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Abstract. The emergence of new variants of SARS-CoV-2 herald a new phase of the pandemic. 

This study used state-of-the-art phylodynamic methods to ascertain that the rapid rise of B.1.1.7 

“Variant of Concern” most likely occurred by global dispersal rather than convergent evolution 

from multiple sources. 
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Following phylogenetic and epidemiological investigations, the SARS-CoV-2 genetic lineage 

B.1.1.7 is suspected to be associated with an increase human-to-human viral transmissibility1,2, 

and was classified as a “Variant of Concern” (VOC B.1.1.7) on December 18, 20203. The variant 

was first discovered in Kent, United Kingdom (UK) on September 21, 2020, and has since been 

identified in over 29 countries across the world, including the United States3,4. We sought to 

evaluate whether the breadth of VOC B.1.1.7 identification represents convergent evolution5 or 

rapid local and global dispersal after this lineage's genesis. 

On January 7, 2021, we downloaded all B.1.1.7 lineage SARS-CoV-2 genomic sequences 

available on the GISAID public database6 (8,786 full length genome sequences across 29 

countries, Supplementary Table 1). The vast majority were from the UK (96.4%, n=8468), but 

318 sequences were from other countries, including 13 from North America (8 from USA and 5 

from Canada; Figure 1). 

 

 

Figure 1. Map of the B.1.1.7 genomic sequences available on GISAID as of January 7, 2020. Countries are colored 

based on the number of publicly available B.1.1.7 sequences.  

 
 

 

We combined these B.1.1.7 sequences with a representative set of non-B.1.1.7 sequences 

(n=3,163) based on sequence homology (see Supplementary). The final set of 11,949 sequences 

was aligned with MAFFT7 and a Maximum Likelihood phylogeny was inferred using IQ-TREE 

v2.1.28. The resulting phylogeny showed that all available B.1.1.7 samples cluster together with 

high support (0.99 Shimodaira Hasegawa [SH] support9-11). Non-UK VOC B.1.1.7 sequences 

intermix within those from the UK (Figure 2). As convergent evolution can induce incorrect 

clustering12, the same approach was repeated after excluding variable positions that define the 
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B.1.1.7. lineage (Supplementary Table 2), which yielded a similar picture. These patterns are in 

line with the view that this variant succesfully spread around the world after it arose in the UK.   

 

 

   

Figure 2. SARS-CoV-2 variant B.1.1.7 arose in the UK and spread globally from there.  Tips in the phylogeny are 

colored according to lineage and country of origin (blue denotes taxa from UK, red denotes taxa from outside UK, and 

black corresponds to other lineages). (*) The branch leading tot the VOC B.1.1.7 clade has close to perfect suppport 
(0.99 Shimodaira Hasegawa (SH)  branch support9-11). A. All sequences included. B. Illustrative subset of B 1.1.7 taxa 

from UK (in blue) and other countries (in red). The branch length scale (s/s/y) is indicated at the bottom. Tree display 

was obtained with the R package “ggtree”13. 

 

 

 

To estimate the timing of introduction of B.1.1.7 variants outside the UK, we applied a multistep 

analytic approach as previously described by our group for HIV14,15 (see Supplementary 

Information). We identified a total of 30 clades of size ≥2 for a total of 152 sequences (ranging 

from 2 to 21) including only B.1.1.7 variants from outside the UK. More than two-thirds (22/30) 

were European clusters (Supplementary Table 1).   

The earliest estimated seeding of B.1.1.7 from the UK dates to September 23rd, and the most 

recent to December 23rd, see Supplementary Table 3 and Figure 3A). The number of weekly 
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introductions (Figure 3B) peaked on the week of November 16th, while the peak of detection was 

in mid-December.  

In response to the rapid increase in viral infections and spread, UK officials announced a lockdown 

on October 31st that came into force on November 5th and ended on December 5th. Given time to 

the most recent common ancestor (TMRCA) estimates, we determined that 20% (6/30) of the 

exportation events that gave rise to detectable non-UK VOC B1.1.7 transmission lineages 

occurred during this period (the remaining 80% occurred before or after these dates). The 

emergence and rapid dispersal of this new VOC led to the implementation of a new national strict 

lockdown on January 4, 202116.  

As previously described by du Plessis et al.17, we next used the TMRCA of each non-UK clade to 

estimate the genomic “detection lag” for each cluster, which represents the duration that a 

transmission lineage went undetected before it was first sampled by genome sequencing. The 

mean detection lag was ~10 days (IQR= 4-9.5). This largely agrees with detection lag-time 

estimates from SARS-CoV-2 importation into the UK in the first months of the pandemic17, which 

was on average 8 days (IQR=3-15, ~10 days for lineages comprising ≤10 genomes and <1 day 

for lineages of >100 genomes). 

Of note, virus genome sequences have been determined for only a fraction of infections. Even in 

the UK, where the by far largest sequencing effort is done, only an estimated 4.3% (129,939 

available sequences out of 3,039,797 cases reported on January 7th)18 of infections have been 

sequenced. For this reason, and also because not all sequenced SARS-CoV-2 genomes are 

being deposited in the GISAID repository, many B.1.1.7 variants that succesfully established 

transmission chains outside of the UK likely remain undetected (for now). Our estimated number 

of B.1.1.7 exportation events from the UK thus represents an underestimate. The sparse sampling 

and sequencing also poses limits to the accuracy with which introduction events can be dated 

(see du Plessis and colleagues19 for a more detailed explanation).  
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Figure 3A. Timing of introduction of each non-UK VOC B.1.1.7. For each non-UK VOC lineage, we estimated the 
timing of introduction by performing molecular clock estimation on 100 replicates based on the clock rate distribution 

from Plessis et al19 (see Supplementary Information). Each horizontal bar represent a non-UK cluster. Mean, lower and 

upper 95% CI are shown. Country of origin of these clusters is indicated on the y axis.  

 
Figure 3B. Number of introduction of B.1.1.7 outside UK. Vertical green bar represents the biweekly number of 
introduction (right y axis). Red bars represent the number of B1.1.7 sequences collected through time.  
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Our results do not suggest that the canonical mutations of VOC B.1.1.7 evolved independently in 

different locations. Instead, our analyses point to an origin in and spread of the VOC B.1.1.7 from 

the UK. As for the virus' initial20 and subsequent21,22 spread, global connectedness and high levels 

of human mobility undoubtedly facilitated VOC B.1.1.7 dissemination. The swift global spread of 

VOC B.1.1.7 illustrates that current restrictions are insufficient to prevent the spread of new and 

emerging variants23-29. Similar to Ebola30, HCV31,32 and HIV15, countermeasures to SARS-CoV-2 

spread should be developed with a broader perspective than the national level. Otherwise, without 

population immunity, successful local reductions in SARS-CoV-2 burden will be counteracted by 

imported infections that set off new waves of viral spread, possibly exacerbated by novel 

phenotypic characteristics of the imported strains.  
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Supplementary Information 

Data collection and preparation. All publicity available full-length SARS-CoV2 genomic 

sequences were collected from GISAID on January 7, 2020. Sequences were aligned using 

MAFFT and highly homoplasic sites were masked33. To reduce the data set size while maintaining 

an appropriate set of epidemiologically relevant background sequences, we used BLAST34,35 to 

identify the 50 closest non-B.1.1.7 variants to each of the 8,786 B.1.1.7 genomic sequences in 

the data set17,36. After keeping one copy of duplicated entries that ranked among the 50 best hits, 

a total of 3,163 sequences out of the 284,666 non-B1.1.7 sequences available on GISAID were 

kept for further analyses and combined with the B.1.1.7 dataset.  

Identification of non-UK B.1.1.7 clades. From a Maximum Likelihood (ML) phylogeny inferred 

using IQ-TREE v 2.1.28, B.1.1.7 clusters of size ≥2 including only non-UK sequences were 

identified in R37.  

Timing of introduction. For each non-UK clade, the phylogeny was rescaled into units of time with 

treedater13, assuming a strict molecular clock with the rate of SARS-CoV-2 genome evolution 

drawn from an externally-estimated distribution as described by du Plessis et al19. Specifically, for 

the rate a normal distribution was specified with mean 9.41×10-4 nucleotide substitutions per site 

per year and a standard deviation of 4.99×10-5. To incorporate uncertainty in the estimated clock 

rate, molecular clock estimation was replicated 100 times for each non-UK B.1.1.7 clade.  
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Supplementary Tables.  

Supplementary table 1. Sampling distribution of B.1.17 sequences.  

Country Count (n) Percentage (%) 
Australia 8 0.091 
Brazil 2 0.023 
Canada 5 0.057 
Denmark 74 0.842 
Finland 14 0.159 
France 14 0.159 
Germany 5 0.057 
Gibraltar 1 0.011 
Hong Kong 3 0.034 
India 3 0.034 
Ireland 11 0.125 
Israel 25 0.285 
Italy 26 0.296 
Japan 19 0.216 
Luxembourg 3 0.034 
Netherlands 22 0.25 
New Zealand 6 0.068 
Norway 5 0.057 
Oman 1 0.011 
Pakistan 2 0.023 
Portugal 31 0.353 
Singapore 6 0.068 
South Korea 3 0.034 
Spain 4 0.046 
Sweden 10 0.114 
Switzerland 6 0.068 
United Kingdom 8468 96.381 
USA 8 0.091 
Vietnam 1 0.011 
Total 8786 100 

 
 

Supplementary table 2. Non-synonymous mutations and deletions to occur on the phylogenetic 
branch leading to lineage B.1.1.7.1 

gene nucleotide amino acid 
ORF1ab C3267T T1001I  

C5388A A1708D  
T6954C I2230T  
11288-11296 deletion SGF 3675-3677 deletion 

spike 21765-21770 deletion HV 69-70 deletion  
21991-21993 deletion Y144 deletion  
A23063T N501Y  
C23271A A570D  
C23604A P681H  
C23709T T716I  
T24506G S982A  
G24914C D1118H 

Orf8 C27972T Q27stop  
G28048T R52I  
A28111G Y73C 

N 28280 GAT->CTA D3L  
C28977T S235F 
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Supplementary table 3. Characteristics of the non-UK clusters identified.  

continent country (region) cluster 
size 

Estimated time of introduction, mean 
[95%CI] 

detection lag in 
days [95%CI] 

Asia Israel (NA) 19 2020-12-02 [2020-12-01 - 2020-12-04] 23 
 

Israel (NA) 2 2020-12-06 [2020-12-06 - 2020-12-06] 11 
 

Israel (NA) 2 2020-12-17 [2020-12-16 - 2020-12-17] 4 
 

Singapore (NA) 3 2020-12-05 [2020-12-04 - 2020-12-06] 15 
 

South Korea (Southkorea) 3 2020-11-20 [2020-11-17 - 2020-11-23] 33 

Europe Denmark (Nordjylland) 64 2020-09-23 [2020-09-22 - 2020-09-23] 48 
 

Denmark (Sjaelland) 2 2020-12-18 [2020-12-18 - 2020-12-18] 4 
 

Denmark (Hovedstaden) 2 2020-12-08 [2020-12-07 - 2020-12-08] 7 
 

Denmark (Nordjylland) 2 2020-12-18 [2020-12-17 - 2020-12-18] 4 
 

Finland (Uusimaa) 3 2020-12-18 [2020-12-18 - 2020-12-18] 5 
 

Finland (Uusimaa) 2 2020-12-17 [2020-12-16 - 2020-12-17] 6 
 

France (Nouvelle-Aquitaine) 2 2020-12-23 [2020-12-22 - 2020-12-23] 4 
 

Germany (Lowersaxony) 2 2020-11-27 [2020-11-26 - 2020-11-27] 4 
 

Ireland (Wexford) 3 2020-12-08 [2020-12-07 - 2020-12-08] 10 
 

Ireland (Dublin) 2 2020-12-22 [2020-12-22 - 2020-12-22] 0 
 

Ireland (Dublin) 2 2020-12-12 [2020-12-11 - 2020-12-12] 7 
 

Italy (Campania) 4 2020-12-19 [2020-12-19 - 2020-12-19] 2 
 

Italy (Abruzzo) 2 2020-12-15 [2020-12-14 - 2020-12-15] 4 
 

Italy (Marche) 2 2020-12-15 [2020-12-14 - 2020-12-15] 4 
 

Italy (Campania) 2 2020-12-20 [2020-12-20 - 2020-12-20] 1 
 

Netherlands (Noord-Holland) 8 2020-11-14 [2020-11-11 - 2020-11-16] 30 
 

Netherlands (Noord-Holland) 2 2020-11-08 [2020-11-08 - 2020-11-08] 22 
 

Netherlands (Gelderland) 2 2020-12-19 [2020-12-18 - 2020-12-19] 4 
 

Norway (Vestland) 2 2020-12-17 [2020-12-16 - 2020-12-17] 6 
 

Portugal (NA) 2 2020-12-14 [2020-12-13 - 2020-12-14] 4 
 

Portugal (NA) 2 2020-12-11 [2020-12-10 - 2020-12-11] 5 
 

Spain (Madrid) 2 2020-12-15 [2020-12-15 - 2020-12-16] 7 

North America Canada (Ontario) 2 2020-12-12 [2020-12-11 - 2020-12-12] 4 
 

USA (California) 3 2020-12-13 [2020-12-13 - 2020-12-14] 8 

Oceania New Zealand (Auckland) 2 2020-12-19 [2020-12-19 - 2020-12-19] 1 

Summary 
 

152  2020-12-08 [2020-09-23 - 2020-12-23] 10 [I1 - 37] 
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