids should therefore be impervious to genetic caste-biasing e�ects and80

thus provide a reliable source of workers. In principle, this alternative supply of workersmay reduce

the indirect cost of royal cheats and hence favours their evolution (Anderson et al., 2008). But be-82

yond these broad-brush predictions, the e�ect of sperm parasitism on the segregation of royal cheats

remains poorly understood.84

Here, we develop a mathematical model to explore the evolution of genetic caste determination via

royal cheatswhenqueens canhybridize to produceworkers. In particular, we assess the e�ects of key86

factors on the evolutionary dynamics of caste determination, such as polyandry and queen partheno-

genesis (when queens have the ability to produce daughters asexually), as well as their interactions88

with potential costs and bene�ts of hybridization, for instance owing to hybrid incompatibilities or

hybrid vigor.90
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2 The model

We consider a large population of annual eusocial haplodiploids with the following life-cycle (�g. 1).92

First, virgin queens mate with a �xed numberm ∈ {1, 2,…} of males. Each of these mates can either

be an allo- (with probability �) or a con-speci�c male (with complementary probability 1−�). Once94

mated, queens found monogynous colonies (i.e. one queen per colony) and lay a large number of

eggs. A proportion f of these eggs are diploid (and develop into females) and (1−f) are haploid (and96

develop into males). Assuming random egg fertilization, a queen therefore produces on average f�

hybrid and f(1 − �) non-hybrid females. We assume that a hybrid female can only develop as a98

worker, while a non-hybrid female can either develop as a worker (with probability !) or as a queen

(with complementary probability 1−!). Overall, a colony thus consists of f� hybrid and f(1 − �)!100

non-hybrid sterileworkers, aswell asf(1−�)(1−!) virgin queens and (1−f)males that are available

for reproduction at the next generation.102

If only virgin queens andmales can reproduce, their reproductive success depends on the workforce

of their colony of origin. Speci�cally, we assume that the probability that a sexual reaches themating104

pool increases linearly with the total number of workers in the colony, combining hybrid and non-

hybrid workers (we show later that our results do not change qualitatively when the increase is106

non-linear). We nonetheless allow for di�erential contribution to the workload between hybrid and

non-hybrid workers, with the contribution of hybrid workers weighted by a parameter e ≥ 0 (so that108

the e�ective workforce of a colony is ef� + f(1 − �)!). When e = 1, hybrid workers have the same

working e�ciency as non-hybrid workers. By contrast, when e < 1, hybrid workers are less e�cient110

for instance due to outbreeding depression. This can also re�ect other potential costs associatedwith

hybridization, such as the production of sterile or non-viable hybrid queens (Feldhaar et al., 2008).112

Conversely, when e > 1 hybrid workers outperform regular workers, due for example to hybrid vigor

(Umphrey, 2006).114
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3 Results

3.1 Hybridization and sperm parasitism, even costly, can lead to the �xation of116

royal cheats and the complete loss of intraspeci�c workers

We �rst investigate the evolution of caste determination by allowing the probability ! that a larva118

develops as a worker to vary. We assume that this probability is under individual genetic control (i.e.

the future caste of a female larva depends only on its own genotype) and that it evolves via random120

mutations with weak additive phenotypic e�ects (Appendix A for details on our methods). Muta-

tional e�ects are unbiased so a new mutation is equally likely to increase or decrease the tendency122

! of becoming a worker. Those mutations that decrease ! can be considered as more sel�sh as they

increase the likelihood that their carriers develop into queens at the expense of other individuals124

of the same colony. Following the terminology of Hughes and Boomsma (2008), we thus refer to

mutations decreasing ! as “royal cheats”. As a baseline, we consider the case where queens mate126

with a large number of males (i.e. m → ∞) and where hybridization is �xed at a given level (e.g. �

is the proportion of allo-speci�c males in the pool of mates from which females choose randomly).128

Our analyses (Appendix B.1.1) reveal that the probability for a larva to develop as a worker evolves

towards a unique and stable equilibrium,130

!∗ = 1
3 − e

2�
3(1 − �)

. (1)

To interpret this equation (1), consider �rst the case where hybridization is costless (e = 1). Eq. (1)

then tells that in the absence of hybridization (� = 0), a larva will develop into a worker with a prob-132

ability of 1∕3 at equilibrium (in line with previous models that ignore hybridization, e.g. Reuter and

Keller, 2001, Appendix B.1.4 for connection). But as hybridization increases (� > 0), royal cheat-134

ing is increasingly favored and larvae become increasingly likely to develop as queens rather than

workers (i.e. !∗ < 1∕3, �g. 2A). In fact past a threshold of hybridization (� ≥ 1∕3), the population136

evolves towards a complete loss of non-hybrid workers via the �xation of increasingly caste-biasing

royal cheats alleles (! → 0). In this case, non-hybrid females eventually all develop into queens that138

rely on sperm parasitism to produce workers.

Equation (1) also shows that the performance of hybridworkers relative to non-hybrids, e, modulates140

the e�ect of hybridization on the evolution of caste determination (�g. 2B). As a result, royal cheat-
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ing and worker-loss evolution are facilitated when hybrids outperform regular workers (e > 1) but142

hindered otherwise (e < 1). Nevertheless, even where hybridization is extremely costly (0 < e ≪ 1),

there exists a threshold of hybridization above which complete worker-loss evolves (�g. 2C).144

3.2 Worker-loss readily emerges from the coevolution of genetic caste determina-

tion and sperm parasitism, driven by intra-colonial con�ict146

The above analysis indicates that intraspeci�c worker-loss can evolve when queens have a su�-

ciently high tendency to hybridize. This raises the question of whether such tendency is also subject148

to selection. To answer this question, we allow the probability � that a queen’s mate is allospeci�c to

coevolve with caste determination (!). We assume that this probability � is under individual queen150

control (i.e. it depends only on a queen’s genotype) and like caste determination, evolves via rare

mutations with weak additive phenotypic e�ects (Appendix A for details).152

We �nd that depending on the e�ciency e of hybrid workers, the coupled evolutionary dynamics

of hybridization � and caste determination ! lead to an evolutionary arms race with one of two154

contrasted outcomes (Appendix B.1.2 for analysis). When e is small (e ≤ 1∕4, �g. 3A gray region), the

population evolves hybridization avoidance (� → 0) while the probability ! to develop as a worker156

stabilises for its baseline equilibrium (!∗ = 1∕3, �g. 3B). By contrast, when hybrid workers are at

least half as e�cient as regular workers (e ≥ 1∕2, �g. 3A, dark green region), intraspeci�c worker-158

loss evolves (! → 0) and hybridization stabilizes at an intermediate equilibrium (�∗ = 2∕3, �g. 3D).

When hybrid worker e�ciency is intermediate (1∕4 < e < 1∕2, �g. 3A, light green region), the160

population evolves either hybridization avoidance or intraspeci�c worker-loss depending on initial

conditions (�g. 3C), with worker-loss favoured by high initial tendency � of queens to hybridize.162

In sum, provided four hybrid workers are at least as good as one regular worker (e > 1∕4), the

coevolution of genetic caste determination and hybridization can lead to worker-loss in our model.164

To better understand the forces at play in the emergence of worker-loss, we further used a kin-

selection approach to decompose the invasion �tness of mutant alleles into the sum of: (1) their166

direct �tness e�ects on the reproductive success of the individuals that express them; and (2) of

their indirect �tness e�ects on other related individuals that can also transmit them (Taylor and168

Frank, 1996, Appendix B.1.3 for details). Starting with a population at the baseline equilibrium in

absence of hybridization (! = 1∕3, � = 0), we tracked these di�erent �tness e�ects along a typical170

evolutionary trajectory that leads toworker-loss (black arrowheads, �g. 3D) for alleles that in�uence
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the tendency of a larva to develop as a worker (�g. 3E) and of a queen to hybridize (�g. 3F).172

Our kin selection analysis reveals that alleles which increase hybridization in queens are selected

because they allow queens to increase the number of sexuals produced by their colony (especially174

via males, blue curve, �g. 3F). This is because the baseline tendency ! to develop as a worker that

evolves is optimal from the point of view of a gene in a larvae, but sub-optimal from the point of view176

of a gene in a queen who would bene�t from a larger workforce. Hybridization by queens evolves to

rectify this and align colony composition with the interests of the queen. Simultaneously, as queens178

evolve greater hybridization and augment their workforce with hybrids, genes in non-hybrid larva

have an increasing interest for their carriers to develop as queens rather thanworkers (�g. 3E). These180

two selective processes via queens and larvae fuel one another in an evolutionary arms race whose

endpoint is complete intraspeci�c worker-loss. Our decomposition of �tness e�ects thus shows that182

the loss of non-hybrid workers evolves in our model due to within-colony con�icts over colony com-

position. In fact, our results suggests that worker-loss emerges because hybridization allows queens184

to control the production of workers in their colony, while non-hybrid larvae lose their tendency to

develop as workers to promote their own reproduction via the �xation of royal cheats.186

3.3 Worker-loss is impaired by low polyandry but facilitated by asexual reproduc-

tion188

So far, we have assumed that queens mate with a large, e�ectively in�nite, number of males. By

increasing relatedness within the brood, low polyandry (2 ≤ m ≪ ∞) and monandry (m = 1) me-190

diate within-colony con�icts and therefore should be relevant to the evolutionary arms race leading

to worker-loss (Anderson et al., 2008; Schwander et al., 2010). To test this, we investigated the e�ect192

of mate numberm on the coevolution of ! and � (Appendix B.2.1 for details).

We �nd that as the numberm of mates decreases, the conditions for intraspeci�c worker-loss emer-194

gence becomemore restrictive. Speci�cally, the threshold of hybrid worker e�ciency e above which

worker-loss always evolves increases as polyandry decreases (asm → 1, �g. 4A, dark green region).196

In addition, when the number of mates is low (m ≤ 4), evolutionary dynamics do not necessarily

lead to either complete worker-loss or hybridization avoidance. For intermediate values of e (�g. 4A,198

blue region) the population actually converges to an intermediate state where queens partially hy-

bridize (0 < �∗ < 1) and larvae retain developmental plasticity (0 < !∗ < 1, �g. 4B, Appendix B.2.1200

and �g. S1 for analysis). Under monandry (m = 1) the evolution towards such intermediate state
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always happens when hybrid workers outperform regular workers (e > 1, �g. 4A, blue region).202

In the special case of monandry and overperforming hybrid workers (m = 1 and e > 1), our math-

ematical analysis further shows that partial hybridization and larval plasticity is not evolutionary204

stable (Appendix B.2.1, �gs. S1-S2). Rather, the population experiences disruptive selection which

should favour the emergence of polymorphism. To test this, we performed individual based sim-206

ulations under conditions predicted to lead to polymorphism (�g. 4C). These show the emergence

and long-term coexistence of two types of queens: one which hybridizes with low probability (and208

reproduces via both males and queens); and another which mates almost exclusively with allospe-

ci�c males and thus reproduces mostly via males (because m = 1, these queens only produce hy-210

brid workers and males). Beyond this special case, the evolution of worker-loss is impeded by low

polyandry and impossible under monandry in our model. This is because with a low number of212

mates, a queen runs the risk of being fertilized by only one type of male. Under complete worker-

loss (when the population is �xed for! = 0), a queenmated to only conspeci�cmales produces only214

larvae destined to be queens but no workers to ensure their survival and thus has zero �tness.

Our �nding that monandry inhibits the emergence of worker-loss contrasts with the observation216

that several ant species, notably of the genus Cataglyphis, lack non-hybrid workers and rely on

sperm parasitism for workers in spite of beingmostlymonandrous (Kuhn et al., 2020). One potential218

mechanism that could have allowed such evolution is thelytokous parthenogenetic reproduction by

queens, whereby queens can produce daughters clonally. This reproduction mode, which is com-220

mon in eusocialHymenoptera (Rabeling andKronauer, 2013) and in particular inCataglyphis (Kuhn

et al., 2020), could allow queens fertilized exclusively by allospeci�c males to nevertheless produce222

queens via parthenogenesis. To investigate how thelytokous parthenogenesis in�uences the evolu-

tion of caste determination, we extend ourmodel so that a fraction c of the female progeny of queens224

is produced parthenogenetically (Appendix B.2.2 for details). We assume that larvae produced in

such a way are equivalent to non-hybrid larvae: they develop into workers with a probability ! de-226

termined by their own genotype (which in this case is the same as their mother’s genotype) and if

they develop into workers, they have the same working e�ciency as non-hybrid workers (i.e. there228

is no direct cost or bene�t to parthenogenesis).

The coevolutionary dynamics of caste determination and hybridization with parthenogenesis are230

in general too complicated to be tractable. We could nonetheless gain insights into worker-loss

evolution by performing an invasion analysis, asking (1) when is worker-loss (! = 0) evolution-232
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ary stable (so that a population where intraspeci�c workers have been lost cannot be invaded by a

genetic mutant with developmental plasticity)? And (2) when can hybridization evolve when ab-234

sent in the population (i.e. when is � = 0 evolutionary unstable)? When these two conditions are

met, evolution will tend to favour the emergence and maintenance of worker-loss (as in �g. 3D for236

e.g.). We thus studied when conditions (1) and (2) above are both true in terms of parthenogenesis

c, as well as hybrid workers e�ciency e and mate number m. This revealed that parthenogenesis238

has a non-monotonic relationship with worker-loss evolution (�g. 5A & 5B). As parthenogenesis

increases from zero, worker-loss evolution is initially favoured, especially under monandry (as ex-240

pected; �g. 5C for e.g.; see eq. (B-26) in the Appendix for details). But past a threshold of partheno-

genesis, the conditions leading to worker-loss become increasingly stringent until such evolution242

becomes impossible (see eq. (B-25) in the Appendix for details). This is because as parthenogenesis

increases, the relatedness among a queen and larvae of the same colony also increases. The con-244

�ict between them, which fuels the evolution of worker-loss, therefore abates until it is no longer

advantageous for a larva to preferentially develop as a queen.246

We additionally computed the level of hybridization favoured by selection when the population has

evolved worker-loss (and this is an evolutionarily stable state). We �nd that hybridization increases248

as queens mate with fewer males and as parthenogenesis increases (�g. 5D), so much so that se-

lection can lead to complete hybridization (� = 1, e.g. �g. 5C). As a result, there exists a range of250

intermediate values of parthenogenesis for which worker-loss evolves in association with a com-

plete loss of intraspeci�c matings, i.e. queens never mate with males of their own species or lineage.252

These males are nevertheless still being produced in our model (as the primary sex ratio is such that

f < 1).254

4 Discussion

In sum, our analyses indicate that worker-loss readily evolves when queens can hybridize with a256

lineage of males by whom fertilization leads to the production of workers. This evolution in our

model occurs through a sequence of substitutions of alleles that increasingly bias the development of258

their carrier towards the queen caste, i.e. “royal cheats”. Hybridization, or sperm parasitism, allows

royal cheats to �x in the population by providing a way for colonies to compensate for the reduced260

workforce. In fact, when queens are capable of recognising genetic di�erences among males and

when royal cheats are present in the population, selection favours hybridization by queens to regain262
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control over caste allocation in their colony. This is turn promotes greater cheating by larvae, which

favours greater hybridization by queens and so on. This evolutionary arms race, fuelled by intra-264

colonial con�icts, eventually leads to complete intraspeci�c worker-loss: a state where larvae have

lost their developmental plasticity and develop as workers or queens depending only on whether266

they are the product of hybridization or not, respectively.

4.1 Model limitations268

Of course, our analyses are based on several idealized assumptions. In particular, we assumed that

the probability for larvae to develop as workers is under complete larval genetic control. Typically270

the developmental fate of female larvae also depends on various environmental factors created by

adult colony members, such as food quality and quantity (Brian, 1956; Trible and Kronauer, 2017),272

or mechanical (Penick and Liebig, 2012) and chemical (Schwander et al., 2008; Penick et al., 2012)

stimuli. The conclusions of our study apply as long as these environmental e�ects are held constant274

(or evolve more slowly than genetic caste determination). In this case, worker-loss would emerge

via royal cheats that modify larval developmental reaction norm to environmental e�ects in such a276

way that their carriers aremore likely to develop as queens (Hughes and Boomsma, 2008; Wolf et al.,

2018). We also assumed that caste determination and hybridization evolve via rare mutations with278

weak additive e�ects at a single locus. These assumptions, which are typical to adaptive dynam-

ics and kin selection approaches, have been extensively discussed elsewhere in a general context280

(Frank, 1998; Rousset, 2004; Geritz and Gyllenberg, 2005; Dercole and Rinaldi, 2008). In particular,

all our results extend to the case where traits are determined by many genes, provided genetic vari-282

ance in the population remains small (Charlesworth, 1990; Iwasa et al., 1991; Abrams et al., 1993).

Where mutations have large additive or dominance e�ects, we expect more complex evolutionary284

dynamics, such as genetic polymorphism. These dynamics can nonetheless be straightforwardly

investigated with the recurrence equations we derived (eq. A-4 in Appendix). However, our model286

cannot accommodate potential interaction e�ects among loci (i.e. epistasis). If a quantitative genet-

ics analysis inTemnothorax curvispinosus supports that caste determination is in�uenced by additive288

e�ects in this species (Linksvayer, 2006), only epistatic e�ects were found in Pogonomyrmex rugosus

(Schwander and Keller, 2008). It would therefore be relevant in the future to allow for a more a290

complex genetic basis of caste determination, including epistasis (in particular in the context of the

evolution of unorthodox reproductive systems, see next section). Another important assumption we292

made is that hybrid larvae do not develop into fertile queens, for instance owing to hybrid incom-
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patibilities (Trible and Kronauer, 2017). If fertile hybrid queens are produced regularly, evolution294

towards worker-loss like in our model is less likely to happen as hybrids no longer make a reliable

source of workers. In ants at least, the idea that hybrid queens are rarely fertile is supported by the296

contrast between high frequency of interspeci�c mating on one hand, and weak genetic signals of

interspeci�c gene �ow on the other (Umphrey, 2006; Feldhaar et al., 2008). Finally, we focused in298

the main text on the case where colony productivity increases linearly with workers (i.e. the proba-

bility that a sexual survives until reproduction increases linearly with the number of workers). More300

realistically, the gain in productivity brought by one additional worker is likely to decrease with in-

creasing workforce (Nonacs and Tobin, 1992; Reuter and Keller, 2001). Such diminishing returns302

tend to favor cheating because the indirect bene�t of developing into a worker gets smaller as colony

size increases (e.g. Reuter and Keller, 2001; Field and Toyoizumi, 2020). In line with this, we �nd304

that worker-loss evolves even more easily under diminishing compared to linear returns (Appendix

B.2.3 and �g. S3).306

4.2 An adaptive path to unorthodox reproductive systems?

Our result that spermparasitism favours the emergence ofworker-loss via the �xation of royal cheats308

may be relevant to unorthodox reproductive systems found in ants. Of particular interest is so-

cial hybridogenesis, whereby females produced through regular intra-lineage mating or thelytok-310

ous parthenogenesis develop into queens, while workers emerge from eggs fertilised by allospeci�c

males (Helms Cahan et al., 2002; Helms Cahan and Keller, 2003; Anderson et al., 2006; Romigu-312

ier et al., 2017; Lacy et al., 2019; Kuhn et al., 2020). Such a striking system was �rst described just

two decades ago in Pogonomyrmex harvester ants (Helms Cahan et al., 2002), and has since been314

found in several species spread across 4 genera (Helms Cahan and Keller, 2003; Romiguier et al.,

2017; Lacy et al., 2019; Kuhn et al., 2020). If these observations suggest that social hybridogenesis316

has evolved independently multiple times, the evolutionary origins of this complex system remain

poorly understood (Anderson et al., 2008; Schwander et al., 2010; Lavanchy and Schwander, 2019).318

One early suggestion is based on the hypothesis that worker development requires the combination

of co-adapted alleles at key loci (i.e. requires epistatic interactions, Helms Cahan and Keller, 2003).320

According to this theory, worker-loss in hybridogenetic lineages would have originated in the ran-

dom loss of such combinations during episodes of ancestral hybridization. Present hybridization322

would then have evolved to restore genetic combinations and epistatic interactions in F1-hybrids

allowing for worker development.324
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Here, we have shown mathematically that social hybridogenesis could also result from additive ge-

netic e�ects on caste development and queen-larvae con�icts within colonies. This theory, previ-326

ously described verbally in Anderson et al. (2006) and Anderson et al. (2008), may help explain the

multiple convergence towards social hybridogenesis because virtually every sexual eusocial species328

should experience queen-larvae con�icts over caste investment. Furthermore, because this path to

social hybridogenesis does not depend on changes in the sympatric species whose sperm is para-330

sitized, our model is relevant to both cases of asymmetrical (where the sympatric species produces

workers through regular sex, as in Solenopsis xyloni for e.g.; HelmsCahan andKeller, 2003) and sym-332

metrical social hybridogenesis (where the sympatric species also producesworkers via hybridization,

as in Pogonomyrmex harvester ants for e.g.; Anderson et al., 2006).334

Our model may also be relevant to other unorthodox systems of reproduction such as those found

in populations of Wasmannia auropunctata (Fournier et al., 2005), Vollenhovia emeyri (Ohkawara336

et al., 2006) or Paratrechina longicornis (Pearcy et al., 2011). As with some forms of social hybrido-

genesis, queens of these systems produce their reproductive daughters via female parthenogenesis338

and their workers via sex with genetically distant males. In contrast to social hybridogenesis, how-

ever, thesemales belong to a divergent all-male lineagemaintained bymale clonality. This is further340

accompanied with a complete absence of arrhenotokous males (i.e. queens never make hemiclonal

haploid sons, as shown in W. auropunctata, Rey et al., 2013). When queens are able to produce342

daughters parthenogenetically in our model, evolution can lead to a state where worker-loss is cou-

pled with a complete absence of intra-lineage mating (i.e. � = 1, �g. 5C-D). In this state, arrheno-344

tokous males represent a genetic dead-end, laying the basis for their disappearance. To investigate

these systems in more detail, it would be interesting to extend our model to consider the evolution346

of female parthenogenesis and male clonality.

Our formal approach is especially useful in a context where hybrid vigour inworkers has been raised348

to explain the evolutionary origin of social hybridogenesis and other hybridization-dependent sys-

tems (Julian and Cahan, 2006; Umphrey, 2006; Anderson et al., 2008; Feldhaar et al., 2008; Schwan-350

der et al., 2010). According to this argument, selection favoured hybridization because hybrid work-

ers are more e�cient, more resilient, or better suited to exploit marginal habitats than regular work-352

ers. But in spite of much e�ort, empirical evidence supporting hybrid vigor in workers is still lacking

(Robertson and Ross, 1990; Julian and Cahan, 2006; Feldhaar et al., 2008, but see James et al., 2002).354

Further challenging this view, we have shownhere that hybrid vigor is not necessary to the evolution

of hybridization-dependent reproductive systems. In fact, our results demonstrate that these systems356
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can easily evolve even when hybridization is costly due to pre- and post-zygotic barriers (i.e. when

e < 1 for e.g. because hybridization leads to an ine�cient workforce due to hybrid incompatibilities358

in workers; or increased e�orts in mate-�nding and mating, Maroja et al., 2014; or the production

of non-viable or infertile hybrid queens, Umphrey, 2006; Feldhaar et al., 2008). In contrast to pre-360

vious suggestions (Anderson et al., 2008), our model thus indicates that hybridization-dependent

reproductive systems can emerge among species that have already substantially diverged, and can362

be maintained even with further accumulation of hybrid incompatibilities.

More generally, our results suggest that natural selection can lead to an association between hy-364

bridization and caste determination. To date, such associations have been reported in only 18 dis-

tinct ant species or populations (Helms Cahan et al., 2002; Helms Cahan and Keller, 2003; Fournier366

et al., 2005; Anderson et al., 2006; Ohkawara et al., 2006; Pearcy et al., 2011; Romiguier et al., 2017;

Lacy et al., 2019; Kuhn et al., 2020). But this rarity may be due – at least partly – to the di�culty368

with describing these systems (which in particular requires sampling and genotyping both queens

and workers of the same populations, Helms Cahan et al., 2002). For instance, studies speci�cally370

testing for social hybridogenesis discovered 5 new cases of social hybridogenesis in Cataglyphis (out

of 11 species tested, Kuhn et al., 2020) and 3 inMessor (out of 9, Romiguier et al., 2017). These con-372

siderations, together with our results, support the notion that currently known cases likely represent

only a small fraction of extant eusocial systems relying on hybridization (Helms Cahan et al., 2002;374

Lavanchy and Schwander, 2019).

4.3 Factors promoting the evolution of intraspeci�c worker-loss376

In addition to showing that hybrid vigor is not necessary for the emergence of intraspeci�c worker-

loss, our model highlights several factors that can facilitate such evolution. The �rst of these is378

polyandry, which favors sperm parasitism and worker-loss by minimizing the risks associated with

hybridization. Interestingly, even though polyandry is generally rare in social insects (Strassmann,380

2001; Hughes et al., 2008), meaningful exceptions are found in Pogonomyrmex (Rheindt et al., 2004)

andMessor (Norman et al., 2016) harvester ants, two taxa where social hybridogenesis has evolved382

multiple times (Anderson et al., 2006; Romiguier et al., 2017). While the number of males a queen

mates with is �xed in our model, it is conceivable that this number also responds to hybridization,384

leading polyandry and hybridization to coevolve. Indeed since low levels of polyandry represent a

risk for out-breeding queens, we can expect selection to favour queen behaviours that increase their386
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number of mates. This would in turn allow for greater levels of hybridization, which would increase

selection on polyandry and so on. We therefore expect that the coevolution between polyandry,388

hybridization, and caste determination further promotes the emergence of worker loss. For species

that are �xed for strict (or close to) monandry, our model shows that worker-loss can evolve when390

queens have the ability to reproduce via thelytokous parthenogenesis as it allows interspeci�cally

mated queens to nevertheless produce daughter queens. This supports the notion that thelytoky has392

been important for the convergent evolution of social hybridogenesis in the (mostly) monandrous

Cataglyphis ants (Kuhn et al., 2020).394

Although not considered in our study for simplicity, another factor that can minimize the risks as-

sociated with hybridization in monandrous species is polygyny, whereby related queens formmulti-396

queen nests. Such social organization allows both intra- and interspeci�cally mated queens to be

part of the same colony, which can then produce both queens and workers. Polygyny should there-398

fore further facilitate hybridization. While this may have played a role in the evolution of social

hybridogenesis in the polygynous Solenopsis species with this reproductive system (Helms Cahan400

and Keller, 2003; Lacy et al., 2019), we do not expect polygyny to be critical for the evolution of

worker-loss as such loss has been described in both monogynic and polygynic species of the same402

genus (e.g.,Messor barbarus and cf. structor; Romiguier et al., 2017). Beyond these considerations,

any trait (e.g. polyandry, polygyny or reproduction by workers) that in�uences kinship structure404

within colonies and thus modulates intra-colonial con�icts has the potential to play a role in the

evolution of worker-loss. Studying the evolution of such traits and its feedback on hybridization406

and caste determination therefore represents an interesting avenue for future research.

More important for the evolution of worker-loss in ourmodel is that queens hybridize often enough.408

This readily happens when the propensity of queens tomate with allo- vs. con-speci�cmales evolves

(�g. 3). In this case, sperm parasitism, worker-loss and social hybridogenesis emerge even in species410

that initially do not hybridize. Such evolution of hybridization is especially likely to occur where

queens are able to recognize di�erences among males and choose their mates accordingly. There412

is however currently little, if any, evidence for such direct mate or sperm choice in eusocial insects

(Strassmann, 2001; Schwander et al., 2006; Umphrey, 2006; Feldhaar et al., 2008). Alternatively,414

queens may be able to modulate the degree of hybridization via more indirect mechanisms, such as

mating �ight synchronization (Kaspari et al., 2001). Under completely random mating, hybridiza-416

tion can reach su�cient levels for worker-loss to evolve in our model as long as allo-speci�c males

are su�ciently abundant (�g. 2), for instance because phenology is sharedwith an ecologically dom-418
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inant species (Klein et al., 2017). In intermediate situations where allo-speci�c males are available

but scarce, the evolution of caste determination under random mating leads to a situation where420

queens produce both hybrid and non-hybrid workers (�g. 2A-B). Such a scenario may be relevant to

species of ants where hybrid workers has been reported but where worker-loss has not evolved (e.g.422

in some North American Solenopsis or European Temnothorax, Feldhaar et al., 2008).

Whether it occurs randomly or not, hybridization requires pre-zygotic barriers to be su�ciently low.424

Various mechanisms, such as secondary contacts or high dispersal ability, are known to lower these

barriers (Aguiar et al., 2009). In particular, it has been proposed that the typically low phenotypic426

variation among males of di�erent ant species facilitates hybridization in this taxa (Feldhaar et al.,

2008). With these considerations in mind, it is noteworthy that all known cases of social hybridoge-428

nesis have been found in ants that live in dry climates (Helms Cahan et al., 2002; Helms Cahan and

Keller, 2003; Romiguier et al., 2017; Lacy et al., 2019; Kuhn et al., 2020), where the synchronicity of430

mating �ights between species is highest due to shared dependence upon punctual climatic events

(Hölldobler and Wilson, 1990; Feldhaar et al., 2008).432

At a broader level, our results suggest that worker-loss can readily evolve when a source of work-

ers that is impervious to royal cheats can be exploited by queens. Besides sperm parasitism, other434

forms of parasitism can provide such a source of workers and have been associated with worker-loss

(Nonacs and Tobin, 1992). In inquiline ants such as Teleutomyrmex schneideri for instance, queens436

do not themselves produce workers but rather in�ltrate the colony of a host and trick host workers

into caring for their progeny (Hölldobler and Wilson, 1990; Buschinger, 2009). Like in our model,438

such social parasitism could be the endpoint of an arms race between queens and larvae of the same

lineage, whereby increasingly caste-biasing cheats reduce colony workforce leading queens to in-440

creasingly rely on host workers.

4.4 Conclusions442

Intra-colonial con�icts are inevitably part of the social lives of non-clonal organisms. Here we have

shown that such genetic con�icts readily lead to an association between interspeci�c sperm para-444

sitism and intraspeci�c worker-loss via the �xation of royal cheats. This association is especially

relevant to the evolution of reproductive systems that like social hybridogenesis rely on hybridiza-446

tion. Beyond these unorthodox systems and sperm parasitism, the �xation of royal cheats and loss

of intraspeci�c workers may be connected to other forms of antagonistic interspeci�c relationships448
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such as social parasitism. More broadly, our model illustrates how the unique genetic con�icts that

are inherent to eusocial life can lead to evolutionary arms races, with implications for elaborate re-450

productive systems and novel ecological interactions between species.
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Figure 1: The life cycle of an annual eusocial with hybridization and sperm para-
sitism. At each generation, the life-cycle begins with virgin queens mating withmmales,
each ofwhich has a probability � to be allospeci�c and 1−� to be conspeci�c. Aftermating,
a queen founds a colony and starts producing eggs. Hybrid female eggs (with allospeci�c
paternal origin) all develop into workers. Regular female eggs (with conspeci�c paternal
origin) develop into workers with probability ! and into queens otherwise. The variable �
thus captures the tendency of queens to hybridize and parasitize sperm, while ! controls
caste determination.
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Figure 2: The �xation of royal cheats and evolution of intraspeci�c worker-loss.
A Evolution of the probability ! that a female larva develops into a worker in a simulated
population when queens mate with a large number of males (polyandry,m →∞) and the
proportion of allospeci�cmales � is �xed (top � = 0; middle � = 0.2, bottom � = 0.4; other
parameters: e = 1, Appendix A.3 for details on simulations). Plain lines (and surrounding
grey areas) show the population average! (and its standard deviation). Dashed lines show
the predicted equilibrium (from eq. 1). B Equilibrium of ! as a function of hybridization �
and the e�ciency of hybrid workers e (from eq. 1). C Parameter combinations leading to
the evolution of completeworker-loss (i.e. ! → 0, in green, corresponding to � ≥ 1∕(1+2e)
which is found by substituting eq. 1 into !∗ ≤ 0).
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Figure 3: The coevolution of caste determination and sperm parasitism. A. Evolu-
tionary equilibria (for � in black and ! in white) as a function of hybrid worker e�ciency
e (eq. B-6 in Appendix B.1.2 for details). These equilibria however are evolutionary repel-
lors (eq. B-7 in Appendix B.1.2). As a result, three types of coevolutionary dynamics are
possible depending on e as illustrated in panels B, C&D (from eq. B-5). These panels show
examples of phenotypic trajectories when worker-loss: B never evolves (e = 0.1); C can
evolve depending on initial conditions (e = 0.4); D always evolves (e = 0.7). Black �lled
circles indicate the two evolutionary end-points: hybridization avoidance with develop-
mental plasticity (! = 1∕3 and � = 0 in B-C) or worker-loss with hybridization (! = 0
and � = 2∕3 in C-D). Empty circle in C shows the internal unstable equilibrium (eq. B-
6). Thick grey arrow heads in D represent the trajectory of a population starting from
! = 1∕3 and � = 0 and evolving to worker-loss. E: Fitness e�ects of caste determination !
in a mutant larva via itself (in orange), related queens (red) and related males (blue) along
the trajectory leading to worker-loss shown in panel D (total selection in black, Appendix
B.1.3 for derivation). We see that negative �tness e�ects via self (orange line) lead to a
total selection e�ect that is negative (black line). This indicates that mutant larvae with
increasingly small values of ! are selected because these values increase larvae’s direct
�tness (by increasing the probability that they develop into queens). F: Fitness e�ects of
hybridization � in a mutant queen, via its sons (blue) and daughter queens (red) along the
trajectory leading to worker-loss shown in panel D (total selection in black). Positive total
selection (in black) is mostly due to an increase of �tness via males (in blue). This says
that mutant queens with increasingly large values of � are selected because this increases
their reproduction, especially via males.
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Figure 4: The e�ects of monandry and low polyandry. A: Outcome of selection as a
function of mate numberm and hybrid worker e�ciency e. Over the dashed line, worker-
loss is a stable equilibrium (i.e. a population with traits ! = 0 and � = 2∕3 cannot be
invaded, eq. B-16 in Appendix B.2.1). Over the plain line, hybridization can invade when
rare (i.e. � = 0 is unstable, eq. B-18 in Appendix B.2.1). Below both lines (gray region),
plasticity in caste determination is maintained (as in �g. 3B). Over both lines (dark green
region), hybridization and worker-loss evolve (as in �g. 3D). In the light green region,
worker-loss evolve for some initial conditions (as in �g. 3C). In the blue region, there exists
an internal attractor equilibrium (i.e. the population converges towards a phenotype 0 <
�∗ < 1 and 0 < !∗ < 1) that is either uninvadable (for 2 ≤ m ≤ 4, panel B for e.g.) or
invadable leading to polymorphism (for m = 1, panel C for e.g.). B: Evolution towards
an uninvadable phenotype in a simulated population (when e = 1 and m = 2). Each dot
represents the value of � of one of 20 haplotypes randomly sampled every 100 generation
in a simulated population of 10000 queens (Appendix A.3 for details on simulations). The
colour of each dot gives the value of! of the associated haplotype (legend). The horizontal
dashed line represents the predicted equilibrium (from �g. S1). The grey line represents
the mean value of � across the simulation. C: Evolution towards an invadable phenotype
and the emergence of polymorphism in a simulated population (when e = 1.5 andm = 1,
other parameters and �gure legend: same as B).
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Figure 5: The in�uence of thelytokous parthenogenesis. A & B Invasion analysis as
a function of parthenogenesis c and hybridworker e�ciency e (withm = 1 in A andm = 2
in B). In the region over the plain line, hybridization can invade when rare (i.e. � = 0 is
unstable, eq. B-23). In the region over the dashed line (in A) or framed by the dotted and
dashed lines (inB), worker-loss is a stable equilibrium (i.e. a population at equilibrium for
� and with ! = 0 cannot be invaded, Appendix B.2.2, eqs. B-25 and B-26 for details). In
the dark green region, selection thus favours both the evolution of hybridization and the
maintenance ofworker-loss (e.g. panel C). In the light green region, worker-loss can evolve
only for some initial conditions (as in �g. 3C).C Phenotypic trajectories leading to worker-
loss (when e = 0.9, c = 0.4 andm = 1). Arrows show the direction of evolution favoured
by selection. Black �lled circles indicate the evolutionary end-point. The black line shows
the average trait values of a simulated population starting at (! = 1∕2, � = 0). In this
example, selection leads to a state where worker-loss (! = 0) is coupled with complete
hybridization (� = 1). D Level of hybridization � favoured by selection when worker-
loss has evolved (! = 0) as a function of parthenogenesis c. This shows that worker-loss
is always associated to complete hybridization (� = 1) under monandry (m = 1) and if
c ≥ (m − 1)∕(3m − 1) under polyandry (m > 1) (Appendix B.2.2, eq. B-24, for details).

27

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2021. ; https://doi.org/10.1101/2021.01.12.426359doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.12.426359
http://creativecommons.org/licenses/by-nc-nd/4.0/


Appendices

A Methods630

Here we describe our methods to investigate the evolutionary dynamics of: (1) the probability ! for

a non-hybrid larvae to develop as a worker; and (2) the propensity � for queens to hybridize. These632

methods are organised as follows. First in section A.1, we present a population genetics model that

describes the change in allele frequencies at a biallelic locus that determines the value of ! in larvae634

and of � in queens. Second (in section A.2.1), we obtain the invasion �tness of a mutant allele

coding for deviant trait values in a population otherwise monomorphic for a resident allele. Then,636

we use this invasion �tness in section A.2 as a platform to infer the long-term adaptive dynamics

of both traits (i.e. their gradual evolution under the input of rare mutations with weak phenotypic638

e�ects). Speci�cally, we derive the joint evolutionary equilibria of ! and � (i.e. singular values), as

well as their properties (i.e. convergence stability and evolutionary stability, Dercole and Rinaldi,640

2008 for textbook treatment). Finally in section A.3, we describe our individual-based simulations.

A Mathematica notebook reproducing our analyses and �gures is provided as a supplement here:642

https://zenodo.org/record/4434257.

A.1 Short term evolution: population genetics644

A.1.1 Set-up

We consider a single locus with two alleles, a and b, that a�ect the expression of both ! and � in646

their carrier. Speci�cally, the probability for a larva with genotype v ∈ {aa, ab, bb} to develop as

a worker is !v, while each mate of a queen with genotype v ∈ {aa, ab, bb} is allospeci�c with a648

probability �v. To track the segregation of alleles a and b in the population, we let p♀aa(t), p
♀
bb(t), and

p♀ab(t) respectively denote the proportion of queens with genotype aa, bb and ab before mating at650

generation t (with p♀aa(t) + p♀bb(t) + p♀ab(t) = 1). Similarly, p♂a (t) and p
♂
b (t) respectively denote the

proportion of conspeci�c males with haploid genotype a and b before mating at generation t (with652

p♂a (t) + p♂b (t) = 1).
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A.1.2 Recurrence equations for the evolution of genotype frequencies654

Our �rst goal is to develop recurrence equations for the frequencies of each genotype in males and

females (i.e. express p♂u (t + 1) and p♀v (t + 1) in terms of p♂u (t) and p
♀
v (t) for u ∈ {a, b} and v ∈656

{aa, ab, bb}). By de�nition, these frequencies can be written as

p♂u (t + 1) =
n♂u (t + 1)

n♂a (t + 1) + n♂b (t + 1)

p♀v (t + 1) =
n♀v (t + 1)

n♀aa(t + 1) + n♀ab(t + 1) + n♀bb(t + 1)
,

(A-1)

where n♂u (t + 1) is the number of males of genotype u ∈ {a, b} at generation t + 1, and n♀v (t + 1) the658

number of queens of genotype v ∈ {aa, ab, bb} at generation t + 1 in the mating pool. Under our

assumption that the probability for a sexual to reach the mating pool increases with the workforce660

of a colony (section 2 in main text), the numbers of males and females of each genotype can be

expressed as:662

n♂v (t + 1) = x♂aa v(t)naa(t)p
♀
aa(t) + x♂ab vnab(t)p

♀
ab(t) + x♂bb vnbb(t)p

♀
bb(t)

n♀v (t + 1) = x♀aa v(t)naa(t)p
♀
aa(t) + x♀ab v(t)nab(t)p

♀
ab(t) + x♀bb v(t)nbb(t)p

♀
bb(t),

(A-2a)

where x♂u v(t) is the number of males with genotype v ∈ {a, b}, and x♀u v(t) the number of queens

with genotype v ∈ {aa, ab, bb}, produced by a colony founded by a queen of genotype u ∈664

{aa, ab, bb} at generation t. Following Reuter and Keller (2001), we assume that these numbers are

proportional to the energy invested into the production of sexuals. So instead of numbers, x♂u v(t)666

can be viewed as the investment into the production of males (of genotype v ∈ {a, b}) and x♀u v(t)

into the production of queens (of genotype v ∈ {aa, ab, bb}) by a colony whose queen has genotype668

u ∈ {aa, ab, bb}. Finally, nu(t) is the e�ective workforce of a colony whose queen has genotype

u ∈ {aa, ab, bb} at generation t. This e�ective workforce is given by the sum of all types of workers670

present in a colony, including hybrids (with the latter weighted by their e�ciency e), i.e.

nu(t) =
(
xu aa(t) + xu ab(t) + xu bb(t) + exu ℎyb(t)

)�
(A-2b)

where xu v(t) is the investment into the production of workers of genotype v ∈ {aa, ab, bb, ℎyb}672

(with ℎyb denoting hybrid genotype) made by a colony whose queen has genotype u ∈ {aa, ab, bb}

at generation t. The parameter � > 0 determines the e�ect of the workforce on the probability for a674
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sexual to reach the mating pool. When � = 1, investment in workers a�ects the survival of queens

and males linearly (i.e. one extra unit of workforce always increases survival by the same amount).676

By contrast when � < 1, investment in workers show diminishing returns. Conversely when � > 1,

investment in workers show increasing returns. For most of our analyses, we assume linear e�ects678

of the workforce (� = 1). We relax this assumption in section B.2.3.

We specify the investments into males, x♂u v(t), queens, x
♀
u v(t), and workers, xu v(t), in terms of680

model parameters in Table S1. For the sake of completeness, we do so for a model that encompasses

all the e�ects explored sequentially in the main text, i.e. we allow for both traits ! and � to coevolve;682

for a �nite numberm of mates for each queen; and for a fraction c of a queen’s brood to be produced

via parthenogenesis. To read Table S1, note that the di�erent investments made by a colony with a684

queen of type u ∈ {aa, ab, bb} (i.e. x♂u v(t), x
♀
u v(t), and xu v(t)) depend on the types of males she has

mated with. To capture this, we letMu,v be the random number of males of genotype v ∈ {a, b, ℎ}686

(where ℎ denotes allospeci�c type) that a queen of genotype u ∈ {aa, ab, bb} mates with. Assum-

ing that each mate is independent from one another, these random variables follow a multinomial688

distribution with parameters,

Mu = (Mu,a,Mu,b,Mu,ℎ) ∼ Multinomial
(
m, (1 − �u)p

♂
a (t), (1 − �u)p

♂
b (t), �u

)
, (A-3)

where m is the total number of mates; (1 − �u)p
♂
v (t) is the probability that in one mating event a690

queen of type u mates with a conspeci�c male of type v ∈ {a, b} (which requires that this queen

does not hybridize, with probability (1−�u), and encounters a male of type v, with probability given692

by its proportion, p♂v (t)); and �u is the probability that in one mating event a queen of type u mates

with an allospeci�c male.694

To get to the recurrence equations tracking the proportion of males and queens of each genotype,

we �rst substitute the entries of Table S1 into eq. (A-2) (with � = 1). Doing so we obtain polyno-696

mials for the numbers n♂v (t + 1) (for v ∈ {a, b}) and n♀v (t + 1) (for v ∈ {aa, ab, bb}) in terms of

the random variables Mu,a, Mu,b, and Mu,ℎ (with u ∈ {aa, ab, bb}). We marginalise (i.e. take the698

expectation of) these polynomials over the joint probability mass function ofMu,a, Mu,b, andMu,ℎ

for each u ∈ {aa, ab, bb}, which is given by eq. (A-3). Finally, the so-obtained numbers of di�erent700

types of individuals (eq. A-2) are substituted into eq. (A-1). From this operation and using the fact
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that p♂a (t) = 1 − p♂b (t) and p
♀
aa(t) = 1 − p♀bb(t) − p♀ab(t), we obtain a recurrence equation,702

⎛
⎜
⎜
⎜
⎝

p♂b (t + 1)

p♀ab(t + 1)

p♀bb(t + 1)

⎞
⎟
⎟
⎟
⎠

= F

⎛
⎜
⎜
⎜
⎝

p♂b (t)

p♀ab(t)

p♀bb(t)

⎞
⎟
⎟
⎟
⎠

, (A-4)

that is characterised by a mapping F ∶ [0, 1]3 → [0, 1]3. This recurrence is too complicated to be

presented here for the general case but can straightforwardly be iterated numerically to track allelic704

frequency changes for given parameter values (see Mathematica notebook for e.g.).

A.2 Long-term evolution: adaptive dynamics706

To gain more analytical insights, we use the recurrence eq. (A-4) to study the long term adaptive

dynamics of both traits under the assumption that traits evolve via mutations that are rare and with708

weak additive phenotypic e�ects.

A.2.1 Invasion �tness of rare additive allele710

An adaptive dynamics model is typically based on the invasion �tness of a mutant allele in a popu-

lation that is otherwise �xed for a resident allele (i.e. the asymptotic growth rate of a mutant allele).712

To obtain this invasion �tness, we �rst introduce some notation. We denote the resident allele by

a vector z = (!, �) where ! is probability that a larva homozygote for the resident allele develops714

into a worker, and � is the probability that a mate of queen homozygote for the resident allele is

allo-speci�c. Similarly, the mutant allele is described by a vector ζ = (! + �!, � + ��) whose �rst716

entry gives the probability that a larva homozygote for the mutant allele develops into a worker, and

whose second entry is the probability that a mate of a queen homozygote for the mutant allele is718

allo-speci�c (�! and �� thus denote the mutant e�ect on trait values). Assuming additive genetic

e�ects on phenotypes, a heterozygote then expresses phenotype (! + �!∕2, � + ��∕2).720

To use the recurrence equations developed in the previous section, we arbitrarily set allele a as the

resident and b as the mutant. The allele speci�c trait values (appearing in table S1 and eq. A-3) are722
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then replaced by:

!aa = !

!ab = ! + 1
2�!

!bb = ! + �!

�aa = �

�ab = � + 1
2��

�bb = � + ��.

(A-5)

Next, we use the fact that the mutant is rare so that its frequency in the population is of the order724

of a small parameter denoted 0 < � ≪ 1. As a rare allele can only be found in heterozygous form

in a large panmictic population, the initial dynamics of a mutant allele b can be described through726

linear approximations of p♂b (t+1) and p
♀
ab(t+1) at a near-zero frequency of b (e.g. Brännström et al.,

2013). In other words, eq. (A-4) can be linearised to728

⎛
⎜
⎝

p♂b (t + 1)

p♀ab(t + 1)

⎞
⎟
⎠
= A(ζ, z)

⎛
⎜
⎝

p♂b (t)

p♀ab(t)

⎞
⎟
⎠
+O(�2), (A-6)

whereA(ζ, z) is a 2 × 2matrix that depends on mutant and resident phenotypes, ζ and z, and � is a

small parameter of the order of the frequency of the mutant b in males and queens.730

The invasion�tness of themutant phenotype, whichwewrite asW(ζ, z), is then given by the leading

eigenvalue of A(ζ, z) (e.g. Caswell, 2000), i.e.732

W(ζ, z) = �max
(
A(ζ, z)

)
, (A-7)

where �max(M) gives the leading eigenvalue of a matrixM. In a large population,W(ζ, z) tells the

fate of the mutant allele. IfW(ζ, z) ≤ 1, then the mutant allele is purged by selection and vanishes734

with probability one. Otherwise ifW(ζ, z) > 1, the mutant has a non zero probability of invading

the population (e.g. Brännström et al., 2013).736

A.2.2 Directional selection

Whenmutations are rarewithweakphenotypic e�ects, the population�rst evolves under directional738

selection whereby an advantageous mutation �xes before a new mutation arises so that the popula-

tion “jumps” from one monomorphic state to another (Dercole and Rinaldi, 2008). To study these740

dynamics, we use the selection gradient, s(z), which is a vector pointing in the direction favoured

by selection at every point z ∈ [0, 1] × [0, 1] of the phenotypic space (i.e., the space of all possible742
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phenotypic combinations with ! and � both between 0 and 1 as they are both probabilities) . This

vector is given by the marginal e�ect of each trait on invasion �tness, i.e.744

s(z) =
⎛
⎜
⎝

s!(z)

s�(z)

⎞
⎟
⎠
=

⎛
⎜
⎜
⎜
⎝

)W(ζ, z)
)�!

|||||ζ=z
)W(ζ, z)
)��

|||||ζ=z

⎞
⎟
⎟
⎟
⎠

, (A-8)

where s!(z) and s�(z) give the direction of selection on ! and � respectively.

Singular strategies. A singular strategy, z∗ = (!∗, �∗), is such that all selection gradients are746

equal to zero,

s(z∗) = 0. (A-9)

A singular strategy therefore represents a potential equilibrium of adaptive dynamics (Brännström748

et al., 2013).

Jacobian matrix and convergence stability. Whether the population evolves towards or away750

from a singular strategy z∗ depends on the Jacobian matrix,

J(z∗) =

⎛
⎜
⎜
⎜
⎝

)s!(z)
)!

|||||z=z∗
)s!(z)
)�

|||||z=z∗

)s�(z)
)!

|||||z=z∗
)s�(z)
)�

|||||z=z∗

⎞
⎟
⎟
⎟
⎠

. (A-10)

Speci�cally, one necessary condition for a singular strategy to be an evolutionary attractor is that the752

greatest real part of the eigenvalues of J(z∗) is negative (Leimar, 2009). Such a singular strategy z∗

is said to be convergence stable. Otherwise, the population will be repelled away from z∗. Even if754

z∗ is convergence stable, it is possible for the population to evolve away from z∗ when both evolving

traits are genetically correlated (Leimar, 2009). A su�cient condition for a singular strategy to be an756

attractor is that the symmetric part of the Jacobianmatrix, (J(z∗)+J(z∗)T)∕2, is negative-de�nite, in

which case z∗ is said to be strongly convergence stable (Leimar, 2009). When this is true, the popu-758

lation evolves towards z∗, whatever the genetic correlations between both traits (i.e. independently

from the statistical distribution of mutational e�ects on both traits).760
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A.2.3 Stabilising/disruptive selection.

Once the population is at an equilibrium for directional selection (i.e. a convergence stable phe-762

notype), it either remains monomorphic under stabilising selection (when the equilibrium is evo-

lutionary stable or uninvadable, Parker and Maynard Smith, 1990) or becomes polymorphic due764

to disruptive selection (when the equilibrium is not evolutionary stable or invadable, Geritz et al.,

1998). When two traits are coevolving, this depends on the Hessian matrix (Phillips and Arnold,766

1989; Leimar, 2009; Geritz et al., 2016),

H(z∗) =
⎛
⎜
⎝

ℎ!!(z∗) ℎ!�(z∗)

ℎ!�(z∗) ℎ��(z∗)

⎞
⎟
⎠
=

⎛
⎜
⎜
⎜
⎝

)2W(ζ, z)
)�2!

|||||ζ=z=z∗
)2W(ζ, z)
)�!��

|||||ζ=z=z∗

)2W(ζ, z)
)�!��

|||||ζ=z=z∗
)2W(ζ, z)

)�2�

|||||ζ=z=z∗

⎞
⎟
⎟
⎟
⎠

. (A-11)

An equilibrium z∗ is uninvadable if H(z∗) is negative-de�nite. Otherwise, selection may be dis-768

ruptive and the population may experience evolutionary branching, whereby it splits among two

diverging morphs (Geritz et al., 1998; Leimar, 2009; Geritz et al., 2016).770

A.3 Individual-based simulations

To complement our mathematical analysis, we also performed individual based simulations (an772

R script implementing these is provided as a supplement here: https://zenodo.org/record/

4434257). These simulations track a population of Nq = 10000 diploid queens (with f = 0.5,774

see �gure legends for other parameters). Each queen is characterized by its genotype: a pair of hap-

lotypes, each of which is given by the values of ! and � they code for (so four genotypic values in776

total). Simulations are initialized by setting both haplotypes of all Nq queens to the same arbitrary

values (i.e. we start with a monomorphic population). Each generation of a simulation consists of778

the following steps:

1. Mating. First, queens mate. Tomodel this process, we �rst compute the propensity �i of each780

queen i ∈ {1, 2,… , Nq} to hybridize as the mean of the two relevant alleles it is carrying. Then,

each queen i ismatedwith a numbermi of conspeci�c haploidmales. This numbermi is drawn782

from a binomial distributionwithm trials and success probability (1−�i) (in linewith eq. A-3).

At the �rst generation, all males carry the same genetic values for ! and � as queens (i.e. the784

initial trait values). In subsequent generations,males are sampled (with replacement) as single
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haplotypes from the 2i haplotypes present in the laying queens of the previous generation.786

Following eq. (A-2a), the probability to sample a given haplotype isweighted by the investment

in workers within its colony of origin (as the investment in workers increases the probability788

for males to reach the mating pool).

2. Colony development. Each queen i settles to form a colony. We characterise each colony in790

two steps. First, a list is constructed that contains the 2mi non-hybrid diploid female genotypes

produced within each colony (i.e. the combinations of the alleles of a queen and of its con-792

speci�c mates). If thelytokous parthenogenesis is included (c > 0), the genotype of the queen

itself is added to this list. Second, the investment in workers within each colony is calculated794

following equations in table S1 and eq. (A-2b). These calculations use the genetic value ex-

pressed by each of the 2mi +1 non-hybrid genotype within the female progeny (characterised796

in the �rst step), as well as the proportion of the brood produced sexually and asexually (the

parameter c), the proportion of conspeci�c and allospeci�c males the queen has mated with798

(i.e. mi∕m and 1 −mi∕m), and the e�ciency of hybrid workers (the parameter e).

3. Next-generation queens. To generate the next generation of queens,Nq new diploid female800

genotypes are sampled (with replacement) from all non-hybrid genotypes produced within

each colony. Following table S1, the probability to sample a given genotype is weighted by802

its own genetic value of (1 − !) and by the investment in workers within its colony of origin

(as the investment in workers increases the probability for queens to reach the mating pool).804

Finally, each genotypic value independently mutates with probability 10−2. Mutation e�ects

are drawn independently fromanormal distributionwithmean 0 and standard deviation 10−2.806

Mutated genetic values are capped between 0 and 1 to ensure that traits remain within their

domain of de�nition.808
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B Analyses

Here, we present the derivations of our results summarised in the main text. These derivations are810

organised in the same order as they appear in the main text. As a supplement, we also provide a

Mathematica (Wolfram Research, 2020) notebook that allows to follow our analyses.812

B.1 Baseline model

We �rst explore the baseline case where females mate with a large (e�ectively in�nite) number of814

mates and there is no parthenogenesis (i.e. whenm →∞ and c = 0).

B.1.1 Independent evolution of genetic caste determination816

As presented in the main text, we initially assume that hybridization � is �xed and only caste deter-

mination ! evolves. Using eq. (A-8) with m → ∞ and c = 0, we �nd that the selection gradient on818

genetic caste determination is,

s!(z) =
1
6 (

1 − �
�e + (1 − �)!

− 2
1 − !) . (B-1)

Accordingly, there is a unique singular strategy !∗ for caste determination when hybridization � is820

�xed (i.e. !∗ such that s!((!∗, �)) = 0),

!∗ = 1
3 − e

2�
3(1 − �)

, (B-2)

which is eq. 1 of the main text.822

It is straightforward to show that with hybridization �xed, the singular strategy (eq. B-2) is conver-

gence stable (plugging eq. B-2 into the Jacobian, that is eq. A-10, for a single trait withm → ∞ and824

c = 0),
)s!(z)
)!

|||||!=!∗
= −

9(1 − �)2

4(1 + �(e − 1))2
< 0 (B-3)

as well as uninvadable (plugging eq. B-2 into the Hessian, that is eq. A-11, for a single trait with826

m →∞ and c = 0),
)2W(ζ, z)

)�2!

|||||!=!∗
= −

3(1 − �)2

4(1 + �(e − 1))2
< 0. (B-4)
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Therefore, when hybridization is �xed, our analyses show that genetic caste determinationwill grad-828

ually evolve to the singular value eq. (B-2) and remain monomorphic for this value (which is what

we observe when we simulate this scenario, �g. 2A).830

B.1.2 Coevolution of genetic caste determination and hybridization

An unstable singularity. When both caste determination ! and hybridization � evolve, their832

trajectories under directional selection are given by the selection gradient vector,

s(z) =
⎛
⎜
⎝

s!(z)

s�(z)

⎞
⎟
⎠
=

⎛
⎜
⎜
⎜
⎜
⎝

1
6 (

1 − �
�e + (1 − �)!

− 2
1 − !)

1
1 − � (

e
3 [�e + (1 − �)!]

− 1
2)

⎞
⎟
⎟
⎟
⎟
⎠

(B-5)

(from eq. A-8 withm → ∞ and c = 0). Solving the above for z∗ = (!∗, �∗) such that s(z∗) = (0, 0)834

yields a single singular strategy in two dimensional trait space,

z∗ =
⎛
⎜
⎝

!∗

�∗
⎞
⎟
⎠
=

⎛
⎜
⎜
⎝

e + e − 1
3

2 + 1
e − 1

⎞
⎟
⎟
⎠

, (B-6)

which is plotted in �g. 3A against e. However, when we look at the Jacobian matrix of the system836

eq. (B-5) at this singular value (i.e. substitute eqs. B-5 and B-6 into eq. A-10),

J(z∗) =

⎛
⎜
⎜
⎜
⎝

− 9
16(e − 1)2

− 3
8e

− 3
4e −

(e − 1)2

4e2

⎞
⎟
⎟
⎟
⎠

, (B-7)

we see that this matrix has a negative determinant,838

det (J(z∗)) = − 9
64e2

< 0 (B-8)

so its eigenvalues cannot both be negative (since the product of the eigenvalues of a matrix is equal

to its determinant). Hence the singular value z∗ eq. (B-6) is not convergence stable, but rather an840

evolutionary repellor.

Our result that evolutionary trajectories will be repelled away from the singular value eq. (B-6) tells842
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us that adaptive dynamics will eventually get to the boundary of the trait space. This trait space

consists of the square [0, 1] × [0, 1] (as both traits must be between zero and one). Two edges of this844

square (when ! = 1 or � = 1) cannot be accessed by evolutionary dynamics as either of these trait

values lead to zero �tness (as a population monomorphic for ! = 1 or � = 1 produces no queen in846

our baseline model). We can therefore focus on dynamics along the edges � = 0 or ! = 0 of the trait

space, which respectively correspond to the case of hybridization avoidance and worker-loss.848

Convergence to hybridization avoidance. Evolutionary dynamics will settle somewhere on the

edge where hybridization is absent in the population (� = 0) only if: (1) selection on hybridization850

maintains it at zero (i.e. s�(z) ≤ 0 when � = 0); and (2) selection on caste determination settles for

an equilibrium !∗ (i.e. s!(z) = 0 for some !∗ when � = 0). From eq. (B-5), these two conditions852

are true when e ≤ 1∕2 and the equilibrium for caste determination is simply !∗ = 1∕3 (in line with

eq. B-2). As established in eq. (B-3), this equilibrium is convergence stable and evolutionary stable854

when � is �xed.

Convergence to worker-loss. Similarly, for adaptive dynamics to converge somewhere on the856

edge where workers are no longer produced from regular sex (! = 0), these two conditions are

necessary: (1) selection on caste determination maintains ! = 0 (i.e. s!(z) ≤ 0 when ! = 0); and858

(2) selection on hybridization favours an equilibrium �∗ (i.e. s�(z) = 0 for some �∗ when ! = 0).

Substituting eq. (B-5) into these conditions, they reduce to e ≥ 1∕4 and �∗ = 2∕3. In addition, we860

see from eq. (B-5) that when ! = 0,

)s�(z)
)�

|||||�=2∕3
= −94 < 0, (B-9)

and we further �nd that862

)2W(ζ, z)
)�2�

|||||�=2∕3
= −34 < 0. (B-10)

This tells us that the populationwill converge towards and remainmonomorphic for �∗ = 2∕3when

! = 0 is �xed.864

Three phase portraits. Put together, the above observations allow us to deduce that depending

on the parameter e, there are three possible types of phase portraits for the adaptive dynamics of both866

traits (�g. 3B-D). When e ≤ 1∕4, the singular value eq. (B-6) is outside of the trait space (or on its
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boundary when e = 1∕4) and the point (! = 1∕3; � = 0) is an evolutionary stable attractor, meaning868

that the population will converge towards hybridization avoidance (�g. 3B). When e ≥ 1∕2, the

singular value eq. (B-6) is also outside of the trait space (or on its boundary when e = 1∕2) and the870

point (! = 0; � = 2∕3) is an evolutionary stable attractor, meaning that the population will converge

towards worker-loss (�g. 3D). Finally when 1∕4 < e < 1∕2, the singular value eq. (B-6) is a repellor872

that lies within the trait space (i.e. 0 < !∗ < 1 and 0 < �∗ < 1) and both points (! = 1∕3; � = 0) and

(! = 0; � = 2∕3) are evolutionary stable attractors. In this case evolutionary dynamics will depend874

on initial values (�g. 3C).

B.1.3 Decomposition of directional selection in terms of inclusive �tness e�ects876

The kin selection approach. In this section, we use the so-called "kin selection" or "inclusive

�tness" approach to obtain the selection gradient eq. (B-5) (Taylor and Frank, 1996). This approach,878

which is based on invasion analyses of alleles in class-structured populations, gives the same quan-

titative result about directional selection than other common methods in theoretical evolutionary880

biology such as adaptive dynamics, population or quantitative genetics (assuming genetic variance

for traits is small, e.g. Taylor and Frank, 1996; Rousset, 2004; Lehmann et al., 2016). But one partic-882

ular advantage of a kin selection approach is that it immediately decomposes directional selection

on mutant alleles into the sum of: (1) their direct �tness e�ects on the reproductive success of the884

individuals that express them; and (2) of their indirect �tness e�ects on other related individuals

that can also transmit them. This decomposition allows to delineate the various forces at play in the886

evolution of social behaviours (Hamilton, 1964). Here, we use it to better understand the evolution

towards worker-loss (and obtain �g. 3E-F).888

We follow Taylor and Frank (1996)’s general method. Consider a population with mean trait values

! and �. In this population, consider a focal colony that is home to a mutant allele that codes for890

deviant trait values �∙ in queens and !∙ in larvae that carry this allele. Let !0 denote the mean trait

value expressed by all larvae within this focal colony. Using this notation, the expected number of892

successful (i.e. that mate) males that are produced by the focal colony and that carry the mutant

allele is given by,894

w♂ =
(1 − f)

[
f ((1 − �∙)!0 + �∙e)

]

(1 − f)
[
f ((1 − �)! + �e)

] , (B-11)

where the numerator and denominator are the total number of males produced by the focal and a
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random colony, respectively. For the focal colony (the numerator), (1 − f) is the probability that896

an egg is haploid (i.e. male) while the term in square brackets is the colony’s investment in workers

(which in ourmodel is also the probability that a sexual reachesmaturity). The denominator follows898

the same logic for an average colony in the population.

Similarly, the expected number of successful queens that are produced by the focal colony that carry900

the mutant allele is,

w♀ =
f(1 − �∙)(1 − !∙)

[
f ((1 − �∙)!0 + �∙e)

]

f(1 − �)(1 − !)
[
f ((1 − �)! + �e)

] , (B-12)

where f(1−�∙)(1−!∙) is the number of queens produced in the focal colony and the term in square902

brackets is the probability that a queen survives till mating (i.e. the colony’s investment in workers).

Fitness e�ects within a mutant colony. With the above notation, the selection gradient vector904

can then be computed as,

s(z) =
⎛
⎜
⎝

s!(z)

s�(z)

⎞
⎟
⎠
∝

⎛
⎜
⎜
⎝

v♀
)w♀

)!∙
+ v♂

)w♂

)!0
rlm + v♀

)w♂

)!0
rlf

v♂
)w♂

)�∙
rqm + v♀

)w♂

)�∙
rqf

⎞
⎟
⎟
⎠

, (B-13)

where all derivatives are evaluated at!∙ = !0 = ! and �∙ = �0 = �; rlm is the relatedness of a female906

larva to a brother; rlf is the relatedness of a female larva to a sister; rqm is the relatedness of a queen

to its sons; rqf is the relatedness of a queen to its daughters; v♂ is the reproductive value of males and908

v♀ is the reproductive value of queens (all these relatedness coe�cients and reproductive values are

for a monomorphic population, Taylor and Frank, 1996; Rousset and Ronce, 2004; Lehmann et al.,910

2016). Plugging eqs. (B-11) and (B-12) into eq. (B-13) with relatedness coe�cients and reproductive

values corresponding to a haplodiploid system with in�nite matings (i.e. rlm = 1∕2, rlf = 1∕4,912

rqm = 1, rqf = 1∕2, v♂ = 1∕2, v♀ = 1), we obtain expressions equivalent to eq. (B-5). But in

contrast to eq. (B-5), the selection gradients in eq. (B-13) are expressed as a sum of �tness e�ects of914

a mutant allele via a given category of individual. More speci�cally, the gradient s!(z) in eq. (B-13)

is decomposed as the �tness e�ects of an allele coding for a mutant value of ! in larvae: on the916

larvae that express this allele (v♀
)w♀

)!∙
, yellow line in �g. 3E), on their brothers (v♂

)w♂

)!0
rlm, blue line

in �g. 3E), and on their sisters (i.e. queens, v♀
)w♂

)!0
rlf , red line in �g. 3E) that can also transmit the918

allele. Similarly, the gradient s�(z) in eq. (B-13) is composed of the �tness e�ects of an allele coding

for a mutant value of � in queens: via their sons (v♂
)w♂

)�∙
rqm, blue line in �g. 3F) and daughters920
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(i.e. queens, v♀
)w♂

)�∙
rqf , red line in �g. 3F). To construct panels E and F of �g. 3, we evaluated these

�ve terms outlined above at every step of an evolutionary trajectory from the baseline equilibrium922

in absence of hybridization (! = 1∕3, � = 0) to complete worker-loss (! = 0, � = 2∕3). The

evolutionary trajectory was obtained by iteration, starting from the baseline equilibrium and taking924

steps of size 0.001 (in units of trait space) in the direction of the selection gradient (eq. B-5).

B.1.4 Correspondence with Reuter and Keller (2001)926

Here we connect our results to those of Reuter and Keller (2001), who used a kin selection approach

to study the evolution of caste determination when under full queen, full larval, or mixed control928

(in the absence of hybridization). Our model corresponds to the case of full larval control (eq. 3 of

Reuter and Keller, 2001). Our selection gradient s!(z), shown in eq. (B-1) with � = 0, reduces to930

eq. 3 of Reuter and Keller (2001) when we assume linear e�ects of investment in workers on colony

productivity. More speci�cally, if we set their term ∆c = �s∕(�w)×1∕f (their notation in their eq. 3,932

where ∆c corresponds to the gain in sexual production brought by one additional worker) to

∆c =
1 − fw
w , (B-14)

and assume that the population is monogynous and highly polyandrous with balanced sex-ratio (i.e.934

in their notation, f = 1∕2; gf = 1∕4; gm = 1∕2; vf = 2; vm = 1), then we �nd that eq. 3 of Reuter

and Keller (2001) is proportional to our selection gradient s!(z) (eq. B-1) with � = 0. In line with936

this, both yield the convergence stable equilibrium w∗ = 1∕3.

B.2 Extensions938

We now consider several extensions to our baseline model.

B.2.1 E�ect of �nite matings940

First, we relax our assumption that queens mate with an in�nite number of mates (i.e. m <∞).
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Selection gradient. Working from eq. (A-8) with c = 0, we �nd that the selection gradient vector942

on caste determination ! and hybridization � under �nite matings reads as,

s(z) =
⎛
⎜
⎝

s!(z)

s�(z)

⎞
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

1
6 (

1 − �
�e + (1 − �)!

− 2
1 − ! +

3e� + 2(1 − �)!
2[�e + (1 − �)!][�e(m − 1) + (1 − �)!m + �!]

)

1
1 − � (

e
3 [�e + (1 − �)!]

− 1
2) +

!
6� (

1
�e + (1 − �)!

− m
�e(m − 1) + (1 − �)!m + �!

)

⎞
⎟
⎟
⎟
⎟
⎠

.

(B-15)

These gradients are complicated but we can extract relevant information by starting our analysis944

on the two boundaries of the trait space along which evolutionary dynamics may end up (! = 0

or � = 0). Using eq. (B-15), we ask �rst when is worker-loss (! = 0) stable? And second when is946

hybridization avoidance (� = 0) stable?

Stability of worker-loss. Worker-loss is stable only if: (1) selection maintains ! at zero (i.e.948

s!(z) ≤ 0when! = 0); and (2) selection on hybridization settles for an equilibrium �∗ (i.e. s�(z) = 0

for some �∗ when ! = 0). From eq. (B-15), these two conditions reduce to950

e ≥ 1
4 +

9
8(m − 1)

(B-16)

(region above dashed line in �g. 4A) and

�∗ = 2∕3. (B-17)

Note that condition (B-16) becomes impossible as m → 1. This indicates that worker-loss cannot952

evolve under monandry in this model. Form > 1, it is straightforward to show that when condition

(B-16) is true, the strategy � = 2∕3 is both convergence stable and evolutionary stable when ! = 0954

(eqs. B-9 and B-10 for e.g. of the type of argument used).

Stability of hybridization avoidance. Conversely, hybridization avoidance is stable only if: (1)956

selection on hybridization maintains � at zero (i.e. s�(z) ≤ 0when � = 0); and (2) selection on caste

determination in absence of hybridization settles for an equilibrium !∗ (i.e. s!(z) = 0 for some !∗958
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when � = 0). From eq. (B-15), these two conditions reduce to

e ≤ 1
2 +

1
2

5m − 1
6m2 −m − 1

(B-18)

(region below plain line in �g. 4A) and960

!∗ = 1
3 +

2
3(1 + 3m)

. (B-19)

Again, it is straightforward to show that when condition (B-18) holds, the strategy given by eq. (B-19)

is both convergence stable and evolutionary stable when � = 0 (eqs. B-3 and B-4 for e.g. of argu-962

ment).

Together, conditions (B-16) and (B-18) split the parameter space into 4 areas where both, none, or964

only one of the conditions are met (�g. 4A). Where condition (B-18) is met but (B-16) is not (grey

region of �g. 4A), hybridization cannot evolve when rare and worker-loss cannot bemaintained. We966

therefore focus on the three remaining cases where worker loss can emerge. Doing so, we �nd that

there are four possible types of evolutionary dynamics.968

Type 1: Evolution towards worker-loss. Where condition (B-16) is met but (B-18) is not (dark

green region of �g. 4A), selection favours the emergence of hybridization and maintenance of970

worker-loss. In addition, it can be shown that under these conditions, there exists no singular

strategy within the trait space (i.e., there exists no z∗ = (!∗, �∗) such that 0 < !∗, �∗ < 1 and972

s(z∗) = (0, 0), e.g. using the function Reduce[] in Mathematica, see notebook). This means that the

phase portrait of evolutionary dynamics is qualitatively the same as in �g. 3D: worker-loss always974

evolves.

Type 2: Evolution towards worker-loss or hybridization avoidance depending on initial976

conditions. Where conditions (B-16) and (B-18) are met simultaneously, both worker-loss and

hybridization avoidance are stable so either strategy is maintained when common (when m ≥ 5,978

light green region of �g. 4A). Under these conditions, we �nd that there exists a singular strategy

within the trait space (top row, columnsm = 5 andm = 6 in �g. S1 for numerical values, see Math-980

ematica notebook for analytical expression). When we compute numerically the leading eigenvalue

of the system’s Jacobian matrix, we �nd that it is positive (�g. S1, second row, columns m = 5 and982

m = 6, dashed line), revealing that the singularity is an evolutionary repellor. Therefore the phase
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portrait of evolutionary dynamics is qualitatively the same as in �g. 3C: depending on initial condi-984

tions, evolutionary dynamics will lead to worker-loss or hybridization avoidance.

Type 3: Convergence stable and uninvadable intermediate strategy. Where neither condi-986

tion (B-16) nor (B-18) are met, neither worker-loss nor hybridization avoidance are stable (when

m ≤ 4, blue region of �g. 4A). In this case, a singular strategy within the trait space also exists988

(0 < !∗, �∗ < 1; �g. S1, top row, columns m ∈ {1, 2, 3, 4} for numerical values; Mathematica note-

book for analytical expression). But now, this intermediate strategy is (strongly) convergence stable990

as indicated by a negative leading eigenvalue of both the Jacobian matrix and its symmetric part

(�g. S1, second row, columns m ∈ {1, 2, 3, 4}, dashed and dotted lines). When m ∈ {2, 3, 4}, this992

intermediate strategy is also uninvadable as shown by a negative leading eigenvalue of the Hessian

matrix (�g. S1, second row, columnsm ∈ {2, 3, 4}, full line). Thus, when the number of mates is be-994

tween two and four (m ∈ {2, 3, 4}) and neither conditions (B-16) and (B-18) are met, the population

converges and remains monomorphic for an intermediate strategy 0 < !∗, �∗ < 1.996

Figure S1: Properties of the internal singular strategy under monoandry and low
polyandry. Each column describes the unique internal singular strategy for a speci�c
value of m. Top row: value of the singular strategy (!∗ in green, �∗ in black) within the
range of e for which an internal strategy exists (range given by eqs. B-16 and B-18; Math-
ematica notebook for value of singular strategy). Bottom row: leading eigenvalues of the
Jacobian (dashed line; for convergence stability), symmetric part of the Jacobian (dotted
line; for strong convergence stability) and Hessian (full line; for evolutionary stability)
matrices at the singular strategy (Mathematica notebook for calculations).
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Type 4: Emergence of polymorphism under monandry. When neither condition (B-16) nor

(B-18) aremet andm = 1, the convergence stable intermediate strategy is invadable (i.e., theHessian998

has a positive leading eigenvalue; �g. S1, second row, columnm = 1, dashed line). This means that

once the population has converged to this intermediate strategy, it experiences frequency-dependent1000

disruptive selection leading to polymorphism (Geritz et al., 1998; Geritz andGyllenberg, 2005; Geritz

et al., 2016). Inspection of the entries of the Hessian matrix reveals that1002

ℎ!�(z∗)2 − ℎ!!(z∗)ℎ��(z∗) > 0 (B-20)

(�g. S2A, black line) and that ℎ!!(z∗) ≤ 0 and ℎ��(z∗) ≤ 0 (�g. S2A, green and grey lines). This says

that disruptive selection in our model is due to correlational selection between caste determination1004

and hybridization (i.e. the selection that associates caste determination and hybridization, Phillips

andArnold, 1989) and only occurs because both traits are coevolving (i.e. if either trait evolves while1006

the other is �xed, the population remains monomorphic, e.g. Mullon et al., 2018). We also �nd that

ℎ!�(z∗) > 0 (B-21)

(�g. S2A, blue line), which tells us that correlational selection is positive (i.e. selection favours a1008

positive correlation between caste determination and hybridization within individuals, Phillips and

Arnold, 1989). This is con�rmed by individual based simulations, in which we observe the emer-1010

gence of a polymorphism characterised by a positive correlation between ! and � within haplotypes

(�g. 4C and �g. S2B-D).1012

B.2.2 E�ect of thelytokous parthenogenesis

When we allow for a fraction c of a queens brood to be produce parthenogenetically, the selection1014

gradient (obtained from eq. A-8) is too complicated to be displayed or for singular strategies to be

found analytically. We therefore go through an invasion analysis similar to above (Appendix B.1.21016

and B.2.1) and again ask: (1) under which conditions and values of ! is hybridization avoidance

(� = 0) stable? and (2) under which conditions and values of � is worker-loss (! = 0) stable?1018

Stability of hybridization avoidance. Hybridization avoidance is stable if selection on caste de-

termination settles for an equilibrium !∗ in the absence of hybridization (i.e. s!(z) = 0 for some !∗1020
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Figure S2: Polymorphism under monandry is due to positive correlational selec-
tion. A.Characteristics of theHessianmatrix at the internal singular strategy as a function
of e form = 1 (�rst column of �g. S1 for singular value): quadratic selection coe�cient on
! (ℎ!!(z∗), in green) and on � ℎ��(z∗), in grey); correlational selection (ℎ!�(z∗), in blue)
and its relative strength (ℎ!�(z∗)2 − ℎ!!(z∗)ℎ��(z∗), in black, Mathematica notebook for
calculations). B. Correlation between genetic values of each trait within haplotypes in
a simulated population (in gray, 4000 haplotypes sampled every 100 generations to com-
pute Pearson’s correlation coe�cient, same replicate as �g. 4C; cumulative mean in black
dashed). C & D Distribution of genetic values of all haplotypes after 1000 generations
(panel C) and after 100000 generations (panel D, same replicate as panel B and �g. 4C).

when � = 0), and if selection on hybridization at this equilibriummaintains � at zero (i.e. s�(z) ≤ 0

when � = 0 and ! = !∗). These two conditions respectively reduce to,1022

!∗ = 1 + c
3 + c (1 +

2(1 − c)2

(c + 1) [(1 − c)2 + (c + 3)m]
) , (B-22)

and

e ≤
3(1 + c)
2(3 + c)

+
(1 − c)(3 − c)

2(5 − c)(c + 2m − 1)
+

4(3 − c)(1 − c)2

(5 − c)(3 + c) [(1 − c)2 + (c + 3)m]
. (B-23)

Condition eq. (B-23) corresponds to the area of the graph below the plain line in �g. 5A-B, where1024

hybridization avoidance is stable. Conversely, the area above the plain line in �g. 5A-B (in blue) is

where avoidance is not stable and thus where hybridization evolves.1026

Stability of worker-loss. Similarly, worker-loss is stable if selection on hybridization settles for

an equilibrium �∗ in the absence of developmental plasticity (i.e. s�(z) = 0 for some 0 < �∗ < 11028
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when ! = 0). We �nd that this equilibrium reads as

�∗ = 2
3

1
1 − c

(
1 − c

1 −m

)
(B-24)

(�g. 5D). The equilibrium eq. (B-24) is between 0 and 1 (0 < �∗ < 1) and selection at this equilibrium1030

maintains worker-loss (i.e. s!(z) ≤ 0 when ! = 0 and � = �∗) when

e ≥ 1
4 +

3c
4 +

3[3 − c(12 − c)]
8(c +m − 1)

−
9(3 − c)(1 − c)c
8(c +m − 1)2

and c < m − 1
3m − 1 . (B-25)

Note that condition eq. (B-25) is only possible when m ≥ 2. It therefore does not appear in �g. 5A1032

(which is for the casem = 1) but corresponds to the area above the dotted line in �g. 5B (which has

m = 2).1034

Worker-loss coupled with complete hybridization. In principle, it is also possible with

parthenogenesis for a population to evolve worker-loss (! = 0) with complete hybridization (� = 1)1036

(as parthenogenesis allows the production of queens in the absence of intraspeci�c matings). We

therefore further need to determine whether worker-loss can also be stable in the case where � = 11038

(rather than for some 0 < �∗ < 1). We �nd that selection under worker-loss (! = 0) and complete

hybridization (� = 1) maintains both worker-loss and complete hybridization (i.e. s!(z) ≤ 0 and1040

s�(z) ≥ 0 where z = (!, �) = (0, 1)) when

e ≥ c
1 − c and c ≥ m − 1

3m − 1 . (B-26)

Condition eq. (B-26) corresponds to the area above the dashed line in �g. 5A-B. While condition1042

eq. (B-25) can only be met only under polyandry (m > 1), condition eq. (B-26) can be met for any

number of matesm. This means that the evolution of worker-loss under monandry and thelytokous1044

parthenogenesis is always associated with complete hybridization in our model.

B.2.3 E�ect of non-linear workforce productivity1046

Our analyses so far have assumed a linear e�ect of worker number on colony �tness (� = 1 in

eq. A-2b). Here we investigate how non-linear e�ects of the number of workers on the pre-mating1048

survival of virgin queens and males in�uence our results. We restrict our exploration to the case

where queens mate with an in�nite number of males and do not reproduce via parthenogenesis for1050
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simplicity (m → ∞ and c = 0). With � in eq (A-2b) as a variable, we �nd from eq. (A-8) that the

selection gradient vector now reads as,1052

s(z) =
⎛
⎜
⎝

s!(z)

s�(z)

⎞
⎟
⎠
=

⎛
⎜
⎜
⎜
⎜
⎝

1
6 (

�(1 − �)
�e + (1 − �)!

− 2
1 − !)

1
1 − � (

�e
3 [�e + (1 − �)!]

− 1 + 2�
6 )

⎞
⎟
⎟
⎟
⎟
⎠

. (B-27)

Solving for both of these gradients to vanish simultaneously, we �nd that there exists a unique sin-

gular strategy,1054

⎧

⎨
⎩

!∗ = e + e − 1
3

�∗ = 1 + 3e
(e − 1)(1 + 2�)

(B-28)

(�g. S3). The Jacobian matrix (eq. A-10) of the system eq. (B-27) at this singular value eq. (B-28)

reads as1056

J(z∗) =

⎛
⎜
⎜
⎜
⎝

−
3(2 + �)

16(e − 1)2�
−
(1 + 2�)2

24e�

−
(1 + 2�)2

12e� −
(e − 1)2(1 + 2�)3

108e2�

⎞
⎟
⎟
⎟
⎠

. (B-29)

It is straightforward to show from eq. (B-29) that the singular strategy eq. (B-28) is a repellor, just

as under linear e�ects (� = 1, eq. B-7). This indicates that as illustrated in �g. 3, the coevolution1058

of caste determination and hybridization under non-linear e�ects also lead to either hybridization

avoidance or worker-loss depending on parameters and initial conditions.1060

We can gain further insights into the in�uence of non-linear e�ects by determining when the sin-

gular strategy eq. (B-28) is within the trait space (i.e., when 0 < !∗, �∗ < 1). We �nd that this is the1062

case when
1
4 < e < 1 + 2�

4 + 2� (B-30)

(light green region in �g. S3). This means that the threshold value for worker e�ciency e above1064

which worker-loss can evolve is 1/4 (as under linear e�ects � = 1). Condition (B-30) further shows

that the threshold for e above which worker-loss always evolves (i.e. independently from initial1066

conditions, �g. 3D for e.g.) increases with � (dark green region in �g. S3). In other words, the evolu-

tion of worker loss is facilitated under diminishing (� < 1, �g. S3A) and impaired under increasing1068

returns (� > 1, �g. S3C).
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Figure S3: Non-linear e�ects of investment in workers. Singular values for � (in
black) and ! (in white) as a function of hybrid worker e�ciency e (given by eq. B-28).
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