| 1  | Neuromodulation of Behavioral Specialization: Tachykinin Signaling Inhibits                                                                                                         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Task-specific Behavioral Responsiveness in Honeybee Workers                                                                                                                         |
| _  |                                                                                                                                                                                     |
| 3  | Bin Han <sup>1,2</sup> , Qiaohong Wei <sup>1</sup> , Fan Wu <sup>1,3</sup> , Han Hu <sup>1</sup> , Chuan Ma <sup>1</sup> , Lifeng Meng <sup>1</sup> , Xufeng Zhang <sup>1,4</sup> , |
| 4  | Mao Feng <sup>1</sup> , Yu Fang <sup>1</sup> , Olav Rueppell <sup>2,5*</sup> , and Jianke Li <sup>1*</sup>                                                                          |
| 5  |                                                                                                                                                                                     |
| 6  | <sup>1</sup> Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of                                                                            |
| 7  | Agriculture, Chinese Academy of Agricultural Science, Beijing, China.                                                                                                               |
| 8  | <sup>2</sup> Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA.                                                                                   |
| 9  | <sup>3</sup> Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang                                                                                       |
| 10 | University, Hangzhou, China.                                                                                                                                                        |
| 11 | <sup>4</sup> Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi                                                                                   |
| 12 | Agricultural University, Taiyuan, China.                                                                                                                                            |
| 13 | <sup>5</sup> Department of Biological Sciences, University of Alberta, Edmonton, Canada.                                                                                            |
| 14 | * Corresponding author. Email: <u>olav@ualberta.ca</u> , <u>apislijk@126.com</u>                                                                                                    |
| 15 |                                                                                                                                                                                     |

### 16 Abstract

17 Behavioral specialization is key to the success of social insects and often compartmentalized 18 among colony members leading to division of labor. Response thresholds to task-specific 19 stimuli proximally regulate behavioral specialization but their neurobiological regulation is 20 not understood. Here, we show that response thresholds to task-relevant stimuli correspond to 21 the specialization of three behavioral phenotypes of honeybee workers. Quantitative neuropeptidome comparisons suggest two tachykinin-related peptides (TRP2 and TRP3) as 22 23 candidates for the modification of these response thresholds. Based on our characterization of 24 their receptor binding and downstream signaling, we then confirm the functional role of 25 tachykinins: TRP2 injection and RNAi cause consistent, opposite effects on responsiveness to 26 task-specific stimuli of each behaviorally specialized phenotype but not to stimuli that are 27 unrelated to their tasks. Thus, our study demonstrates that TRP-signaling regulates the degree of task-specific responsiveness of specialized honeybee workers and may control the 28 29 context-specificity of behavior in animals more generally.

30

### 31 1. Introduction

32 Behavioral responses of animals to external and internal stimuli have evolved to optimize survival and reproduction under average circumstances [1]. However, environmental and 33 inter-individual variability commonly cause deviations from the average, resulting in 34 35 selection for context-specific and condition-dependent behavior [2-4]. Evolutionary constraint [5] of behavior occurs in form of behavioral syndromes, differences among individuals that 36 37 manifest across different contexts [6]. Advantages of behavioral plasticity and specificity have been documented in many systems and some neuroendocrine mechanisms have been 38 39 identified [7, 8]. However, general neural mechanisms that allow the sophistication of 40 behavioral repertoires by increasing context-specificity of behavioral responses remain 41 insufficiently understood.

42 Behavioral modulation is particularly important in social species in which social 43 interactions provide a high diversity of behavioral context [9, 10]. However, social evolution 44 also allows individuals to restrict their behavioral repertoires through temporal or permanent 45 behavioral specialization [11]. This specialization and the resulting division of labor are 46 believed to be major contributors to the successful colony life of many social insects despite 47 its potential costs [12]. Advanced social evolution thus allows inter-individual plasticity to 48 replace individual behavioral plasticity and decoupling of behavioral responses may be more 49 efficient across different individuals than within solitary individuals. Nevertheless, the 50 principal problem of behavioral plasticity across different contexts remains the same, and 51 social insects can be constrained in their behavioral evolution by correlated selection 52 responses across different behaviors or castes [13, 14].

53 Behavior often occurs in response to a specific stimulus exceeding an individual's 54 specific response threshold [15, 16]. Response thresholds depend on internal physiological 55 states [17], particularly the concentration of neurotransmitters and neuromodulators in the central nervous system [18, 19]. Response thresholds translate the value of perceived stimuli 56 57 into probabilities of behavioral responses and vary among individuals [20]. In social insects, individual variation in response thresholds is linked to division of labor [21-23] and numerous 58 59 studies have characterized this link across multiple levels of biological organization [20, 24, 60 25]. Many aspects of the division of labor in the social model Apis mellifera are driven by a 61 life-long behavioral ontogeny, leading to age-polyethism [26]. Young bees perform numerous 62 inside tasks, most prominently brood care in form of alloparental nursing behavior, before transitioning to a mix of other in-hive tasks [27]. Similar to the highly-specialized nursing 63 64 stage, the final behavioral state of older bees as outside foragers is almost exclusive of other tasks [26]. Moreover, foragers often specialize on collecting only one of the principal food 65 sources, pollen or nectar [28]. These behavioral specialists (nurses, nectar foragers, and pollen 66 67 foragers) exhibit pronounced differences in their responsiveness to task-related stimuli. 68 Responsiveness to brood pheromones peaks at typical nursing age [29]. In contrast, foragers have a lower response threshold to sugars and light than nurses [30, 31]. Among foragers, 69 70 pollen specialists exhibit higher responsiveness to sucrose and pollen stimuli than nectar 71 foragers [32, 33]. Response thresholds can be quantified based on the honeybees' reflexive 72 extension of their proboscis in response to stimuli, such as sucrose [20]. The spontaneous 73 proboscis extension reflex (PER) to sucrose has been expanded to other stimuli that bees 74 spontaneously respond to [34, 35] and conditioned stimuli to which no spontaneous responses

75 occur [36].

76 Response thresholds can be modified by biogenic amines, and dopamine, 77 5-hydroxy-tryptamine, octopamine, and tyramine have been implicated in the regulation of 78 different behaviors of worker bees [37]. However, neuropeptides have not been studied 79 although they are a diverse group of neurotransmitters that can also act as neurohormones on 80 distal targets to coordinate a wide range of internal states and behavioral processes [38]. 81 Neuropeptides are intimately involved in food perception and social interaction of insects [39], 82 two processes that are central to division of labor in social insects [40]. Neuropeptides 83 mediate pheromonal effects on physiology [41, 42] and usually exhibit a high degree of specificity [43, 44]. Therefore, neuropeptides are prime candidates for mediating the 84 85 independent adjustment of socially relevant response thresholds that mediate honeybee 86 workers specialization and division of labor.

More than 100 mature neuropeptides derived from 22 protein precursors have been 87 88 identified in the Western honeybee, Apis mellifera [45, 46]. Several neuropeptides, including 89 allatostatin and tachykinin-related peptides (TRPs), may be involved in the control of social 90 behavior of honeybees, such as aggression [47], foraging [48], brood care [45], and possibly a 91 wide array of other behaviors [49]. However, these results are based on correlations between 92 behavior and neuropeptide expression and more detailed studies are needed to understand the 93 causal roles of neuropeptides in the behavioral specialization among honeybee workers. Here, 94 we report the results of a comprehensive study to test the hypothesis that neuropeptides 95 regulate the division of labor in honeybees. We initially compared response thresholds to 96 task-relevant stimuli among behaviorally-defined worker groups of two honeybee species.

| 97  | These response thresholds were correlated with neuropeptide expression levels, especially    |
|-----|----------------------------------------------------------------------------------------------|
| 98  | TRPs, suggesting a role of TRPs in worker specialization. Based on these results, we         |
| 99  | characterized the TRP signaling pathway molecularly. Finally, we demonstrated in a series of |
| 100 | TRP injections and RNAi-mediated knockdown of the TRP and its receptor TRPR a causal         |
| 101 | role of this pathway in modulating different response thresholds in a task-specific manner.  |

102 **2. Results** 

```
103 2.1 The task-specific responsiveness of worker bees shows significant variations between
```

### 104 behavioral phenotypes and the two honeybee species

In our comparisons of the PER of worker bees to task-specific stimuli, including sucrose
solution, pollen, and larva, significant differences were found between behavioral phenotypes
and the two honeybee species (Fig. 1A, Table S1 and S2).

108

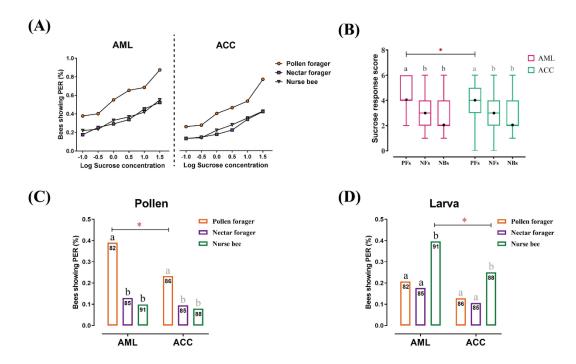





Fig. 1: Responses to sucrose solution, pollen, and larva stimulations are significant different
among behavioral phenotypes and between honeybee species. (A) The proportion of pollen foragers
(PFs), nectar foragers (NFs), and nurse bees (NBs) showing a proboscis extension reflex (PER)

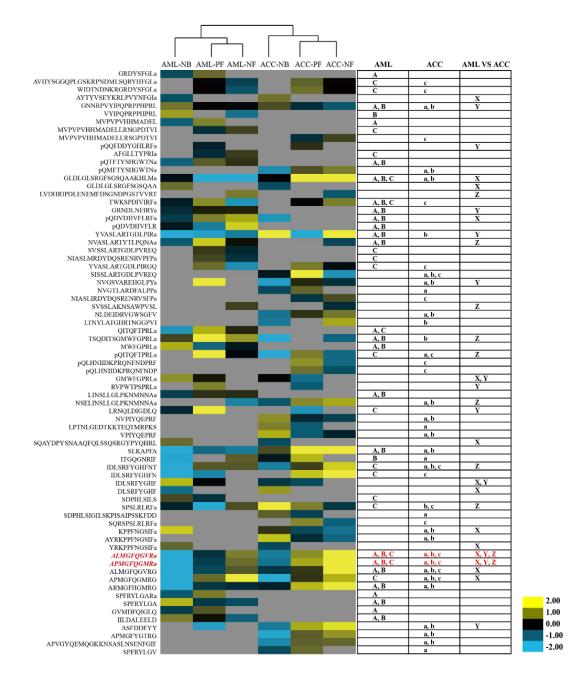
113 increased with increasing concentrations of sucrose solutions. Left: Apis mellifera ligustica (AML), 114 right: Apis cerana cerana (ACC). Details of the statistical results of our comparisons of sucrose 115 responsiveness between behavioral phenotypes and bee species are listed in Table S2. (B) Median 116 sucrose response scores (SRS; intermediate lines) and quartiles (upper and lower lines) of PFs, NFs, 117 and NBs. Kruskal-Wallis tests with Bonferroni correction were used to compare the SRSs of the three 118 behavioral phenotypes in the same species and significant differences are denoted by letters at p < 0.05. 119 Pairwise Mann-Whitney U tests were used for comparing the same phenotype between two honeybee 120 species (\* denotes p < 0.05). (C) Proportion of PFs, NFs, and NBs showing PER to pollen stimulation 121 of their antennae. (D) Proportion of PFs, NFs, and NBs showing PER to antennal stimulation with 122 larvae. Numbers in bars represent the number of individuals sampled in each group. Independent 123 Chi-square tests were used to compare the responsiveness to pollen or larvae between species (\* 124 denotes p < 0.05) and among behavioral phenotypes within species (letters indicate significant 125 difference at p < 0.05).

126 The percentage of bees showing a PER increased with sucrose concentration across all experimental groups (Fig. 1A). In both, AML and ACC, the sucrose response scores (SRSs) 127 of PFs were higher than the SRSs of NFs (AML: Z = 7.0,  $p = \langle 0.001$ ; ACC: Z = 6.1, p < 0.001128 0.001) and NBs (AML: Z = 5.9, p < 0.001; ACC: Z = 5.2, p < 0.001), while no significant 129 difference between NFs and NBs was observed in either species. PFs were more responsive 130 131 than NFs and NBs to all sucrose concentrations. The species comparison between AML and 132 ACC showed significant higher sucrose responsiveness in PFs of AML than in PFs of ACC (Z = 2.361, p = 0.018), specifically at sucrose concentrations of 0.3% ( $\chi^2 = 4.1, p = 0.042$ ), 1.0% 133  $(\chi^2 = 5.2, p = 0.001), 3.0\% (\chi^2 = 8.4, p = 0.023), and 10.0\% (\chi^2 = 5.3, p = 0.021).$  Nectar 134 foragers of AML and ACC showed no significant difference in overall SRS, but NFs of AML 135 were more responsive than NFs of ACC at sucrose concentrations of 0.3% ( $\chi^2 = 4.5$ , p =136 0.035), 1.0% ( $\chi^2 = 4.5$ , p = 0.033), and 3.0% ( $\chi^2 = 4.0$ , p = 0.046). There was no significant 137 difference between NBs of AML and ACC in sucrose responsiveness. 138 In AML, PFs were more responsive to pollen stimulation than NFs ( $\chi^2 = 14.9$ , p = 0.002) 139

and NBs ( $\chi^2 = 20.2$ , p < 0.001), while there were no significantly statistical differences

between NFs and NBs. Likewise, PFs of ACC were more sensitive than NFs ( $\chi^2 = 6.0$ , p =141 0.015) and NBs ( $\chi^2 = 7.8$ , p = 0.001) without a statistically significant difference between NFs 142 143 and NBs. Pollen foragers of AML showed a significant higher pollen responsiveness than of ACC ( $\chi^2 = 4.9, p = 0.031$ ), with no significant species differences in NFs and NBs (Fig. 1B). 144 145 In larva responsiveness assay, NBs of AML showed increased responsiveness to larva stimulation compared to PFs ( $\chi^2 = 7.2$ , p = 0.006) and NFs ( $\chi^2 = 10.3$ , p = 0.001). Likewise, 146 NBs of ACC were more sensitive than PFs ( $\chi^2 = 4.2$ , p = 0.013) and NFs ( $\chi^2 = 6.1$ , p = 0.002). 147 Nurse bees of AML were significantly more sensitive to larvae ( $\chi^2 = 4.3$ , p = 0.027) than NBs 148

149 of ACC, with no significant species differences in PFs and NFs. (Fig. 1C).


### 150 **2.2 Quantitative peptidomics reveal brain neuropeptide signatures of behavior**

Our LC-MS/MS-based comparisons of the brain neuropeptidomes of NBs, PFs, and NFs of AML and ACC revealed numerous differences among experimental groups but only two tachykinins showed consistent patterns relating to the task-specific responsiveness of the experimental groups. Overall, 132 unique neuropeptides derived from 23 neuropeptide families were identified in the brain of AML worker bees (Table S3). In the brain of ACC worker bees, for the first time, 116 unique neuropeptides derived from 22 neuropeptide families were identified (Table S4).

Quantitative comparison among the three behavioral phenotypes of AML showed that 40 neuropeptides derived from 16 neuropeptide families were differentially expressed the brain (Fig. 2, Table S5). Among 19 differential expressed neuropeptides between PFs and NFs, 9 neuropeptides were upregulated in PFs and 10 were upregulated in NFs. Among 24 differential expressed neuropeptides between PFs and NBs, 18 were upregulated in PFs and 6

163 were upregulated in NBs. Moreover, 21 differential expressed neuropeptides were found

between NFs and NBs, with 14 upregulated in PFs and 7 upregulated in NBs.

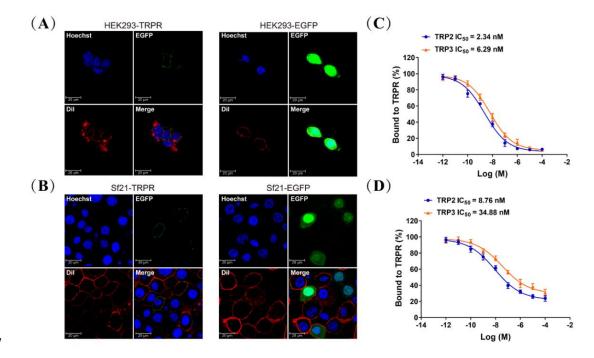


165

**Fig. 2: Quantitative comparison of the brain neuropeptides.** The brain neuropeptides were quantitatively compared between nurse bees (NBs), pollen foragers (PFs), and nectar foragers (NFs) of *Apis* mellifera *ligustica* (AML) and *Apis cerana cerana* (ACC). The up- and down-regulated peptides are indicated by yellow and blue colors, respectively. Color intensity indicates the relative expressional level, as noted in the key. Letters A, B, and C on the right represent significant differences between NBs and PFs, NBs and NFs, and PFs and NFs in AML, respectively; a, b, and c represent significant differences between NBs and PFs, NBs and NFs, and PFs and NFs in ACC, respectively; X, Y, and Z

represent significant differences of NBs, PFs, and NFs between AML and ACC, respectively. Fordetailed quantification data, see Table S5 S6, and S7.

In ACC 18 neuropeptides were differentially expressed between PFs and NFs, with 9 upregulated in each group. Between PFs and NBs, 27 neuropeptides showed different expression levels: 20 were upregulated in PFs and 7 were upregulated in NBs (Table S6). Twenty-five neuropeptides were differentially expressed between NFs and NBs, with 19 upregulated in NFs and 6 in NBs. The species comparison between AML and ACC, the number of differentially expressed neuropeptides in NBs, PFs and NFs was 13, 10, and 11, of which 7, 6, and 6 were upregulated in AML respectively (Table S7).

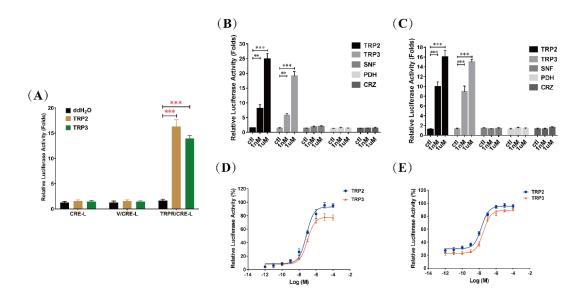

### 182 **2.3 TRP/TRPR signaling couples to G\_{\alpha q} and G\_{\alpha s} pathways and triggers the ERK cascade**

183 A series of cellular and molecular experiments confirmed that honeybee TRPR was expressed 184 in the cell membrane and specifically activated by TRP, triggering intracellular cAMP 185 accumulation,  $Ca^{2+}$  mobilization, and ERK phosphorylation by dually coupling  $G_{\alpha s}$  and  $G_{\alpha q}$ 186 signaling pathways.

187 The honeybee *TRPR* gene was successfully cloned and expressed in the human 188 embryonic kidney cells (HEK293) and the insect *Spodoptera frugiperda* pupal ovary cells 189 (Sf21). Significant cell surface expression was observed by fluorescence microscopy (Fig. 3A 190 and 3B), revealing that the honeybee TRPR was exclusively localized in the cell membrane in 191 HEK293 and Sf21 cells.

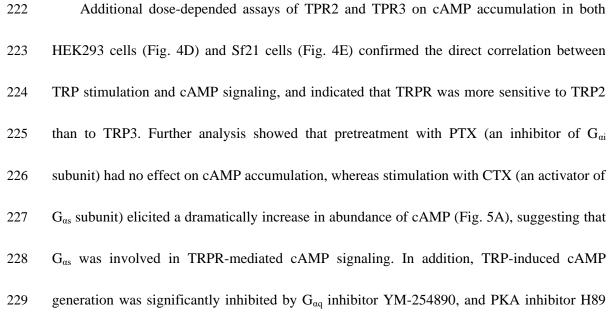
192 Competitive binding assays with labeled TRP2 and TRP3 confirmed high affinity of the 193 TRPR for both. The observed  $IC_{50}$  values for TRP2 and TRP3 were 2.34 nM and 6.29 nM in 194 HEK293 cells and 8.76 nM and 34.88 nM in Sf21 cells, respectively (Fig. 3C and 3D). These

195 competition binding analyses strongly suggested a direct binding of TRP to TRPR, and also

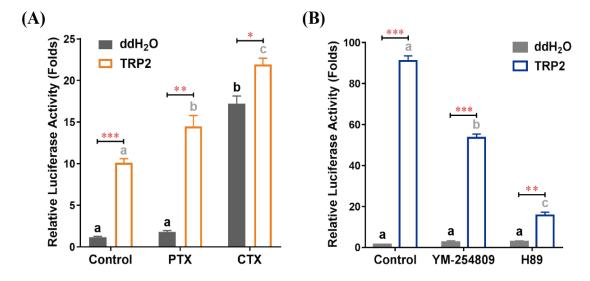



### 196 indicated that TRP2 displayed a higher affinity than TRP3 to TRPR.




198Fig. 3: Expression of TRPR and direct interaction of TRPs with TRPR in cell culture. (A) and (B)199HEK293 and Sf21 cells expressing TRPR-EGFP and EGFP (green) were stained with a membrane200plasma probe DiI (red) and a nuclei probe Hoechst (blue), and assessed by confocal microscopy. (C)201and (D) Competitive inhibition of TAMRA-TRP2 and TAMRA-TRP3 binding to TRPR in HEK293202and Sf21 cells, and all data are presented as mean  $\pm$  s.e.m. from three independent experiments.

| 203 | The detected accumulation of intracellular cAMP concentration only in HEK293 cells       |
|-----|------------------------------------------------------------------------------------------|
| 204 | transformed with TRPR (Fig. 4A) confirmed that TRP2 and TRP3 can activate TRPR and       |
| 205 | trigger cAMP signaling. This effect was confirmed in a second experiment and compared to |
| 206 | other neuropeptides, including short neuropeptide F (NPF), pigment spreading hormone     |
| 207 | (PSH), and corazonin (CRZ), which did not induce any detectable responses in both HEK293 |
| 208 | cells (Fig. 4B) and Sf21 cells (Fig. 4C).                                                |

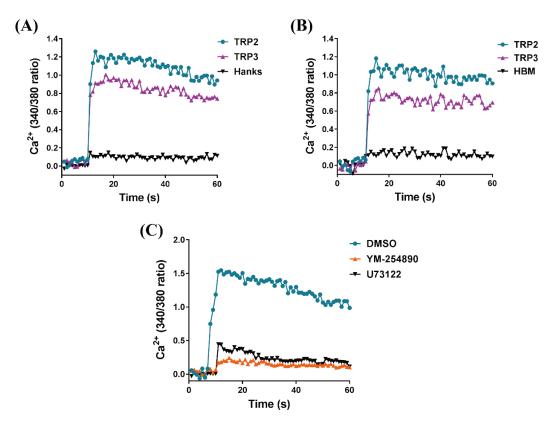



209

210 Fig. 4: TRP/TRPR-mediated cAMP accumulation in cells. (A), Luciferase activity of HEK293 cells 211 transfected with the reporter gene pCRE-Luc (CRE-L), and co-transfected with pFLAG-TRPR (TRPR) 212 or vehicle vector (V) were determined in response to ddH<sub>2</sub>O and TRP (TRP2 or TRP3, 1 µM) treatment. 213 TRP-dependent TRPR activation increases cAMP levels more than 10-fold. Luciferase activity of 214 HEK293 cells (B) and Sf21 cells (C) co-transfected with TRPR and CRE-L were determined in 215 response to different neuropeptides (TRP2, TRP3, short neuropeptide F (SNF), pigment-dispersing 216 hormone (PDH), and corazonin (CRZ)) at different concentrations (1 nM or 1 µM). Increase of cAMP 217 was specific to TRP2 and TRP3. Dose-dependent changes of luciferase activities, indicating cAMP 218 increases, in HEK293 cells (D) and Sf21 cells (E) co-transfected with TRPR and CRE-L revealed 219 typical kinetics in response to TRP2 and TRP3. All data are presented as mean ± s.e.m. from three 220 independent experiments. Student's t-tests were used for pairwise comparisons (\*\*p<0.01, \*\*\*p<0.001). 221



230 (Fig. 5B). Collectively, these results established that both  $G_{\alpha s}$  and  $G_{\alpha q}$  are involved in




### 231 TRP/TRPR-mediated cAMP signaling.



233 Fig. 5: TRP/TRPR signaling induces cAMP accumulation via  $G_{\alpha q}$  and  $G_{\alpha s}$  pathways. (A), Effects 234 of  $G_{\alpha i}$  inhibitor pertussis toxin (PTX) and  $G_{\alpha s}$  activator cholera toxin (CTX) on TRP2-mediated 235 stimulation of cAMP accumulation. HEK293 cells expressing TRPR were pretreated with PTX (100 ng/ml) or CTX (300 ng/ml) overnight prior to treatment with TRP2 (1  $\mu$ M). (B), Effects of G<sub>aq</sub> 236 237 inhibitor YM-254890 and PKA inhibitor H89 on TRP2-mediated stimulation of cAMP accumulation. 238 HEK293 cells expressing TRPR were pretreated with YM-254890 (1 µM) or H89 (10 µM) for 2 hours 239 prior to treatment with TRP2 (1  $\mu$ M). All data are presented as mean  $\pm$  s.e.m. from three independent 240 experiments. Student's t-tests were used for pairwise comparisons between water and TRP2 treatments 241 (\*: p<0.05, \*\*: p<0.01, \*\*\*: p<0.001). One-way ANOVAs followed by Tukey's post-hoc tests were 242 used for comparisons among control, PTX, and CTX groups within water or TRP2 treatments, and 243 significant differences (p < 0.05) are denoted by letters.

Measurements of a Ca<sup>2+</sup>-sensitive fluorescent indicator suggested that intracellular Ca<sup>2+</sup> signaling was also elicited by TRP/TRPR signaling. Both, TRP2 and TRP3, could induce a rapid intracellular Ca<sup>2+</sup> accumulation in HEK293 cells (Fig. 6A) and Sf21 cells (Fig. 6B). The TRP/TRPR-mediated intracellular Ca<sup>2+</sup> mobilization was decreased by  $G_{\alpha q}$  inhibitor YM-254890 and phospholipase C (PLC) inhibitor U73122 (Fig. 6C), suggesting the  $G_{\alpha q}$ /PLC pathway was involved in TRP/TRPR-mediated Ca<sup>2+</sup> signaling.



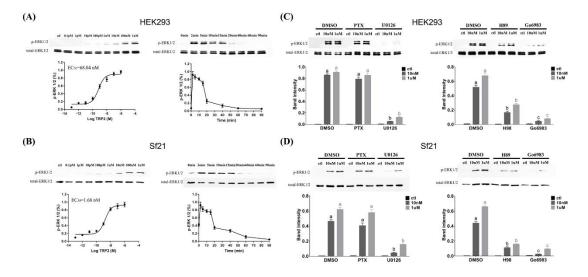

250

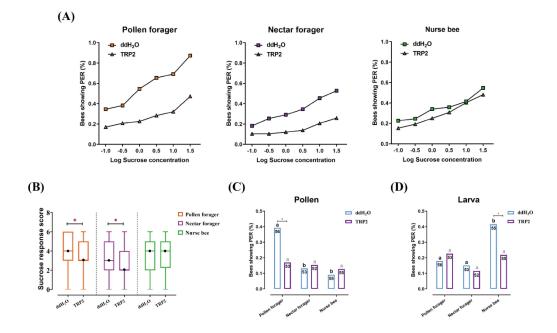
Fig. 6: TRP/TRPR-mediated intracellular  $Ca^{2+}$  influx via  $G_{\alpha q}$ /PLC pathways. HEK293 cells (A) 251 and Sf21 cells (B) expressing TRPR were measured in response to TRP2 and TRP3 using the 252 fluorescent Ca2+ indicator Fura-2 AM. Hanks solution (Hanks) and Hepes-buffered medium (HBM) 253 were used as a control, respectively. (C), Effects of  $G_{\alpha q}$  inhibitor YM-254890 and PLC inhibitor 254 U73122 compared to vehicle control DMSO on TRP2-mediated intracellular Ca<sup>2+</sup> influx. HEK293 255 256 cells expressing TRPR were pretreated with YM-254890 (1 µM) or U73122 (10 µM) for 2 hours then stimulated with TRP2 (1 µM). Each figure is representative of three independent repliates of each 257 258 experiment.

Western blot analyses proved that phosphorylation of ERK was induced by TRP/TRPR signaling. Treatment with different concentrations of TRP2 induced a dose-dependent phosphorylation of ERK in both HEK293 (EC<sub>50</sub>=68.04 nM) and Sf21 (EC<sub>50</sub>=1.68 nM) cells (Fig. 7A and 7B). Further time-dependent analysis indicated that TRP2 elicited transient phosphorylation of ERK with maximal phosphorylation at 2 min and near basal levels by 90 min (Fig. 7C). Moreover, specific inhibitors were used to elucidate TRP/TRPR signaling-mediated ERK activation in both HEK293 and Sf21 cells. Treatment with MEK

266 inhibitor U0126, PKA inhibitor H89, and PKC inhibitor Go6983, respectively, led to a 267 significant inhibition of TRP/TRPR-mediated ERK activation, whereas  $G_{\alpha i}$  inhibitor PTX had 268 no effect, demonstrating that honeybee TRP/TRPR signaling dually coupled to  $G_{\alpha s}$  and  $G_{\alpha q}$ 

269 proteins to activate the ERK signaling pathway (Fig. 7D).




270

271 Fig. 7: Gao/PKC and Ga/PKA pathways involved in TRP/TRPR-induced ERK1/2 272 phosphorylation. Dose- and time-response analyses of TRP/TRPR-induced ERK1/2 phosphorylation 273 in HEK293 cells (A) and Sf21 cells (B). Cells expressing TRPR were serum-starved then incubated 274 either with an increasing dose of TRP2, (from 0.1 pM to 1 µM) for 10 min or with 100 nM TRP2 for 275 different times (from 0 to 90 min), then harvested to quantify ERK1/2 phosphorylation. Effects of  $G_{ai}$ 276 inhibitor pertussis toxin (PTX), MEK inhibitor U0126, PKA inhibitor H89, and PKC inhibitor Go6983 277 on TRP2-induced ERK1/2 phosphorylation in HEK293 cells (C) and Sf21 cells (D). The cells were 278 pretreated with or without inhibitors for 2 hours then stimulated with ddH<sub>2</sub>O (control) or TRP2 (10 nM 279 or 1 µM) for 10 min. The phosphorylated ERK was normalized to a loading control (total ERK). All 280 data are presented as mean ± s.e.m. from three independent replicates, and blots shown are 281 representative of these experiments. One-way ANOVAs followed by Tukey's post-hoc tests were used 282 for multi-group comparisons, and significant differences (p < 0.05) are denoted by letters.

### 283 2.4 TRP/TRPR signaling acts as negative regulator of task-specific responsiveness

#### 284 <u>2.4.1 TRP2 injection decreases task-specific responsiveness</u>

- 285 Task-specific responsiveness of the different behavioral phenotypes (PFs, NFs, and NBs) was
- decreased by injection of TPR2 in a task-specific manner (Fig. 8, Table S8).



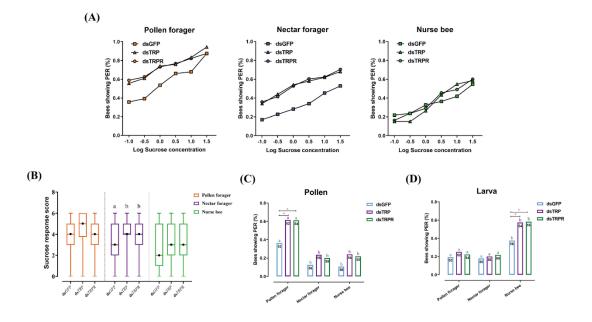
287

Fig. 8: Injection of TRP2 decreases task-specific responsiveness of worker bees. (A) The 288 289 proportion of pollen foragers (PFs), nectar foragers (NFs), and nurse bees (NBs) exhibiting a positive 290 proboscis extension reflex (PER) increases with increasing concentrations of sucrose solutions but is overall decreased in PFs and NFs after injection of TRP2 compared to ddH2O injection. (B) Median 291 292 sucrose response scores (SRS; intermediate lines) and quartiles (upper and lower lines) of ddH<sub>2</sub>O 293 injected and TRP2 injected groups of PFs, NFs, and NBs. Mann-Whitney U tests were used to compare 294 the SRS (\*: p < 0.05). The proportion of PFs, NFs, and NBs showing PER to pollen stimulation (C) 295 and larva stimulation (D) after injection of TRP2 or ddH<sub>2</sub>O. Numbers in bars are the number of 296 individuals sampled in each group. Independent Chi-square tests were used to compare the 297 responsiveness between different treatments (\*: p < 0.05) and between different behavioral phenotypes 298 within treatments (significant differences are denoted by letters, p < 0.05).

Injection of the TRP2 peptide significantly reduced the SRS of PFs (Z = 2.2, p = 0.031), significantly reducing PER responses to all sucrose concentrations used. Similarly, NFs injected with TRP2 displayed significantly lower SRS than control-injected NFs (Z = 2.3, p =0.019), significantly reducing PER responses to all sucrose concentrations except 0.1% (Fig. 8A and 8B). In contrast, TRP2-injected NBs did not show significant responsiveness changes to sucrose relative to controls. For pollen stimulation, PFs showed significantly decreased responsiveness to pollen loads after TRP2 injection ( $\chi^2 = 6.7$ , p = 0.017), while no significant effects were observed in PFs and NFs (Fig. 8C). In the larval responsiveness assay, injection of TRP2 only significantly affected the responsiveness of NBs ( $\chi^2 = 6.1$ , p = 0.001) but not NFs or PFs (Fig. 8D).

### 309 <u>2.4.2 Downregulation of *TRP* or *TRPR* increased task-specific responsiveness</u>

310 The function of TPR/TRPR signaling on task-specific responsiveness was further confirmed


- 311 by RNAi-mediated downregulation of TRP or TRPR that complemented the results of the
- 312 TRP2 injection.

313 Knockdown efficiencies were close to 60% for TRP and TRPR mRNA levels at 24 hours post-injection of the corresponding dsRNA (Fig. S1). Therefore, subsequent PER assays were 314 315 performed 24 hours after dsRNA injection. Relative to control injections, knockdown of either TRP or TRPR significantly increased the SRS of NFs (dsTRP: Z = 2.4, p = 0.049; 316 dsTRPR: Z = 2.6, p = 0.025), specifically increasing the responses of NFs to sucrose at 317 concentrations of 0.1% (dsTRP:  $\chi^2 = 3.9 \ p = 0.039$ ; dsTRPR:  $\chi^2 = 4.9, \ p = 0.023$ ), 0.3% 318  $(dsTRP; \chi^2 = 5.3, p = 0.018; dsTRPR; \chi^2 = 4.3, p = 0.030), 1.0\% (dsTRP; \chi^2 = 7.0, p = 0.007;$ 319 dsTRPR:  $\chi^2 = 6.6$ , p = 0.009), and 3.0% (dsTRP:  $\chi^2 = 6.0$ , p = 0.012; dsTRPR:  $\chi^2 = 7.4$ , p =320 0.006) (Fig. 9A and 9B, Table S9 and S10). Knockdown of TRP and TRPR didn't 321 significantly change the overall SRS of PFs and NBs, although it significantly increased the 322 responses of PFs to sucrose at concentrations of 0.1% (ds*TRP*:  $\chi^2 = 4.4$ , p = 0.029; ds*TRPR*:  $\chi^2$ 323 = 6.1, p = 0.011), 0.3% (ds*TRP*:  $\chi^2 = 5.2$ , p = 0.018; ds*TRPR*:  $\chi^2 = 6.0$ , p = 0.011), and 1.0% 324 (ds*TRP*:  $\chi^2 = 5.0$ , p = 0.020; ds*TRPR*:  $\chi^2 = 4.7$ , p = 0.025). Responses to pollen stimulation 325 after dsRNA injection indicated that knockdown of either TRP or TRPR specifically increased 326 the pollen responsiveness of PFs (ds*TRP*:  $\chi^2 = 6.5$ , p = 0.018; ds*TRPR*:  $\chi^2 = 6.4$ , p = 0.010), 327

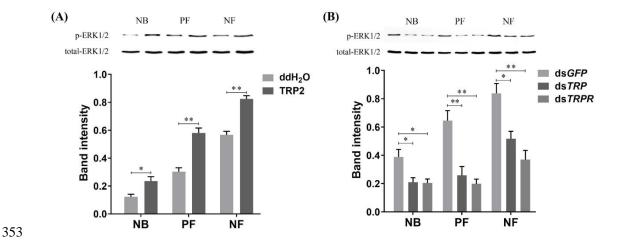
328 whereas the effects on NFs and NBs were not significant (Fig. 9C). The responsiveness of

329 NBs to larvae was significantly increased after gene knockdown of either TRP ( $\chi^2 = 4.4, p =$ 

330 0.029) or *TRPR* ( $\chi^2 = 4.8$ , p = 0.023) but NFs and PFs were not affected (Fig. 9D).



331


332 Fig. 9: RNAi-mediated knockdown of TPR and TRPR expression alter task-specific responses of 333 worker bees. (A) Proportion of positive proboscis extension reflex (PER) responses of pollen foragers 334 (PFs), nectar foragers (NFs), and nurse bees (NBs) increases with increasing concentrations of sucrose 335 solutions but overall increases occur only in PFs and NFs after knockdown of TPR or TRPR transcripts 336 compared to GFP control. Statistical details of these sucrose responsiveness comparisons are shown in 337 Table S10. (B) Median sucrose response scores (SRS; intermediate lines) and quartiles (upper and 338 lower lines) of ddH<sub>2</sub>O injected and TRP2 injected PFs, NFs, and NBs. Kruskal-Wallis tests with 339 Bonferroni correction were used to compare the SRSs of the three treatment groups of each behavioral 340 phenotype and significant differences are denoted by letters (p < 0.05). The proportion of PFs, NFs, 341 and NBs showing PER to pollen stimulation (C) and larvae stimulation (D) after GFP, TPR, or TRPR 342 knockdown. Numbers in bars are the number of individuals sampled in each group. Independent 343 Chi-square tests were used to compare the task-specific responsiveness between different treatments (\*: 344 p < 0.05, \*\*: p < 0.01) within behavioral phenotypes and between different behavioral phenotypes 345 within each treatment (significant differences are denoted by letters, p < 0.05).

### 346 2.5 TRP/TRPR signaling regulates ERK signaling in-vivo

347 To complement our finding that TRP/TRPR signaling activates ERK phosphorylation in cell

348 culture, we used our *in-vivo* manipulations of TRP-signaling to confirm the link between

- 349 TRP- and ERK signaling in living honeybee workers. Western blot results confirmed that
- 350 TRP/TRPR signaling triggers ERK signaling in vivo. The level of phosphorylated ERK
- 351 significantly increased after injection of TRP2 peptide into NBs, PFs, and NFs (Fig. 10A) and
- decreased after knockdown of the *TRP* or *TRPR* transcripts (Fig. 10B).



354 Fig. 10: Manipulations of TRP and TRPR levels change ERK phosphorylation states in the 355 worker bee brains. (A) The ERK phosphorylation (p-ERK) levels after injection of TRP2 or ddH<sub>2</sub>O into pollen foragers (PFs), nectar foragers (NFs), and nurse bees (NBs) of Apis mellifera ligustica. (B) 356 357 The p-ERK levels after transcript knockdown of GFP, TPR, or TRPR in PFs, NFs, and NBs. The 358 p-ERK was normalized to a loading control (total-ERK). The data shown are representative of three 359 independent experiments, and blots shown are representative of these experiments. Student's t-tests 360 were used for pairwise comparisons between control and treatment groups within each behavioral phenotype (\*: p < 0.05, \*\*: p < 0.01, \*\*\*: p < 0.001). 361

#### 362 **3. Discussion**

Behavioral plasticity plays a central role in animal adaptation and modulating behavioral responsiveness to different stimuli and contexts is key to individual fitness. The success of social insects is partly due to their efficient division of labor, a form of behavioral plasticity among instead of within individuals. In this study, we demonstrated that the responsiveness to task-relevant stimuli correlates with behavioral specialization in two different honeybee species. Through parallel characterization of the neuropeptidome, we identified two

369 tachykinin-related peptides (TRP2 and TRP3) as putative mechanism to adjust task-specific response thresholds and thus proximally guide division of labor. Subsequently, we 370 371 characterized the molecular action of TRP2 and TRP3 in cell culture by verifying their 372 binding to their membrane-bound receptor and demonstrating activation of multiple 373 down-stream signaling mechanisms. Finally, we verified causal involvement of TRP 374 signaling in modulating task-specific behavioral response thresholds through complementary 375 outcomes of TRP2 injection and RNAi-mediated knockdown of TRP and its receptor TRPR: 376 while injection decreased task-specific responses, down-regulation of TRP or TRPR increased 377 the same specific responses. Thus, we present the first process that tunes the behavioral responsiveness of animals to specific stimuli compared to others. We use behaviorally 378 379 specialized honeybee workers as models but hypothesize that this function of TRP signaling 380 could be more widely conserved to adjust the context-specificity of behavioral responses in 381 animals.

382 Among all the signaling molecules in the nervous system, neuropeptides represent the 383 largest and most diverse category and are crucial in orchestrating various biological processes 384 and behavioral actions [50, 51]. Thus, we quantitatively compared the entire neuropeptidome 385 among three behavioral worker phenotypes of Apis mellifera ligustica (AML) and Apis cerana cerana (ACC) without an a-priori assumption. In addition to characterizing the ACC 386 387 neuropeptidome for the first time and discovering several new neuropeptides from the AML brain, we identified TRP2 and TRP3 as candidates. TRPs have been associated with the 388 389 modulation of appetitive olfactory sensation [52-54], sex pheromone perception [41], and aggression [55]. Particularly in honeybees, TRP is preferentially expressed in the mushroom 390

body and some neurons scattered in the antennal and optic lobes [56]. This expression is
consistent with our hypothesis that TRP-signaling may be a general modulator of behavioral
responsiveness. TRPs expression in the honeybee worker brain increases during the transition
from nursing to foraging, further implicating it in the regulation honeybee social behavior [49,
57].

In our study, only expression of TPR2 and TRP3 varied consistently among behavioral 396 phenotypes of AML and ACC. In both species, TRP2 and TRP3 were most abundant in the 397 398 brain of NFs, followed by PFs, and finally NBs. This is consistent with the very specific 399 responsiveness of NBs to brood stimuli observed in our PER experiments, while the responsiveness of PFs and NFs was successively less specific: PFs responded specifically to 400 401 two stimuli, while NFs did not show specifically strong responses to any stimuli. Moreover, 402 the comparison between AML and ACC indicated higher TRP2 and TRP3 abundance in ACC in each behavioral phenotype, commensurate with the less specific PER responsiveness in 403 ACC compared to AML. A few other neuropeptides, such as apidaecins, diuretic hormone, 404 405 and prohormone-3, showed somewhat similar expression patterns in both species, but none of 406 these was as tightly correlated to behavioral responsiveness and none has previously been 407 connected with behavioral regulation in insects or other animals. Therefore, the TRPs were chosen as candidates of the control of honeybee division of labor for subsequent functional 408 409 tests and molecular characterization.

410 The action of most insect neuropeptides is mediated by binding to G-protein–coupled 411 receptors (GPCRs) and often involves cAMP and  $Ca^{2+}$  as second messengers [58]. The TRPR 412 is activated by TRPs triggering intracellular cAMP accumulation and  $Ca^{2+}$  mobilization in

| 413 | fruit flies and silkworms (Bombyx mori) [59, 60], while no cAMP-responses were discovered                                     |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 414 | in stable flies (Stomoxys calcitrans) [61]. The results of our peptide-based binding assays                                   |
| 415 | functionally confirmed that the honeybee TRPR is indeed the receptor for TRP2 and TRP3.                                       |
| 416 | The subsequent functional assays revealed that TRP signaling results in a dose-dependent                                      |
| 417 | increase in both intracellular cAMP and Ca <sup>2+</sup> . Together, these results indicate that TRPs can                     |
| 418 | activate TRPR and trigger second messengers to regulate downstream functions. TRP2                                            |
| 419 | displayed a higher affinity to TRPR and induced higher cAMP and Ca <sup>2+</sup> signaling than TRP3,                         |
| 420 | leading us to focus on TRP2 in the later in vivo experiments. Moreover, TRP signaling is                                      |
| 421 | sensitive to $G_{\alpha s}$ activation and is significantly blocked by $G_{\alpha q}$ and PKA inhibitors, suggesting          |
| 422 | both $G_{\alpha s}$ and $G_{\alpha q}$ are involved in TRP signaling in honeybees. Many GPCRs are able to                     |
| 423 | induce mitogen-activated protein kinase (MAPK) cascades via cooperation of $G_{\alpha s},~G_{\alpha q,}$ and                  |
| 424 | $G_{\alpha i}$ signals, leading to the phosphorylation of ERK1/2, which plays critical roles in diverse                       |
| 425 | biological processes [62]. Our results indicate that honeybee TRP signaling mediates                                          |
| 426 | phosphorylation of ERK1/2 in a dose- and time-dependent manner in both HEK293 and Sf21                                        |
| 427 | cells. In addition, ERK1/2 activation was significantly inhibited by the PKA, PKC, and MEK                                    |
| 428 | inhibitors, which is in line with the observation of intracellular cAMP accumulation and $Ca^{2+}$                            |
| 429 | mobilization. Thus, honeybees seem to be very similar to silkworms with regards to the                                        |
| 430 | involvement of the $G_{\alpha s}$ /cAMP/PKA and $G_{\alpha q}$ /Ca <sup>2+</sup> /PKC signaling pathways in the regulation of |
| 431 | TRP-induced ERK1/2 activation [60]. Taken together, our results demonstrate that the                                          |
| 432 | honeybee TRPR is specifically activated by TRPs, eliciting intracellular cAMP accumulation,                                   |
| 433 | $Ca^{2+}$ mobilization, and ERK phosphorylation by dually coupling $G_{\alpha s}$ and $G_{\alpha q}$ signaling                |
| 434 | pathways.                                                                                                                     |

435 Our in vitro and in vivo demonstrations that TRP signaling activates the ERK putatively 436 link TRP signaling also to the insulin/insulin-like signaling (IIS) pathway. IIS is controlled by 437 neuropeptides through ERK in *Drosophila* [63], and this connection in honeybees ties TRP back to the age-based division of labor among workers: IIS signaling influences the timing of 438 439 the behavioral maturation of honeybee workers and brain AmIlp1 is significantly higher 440 expressed in foragers than nurses [64], consistent with our finding that TRPs are higher in 441 foragers than nurses. Numerous other physiological changes accompany the transition from 442 in-hive nurse bees to foragers [37, 65-67] and our results integrate TRPs as the most 443 important neuropeptides into the regulation of the behavioral ontogeny of honeybee workers 444 and potential feedback loops to the modulation of behavioral response thresholds. The 445 specialization of nectar and pollen foragers has also been linked to IIS signaling [68, 69] and 446 explained by differences in sucrose response thresholds [70]. Our findings here may connect the differences in response thresholds and IIS mechanistically through the TRP and ERK 447 448 signaling pathways.

449 The PER paradigm is well-suited to test behavioral response thresholds and has been 450 used for over 50 years in honeybees [36]. Consistent with previous studies, we found pollen 451 foragers to be more responsive to sucrose than nectar foragers and nurses in Apis mellifera [32]. Moreover, we found corresponding differences between these behavioral groups in the 452 453 closely related Apis cerana. The pollen forager's responsiveness to low sucrose concentrations might also make them more responsive to pollen, but the causation of the PER 454 455 to pollen is unclear [71] and other components of pollen may functionally distinguish pollen from sucrose responsiveness [34]. Our results support the view that pollen and sucrose are 456

457 distinct stimuli: While our experimental manipulations of TRP signaling altered the 458 responsiveness of pollen foragers to pollen and sucrose, only responsiveness to sucrose was 459 affected in nectar foragers and only responsiveness to larvae was affected in nurses. The 460 functional significance of the PER in response to larvae is currently unclear, but we show that 461 it is specific to nurses and it has previously been linked to brood provisioning [35]. Thus, our diverse PER results in two species comprehensively support the hypothesis that task-specific 462 response thresholds guide behavioral specialization, leading to division of labor among 463 464 honeybee workers [21-23].

465 TRPs may adjust specific sensory neural circuits, potentially acting in concert with other 466 neuromodulators [72, 73]. However, we have currently no evidence to support the hypothesis of different molecular TRP actions in different stimulus-response pathways and our consistent 467 468 results from two very different cell cultures indicate that TRP signaling may be relatively robust to the cellular environment. Thus, we favor the more parsimonious explanation is that 469 470 TRP signaling acts generally through the identified mechanisms to decreases task-specific 471 response thresholds of behavioral specialists: It decreases pollen and sucrose responsiveness 472 in pollen foragers, sucrose responsiveness in nectar foragers, and responsiveness to larvae in 473 nurses. TRP signaling may thus be a general regulator of how task-specific stimuli are weighted relative to others and consequently how specialized behavioral specialists are. This 474 475 effect translates to different degrees of division of labor in social insect colonies and may control the context-specificity of behavioral responses in animals more generally [74]. 476

477 Although AML and ACC are close relatives with similar basic biology, some behavioral
478 differences have evolved since their speciation [75]. AML and ACC share the age-based

479 division of labor, with younger bees specializing on nursing before maturing to foraging 480 activities [76] and ACC foragers also specialize in nectar or pollen collection [77] similar to 481 AML [28]. Accordingly, we found the main differences of stimulus responsiveness and TRPs 482 expression among worker phenotypes conserved. However, ACC exhibited less responses to 483 the task-specific stimuli than AML. Consistent PER differences in AML and ACC between 484 nectar and pollen foragers and a generally lower responsiveness of ACC have been identified 485 before [78], but the biological interpretation has remained unclear. It is possible that the 486 species differences arise due to methodological bias, favoring AML performance in PER 487 assays. However, our study offers the alternative explanation that ACC workers are less specialized than AML workers due to higher TRP signaling. Lower innate specialization may 488 accompany better learning of ACC [79], facilitating its more opportunistic worker task 489 490 allocation and resource exploitation than AML [80]. These alternative life history strategies are plausible, given the typical differences in colony size and habitat [73, 74, 81]. All three 491 492 worker phenotypes of ACC exhibited higher levels of TRPs than their AML counterparts but 493 functional verification at the level of colony phenotypes will be required to unambiguously 494 link TRP signaling to such interspecific differences in life history.

- 495 **4. Materials and Methods**
- 496 **4.1. Honeybee sources and sampling**

497 Two honeybee species, *Apis mellifera ligustica* (AML) and *Apis cerana cerana* (ACC), were 498 maintained in the apiary of the Institute of Apicultural Research at the Chinese Academy of 499 Agricultural Sciences in Beijing. Three colonies of each species with mated queens of 500 identical age were selected as experimental colonies, and before experiments the colonies

501 were equalized in terms of adult bee population, brood combs, and food storage. Frames 502 containing old pupae (1-2 days before emergence) were put into an incubator (34°C and 80% 503 relative humidity) for eclosion. Newly emerged worker bees were paint marked on their 504 thoraxes and placed back into their parent colonies. Ten days later, marked bees that had their 505 head and thorax in open brood cells while contracting their abdomen for more than 10 seconds were collected as nurse bees (NBs). Twenty day-old, marked bees were collected 506 507 during early morning (between 8:00 am and 10:00 am) in good weather conditions during the 508 blooming period of black locusts (Robinia pseudoacacia L.) as forager bees. The entrance to 509 the hives were blocked to facilitate collecting. Bees flying into the hive with pollen loads 510 were collected as pollen foragers (PFs), returning foragers without pollen loads were collected 511 as nectar foragers (NFs). The experimental design of six groups (three behavioral phenotypes 512 in two species) was used to compare responsiveness to task-specific stimuli (section 4.2) and 513 to relate these phenotypes to differences in the brain neuropeptidome (section 4.3).

#### 514 **4.2. Comparative Proboscis Extension Reflex (PER) experiments**

515 To investigate the responsiveness of different worker bee behavioral phenotypes (NBs, PFs, and NFs of AML and ACC) to different stimulus modalities (sucrose solution, pollen, and 516 517 larva), series of PER experiments were performed. One hundred bees of each behavioral 518 phenotype were collected from each experimental colony in the morning, transferred to the 519 laboratory and narcotized on ice, then harnessed using a previously described protocol [82]. 520 All harnessed bees were fed to satiation with 50% sucrose solution and placed in a dark incubator (20°C and 65% relative humidity) overnight. After 24 hours, all surviving bees 521 522 were assayed for their PER following the methodology of Page et al. [32]. Each stimulus was 523 assessed independently with a new set of bees.

524 To investigate the sucrose responsiveness, bees were assayed using an ascending order of 525 sucrose concentrations: 0.1, 0.3, 1, 3, 10, and 30% (weight/weight). A small droplet of each solution was touched to the bees' antennae for 3 seconds and the extension of the proboscis 526 527 was monitored during this time. The interval between each sucrose solution trial was 5 min to exclude sensitization or habituation effects. The total number of PER responses after 528 529 stimulation with the six different sucrose concentrations were combined into a sucrose 530 response score (SRS) of a bee [83-85]. The SRSs of the three behavioral phenotypes in the 531 same species were compared using Kruskal-Wallis tests with Bonferroni correction. Pairwise 532 Mann-Whitney U tests were used for comparing the same phenotype from two honeybee species. The sucrose responsiveness for specific sucrose concentrations was further compared 533 534 between different groups with independent Chi-square tests.

535 To test pollen stimulation, fresh pollen loads that had been removed from the leg of randomly selected pollen foragers of the test group were used: AML were tested with pollen 536 537 collected by AML foragers and ACC with pollen collected by ACC foragers. These loads 538 contained a mixture of different pollen, predominated by black locust (*Robinia pseudoacacia*). 539 As a control for mechanical stimulation, each bee had both antennae first touched with a piece of filter paper, and spontaneous responders were excluded. Subsequently both antennae of 540 541 each bee were gently touched with a pollen load and PER responses were recorded. The 542 pollen responsiveness was compared with independent Chi-square tests between different 543 groups.

544

To test responsiveness to larva, one-day-old larvae from each honeybee species were

545 collected, briefly rinsed in distilled water to remove royal jelly residue and dried on a filter 546 paper. As before, both antennae of bees were touched with a piece of filter paper first, and 547 spontaneous responders were excluded, then PERs in response to a larva touching the 548 antennae were recorded. The responsiveness to larvae was compared with independent 549 Chi-square tests between different groups. Statistical analyses were conducted using SPSS 550 20.0 (IBM, USA).

### 551 **4.3.** Quantitative comparisons of brain neuropeptidomes

To explore brain neuropeptide functions in behavioral regulation, a label-free quantitative strategy was employed to compare neuropeptidomic variations between behavioral phenotypes and the two honeybee species. Three independent biological replicate samples (120 bees/sample) of NBs, PFs, and NFs of both AML and ACC (18 samples total) were collected and immediately frozen in liquid nitrogen. Individual brains were carefully dissected from the head capsule while remaining chilled on ice, and the dissected brains were frozen at -80°C until neuropeptide extraction.

559 The brains were homogenized at  $4^{\circ}$ C by using a 90:9:1 solution of methanol, H<sub>2</sub>O, and acetic acid. The homogenates were centrifuged at 12000g for 10 min at 4°C. The resulting 560 561 supernatant containing the neuropeptides was collected and dried. The extracted neuropeptide 562 samples were dissolved in 0.1% formic acid in distilled water, and the peptide concentration was quantified using a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific, USA). 563 564 LC-MS/MS analysis was performed on an Easy-nLC 1200 (Thermo Fisher Scientific) coupled Q-Exactive HF mass spectrometer (Thermo Fisher Scientific). Buffer A (0.1% formic 565 566 acid in water) and buffer B (0.1% formic acid in acetonitrile) were used as mobile phase

| 567 | buffers. Neuropeptides were separated using the following gradients: from 3 to 8% buffer B                      |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 568 | in 5 min, from 8 to 20 % buffer B in 80 min, from 20 to 30% buffer B in 20 min, from 30 to                      |
| 569 | 90% buffer B in 5 min, and remaining at 90% buffer B for 10 min. The eluted neuropeptides                       |
| 570 | were injected into the mass spectrometer via a nano-ESI source (Thermo Fisher Scientific).                      |
| 571 | Ion signals were collected in a data-dependent mode and run with the following settings: full                   |
| 572 | scan resolution at 70,000, automatic gain control (AGC) target: $3 \times 10^6$ , maximum inject time           |
| 573 | (MIT): 20 ms, scan range: m/z 300-1,800; MS/MS scans resolution at 17,500, AGC target: 1                        |
| 574 | $\times$ 10 <sup>5</sup> , MIT: 60 ms, isolation window: 2 m/z, normalized collision energy: 27, loop count 10, |
| 575 | and dynamic exclusion: charge exclusion: unassigned, 1, 8, >8; peptide match: preferred;                        |
| 576 | exclude isotopes: on; dynamic exclusion: 30 s. Raw data were retrieved using Xcalibur 3.0                       |
| 577 | software (Thermo Fisher Scientific).                                                                            |
| 578 | The extracted MS/MS spectra were searched against a composite database of Apis                                  |
| 579 | mellifera (23,491 protein sequences, downloaded from NCBI on July, 2018) or Apis cerana                         |
| 580 | (20,934 protein sequences, downloaded from NCBI on July, 2018) using in-house PEAKS 8.5                         |
| 581 | software (Bioinformatics Solutions, Canada). Amidation (A, -0.98) and pyro-glu from Q (P,                       |
| 582 | -17.03) were selected as variable modifications. The other parameters used were: parent ion                     |
|     |                                                                                                                 |

583 mass tolerance, 20.0 ppm; fragment ion mass tolerance, 0.05 Da; enzyme, trypsin; allowing a

nonspecific cleavage at both ends of the peptide; maximum missed cleavages per peptide, 2;

585 maximum allowed variable PTM per peptide, 2. A fusion target-decoy approach was used for

586 the estimation of the false discovery rate (FDR) and controlled at  $\leq 1.0\%$  (-10 log P  $\geq 20.0$ )

both at protein and peptide levels. Neuropeptide identifications were only used if  $\geq 2$  spectra

588 were identified in at least two of the three replicates of each sample type.

589 Quantitative comparison of brain neuropeptidomes was performed by the label-free approach in PEAKS Q module. Feature detection was performed separately on each sample by using 590 591 the expectation-maximization algorithm. The features of the same peptide from different 592 samples were reliably aligned together using a high-performance retention time alignment 593 algorithm [86]. Peptide features were considered significantly different between experimental 594 groups if pairwise p < 0.01 and fold change  $\geq 1.5$ . A heat map of differentially expressed proteins was created by Gene cluster 3.0 using the unsupervised hierarchical clustering, and 595 596 the result was visualized using Java Tree view software. The LC-MS/MS data and search 597 results are deposited in ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the 598 599 dataset identifier PXD018713.

### 600 **4.4. Characterization of honeybee tachykinin related peptide (TRP) signaling pathway**

601 To characterize honeybee TRP signaling pathway, the TRP receptor (TRPR) gene was first

602 cloned and expressed in human and insect cell lines to identify its cellular location and verify

- 603 its binding to TRPs. Additionally, these cells were used to test whether TRP/TRPR signaling
- triggers intracellular cAMP accumulation,  $Ca^{2+}$  mobilization, and ERK phosphorylation.
- 605 <u>2.4.1. TRPR gene clone and expression</u>

To amplify the full-length sequence encoding *TRPR* of *Apis mellifera*, primers were designed

607 using Primer Premier 5.0 software (PREMIER Biosoft, USA) based on the sequence from

- 608 GenBank<sup>TM</sup> KT232312. The coding sequence of TRPR was amplified and cloned into
- 609 FLAG-tag expression vectors (pCMV-FLAG and pBmIE1-FLAG) and EGFP-tag expression
- 610 vectors (pEGFP-N1 and pBmIE1-EGFP). The primers used are documented in Table S11. All

611 constructs were sequenced to verify the correct sequence, orientation, and reading frame of612 the inserts.

The human embryonic kidney cell line HEK293 and the insect *Spodoptera frugiperda* pupal ovary cell line Sf21 were used for honeybee TRPR expression. HEK293 cells were cultured in DMEM medium (Gibco, USA) supplemented with 10% fetal bovine serum (FBS). Sf21 cells were cultured in TC100 medium (Gibco) supplemented with heat-inactivated 10% FBS. Transfection of HEK293 cells was performed using Lipo6000<sup>™</sup> transfection reagent (Beyotime, China), while transfection of Sf21 cells was performed using LipoInsect<sup>TM</sup> transfection reagent (Beyotime), according to the manufacturer's instructions.

### 620 <u>2.4.2. Cellular location of TRPR</u>

To confirm the location of the honeybee TRPR, receptor surface expression assays were 621 performed. HEK293 or Sf21 cells expressing TRPR-EGFP were seeded onto poly-L-lysine 622 623 coated glass coverslips and allowed to attach overnight under normal growth conditions. After 24 hours, cells were incubated with the membrane probe DiI (Beyotime) and the nucleic acid 624 625 probe Hoechst 33342 (Beyotime) at 37°C for 10 min, then fixed with 4% paraformaldehyde 626 for 15 min. Cells transfected with empty EGFP-tag expression vectors were used as a control. The cells were imaged using a Leica SP8 (Leica Microsystems, Germany) confocal 627 microscope equipped with an HC PL APO CS2 63×/1.40 oil objective. Images were acquired 628 with the sequence program in the Leica LAS X software. 629

### 630 <u>2.4.3. Binding of TRPs to TRPR</u>

631 To confirm the direct binding of the honeybee TRPs to TRPR, competitive binding
 632 experiments were performed using synthesized TAMRA-TRP2 (TAMRA-ALMGFQGVRa)

31

and TAMRA-TRP3 (TAMRA-APMGFQGMRa), with TAMRA labeled at the N-terminus. The neuropeptides used as ligands in here and in later sections were commercially synthesized by SynPeptide Co, Ltd (China). All peptides were purified by reverse-phase high performance liquid chromatography with a purity > 98%, lyophilized, and diluted to the desired concentrations for subsequent experiments. The peptide sequences were verified by us using a Q-Exactive HF mass spectrometer (Thermo Fisher Scientific).

639 HEK293 and Sf21 cells expressing FLAG-TRPR were first seeded onto poly-L-lysine-coated 96-well plates and cultured overnight. On the next day, cells were 640 641 washed once with phosphate-buffered saline (PBS), then incubated with 25 mL TAMRA-TRP2 or TAMRA-TRP3 (10 nM) in the presence of increasing concentrations of 642 unlabeled TRP2 and TRP3 in a final volume of 100 mL of binding buffer (PBS containing 0.2% 643 644 bovine serum albumin). Cells were incubated at room temperature for 2 hours. Fluorescence intensity was measured with a fluorescence spectrometer microplate reader (Tecan Infinite 645 200 PRO, Tecan, Switzerland) after washing twice with binding buffer. The cells transfected 646 647 with empty FLAG-tag expression vectors were used as a control. The binding displacement 648 curves were analyzed by GraphPad Prism 8.0 (GraphPad Software, USA) using the non-linear logistic regression method. 649

### 650 2.4.4. TRP/TRPR signaling targets: cAMP, $Ca^{2+}$ , and ERK

To test whether TRP/TRPR signaling affects cAMP accumulation, intracellular cAMP was measured after incubation of HEK293 and Sf21 cells expressing FLAG-TRPR and pCRE-Luc with TRP2 and TRP3. After seeding in a 96-well plate overnight, HEK293 or Sf21 cells co-transfected with pFLAG-TRPR and pCRE-Luc were grown to about 90% confluence.

After washing once with PBS, cells were incubated with the neuropeptides TRP2, TRP3, 655 short neuropeptide F (SNF), pigment-dispersing hormone (PDH), and corazonin (CRZ) in 656 657 serum-free medium for 4 hours at 37°C for HEK293 cells, and at 28°C for Sf21 cells. Cells transfected with empty EGFP-tag expression vectors were used as a control. Luciferase 658 659 activity was detected by a luciferase assay system (Promega, USA). Fluorescence intensity was measured with a Tecan fluorescence spectrometer. When characterizing the 660 TRP-mediated cAMP accumulation, cells were pretreated with  $G_{\alpha i}$  inhibitor pertussis toxin 661 (PTX),  $G_{\alpha s}$  activator cholera toxin (CTX),  $G_{\alpha q}$  inhibitor YM-254890, and PKA inhibitor 662 663 H89before stimulation with TRP2.

To test whether TRP signaling also affects intracellular Ca<sup>2+</sup> concentrations, intracellular 664 Ca<sup>2+</sup> was measured after incubation of HEK293 and Sf21 cells expressing FLAG-TRPR with 665 666 TRP2 or TRP3. Cells were detached by a non-enzymatic cell dissociation solution (Sigma-Aldrich, USA), washed twice with PBS, and resuspended at a density of  $5 \times 10^6$ 667 cells/ml in HEPES buffered saline (Macklin, China). Cells were then incubated with 3 µM 668 669 Fura-2 AM (MedChemExpress, USA) for 30 min at 37°C for HEK293 cells, and at 28°C for Sf21 cells. Intracellular  $Ca^{2+}$  flux was measured using excitation wavelengths alternating at 670 671 340 and 380 nm with emission measured at 510 nm in a Tecan fluorescence spectrometer. When characterizing the detailed TRP-mediated intracellular Ca<sup>2+</sup> mobilization, cells were 672 pretreated with  $G_{\alpha q}$  inhibitor YM-254890 and PLC inhibitor U73122 before stimulation with 673 TRP2. 674

To assess whether TRP signaling mediates ERK1/2 signaling, ERK1/2 phosphorylation
 was measured by Western blot analysis after incubation of HEK293 and Sf21 cells expressing

FLAG-TRPR with TRP2. Cells were seeded in 24-well plates and starved for 4 hours in 677 serum-free medium to reduce background ERK1/2 activation and eliminate the effects of the 678 679 change of medium. After incubation with TRP2, cells were lysed by RIPA buffer (Beyotime) at 4°C for 30 min. Protein concentration was determined according to the Bradford method 680 681 using BSA as the standard and the absorption was measured at 595 nm (spectrophotometer DU800, Beckman Coulter, Los Angeles, CA), then all the samples were kept in -80°C for 682 further use. For Western blot, equal amounts of total cell lysate (20 µg/lane) were fractionated 683 by SDS-PAGE (10%) and transferred to a PVDF membrane (Millipore, USA) using an iBlot 684 685 dry blotting system (Invitrogen, USA). The membranes were blocked for 2 hours at room temperature and then incubated with rabbit monoclonal anti-pERK1/2 antibody (Cell 686 Signaling Technology, USA) and anti-rabbit horseradish peroxidase-conjugated secondary 687 688 antibody (Cell Signaling Technology) according to the manufacturers' protocols. Antibody reactive bands were visualized using Pierce<sup>TM</sup> ECL western blotting substrate (Thermo Fisher 689 690 Scientific, USA) followed by photographic film exposure. Total ERK1/2 was assessed as a 691 loading control after p-ERK1/2 chemiluminescence detection. Quantification analyses were 692 performed using Gel-Pro Analyzer 4.0 software (Media Cybernetics, USA).

693 To explore the detailed TRP-mediated ERK1/2 signaling, cells were pretreated with  $G_{\alpha i}$ 694 inhibitor pertussis toxin (PTX), MEK inhibitor U0126, PKA inhibitor H89, and PKC inhibitor 695 Go6983 before stimulation with TRP2.

#### 696 **4.5. Effects of TRP2 injection on task-specific responsiveness**

697 To confirm the function of TPR on task-specific responsiveness, NBs, PFs, and NFs of AML

698 were injected with TRP2 and tested for their PER response to sucrose solution, pollen, and

| 699 | larva. About 150 bees of each behavioral phenotype were collected in the morning, then                                                |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|
| 700 | harnessed, fed and placed in a dark incubator as described in section 4.2. After 24 hours, all                                        |
| 701 | surviving bees were evenly divided into two groups and injected with 1 $\mu$ l TRP2 solution (1                                       |
| 702 | $\mu$ g/ $\mu$ l, synthesized TRP2 dissolved in ddH <sub>2</sub> O) or 1 $\mu$ l of ddH <sub>2</sub> O into the head of honeybees via |
| 703 | the central ocellus using a glass capillary needle coupled to a microinjector. Bees injected                                          |
| 704 | with ddH <sub>2</sub> O were used as control. All injected bees were put back to the dark incubator and 1                             |
| 705 | hour after injection all surviving bees were assayed for their PER to stimulations of sucrose                                         |
| 706 | solution, pollen, and larva as described in section 4.2. Each experiment was performed with a                                         |
| 707 | new set of bees containing about 55 individuals per experimental and control group.                                                   |
| 708 | The average sucrose response scores of the TRP2 injection group and the $ddH_2O$                                                      |
| 709 | injection group were compared separately for each of the three behavioral phenotypes (NBs,                                            |
| 710 | PFs, and NFs) using pairwise Mann-Whitney U tests. The sucrose responsiveness was further                                             |
| 711 | compared between different groups at each specific sucrose concentration with independent                                             |
| 712 | Chi-square tests. The responsiveness to pollen and larvae was compared between TRP2                                                   |
| 713 | injection group and ddH <sub>2</sub> O injection group with independent Chi-square tests for each                                     |
| 714 | behavioral phenotype separately. All statistical analyses were performed with SPSS Statistics                                         |
| 715 | 20.0 (IBM).                                                                                                                           |

### 716 **4.6. Effects of RNAi-mediated downregulation of** *TRP* **or** *TRPR* **on responsiveness**

To further confirm the hypothesized effects of TPR/TRPR signaling on task-specific responsiveness, RNAi-mediated downregulation of *TRP* and *TRPR* were performed on NBs, PFs, and NFs of AML and then their PER to sucrose solution, pollen, and larva were compared to controls.

721 Before evaluating the behavioral effects of transcript knockdown of TRP or TRPR, preliminary experiments were performed to test the dsRNA-mediated knockdown efficiencies 722 723 of TRP and TRPR. The dsRNAs of the TRP and TRPR genes were prepared using the T7 RiboMAX Express RNAi system (Promega). The primers used are listed in Table S11. Sixty 724 725 bees were randomly collected from each of the three AML colonies. Bees were harnessed, fed with sucrose and put into the dark incubator (20°C and 65% relative humidity) to acclimatize 726 to the experimental conditions. After 30 min, dsRNA (200 ng/bee for TRP, 2 µg/bee for TRPR) 727 728 was microinjected into the head of honeybees via the central ocellus using a glass capillary 729 needle coupled microinjector. dsRNA of green fluorescent protein gene (dsGFP, 2 µg/bee) was used as control in all RNAi experiments. All harnessed bees were fed with 50% sucrose 730 solution every 12 hours. At 0, 12, 24, and 48 hours after injection, a group of 6 individual 731 732 bees were collected from each injection group (dsTRP, dsTRPR, and dsGFP) for comparing TRP and TRPR expression. Individual brains were carefully dissected and frozen at -80°C 733 734 until RNA extraction. Three independent replicate groups per condition were collected and 735 qRT-PCR was performed to calculate the RNAi efficiency. Total RNA was isolated using TRIzol reagent (Takara, Japan). Total RNA quantification was performed by NanoDrop 2000 736 737 spectrophotometer (Thermo Fisher Scientific), and the quality of RNA was evaluated by 1.0% denaturing agarose gel electrophoresis. Reverse transcription was performed using a 738 PrimeScript<sup>TM</sup> RT reagent kit (Takara), according to the manufacturer's instructions. 739 Gene-specific mRNA levels were assessed by qPCR using TB Green Fast qPCR Mix (Takara) 740 741 on a LightCycler 480II instrument (Roche, Switzerland). The  $\beta$ -actin gene was used as a reference gene. After verifying amplification efficiency of the selected genes and  $\beta$ -actin 742

(from 96.8% to 100.5%), the differences in gene expression levels were calculated using the  $2^{-\Delta\Delta Ct}$  method. Pairwise differences in gene expression were considered significant at p < 0.05, using one-way ANOVA (SPSS Statistics 20.0). The primers used for qPCR are shown in Table S11.

747 After determination of knockdown efficiencies (see results), 24 hours post-injection was chosen as the timepoint to study the PER effects of dsRNA-mediated knockdown of TRP and 748 TRPR. About 200 bees of each behavioral phenotype (NBs, PFs, and NFs of AML) were 749 750 collected in the morning, harnessed, and remained in a dark incubator to acclimatize. After 30 751 min, all surviving bees of each behavioral phenotype were evenly divided into three groups, 752 injected with dsTRP, dsTRPR, and dsGFP and kept as described above. After 24 hours, all 753 surviving bees were assayed for their PER to stimulations of sucrose solution, pollen, or 754 larvae as described in section 4.2. Each stimulus was assessed with a new set of bees containing about 55 individuals for each treatment group (dsTRP, dsTRPR, and dsGFP). The 755 SRSs of the TPR-knockdown, TRPR-knockdown, and control groups were compared using 756 757 Kruskal-Wallis tests with Bonferroni correction for each behavioral phenotype separately. 758 The sucrose responsiveness was further compared between the different groups at the same 759 sucrose concentration with independent Chi-square tests. The responsiveness to pollen and larvae was compared between the TPR-knockdown, TRPR-knockdown, and control groups 760 761 using independent Chi-square tests for each behavioral phenotype separately. All statistical 762 analyses were performed with SPSS Statistics 20.0 (IBM).

### 763 4.7. Effects of TRP2 injection and RNAi-mediated downregulation of TRP and TRPR on

### 764 ERK signaling in honeybee workers

765 To test whether manipulating TRP/TRPR signaling has effect on honeybee ERK signaling a group of 10 individual worker bees were collected from each injection group (ddH<sub>2</sub>O, TRP2, 766 767 dsTRP, dsTRPR, and dsGFP) to compare ERK phosphorylation levels. Three independent replicate groups per condition were collected and Western blot analyses were performed: 768 769 Honeybeebrains were carefully dissected and frozen at -80°C until protein extraction. Brain 770 protein extractions were carried out according to our previously described method with some 771 modifications. Briefly, the larvae were homogenized with lysis buffer (LB, 8 M urea, 2 M thiourea, 4% CHAPS, 20 mM Tris-base, 30 mM dithiothreitol). The mixture was 772 homogenized for 30 min on ice and sonicated 20 s per 5 min during this time, then 773 774 centrifuged at 12 000g and 4 °C for 10 min. Ice-cold acetone were added to the collected supernatants, and then the mixture was kept on ice for 30 min for protein precipitation. 775 776 Subsequently, the mixture was centrifuged at 12 000g and 4 °C for 10 min. The supernatant 777 was discarded and the pellets were resolved in LB and kept at -20°C for further use. Western 778 blot analyses were performed as described in section 4.4.4.

# 779 Data Availability

Original data have been deposited to ProteomeXchange Consortium with the dataset identifier PXD018713 under <u>http://proteomecentral.proteomexchange.org</u>. Other data not provided in the supplementary materials and materials are available from the first author upon request.

## 783 Acknowledgments

784 We appreciate Dr. Huipeng Yang at Institute of Apicultural Research for kind gifts of vectors.

#### 785 **Competing Interests**

786 None of the authors have any competing interests.

# 787 **References**

- 1. Darwin C. On the origin of species by means of natural selection. London, UK: John
- 789 Murray; 1859.
- 2. Dall SRX, Houston AI, McNamara JM. The behavioural ecology of personality: consistent
- individual differences from an adaptive perspective. Ecol Lett. 2004;7(8):734-9. doi:
- 792 10.1111/j.1461-0248.2004.00618.x
- 3. Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, et al. The ecology
- of individuals: incidence and implications of individual specialization. Am Nat.
- 795 2003;161(1):1-28.
- 4. West-Eberhard MJ. Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst.
- 797 1989;20(1):249-78.
- 5. Arnold SJ. Constraints on phenotypic evolution. Am Nat. 1992;140:S85-S107.
- 6. Sih A, Bell A, Johnson JC. Behavioral syndromes: an ecological and evolutionary
- 800 overview. Trends Ecol Evol. 2004;19:372-8. doi: 10.1016/j.tree.2004.04.009
- 801 7. O'Connell LA, Hofmann HA. Genes, hormones, and circuits: an integrative approach to
- study the evolution of social behavior. Front Neuroendocrin. 2011;32(3):320-35. doi:
- 803 10.1016/j.yfrne.2010.12.004

- 804 8. Kim SM, Su C-Y, Wang JW. Neuromodulation of innate behaviors in *Drosophila*. Annu Rev
- 805 Neurosci. 2017;40:327-48. doi: 10.1146/annurev-neuro-072116-031558
- 9. Oliveira RF. Social behavior in context: Hormonal modulation of behavioral plasticity and
- social competence. Integr Comp Biol. 2009;49(4):423-40. doi: 10.1093/icb/icp055.
- 10. Gronenberg W, Riveros AJ. Social brains and behavior: past and present. In: Gadau J.
- 809 Fewell J. (Eds), Organization of insect societies: from genome to sociocomplexity. Harvard
- 810 University Press; Camridge MA. 2009; p. 377-401.
- 11.Oster GF, Wilson EO. Caste and ecology in the social insects. Princeton University Press;
- 812 Princeton NJ; 1978.
- 813 12. Jeanson R, Weidenmuller A. Interindividual variability in social insects-proximate causes
- and ultimate consequences. Biol Rev Camb Philos Soc. 2014;89(3):671-87. doi:
- 815 10.1111/brv.12074.
- 13. Rueppell O, Fondrk MK, Page Jr. RE. Male behavioural maturation rate responds to
- selection on pollen hoarding in honey bees. Anim Behav. 2006;71:227-34. doi:
- 818 10.1016/j.anbehav.2005.05.008.
- 14. Jandt JM, Bengston S, Pinter-Wollman N, Pruitt JN, Raine NE, Dornhaus A, et al.
- 820 Behavioural syndromes and social insects: personality at multiple levels. Biol Rev.
- 821 2014;89(1):48-67. doi: 10.1111/brv.12042.
- 15. Tinbergen N. The Study of Instinct: Clarendon Press/Oxford University Press; Oxford, UK.
- 823 1951.
- 16.Mayr E. Behavior Programs and Evolutionary Strategies: Natural selection sometimes
- favors a genetically "closed" behavior program, sometimes an "open" one. Am Sci.

### 826 1974;62(6):650-9.

- 827 17. Ricklefs RE, Wikelski M. The physiology/life-history nexus. Trends Ecol Evol.
- 828 2002;17(10):462-8. doi: 10.1016/S0169-5347(02)02578-8.
- 829 18.Bargmann Cl. Beyond the connectome: how neuromodulators shape neural circuits.
- 830 Bioessays. 2012;34(6):458-65. doi: 10.1002/bies.201100185
- 19.Bargmann CI, Marder E. From the connectome to brain function. Nat Meth. 2013;10(6):483.
- doi: 10.1038/nmeth.2451.
- 833 20.Scheiner R, Page Jr. RE, Erber J. Sucrose responsiveness and behavioral plasticity in
- honey bees (*Apis mellifera*). Apidologie. 2004;35(2):133-42. doi: 10.1051/apido:2004001.
- 835 21. Theraulaz G, Bonabeau E, Denuebourg JN. Response threshold reinforcements and
- 836 division of labour in insect societies. Proceedings of the Royal Society of London Series B:
- 837 Biological Sciences. 1998;265(1393):327-32.
- 838 22. Beshers SN, Robinson GE, Mittenthal JE. Response thresholds and division of labor in
- 839 insect colonies. In: Detrain C, Deneubourg JL, Pasteels JM (Eds). Information Processing
- in Social Insects: Springer, Basel; 1999. p. 115-39.
- 23. Robinson GE. Regulation of division of labor in insect societies. Annu Rev Entomol.
- 842 1992;37:637-65.
- 843 24.Page Jr. RE, Rueppell O, Amdam GV. Genetics of reproduction and regulation of
- honeybee (*Apis mellifera* L.) social behavior. Annu Rev Genet. 2012;46:97-119. doi:
- 845 10.1146/annurev-genet-110711-155610.
- 25. Johnson BR. Division of labor in honeybees: form, function, and proximate mechanisms.
- 847 Behav Ecol Sociobiol. 2010;64(3):305-16. doi: 10.1007/s00265-009-0874-7.

- 848 26.Seeley TD. Adaptive significance of the age polyethism schedule in honeybee colonies.
- 849 Behav Ecol Sociobiol. 1982;11:287-93.
- 27. Johnson BR. Within-nest temporal polyethism in the honey bee. Behav Ecol Sociobiol.
- 851 2008;62(5):777-84. doi: 10.1007/s00265-007-0503-2.
- 852 28.Page Jr RE, Fondrk MK, Hunt GJ, Guzman-Novoa E, Humphries MA, Nguyen K, et al.
- 853 Genetic dissection of honeybee (*Apis mellifera* L.) foraging behavior. J Hered.
- 854 2000;91(6):474-479. doi: 10.1093/jhered/91.6.474.
- 855 29.Pankiw T. Cued in: honey bee pheromones as information flow and collective
- decision-making. Apidologie. 2004;35(2):217-26. doi: 10.1051/apido:2004009.
- 30. Değirmenci L, Thamm M, Scheiner R. Responses to sugar and sugar receptor gene
- 858 expression in different social roles of the honeybee (*Apis mellifera*). J Insect Physiol.
- 859 2018;106:65-70. doi: 10.1016/j.jinsphys.2017.09.009.
- 31.Ben-Shahar Y, Leung H-T, Pak WL, Sokolowski MB, Robinson GE. cGMP-dependent
- 861 changes in phototaxis: a possible role for the foraging gene in honey bee division of labor. J
- 862 Exp Biol. 2003;206:2507-15. doi: 10.1242/jeb.00442.
- 32. Page Jr. RE, Erber J, Fondrk MK. The effect of genotype on response thresholds to
- sucrose and foraging behavior of honey bees (*Apis mellifera* L.). J Comp Physiol A.
- 865 1998;182:489-500.
- 33.Pankiw T, Page Jr RE. The effect of genotype, age, sex, and caste on response thresholds
- 867 to sucrose and foraging behavior of honey bees (*Apis mellifera* L.). J Comp Physiol A.
- 868 1999;185(2):207-13.
- 34.Nicholls E, De Ibarra NH. Pollen elicits proboscis extension but does not reinforce PER

- 870 learning in honeybees. Insects. 2013;4(4):542-57. doi: 10.3390/insects4040542.
- 871 35.Zhang X, Hu H, Han B, Wei Q, Meng L, Wu F, et al. The neuroproteomic basis of enhanced
- 872 perception and processing of brood signals that trigger increased reproductive investment
- in honeybee (*Apis mellifera*) workers. Mol Cell Proteomics. 2020;19(10):1632-1648. doi:
- 874 10.1074/mcp.RA120.002123.
- 875 36.Giurfa M, Sandoz J-C. Invertebrate learning and memory: fifty years of olfactory
- conditioning of the proboscis extension response in honeybees. Learn Memory.
- 877 2012;19(2):54-66. doi: 10.1101/lm.024711.111.
- 878 37. Scheiner R, Baumann A, Blenau W. Aminergic control and modulation of honeybee
- behaviour. Curr Neuropharmacol. 2006;4(4):259-76. doi: 10.2174/157015906778520791.
- 38.Nässel DR. Neuropeptides in the nervous system of *Drosophila* and other insects: multiple
- roles as neuromodulators and neurohormones. Prog Neurobiol. 2002;68(1):1-84. doi:
- 882 10.1016/S0301-0082(02)00057-6.
- 39. Schoofs L, De Loof A, Van Hiel MB. Neuropeptides as regulators of behavior in insects.
- Annu Rev Entomol. 2017;62:35-52. doi: 10.1146/annurev-ento-031616-035500.
- 40.Ament SA, Wang Y, Robinson GE. Nutritional regulation of division of labor in honey bees:
- toward a systems biology perspective. Wires Syst Biol Med. 2010;2(5):566-76. doi:
- 887 10.1002/wsbm.73.
- 41. Shankar S, Chua JY, Tan KJ, Calvert ME, Weng R, Ng WC, et al. The neuropeptide
- tachykinin is essential for pheromone detection in a gustatory neural circuit. Elife.
- 890 2015;4:e06914. doi: 10.7554/eLife.06914.
- 42.Gendron CM, Kuo T-H, Harvanek ZM, Chung BY, Yew JY, Dierick HA, et al. Drosophila life

- span and physiology are modulated by sexual perception and reward. Science.
- 893 2014;343(6170):544-8. doi: 10.1126/science.1243339.
- 43. Inagaki HK, Panse KM, Anderson DJ. Independent, reciprocal neuromodulatory control of
- sweet and bitter taste sensitivity during starvation in *Drosophila*. Neuron.
- 896 2014;84(4):806-20. doi: 10.1016/j.neuron.2014.09.032.
- 44. Taghert PH, Nitabach MN. Peptide neuromodulation in invertebrate model systems.
- 898 Neuron. 2012;76(1):82-97. doi: 10.1016/j.neuron.2012.08.035.
- 45. Han B, Fang Y, Feng M, Hu H, Qi Y, Huo X, et al. Quantitative neuropeptidome analysis
- 900 reveals neuropeptides are correlated with social behavior regulation of the honeybee
- 901 workers. J Proteome Res. 2015;14(10):4382-93. doi: 10.1021/acs.jproteome.5b00632.
- 46.Boerjan B, Cardoen D, Bogaerts A, Landuyt B, Schoofs L, Verleyen P. Mass spectrometric
- 903 profiling of (neuro)-peptides in the worker honeybee, *Apis mellifera*. Neuropharmacology.
- 904 2010;58(1):248-58. doi: 10.1016/j.neuropharm.2009.06.026.
- 905 47. Pratavieira M, Menegasso ARdS, Esteves FG, Sato KU, Malaspina O, Palma MS. MALDI
- 906 imaging analysis of neuropeptides in africanized honeybee (Apis mellifera) brain: effect of
- 907 aggressiveness. J Proteome Res. 2018;17(7):2358-69. doi:
- 908 10.1021/acs.jproteome.8b00098.
- 48.Brockmann A, Annangudi SP, Richmond TA, Ament SA, Xie F, Southey BR, et al.
- 910 Quantitative peptidomics reveal brain peptide signatures of behavior. Proc Natl Acad Sci U
- 911 S A. 2009;106(7):2383-8. doi: 10.1073/pnas.0813021106.
- 912 49. Pratavieira M, da Silva Menegasso AR, Garcia AMC, dos Santos DSe, Gomes PC,
- 913 Malaspina O, et al. MALDI imaging analysis of neuropeptides in the Africanized honeybee

- 914 (Apis mellifera) brain: effect of ontogeny. J Proteome Res. 2014;13(6):3054-64. doi:
- 915 10.1021/pr500224b.
- 916 50.Burbach JPH. What are neuropeptides? Neuropeptides: Springer; 2011. p. 1-36.
- 917 51.Hokfelt T, Broberger C, Xu ZQ, Sergeyev V, Ubink R, Diez M. Neuropeptides--an overview.
- 918 Neuropharmacology. 2000;39(8):1337-56. doi: 10.1016/s0028-3908(00)00010-1.
- 919 52.Ko KI, Root CM, Lindsay SA, Zaninovich OA, Shepherd AK, Wasserman SA, et al.
- 920 Starvation promotes concerted modulation of appetitive olfactory behavior via parallel
- 921 neuromodulatory circuits. Elife. 2015;4: e08298. doi: 10.7554/eLife.08298.
- 53. Winther ÅME, Acebes A, Ferrús A. Tachykinin-related peptides modulate odor perception
- and locomotor activity in *Drosophila*. Mol Cell Neurosci. 2006;31(3):399-406. doi:
- 924 10.1016/j.mcn.2005.10.010.
- 925 54.Gui SH, Jiang HB, Xu L, Pei YX, Liu XQ, Smagghe G, et al. Role of a tachykinin-related
- 926 peptide and its receptor in modulating the olfactory sensitivity in the oriental fruit fly,
- 927 Bactrocera dorsalis (Hendel). Insect Biochem Mol Biol. 2017;80:71-8. doi:
- 928 10.1016/j.ibmb.2016.12.002.
- 929 55. Asahina K, Watanabe K, Duistermars BJ, Hoopfer E, González CR, Eyjólfsdóttir EA, et al.
- 930 Tachykinin-expressing neurons control male-specific aggressive arousal in *Drosophila*. Cell.
- 931 2014;156(1-2):221-35. doi: 10.1016/j.cell.2013.11.045.
- 932 56. Takeuchi H, Yasuda A, Yasuda-Kamatani Y, Sawata M, Matsuo Y, Kato A, et al.
- 933 Prepro-tachykinin gene expression in the brain of the honeybee *Apis mellifera*. Cell Tissue
- 934 Res. 2004;316(2):281-293. doi: 10.1007/s00441-004-0865-y.
- 935 57. Takeuchi H, Yasuda A, Yasuda-Kamatani Y, Kubo T, Nakajima T. Identification of a

- 936 tachykinin-related neuropeptide from the honeybee brain using direct MALDI-TOF MS and
- 937 its gene expression in worker, gueen and drone heads. Insect Mol Biol. 2003;12(3):291-8.
- 938 doi: 10.1046/j.1365-2583.2003.00414.x.
- 939 58. Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJP. A review of
- 940 neurohormone GPCRs present in the fruitfly *Drosophila melanogaster* and the honey bee
- 941 Apis mellifera. Prog Neurobiol. 2006;80(1):1-19. doi: 10.1016/j.pneurobio.2006.07.005.
- 59.Birse RT, Johnson EC, Taghert PH, Nässel DR. Widely distributed Drosophila G-protein-
- 943 coupled receptor (CG7887) is activated by endogenous tachykinin-related peptides. J
- 944 Neurobiol. 2006;66(1):33-46. doi: 10.1002/neu.20189.
- 60.He X, Zang J, Li X, Shao J, Yang H, Yang J, et al. Activation of BNGR-A24 by direct
- 946 interaction with tachykinin-related peptides from the silkworm *Bombyx mori* leads to the
- 947 Gq-and Gs-coupled signaling cascades. Biochemistry. 2014;53(42):6667-78. doi:
- 948 10.1021/bi5007207.
- 949 61. Poels J, Verlinden H, Fichna J, Van Loy T, Franssens V, Studzian K, et al. Functional
- 950 comparison of two evolutionary conserved insect neurokinin-like receptors. Peptides.
- 951 2007;28(1):103-8. doi: 10.1016/j.peptides.2006.06.014.
- 952 62.Rozengurt E. Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell
- 953 Physiol. 2007;213(3):589-602. doi: 10.1002/jcp.21246.
- 954 63.Lee K-S, Kwon O-Y, Lee JH, Kwon K, Min K-J, Jung S-A, et al. *Drosophila* short
- 955 neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat Cell
- 956 Biol. 2008;10(4):468-75. doi: 10.1038/ncb1710.
- 957 64.Ament SA, Corona M, Pollock HS, Robinson GE. Insulin signaling is involved in the

- 958 regulation of worker division of labor in honey bee colonies. Proc Natl Acad Sci U S A.
- 959 2008;105(11):4226-31. doi: 10.1073/pnas.0800630105.
- 960 65. Robinson GE. Regulation of honey bee age polyethism by juvenile hormone. Behav Ecol
- 961 Sociobiol. 1987;20(5):329-38.
- 962 66. Wang Y, Brent CS, Fennern E, Amdam GV. Gustatory perception and fat body energy
- 963 metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees. PLoS
- 964 Genet. 2012;8(6). doi: 10.1371/journal.pgen.1002779.
- 965 67. Toth AL, Robinson GE. Worker nutrition and division of labour in honeybees. Anim Behav.
- 966 2005;69(2):427-35. doi: 10.1016/j.anbehav.2004.03.017.
- 967 68. Hunt GJ, Amdam GV, Schlipalius D, Emore C, Sardesai N, Williams CE, et al. Behavioral
- 968 genomics of honeybee foraging and nest defense. Naturwissenschaften.
- 969 2007;94(4):247-67. doi: 10.1007/s00114-006-0183-1.
- 970 69. Wang Y, Amdam GV, Rueppell O, Wallrichs MA, Fondrk MK, Kaftanoglu O, et al. PDK1
- 971 and HR46 gene homologs tie social behavior to ovary signals. PLoS One. 2009;4(4):e4899.
- 972 doi: 10.1371/journal.pone.0004899.
- 973 70.Pankiw T, Page Jr RE. Response thresholds to sucrose predict foraging division of labor in
- 974 honeybees. Behav Ecol Sociobiol. 2000;47(4):265-7. doi: 10.1007/s002650050664.
- 975 71.Grüter C, Arenas A, Farina WM. Does pollen function as a reward for honeybees in
- 976 associative learning? Insect Soc. 2008;55(4):425-7. doi: 10.1007/s00040-008-1022-5.
- 977 72.Kahsai L, Kapan N, Dircksen H, Winther ÅME, Nässel DR. Metabolic stress responses in
- 978 *Drosophila* are modulated by brain neurosecretory cells that produce multiple
- 979 neuropeptides. PLoS One. 2010;5(7):e11480. doi: 10.1371/journal.pone.0011480.

- 980 73. Jung JW, Kim J-H, Pfeiffer R, Ahn Y-J, Page TL, Kwon HW. Neuromodulation of olfactory
- 981 sensitivity in the peripheral olfactory organs of the American cockroach, *Periplaneta*
- 982 *americana*. PloS One. 2013;8(11). doi: 10.1371/journal.pone.0081361.
- 983 74.Sih A, Bell A, Johnson JC. Behavioral syndromes: an ecological and evolutionary overview.
- 984 Trends Ecol Evol. 2004;19(7):372-8. doi: 10.1016/j.tree.2004.04.009.
- 985 75.Oldroyd BP, Wongsiri S. Asian honey bees: biology, conservation, and human interactions.
- 986 Cambridge, MA: Harvard University Press; 2009.
- 987 76.Hepburn HR, Radloff SE. Honeybees of Asia. Berlin, Heidelberg: Springer; 2011.
- 988 77. Rueppell O, Hunggims E, Tingek S. Association between larger ovaries and pollen foraging
- 989 in queenless *Apis cerana* workers supports the reproductive ground-plan hypothesis of
- 990 social evolution. J Insect Behav. 2008;21(4):317-21. doi: 10.1007/s10905-008-9135-2.
- 991 78. Yang W, Kuang H, Wang S, Wang J, Liu W, Wu Z, et al. Comparative sucrose
- responsiveness in *Apis mellifera* and *A. cerana* foragers. PLoS One. 2013;8(10):e79026.
- 993 doi: 10.1371/journal.pone.0079026.
- 994 79.Qin QH, He XJ, Tian LQ, Zhang SW, Zeng ZJ. Comparison of learning and memory of Apis
- 995 cerana and Apis mellifera. J Comp Physiol A. 2012;198(10):777-86. doi:
- 996 10.1007/s00359-012-0747-9.
- 997 80. Tan K, Yang MX, Radloff SE, Hepburn HR, Zhang ZY, Luo LJ, et al. Dancing to different
- 998 tunes: heterospecific deciphering of the honeybee waggle dance. Naturwissenschaften.
- 999 2008;95(12):1165-8. doi: 10.1007/s00114-008-0437-1.
- 1000 81.Ruttner F. Biogeography and taxonomy of honeybees: Berlin, Germany: Springer; 1988;
- 1001 p.284.

- 1002 82. Wang Z, Tan K. Comparative analysis of olfactory learning of *Apis cerana* and *Apis*
- 1003 *mellifera*. Apidologie. 2014;45(1):45-52. doi: 10.1007/s13592-013-0228-3.
- 1004 83.Pankiw T, Waddington KD, Page Jr RE. Modulation of sucrose response thresholds in
- 1005 honey bees (Apis mellifera L.): influence of genotype, feeding, and foraging experience. J
- 1006 Comp Physiol A. 2001;187(4):293-301. doi: 10.1007/s003590100201.
- 1007 84. Scheiner R, Plückhahn S, Öney B, Blenau W, Erber J. Behavioural pharmacology of
- 1008 octopamine, tyramine and dopamine in honey bees. Behav Brain Res. 2002;136(2):545-53.
- 1009 doi: 10.1016/S0166-4328(02)00205-X.
- 1010 85. Scheiner R, Barnert M, Erber J. Variation in water and sucrose responsiveness during the
- 1011 foraging season affects proboscis extension learning in honey bees. Apidologie.
- 1012 2003;34(1):67-72. doi: 10.1051/apido:2002050.
- 1013 86.Lin H, He L, Ma B. A combinatorial approach to the peptide feature matching problem for
- 1014 label-free quantification. Bioinformatics. 2013;29(14):1768-75. doi:
- 1015 10.1093/bioinformatics/btt274.

#### 1016 Supplementary Materials

- 1017 Fig. S1. Efficiencies of dsRNA-mediated knockdown of *TRP* and *TRPR*.
- 1018 Table S1. The proboscis extension response of different behavioral phenotypes to different
- 1019 sucrose solutions.
- 1020 Table S2. Statistical differences in sucrose responsiveness of different behavioral phenotypes.
- 1021 Table S3. Neuropeptides identified in the brain of *Apis mellifera ligustica* workers.
- 1022 Table S4. Neuropeptides identified in the brain of *Apis cerana cerana* workers.
- 1023 Table S5. Quantitative neuropeptide comparison of different behavioral phenotypes of Apis

- 1024 *mellifera ligustica* workers.
- Table S6. Quantitative neuropeptide comparison of different behavioral phenotypes of *Apis cerana cerana* workers.
- 1027 Table S7. Quantitative neuropeptide comparison between *Apis cerana cerana* and *Apis mellifera*
- 1028 *ligustica*.
- 1029 Table S8. The proboscis extension response of workers after injection of ddH<sub>2</sub>O and TRP2.
- 1030 Table S9. The proboscis extension response of workers after injection of dsGFP, dsTRP, and
- 1031 ds*TRPR*.
- 1032 Table S10. Statistical differences in sucrose responsiveness after injection of dsGFP, dsTRP, and
- 1033 ds*TRPR*.
- 1034 Table S11. Sequence information of primers used in this study.

Fig S1

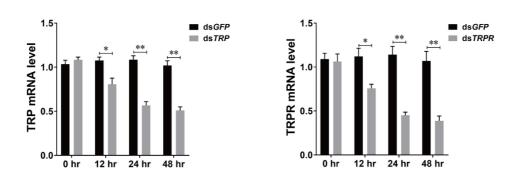



Fig S1. Efficiencies of dsRNA-mediated knockdown of *TRP* and *TRPR*. dsRNA (200 ng/bee for *TRP*, 2 µg/bee for *TRPR*) was microinjected into the head of honeybees via the central ocellus using a microinjector. dsRNA of green fluorescent protein gene (ds*GFP*, 2 µg/bee) was used as control. At 0, 12, 24, and 48 hours after injection, a group of 6 individual bees were collected from each injection group. Three independent replicate groups per condition were collected and qRT-PCR was performed to calculate the RNAi efficiency. Student's t-tests were used for pairwise comparisons (\*p<0.05, \*\*p<0.01, \*\*\*p<0.001).

| Table S1. The proboscis extension response of different behavioral phenotypes to different sucrose solutions. The proboscis extension |
|---------------------------------------------------------------------------------------------------------------------------------------|
| response of Apis mellifera ligustica (AML) and Apis cerana cerana (ACC) worker bees to different sucrose solutions.                   |

|               | AML pollen foragers |        |                  |  |  |  |  |  |  |  |
|---------------|---------------------|--------|------------------|--|--|--|--|--|--|--|
| Concentration | Show PER            | No PER | <b>PER</b> ratio |  |  |  |  |  |  |  |
| 0.1%          | 48                  | 79     | 37.80%           |  |  |  |  |  |  |  |
| 0.3%          | 51                  | 76     | 40.16%           |  |  |  |  |  |  |  |
| 1.0%          | 70                  | 57     | 55.12%           |  |  |  |  |  |  |  |
| 3.0%          | 83                  | 44     | 65.35%           |  |  |  |  |  |  |  |
| 10.0%         | 87                  | 40     | 68.50%           |  |  |  |  |  |  |  |
| 30.0%         | 111                 | 16     | 87.40%           |  |  |  |  |  |  |  |
| Pollen        | 32                  | 50     | 39.02%           |  |  |  |  |  |  |  |
| Larva         | 17                  | 65     | 20.73%           |  |  |  |  |  |  |  |
|               |                     |        |                  |  |  |  |  |  |  |  |

| AML nectar foragers |          |        |           |  |  |  |  |  |
|---------------------|----------|--------|-----------|--|--|--|--|--|
| Concentration       | Show PER | No PER | PER ratio |  |  |  |  |  |
| 0.1%                | 23       | 107    | 17.69%    |  |  |  |  |  |
| 0.3%                | 33       | 97     | 25.38%    |  |  |  |  |  |
| 1.0%                | 38       | 92     | 29.23%    |  |  |  |  |  |
| 3.0%                | 44       | 86     | 33.85%    |  |  |  |  |  |
| 10.0%               | 59       | 71     | 45.38%    |  |  |  |  |  |
| 30.0%               | 68       | 62     | 52.31%    |  |  |  |  |  |
| Pollen              | 11       | 74     | 12.94%    |  |  |  |  |  |
| Larva               | 15       | 70     | 17.65%    |  |  |  |  |  |

| ACC pollen foragers |           |        |           |  |  |  |  |  |
|---------------------|-----------|--------|-----------|--|--|--|--|--|
| Concentration       | Show PER  | No PER | PER ratio |  |  |  |  |  |
| 0.1%                | 33        | 92     | 26.40%    |  |  |  |  |  |
| 0.3%                | 35        | 90     | 28.00%    |  |  |  |  |  |
| 1.0%                | 51        | 74     | 40.80%    |  |  |  |  |  |
| 3.0%                | 59        | 66     | 47.20%    |  |  |  |  |  |
| 10.0%               | 68        | 57     | 54.40%    |  |  |  |  |  |
| 30.0%               | <b>98</b> | 27     | 78.40%    |  |  |  |  |  |
| Pollen              | 20        | 66     | 23.26%    |  |  |  |  |  |
| Larva               | 11        | 75     | 12.79%    |  |  |  |  |  |

| ACC nectar foragers |          |        |                  |  |  |  |  |  |  |
|---------------------|----------|--------|------------------|--|--|--|--|--|--|
| Concentration       | Show PER | No PER | <b>PER</b> ratio |  |  |  |  |  |  |
| 0.1%                | 17       | 111    | 13.28%           |  |  |  |  |  |  |
| 0.3%                | 19       | 109    | 14.84%           |  |  |  |  |  |  |
| 1.0%                | 23       | 105    | 17.97%           |  |  |  |  |  |  |
| 3.0%                | 29       | 99     | 22.66%           |  |  |  |  |  |  |
| 10.0%               | 44       | 84     | 34.38%           |  |  |  |  |  |  |
| 30.0%               | 55       | 73     | 42.97%           |  |  |  |  |  |  |
| Pollen              | 8        | 77     | 9.41%            |  |  |  |  |  |  |
| Larva               | 9        | 76     | 10.59%           |  |  |  |  |  |  |

|               | AML nurse l | bees   |           |
|---------------|-------------|--------|-----------|
| Concentration | Show PER    | No PER | PER ratio |
| 0.1%          | 30          | 106    | 22.06%    |
| 0.3%          | 32          | 104    | 23.53%    |
| 1.0%          | 45          | 91     | 33.09%    |
| 3.0%          | 50          | 86     | 36.76%    |
| 10.0%         | 57          | 79     | 41.91%    |
| 30.0%         | 75          | 61     | 55.15%    |
| Pollen        | 9           | 82     | 9.89%     |
| Larva         | 36          | 55     | 39.56%    |

| Concentration | Show PER | No PER | PER ratio |
|---------------|----------|--------|-----------|
| 0.1%          | 18       | 113    | 13.74%    |
| 0.3%          | 19       | 112    | 14.50%    |
| 1.0%          | 30       | 101    | 22.90%    |
| 3.0%          | 38       | 93     | 29.01%    |
| 10.0%         | 48       | 83     | 36.64%    |
| 30.0%         | 58       | 73     | 44.27%    |
| Pollen        | 7        | 81     | 7.95%     |
| Larva         | 22       | 66     | 25.00%    |

| Concentration | 0.10% | 0.30% | 1.00% | 3.00% | 10.00% | 30.00% |
|---------------|-------|-------|-------|-------|--------|--------|
| AML           |       |       |       |       |        |        |
| PF vs NF      | ***   | *     | ***   | ***   | ***    | ***    |
| PF vs NB      | **    | **    | ***   | ***   | ***    | ***    |
| NF vs NB      | ns    | ns    | ns    | ns    | ns     | ns     |
| ACC           |       |       |       |       |        |        |
| PF vs NF      | **    | **    | ***   | ***   | **     | * * *  |
| PF vs NB      | *     | **    | **    | **    | **     | ***    |
| NF vs NB      | ns    | ns    | ns    | ns    | ns     | ns     |
| AML vs ACC    |       |       |       |       |        |        |
| PF            | ns    | *     | *     | **    | *      | ns     |
| NF            | ns    | *     | *     | *     | ns     | ns     |
| NB            | ns    | ns    | ns    | ns    | ns     | ns     |

Table S2. Statistical differences in sucrose responsiveness of different behavioral phenotypes.

AML: *Apis mellifera ligustica*, ACC: *Apis cerana cerana*, PF: pollen forager, NF: nectar forager, NB: nurse bee. ns = P > 0.05, \*P < 0.05, \*P < 0.01, \*\*\*P < 0.001

**Table S3. Neuropeptides identified in the brain of** *Apis mellifera ligustica* workers. "NB" is nurse bee. "PF" is pollen forager. "NF" is nectar forager. "Protein Accession" is the unique number given to mark the entry of a protein in the database NCBInr. "Peptide" is the amino acid sequence of the peptide as determined in PEAKS Search. "-10lgP" is the score indicates the scoring significance of a peptide-spectrum match. "Mass" is monoisotopic mass of the peptide. "ppm" is precursor mass error, calculated as  $10^6 \times (\text{precursor mass - peptide mass}) / \text{peptide mass.}$ "m/z" is precursor mass-to-charge ratio. "z" is peptide charge. "RT" is retention time (elution time) of the spectrum as recorded in the data. "#Spec" is the number of scanned spectrums of the peptide. "PTM" is post translational modification types present in the peptide.

| Sample | Protein<br>Accession | Peptide                        | 10lgP | Mass     | ррт  | m/z      | z | RT    | #Spec | РТМ                           |
|--------|----------------------|--------------------------------|-------|----------|------|----------|---|-------|-------|-------------------------------|
| NB     | Q868G6.1             | NSIINDVKNELFPEDIN              | 67.29 | 1972.974 | -0.3 | 987.494  | 2 | 98.51 | 10    |                               |
| NB     | Q868G6.1             | VLSMDGYQNILDKKDELLGEWE         | 61.58 | 2594.257 | -7   | 1298.127 | 2 | 96.42 | 10    |                               |
| NB     | A8CL69.1             | pQLHNIVDKPRQN                  | 51.73 | 1443.758 | 0.7  | 482.2603 | 3 | 13.7  | 6     | Pyro-glu from Q               |
| NB     | A8CL69.1             | pQLHNIVDKPRQNFNDPRF            | 51.12 | 2220.119 | 0.3  | 556.0372 | 4 | 41.34 | 6     | Pyro-glu from Q               |
| NB     | A8CL69.1             | TSQDITSGMWFGPRLa               | 47.39 | 1693.825 | 0.1  | 847.9196 | 2 | 80.85 | 11    | Amidation                     |
| NB     | A8CL69.1             | pQLHNIVDKP                     | 45.99 | 1045.556 | 0.8  | 523.7855 | 2 | 23.83 | 4     | Pyro-glu from Q               |
| NB     | A8CL69.1             | GMWFGPRLa                      | 33.41 | 961.4956 | 0    | 481.7551 | 2 | 68.13 | 9     | Amidation                     |
| NB     | A8CL69.1             | RVPWTPSPRLa                    | 30.85 | 1206.699 | 0.3  | 604.3567 | 2 | 25.21 | 6     | Amidation                     |
| NB     | A8CL69.1             | pQITQFTPRL                     | 27.13 | 1085.587 | -0.1 | 543.8007 | 2 | 78.09 | 3     | Pyro-glu from Q               |
| NB     | A8CL69.1             | MWFGPRLa                       | 26.77 | 904.4741 | -0.5 | 453.2441 | 2 | 71.2  | 5     | Amidation                     |
| NB     | A8CL69.1             | QITQFTPRLa                     | 25.1  | 1101.63  | 0.5  | 551.8223 | 2 | 34.24 | 12    | Amidation                     |
| NB     | A8CL69.1             | pQITQFTPRLa                    | 37.99 | 1084.603 | 0    | 543.3087 | 2 | 69.95 | 21    | Pyro-glu from Q;<br>Amidation |
| NB     | ACI90290.1           | TWKSPDIVIRFa                   | 50.93 | 1359.766 | -0.3 | 454.2625 | 3 | 59.62 | 13    | Amidation                     |
| NB     | ACI90290.1           | GRNDLNFIRYa                    | 48.35 | 1265.663 | -0.1 | 633.8386 | 2 | 33.11 | 11    | Amidation                     |
| NB     | NP_001161192.1       | PEIFTSPEELRRYIDHVSDYYLLSGKARYa | 43.49 | 3515.784 | 0.4  | 586.9714 | 6 | 95.9  | 5     | Amidation                     |
| NB     | P85527.1             | QDVDHVFLRFa                    | 55.21 | 1273.657 | 0    | 637.8356 | 2 | 50.66 | 9     | Amidation                     |

| NB | P85527.1 | pQDVDHVFLRFa                         | 53.95 | 1256.63  | -0.7 | 629.3219 | 2 | 74.39 | 15 | Pyro-glu from Q;<br>Amidation |
|----|----------|--------------------------------------|-------|----------|------|----------|---|-------|----|-------------------------------|
| NB | P85527.1 | pQDVDHVFLRF                          | 47.89 | 1257.614 | 0.8  | 629.8148 | 2 | 79.69 | 5  | Pyro-glu from Q               |
| NB | P85527.1 | pQDVDHVFLR                           | 47.86 | 1110.546 | -0.5 | 556.2799 | 2 | 43.23 | 7  | Pyro-glu from Q               |
| NB | P85527.1 | pQDVDHVFL                            | 28.42 | 954.4447 | 1.8  | 478.2305 | 2 | 69.45 | 5  | Pyro-glu from Q               |
| NB | P85798.1 | LRNQLDIGDLQ                          | 50.23 | 1283.683 | -0.5 | 642.8486 | 2 | 42.48 | 10 |                               |
| NB | P85798.1 | IPAADKERLLN                          | 47.66 | 1238.698 | 0.9  | 620.3569 | 2 | 15.09 | 6  |                               |
| NB | P85798.1 | LRNQLDIGDL                           | 38.2  | 1155.625 | 0    | 578.8196 | 2 | 51.53 | 5  |                               |
| NB | P85799.1 | SQAYDPYSNAAQFQLSSQSRGYPYQHRL<br>VY   | 71.75 | 3523.655 | -0.6 | 881.9204 | 4 | 60.92 | 51 |                               |
| NB | P85799.1 | SQAYDPYSNAAQFQLSSQSRGYPYQHRL<br>V    | 70.34 | 3360.591 | -0.4 | 841.1547 | 4 | 57.58 | 11 |                               |
| NB | P85799.1 | SQAYDPYSNAAQFQLSSQSRGYPYQHRL         | 64.21 | 3261.523 | -1.2 | 816.387  | 4 | 53.22 | 8  |                               |
| NB | P85799.1 | LPTNLAEDTKKTEQTMRPKS                 | 55.28 | 2287.184 | 0.1  | 572.8033 | 4 | 21.04 | 22 |                               |
| NB | P85799.1 | GYPYQHRLVY                           | 49.18 | 1294.646 | 0.4  | 648.3304 | 2 | 25.22 | 15 |                               |
| NB | P85799.1 | NVPIYQEPRF                           | 46    | 1261.646 | -0.3 | 631.8298 | 2 | 46.32 | 11 |                               |
| NB | P85799.1 | VPIYQEPRF                            | 43.34 | 1147.603 | -0.1 | 574.8085 | 2 | 42.88 | 6  |                               |
| NB | P85799.1 | PIYQEPRF                             | 28.55 | 1048.534 | 0.4  | 525.2746 | 2 | 46.03 | 7  |                               |
| NB | P85828.1 | ITGQGNRIF                            | 46.68 | 1004.54  | -0.7 | 503.2771 | 2 | 19.63 | 8  |                               |
| NB | P85828.1 | SLKAPFA                              | 41.78 | 732.417  | -0.6 | 367.2155 | 2 | 22.72 | 5  |                               |
| NB | P85828.1 | SLKAPF                               | 36.02 | 661.3799 | 0.3  | 331.6973 | 2 | 23.77 | 4  |                               |
| NB | P85829.1 | MVPVPVHHMADELLRNGPDTVI               | 62.4  | 2439.24  | 0    | 1220.627 | 2 | 76.66 | 17 |                               |
| NB | P85829.1 | VHHMADELLRNGPDTVI                    | 49.65 | 1915.957 | 0.1  | 639.6598 | 3 | 46.23 | 8  |                               |
| NB | P85829.1 | VPVPVHHMADELL                        | 43.49 | 1455.754 | 1.3  | 728.8854 | 2 | 47.73 | 7  |                               |
| NB | P85829.1 | LLRNGPDTVI                           | 35    | 1096.624 | 0.2  | 549.3194 | 2 | 28.64 | 5  |                               |
| NB | P85829.1 | LRNGPDTVI                            | 22.27 | 983.54   | 0.5  | 492.7775 | 2 | 16.98 | 6  |                               |
| NB | P85830.1 | GLDLGLSRGFSGSQAAKHLMGLAAANYA<br>GGPa | 70.62 | 2985.524 | -0.9 | 996.1811 | 3 | 84.68 | 9  | Amidation                     |

| NB | P85830.1 | GLDLGLSRGFSGSQAA             | 62.96 | 1534.774 | 1.2  | 768.3951 | 2 | 55.2  | 6  |           |
|----|----------|------------------------------|-------|----------|------|----------|---|-------|----|-----------|
|    |          | `                            |       |          |      |          | - |       |    |           |
| NB | P85830.1 | GLDLGLSRGFSGSQAAKH           | 53.33 | 1799.928 | -0.5 | 600.9829 | 3 | 31.47 | 10 |           |
| NB | P85830.1 | GLDLGLSRGFSGSQAAKHLMa        | 46.31 | 2043.068 | 1    | 682.0308 | 3 | 57.54 | 8  | Amidation |
| NB | P85831.1 | IDLSRFYGHFNT                 | 60.52 | 1468.71  | -0.3 | 735.362  | 2 | 64.92 | 29 |           |
| NB | P85831.1 | IDLSRFYGHFN                  | 56.71 | 1367.662 | -0.1 | 684.8383 | 2 | 62.93 | 18 |           |
| NB | P85831.1 | IDLSRFYGHF                   | 52.75 | 1253.619 | -0.6 | 627.8165 | 2 | 70.59 | 19 |           |
| NB | P85831.1 | IDLSRFYGHFNTKR               | 48.89 | 1752.906 | 0    | 439.2337 | 4 | 43.28 | 23 |           |
| NB | P85831.1 | FYGHFNT                      | 44.93 | 884.3817 | -0.2 | 443.1981 | 2 | 21.44 | 7  |           |
| NB | P85831.1 | DLSRFYGHF                    | 25.85 | 1140.535 | 0.2  | 571.275  | 2 | 70.16 | 3  |           |
| NB | P85831.1 | DLSRFYGHFN                   | 20.23 | 1254.578 | 0.4  | 628.2966 | 2 | 62.68 | 22 |           |
| NB | P85832.1 | LTNYLATTGHGTNTGGPVLT         | 82.04 | 1987.001 | -1.4 | 994.5065 | 2 | 47.57 | 22 |           |
| NB | P85832.1 | LTNYLATTGHGTNTGGPVL          | 69.52 | 1885.953 | -0.6 | 943.9834 | 2 | 52.3  | 4  |           |
| NB | P85832.1 | NLDEIDRVGWSGFV               | 62.73 | 1605.779 | 0.3  | 803.8969 | 2 | 88.41 | 3  |           |
| NB | P85832.1 | LTNYLATTGHGTNTGGPVLTRRFa     | 49.49 | 2445.288 | -0.4 | 816.1028 | 3 | 39.57 | 13 | Amidation |
| NB | P85832.1 | NIDEIDRTAFDNFF               | 46.68 | 1715.779 | -1.2 | 858.8958 | 2 | 96.46 | 9  |           |
| NB | P85832.1 | LVDELSPVSERETLERFa           | 33.35 | 2017.048 | 0.3  | 673.3568 | 3 | 63.4  | 7  | Amidation |
| NB | P85832.1 | ELVDELSPVSERETLERFa          | 30.33 | 2146.091 | 0.6  | 716.3712 | 3 | 74.41 | 9  | Amidation |
| NB | Q06601.1 | GNNRPVYIPQPRPPHPRL           | 33.24 | 2107.155 | 0.3  | 422.4384 | 5 | 25.01 | 15 |           |
| NB | Q06601.1 | VYIPQPRPPHPRL                | 23.32 | 1568.894 | -0.2 | 393.2307 | 4 | 29.92 | 20 |           |
| NB | Q06601.1 | AVHYSGGQPLGSKRPNDMLSQRYHFGLa | 65.31 | 3013.509 | -1.6 | 754.3834 | 4 | 38.67 | 9  | Amidation |
| NB | Q06601.1 | PNDMLSQRYHFGLa               | 66.71 | 1575.762 | 0.3  | 526.2613 | 3 | 56.93 | 13 | Amidation |
| NB | Q06601.1 | AYTYVSEYKRLPVYNFGIa          | 29.98 | 2181.126 | -0.2 | 728.0491 | 3 | 72.4  | 8  | Amidation |
| NB | Q06601.1 | ADYPLRLNLD                   | 48.67 | 1188.614 | 0    | 595.3142 | 2 | 56.85 | 11 |           |
| NB | Q06601.1 | YPLRLNLD                     | 43.48 | 1002.55  | 0.6  | 502.2825 | 2 | 49.18 | 8  |           |
| NB | Q06601.1 | RQYSFGLa                     | 31.09 | 868.4555 | 0    | 435.235  | 2 | 26.91 | 10 | Amidation |

| NB | Q06601.1 | GROPYSFGLa                 | 35.27 | 1022.53  | -0.1 | 512.2721 | 2 | 32.39 | 6  | Amidation                     |
|----|----------|----------------------------|-------|----------|------|----------|---|-------|----|-------------------------------|
| NB | Q06601.1 | GRDYSFGLa                  | 31.03 | 912.4453 | 0    | 457.2299 | 2 | 30.51 | 3  | Amidation                     |
|    | <b>`</b> |                            |       |          | -    |          |   |       | -  |                               |
| NB | Q06601.1 | WIDTNDNKRGRDYSFGLa         | 29.02 | 2054.992 | 0    | 686.0047 | 3 | 38.47 | 7  | Amidation                     |
| NB | Q06601.1 | LDYLPVDNPAFH               | 51.58 | 1399.677 | 0.6  | 700.8463 | 8 | 65.51 | 4  |                               |
| NB | Q06602.1 | EAEPEAEPGNNRPVYIPQPRPPHPRL | 50.05 | 2959.505 | -0.5 | 592.908  | 5 | 33.75 | 26 |                               |
| NB | Q06602.1 | GNNRPVYIPQPRPPHPRL         | 33.24 | 2107.155 | 0.3  | 422.4384 | 5 | 25.01 | 15 |                               |
| NB | Q06602.1 | VYIPQPRPPHPRL              | 23.32 | 1568.894 | -0.2 | 393.2307 | 4 | 29.92 | 20 |                               |
| NB | Q5DW47.1 | STSLEELANR                 | 39.7  | 1118.557 | 0.9  | 560.2861 | 2 | 24.18 | 4  |                               |
| NB | Q5DW47.1 | STSLEELANRN                | 38.16 | 1232.6   | 0.7  | 617.3075 | 2 | 23.07 | 5  |                               |
| NB | Q5DW47.1 | pQTFTYSHGWTNa              | 18.99 | 1322.568 | -0.1 | 662.2912 | 2 | 51.14 | 10 | Pyro-glu from Q;<br>Amidation |
| NB | Q868G6.1 | ASFDDEYYKRAPMGFQGMRa       | 55.4  | 2267.025 | 0.5  | 567.7639 | 4 | 45.63 | 9  | Amidation                     |
| NB | Q868G6.1 | APMGFQGMRG                 | 50.96 | 1050.474 | 0    | 526.2442 | 2 | 22.9  | 6  |                               |
| NB | Q868G6.1 | GVMDFQIGLQ                 | 50.62 | 1106.543 | 1    | 554.2793 | 2 | 85.81 | 6  |                               |
| NB | Q868G6.1 | APMGFQGMRa                 | 49.03 | 992.4684 | -1.1 | 497.241  | 2 | 18.87 | 16 | Amidation                     |
| NB | Q868G6.1 | VLSMDGYQNILD               | 47.52 | 1366.644 | 0.6  | 684.3296 | 2 | 80.98 | 15 |                               |
| NB | Q868G6.1 | NPRWEFRGKFVGVRa            | 47.04 | 1745.959 | -0.2 | 437.4969 | 4 | 24.64 | 9  | Amidation                     |
| NB | Q868G6.1 | ARMGFHGMRa                 | 46.29 | 1060.517 | -0.4 | 354.5128 | 3 | 8.86  | 3  | Amidation                     |
| NB | Q868G6.1 | ALMGFQGVRG                 | 46.07 | 1034.533 | 0.1  | 518.2739 | 2 | 35.2  | 6  |                               |
| NB | Q868G6.1 | SPFRYLGA                   | 45.4  | 909.4708 | 0    | 455.7427 | 2 | 36.86 | 10 |                               |
| NB | Q868G6.1 | APMGFYGTRa                 | 45.2  | 997.4803 | -0.1 | 499.7474 | 2 | 16.94 | 3  | Amidation                     |
| NB | Q868G6.1 | APMGFYGTRG                 | 45.18 | 1055.486 | 0.4  | 528.7504 | 2 | 20.63 | 7  |                               |
| NB | Q868G6.1 | ALMGFQGVRa                 | 44.3  | 976.5276 | -0.5 | 489.2709 | 2 | 29.63 | 13 | Amidation                     |
| NB | Q868G6.1 | SPFRYLGARG                 | 44.18 | 1122.593 | -0.4 | 375.2049 | 3 | 20.59 | 11 |                               |
| NB | Q868G6.1 | GVMDFQIGLQRKKD             | 44.03 | 1633.861 | -0.2 | 817.9376 | 2 | 35.7  | 14 |                               |
| NB | Q868G6.1 | SPFRYLGARa                 | 43.32 | 1064.588 | 0.2  | 355.87   | 3 | 16.59 | 8  | Amidation                     |

| NB | Q868G6.1       | NPRWEFRGKFVGV                             | 42.84 | 1590.842 | 0.1  | 531.288  | 3 | 43.57  | 15 |                               |
|----|----------------|-------------------------------------------|-------|----------|------|----------|---|--------|----|-------------------------------|
| NB | Q868G6.1       | SPFRYLG                                   | 37.59 | 838.4337 | 0    | 420.2241 | 2 | 31.97  | 7  |                               |
| NB | Q868G6.1       | SLEEILDEIK                                | 33.02 | 1187.629 | 0    | 594.8215 | 2 | 88.28  | 6  |                               |
| NB | Q868G6.1       | SLEEILDEI                                 | 29.37 | 1059.534 | 0.1  | 530.7741 | 2 | 108.02 | 4  |                               |
| NB | Q868G6.1       | ASFDDEYY                                  | 28.99 | 1008.371 | 0    | 505.1929 | 2 | 43.35  | 4  |                               |
| NB | XP_006557714.1 | pQQFDDYGHLRFa                             | 47.97 | 1406.637 | -2.3 | 704.324  | 2 | 68.3   | 4  | Pyro-glu from Q;<br>Amidation |
| NB | XP_006559359.1 | NVASLARTYTLPQNAa                          | 64.35 | 1616.863 | -1.3 | 809.4379 | 2 | 43.18  | 6  | Amidation                     |
| NB | XP_006559359.1 | SVSSLAKNSAWPVSL                           | 62.69 | 1544.82  | -1.3 | 773.4162 | 2 | 68.52  | 8  |                               |
| NB | XP_006559359.1 | FLLLPATDNNYFHQKLPSSLRSKSL                 | 56.55 | 2888.555 | 1    | 578.7188 | 5 | 71.13  | 15 |                               |
| NB | XP_006559359.1 | NVGSVAREHGLPYa                            | 55.04 | 1396.721 | -0.8 | 699.3672 | 2 | 21.03  | 15 | Amidation                     |
| NB | XP_006559359.1 | SVSSLARTGDLPVREQ                          | 53.68 | 1713.901 | 0.5  | 572.3079 | 3 | 25.97  | 12 |                               |
| NB | XP_006559359.1 | YVASLARTGDLPIRGQ                          | 51.94 | 1715.932 | 0.4  | 572.9847 | 3 | 35.62  | 12 |                               |
| NB | XP_006559359.1 | NIASLMRDYDQSRENRVPFPa                     | 47.38 | 2406.186 | 0.1  | 803.0695 | 3 | 63.84  | 12 | Amidation                     |
| NB | XP_006559359.1 | HIGALARLGWLPSLRTA                         | 42.32 | 1831.058 | -0.2 | 611.3598 | 3 | 70.88  | 7  |                               |
| NB | XP_006559359.1 | HIGALARLGWLPSLRTARFS                      | 42    | 2221.26  | -0.4 | 556.322  | 4 | 71.36  | 9  |                               |
| NB | XP_006559359.1 | NVGTLARDFALPPa                            | 40.53 | 1368.751 | -0.1 | 685.3829 | 2 | 60.79  | 16 | Amidation                     |
| NB | XP_006559359.1 | YVASLARTGDLPIRa                           | 40.29 | 1529.868 | 0.6  | 510.9635 | 3 | 34.02  | 8  | Amidation                     |
| NB | XP_006559359.1 | GIFLPGSVILR                               | 37.83 | 1170.712 | -0.1 | 586.3634 | 2 | 77.93  | 5  |                               |
| NB | XP_006559359.1 | LPGSVILRALS                               | 36.35 | 1124.692 | 2.1  | 563.3543 | 2 | 72.8   | 8  |                               |
| NB | XP_006559359.1 | GIFLPGSVILRALSRQa                         | 36.3  | 1725.041 | -0.9 | 576.0205 | 3 | 95.14  | 10 | Amidation                     |
| NB | XP_006559359.1 | NVGTLARDFALPPGRRNIASLMRDYDQSR<br>ENRVPFPa | 21.57 | 4127.135 | 0.2  | 688.8632 | 6 | 75.08  | 9  | Amidation                     |
| NB | XP_006559865.1 | AFGLLTYPRIa                               | 40.74 | 1148.671 | 0.5  | 575.3428 | 2 | 70.98  | 6  | Amidation                     |
| NB | XP_006559865.1 | SNAPISNLNFN                               | 35.48 | 1189.573 | 0.3  | 595.7938 | 2 | 48.7   | 4  |                               |
| NB | XP_006559865.1 | EKLKPNMRRAFGLLTYPRIa                      | 28.33 | 2301.325 | 0.6  | 576.339  | 4 | 50.2   | 8  | Amidation                     |

| NB | XP_006560385.1 | AYRKPPFNGSIFa                                    | 42.26 | 1394.746 | -0.5 | 698.3799 | 2 | 36.92  | 12 | Amidation                     |
|----|----------------|--------------------------------------------------|-------|----------|------|----------|---|--------|----|-------------------------------|
| NB | XP_006560385.1 | KPPFNGSIFa                                       | 39.41 | 1004.544 | 0.2  | 503.2795 | 2 | 43.74  | 6  | Amidation                     |
| NB | XP_006560385.1 | RKPPFNGSIFa                                      | 32.35 | 1160.645 | 0    | 581.33   | 2 | 28.38  | 7  | Amidation                     |
| NB | XP_006560385.1 | YRKPPFNGSIFa                                     | 25.22 | 1323.709 | 0.5  | 662.862  | 2 | 36.42  | 6  | Amidation                     |
| NB | XP_006562922.1 | GFKPEYISTAYGFa                                   | 40.22 | 1477.724 | 0.2  | 739.8695 | 2 | 64.18  | 4  | Amidation                     |
| NB | XP_006565207.1 | SDPHLSILSKPMSAIPSYKFDD                           | 81.44 | 2447.204 | 0.4  | 816.7423 | 3 | 71.96  | 17 |                               |
| NB | XP_006565207.1 | SPSLRLRFa                                        | 40.12 | 973.5821 | 0.2  | 487.7984 | 2 | 24.53  | 13 | Amidation                     |
| NB | XP_006565207.1 | SDPHLSILS                                        | 39.05 | 967.4974 | 0.4  | 484.7562 | 2 | 34.74  | 7  |                               |
| NB | XP_006565207.1 | SQRSPSLRLRFa                                     | 38.06 | 1344.774 | 0.4  | 449.2654 | 3 | 16.83  | 10 | Amidation                     |
| NB | XP_006565207.1 | SDPHLSILSKPMSAIP                                 | 32.57 | 1691.892 | -1.1 | 846.9521 | 2 | 64.26  | 4  |                               |
| NB | XP_006570344.1 | NSELINSLLGLPKNMNNAa                              | 65.94 | 1940.015 | 0.5  | 971.0152 | 2 | 87.45  | 11 | Amidation                     |
| NB | XP_006570344.1 | LINSLLGLPKNMNNAa                                 | 35.9  | 1609.897 | 1.1  | 805.9568 | 2 | 62.46  | 6  | Amidation                     |
| NB | XP_016769998.1 | LVDHRIPDLENEMFDSGNDPGSTVVRT                      | 78.07 | 3012.425 | 0.1  | 754.1135 | 4 | 63.86  | 16 |                               |
| NB | XP_016769998.1 | HPISYNTYDERELSRDHPPLLL                           | 30.5  | 2664.33  | -1.6 | 667.0886 | 4 | 54.55  | 3  |                               |
| NB | XP_016769998.1 | IGSLSIVNSMDVLRQRVLLELARRKALQD<br>QAQIDANRRLLETIa | 27.71 | 4913.782 | -0.3 | 819.9707 | 6 | 98.39  | 12 | Amidation                     |
| PF | Q868G6.1       | NSIINDVKNELFPEDIN                                | 48.21 | 1972.974 | -0.3 | 987.494  | 2 | 100.35 | 14 |                               |
| PF | A8CL69.1       | TSQDITSGMWFGPRLa                                 | 42.05 | 1693.825 | 0.5  | 847.92   | 2 | 79     | 22 | Amidation                     |
| PF | A8CL69.1       | pQLHNIVDKPRQN                                    | 37.86 | 1443.758 | 0.3  | 482.2602 | 3 | 14.35  | 3  | Pyro-glu from Q               |
| PF | A8CL69.1       | pQLHNIVDKP                                       | 36.78 | 1045.556 | 0    | 523.7851 | 2 | 25.52  | 6  | Pyro-glu from Q               |
| PF | A8CL69.1       | pQITQFTPRLa                                      | 29.72 | 1084.603 | 0.4  | 543.309  | 2 | 68.45  | 3  | Pyro-glu from Q;<br>Amidation |
| PF | A8CL69.1       | RVPWTPSPRLa                                      | 25.44 | 1206.699 | 1.6  | 604.3575 | 2 | 28.86  | 5  | Amidation                     |
| PF | A8CL69.1       | pQLHNIVDKPRQNFNDPRF                              | 23.63 | 2220.119 | -0.9 | 556.0365 | 4 | 47.19  | 4  | Pyro-glu from Q               |
| PF | A8CL69.1       | QITQFTPRLa                                       | 22.79 | 1101.63  | -0.5 | 551.8218 | 2 | 37.4   | 7  | Amidation                     |
| PF | A8CL69.1       | MWFGPRLa                                         | 20.27 | 904.4741 | -0.2 | 453.2443 | 2 | 75.27  | 10 | Amidation                     |

|    |                |                                    |       |          |      |          | - |       |    |                               |
|----|----------------|------------------------------------|-------|----------|------|----------|---|-------|----|-------------------------------|
| PF | A8CL69.1       | GMWFGPRLa                          | 17.98 | 961.4956 | 0.7  | 481.7554 | 2 | 72.51 | 12 | Amidation                     |
| PF | ACI90290.1     | TWKSPDIVIRFa                       | 42    | 1359.766 | 0.1  | 454.2627 | 3 | 63.04 | 13 | Amidation                     |
| PF | ACI90290.1     | GRNDLNFIRYa                        | 36.79 | 1265.663 | 0.2  | 633.8388 | 2 | 37.18 | 24 | Amidation                     |
| PF | ACI90290.1     | AGFKNLNREQ                         | 35.46 | 1175.605 | 0    | 392.8755 | 3 | 10.1  | 6  |                               |
| PF | ACI90290.1     | SPDIVIRFa                          | 28.69 | 944.5443 | -1.1 | 473.2789 | 2 | 51.32 | 7  | Amidation                     |
| PF | NP_001161192.1 | PEIFTSPEELRRYIDHVSDYYLLSGKARYa     | 45.15 | 3515.784 | 0.4  | 586.9714 | 6 | 95.9  | 8  | Amidation                     |
| PF | P85527.1       | pQDVDHVFLRFa                       | 43.1  | 1256.63  | -0.6 | 629.322  | 2 | 76.1  | 19 | Pyro-glu from Q;<br>Amidation |
| PF | P85527.1       | pQDVDHVFLR                         | 40.39 | 1110.546 | 0.1  | 556.2802 | 2 | 44.76 | 7  | Pyro-glu from Q               |
| PF | P85527.1       | QDVDHVFLRFa                        | 40.1  | 1273.657 | 0.1  | 637.8357 | 2 | 54.09 | 9  | Amidation                     |
| PF | P85527.1       | pQDVDHVFLRF                        | 38.93 | 1257.614 | 0    | 629.8143 | 2 | 82.73 | 8  | Pyro-glu from Q               |
| PF | P85527.1       | pQDVDHVFL                          | 27.57 | 954.4447 | 0.2  | 478.2297 | 2 | 70.88 | 3  | Pyro-glu from Q               |
| PF | P85798.1       | LRNQLDIGDLQ                        | 38.97 | 1283.683 | -1   | 642.8483 | 2 | 44.49 | 12 |                               |
| PF | P85798.1       | IPAADKERLLN                        | 33.42 | 1238.698 | 1.2  | 413.9072 | 3 | 15.96 | 6  |                               |
| PF | P85798.1       | LRNQLDIGDL                         | 31.19 | 1155.625 | 0.3  | 578.8198 | 2 | 54.4  | 11 |                               |
| PF | P85799.1       | SQAYDPYSNAAQFQLSSQSRGYPYQHRL<br>VY | 51.05 | 3523.655 | -0.1 | 881.9208 | 4 | 64.95 | 41 |                               |
| PF | P85799.1       | SQAYDPYSNAAQFQLSSQSRGYPYQHRL<br>V  | 42.31 | 3360.591 | 0.4  | 841.1554 | 4 | 59.88 | 14 |                               |
| PF | P85799.1       | LPTNLAEDTKKTEQTMRPKS               | 37.87 | 2287.184 | 0.3  | 572.8035 | 4 | 24.72 | 28 |                               |
| PF | P85799.1       | SQAYDPYSNAAQFQLSSQSRGYPYQHRL       | 37.71 | 3261.523 | -3.4 | 816.3852 | 4 | 56.14 | 10 |                               |
| PF | P85799.1       | GYPYQHRLVY                         | 37.44 | 1294.646 | 0.3  | 648.3304 | 2 | 29.02 | 28 |                               |
| PF | P85799.1       | NVPIYQEPRF                         | 37.08 | 1261.646 | -1.1 | 631.8293 | 2 | 48.46 | 16 |                               |
| PF | P85799.1       | VPIYQEPRF                          | 35.84 | 1147.603 | -0.1 | 574.8085 | 2 | 45.61 | 13 |                               |
| PF | P85799.1       | PIYQEPRF                           | 25.33 | 1048.534 | 0.1  | 525.2744 | 2 | 49.81 | 6  |                               |
| PF | P85828.1       | ITGQGNRIF                          | 37.41 | 1004.54  | -0.8 | 503.277  | 2 | 21.59 | 21 |                               |
| PF | P85828.1       | SLKAPFA                            | 34.04 | 732.417  | 0.1  | 367.2158 | 2 | 24.36 | 11 |                               |

|    |          |                                      |       |          | 1    |          |   |       | 1  |           |
|----|----------|--------------------------------------|-------|----------|------|----------|---|-------|----|-----------|
| PF | P85828.1 | SLKAPF                               | 29.98 | 661.3799 | 0.1  | 331.6973 | 2 | 26.29 | 15 |           |
| PF | P85829.1 | MVPVPVHHMADELLRNGPDTVI               | 36.48 | 2439.24  | 0.7  | 814.0879 | 3 | 81.53 | 22 |           |
| PF | P85829.1 | VHHMADELLRNGPDTVI                    | 33.81 | 1915.957 | 1.1  | 639.6605 | 3 | 51.24 | 10 |           |
| PF | P85829.1 | LLRNGPDTVI                           | 31.63 | 1096.624 | 0.4  | 549.3195 | 2 | 30.43 | 6  |           |
| PF | P85829.1 | LRNGPDTVI                            | 28.06 | 983.54   | 0.1  | 492.7773 | 2 | 17.56 | 6  |           |
| PF | P85829.1 | VPVPVHHMADELL                        | 20.81 | 1455.754 | 0.4  | 486.2589 | 3 | 51.21 | 6  |           |
| PF | P85830.1 | GLDLGLSRGFSGSQAAKHLMGLAAANYA<br>GGPa | 46.77 | 2985.524 | -0.3 | 747.3881 | 4 | 90.26 | 20 | Amidation |
| PF | P85830.1 | GLDLGLSRGFSGSQAA                     | 43.99 | 1534.774 | 0.5  | 768.3947 | 2 | 57.69 | 5  |           |
| PF | P85830.1 | HLMGLAAANYAGGPa                      | 32.71 | 1340.666 | -0.7 | 671.3398 | 2 | 41.33 | 7  | Amidation |
| PF | P85830.1 | GLDLGLSRGFSGSQAAKHLMa                | 31.39 | 2043.068 | 0.5  | 682.0304 | 3 | 61.51 | 6  | Amidation |
| PF | P85830.1 | GLDLGLSRGFSGSQAAKH                   | 28.75 | 1799.928 | 0.1  | 600.9833 | 3 | 34.79 | 8  |           |
| PF | P85831.1 | IDLSRFYGHFNT                         | 45.95 | 1468.71  | -0.5 | 735.3618 | 2 | 69.86 | 42 |           |
| PF | P85831.1 | IDLSRFYGHFN                          | 42.44 | 1367.662 | -1.9 | 684.8371 | 2 | 65.48 | 27 |           |
| PF | P85831.1 | IDLSRFYGHF                           | 41.39 | 1253.619 | -0.6 | 627.8165 | 2 | 74.6  | 23 |           |
| PF | P85831.1 | FYGHFNT                              | 36.1  | 884.3817 | 0.6  | 443.1984 | 2 | 23.94 | 9  |           |
| PF | P85831.1 | DLSRFYGHFN                           | 34.65 | 1254.578 | 0.1  | 628.2964 | 2 | 65.54 | 4  |           |
| PF | P85831.1 | IDLSRFYGHFNTKR                       | 32.23 | 1752.906 | -0.1 | 439.2337 | 4 | 49.93 | 10 |           |
| PF | P85832.1 | LTNYLATTGHGTNTGGPVLT                 | 52.74 | 1987.001 | 0.2  | 994.5081 | 2 | 50.02 | 12 |           |
| PF | P85832.1 | NLDEIDRVGWSGFV                       | 47.92 | 1605.779 | 0    | 803.8966 | 2 | 93.23 | 14 |           |
| PF | P85832.1 | LTNYLATTGHGTNTGGPVL                  | 45.56 | 1885.953 | 0.3  | 943.9843 | 2 | 54.77 | 5  |           |
| PF | P85832.1 | NIDEIDRTAFDNFF                       | 43.44 | 1715.779 | 1.3  | 858.8979 | 2 | 98.86 | 7  |           |
| PF | P85832.1 | LTNYLATTGHGTNTGGPVLTRRFa             | 37.72 | 2445.288 | 0.5  | 612.3295 | 4 | 44.18 | 11 | Amidation |
| PF | P85832.1 | ELVDELSPVSERETLERFa                  | 32.49 | 2146.091 | 0.9  | 716.3715 | 3 | 77.64 | 9  | Amidation |
| PF | P85832.1 | LVDELSPVSERETLERFa                   | 31.14 | 2017.048 | -0.5 | 673.3563 | 3 | 66.54 | 10 | Amidation |
| PF | Q06601.1 | AVHYSGGQPLGSKRPNDMLSQRYHFGLa         | 60.6  | 3013.509 | 0.6  | 754.3851 | 4 | 40.53 | 8  | Amidation |
|    |          |                                      |       |          |      |          |   |       |    |           |

| PF | Q06601.1 | PNDMLSQRYHFGLa             | 65.73 | 1575.762 | 0.1  | 788.8882 | 2 | 47.77 | 9  | Amidation                     |
|----|----------|----------------------------|-------|----------|------|----------|---|-------|----|-------------------------------|
| PF | Q06601.1 | AYTYVSEYKRLPVYNFGIa        | 30.64 | 2181.126 | 0.3  | 728.0494 | 3 | 72.56 | 3  | Amidation                     |
| PF | Q06601.1 | ADYPLRLNLD                 | 46.77 | 1188.614 | 0    | 595.3142 | 2 | 56.69 | 6  |                               |
| PF | Q06601.1 | YPLRLNLD                   | 42.12 | 1002.55  | 0.3  | 502.2823 | 2 | 49.35 | 12 |                               |
| PF | Q06601.1 | RQYSFGLa                   | 30.29 | 868.4555 | -0.2 | 435.235  | 2 | 26.45 | 19 | Amidation                     |
| PF | Q06601.1 | GRQPYSFGLa                 | 34.37 | 1022.53  | 0.3  | 512.2723 | 2 | 31.51 | 5  | Amidation                     |
| PF | Q06601.1 | GRDYSFGLa                  | 28.95 | 912.4453 | 0.2  | 457.23   | 2 | 30.84 | 8  | Amidation                     |
| PF | Q06601.1 | WIDTNDNKRGRDYSFGLa         | 24.14 | 2054.992 | 0.4  | 686.0049 | 3 | 38.84 | 3  | Amidation                     |
| PF | Q06601.1 | LDYLPVDNPAFH               | 40.17 | 1399.677 | -0.4 | 700.8456 | 2 | 67.71 | 7  |                               |
| PF | Q06601.1 | AVHYSGGQPLGS               | 39.1  | 1171.562 | 0.2  | 586.7885 | 2 | 14.58 | 6  |                               |
| PF | Q06602.1 | EAEPEAEPGNNRPVYIPQPRPPHPRL | 23.07 | 2959.505 | 0.1  | 592.9084 | 5 | 39.74 | 5  |                               |
| PF | Q5DW47.1 | STSLEELANR                 | 28.15 | 1118.557 | 0.3  | 560.2858 | 2 | 25.81 | 5  |                               |
| PF | Q5DW47.1 | STSLEELANRN                | 26.91 | 1232.6   | -0.5 | 617.3068 | 2 | 24.93 | 3  |                               |
| PF | Q5DW47.1 | pQTFTYSHGWTNa              | 22.74 | 1322.568 | 0.6  | 662.2916 | 2 | 52.52 | 6  | Pyro-glu from Q;<br>Amidation |
| PF | Q868G6.1 | ASFDDEYYKRAPMGFQGMRa       | 42.06 | 2267.025 | 0.6  | 567.7639 | 4 | 49.19 | 22 | Amidation                     |
| PF | Q868G6.1 | VLSMDGYQNILDKKDELLGEWE     | 41.48 | 2594.257 | -0.4 | 865.7594 | 3 | 98.46 | 12 |                               |
| PF | Q868G6.1 | VLSMDGYQNILD               | 40.43 | 1366.644 | -0.3 | 684.329  | 2 | 82.61 | 11 |                               |
| PF | Q868G6.1 | GVMDFQIGLQ                 | 40.09 | 1106.543 | -0.7 | 554.2784 | 2 | 87.57 | 16 |                               |
| PF | Q868G6.1 | APMGFQGMRG                 | 38.9  | 1050.474 | -0.5 | 526.244  | 2 | 24.95 | 13 |                               |
| PF | Q868G6.1 | APMGFQGMRa                 | 38.73 | 992.4684 | -0.7 | 497.2411 | 2 | 20.02 | 38 | Amidation                     |
| PF | Q868G6.1 | APMGFYGTRG                 | 38.3  | 1055.486 | -0.9 | 528.7497 | 2 | 21.9  | 13 |                               |
| PF | Q868G6.1 | ARMGFHGMRa                 | 37.1  | 1060.517 | 0    | 531.2658 | 2 | 9     | 18 | Amidation                     |
| PF | Q868G6.1 | APMGFYGTRa                 | 37.08 | 997.4803 | -1.1 | 499.7469 | 2 | 18.43 | 23 | Amidation                     |
| PF | Q868G6.1 | ALMGFQGVRa                 | 36.88 | 976.5276 | -0.7 | 489.2708 | 2 | 31.91 | 23 | Amidation                     |
| PF | Q868G6.1 | ALMGFQGVRG                 | 36.33 | 1034.533 | 0.2  | 518.2739 | 2 | 38.06 | 10 |                               |

| PF | Q868G6.1       | SPFRYLGA                  | 35.81 | 909.4708 | -0.3 | 455.7426 | 2 | 40.27  | 14 |                               |
|----|----------------|---------------------------|-------|----------|------|----------|---|--------|----|-------------------------------|
| PF | Q868G6.1       | GVMDFQIGLQRKKD            | 34.42 | 1633.861 | 0.6  | 545.6279 | 3 | 39.49  | 8  |                               |
| PF | Q868G6.1       | SPFRYLGARG                | 34.3  | 1122.593 | -0.5 | 375.2049 | 3 | 23.99  | 7  |                               |
| PF | Q868G6.1       | SPFRYLGARa                | 33.85 | 1064.588 | 0    | 533.3012 | 2 | 19.83  | 7  | Amidation                     |
| PF | Q868G6.1       | SLEEILDEIK                | 33.49 | 1187.629 | 0.1  | 594.8216 | 2 | 93.96  | 13 |                               |
| PF | Q868G6.1       | SPFRYLG                   | 30.94 | 838.4337 | 0.3  | 420.2242 | 2 | 36.16  | 10 |                               |
| PF | Q868G6.1       | NPRWEFRGKFVGVRa           | 30.44 | 1745.959 | 0.5  | 437.4972 | 4 | 32.34  | 10 | Amidation                     |
| PF | Q868G6.1       | NPRWEFRGKFVGV             | 30.3  | 1590.842 | 0.3  | 531.2881 | 3 | 49.83  | 3  |                               |
| PF | Q868G6.1       | ASFDDEYY                  | 28.5  | 1008.371 | 0.1  | 505.1929 | 2 | 44.7   | 5  |                               |
| PF | Q868G6.1       | SLEEILDEI                 | 25.89 | 1059.534 | 0.4  | 530.7743 | 2 | 108.72 | 6  |                               |
| PF | Q868G6.1       | IILDALEELD                | 25.61 | 1142.607 | -0.2 | 572.3107 | 2 | 100.26 | 3  |                               |
| PF | XP_006557714.1 | pQQFDDYGHLRFa             | 41.67 | 1406.637 | 0.5  | 704.326  | 2 | 69.79  | 13 | Pyro-glu from Q;<br>Amidation |
| PF | XP_006559359.1 | SVSSLAKNSAWPVSL           | 46.58 | 1544.82  | -0.3 | 773.417  | 2 | 71.29  | 11 |                               |
| PF | XP_006559359.1 | NVASLARTYTLPQNAa          | 44.1  | 1616.863 | -0.5 | 809.4386 | 2 | 46.96  | 8  | Amidation                     |
| PF | XP_006559359.1 | FLLLPATDNNYFHQKLPSSLRSKSL | 42.63 | 2888.555 | 0.4  | 578.7184 | 5 | 77.31  | 22 |                               |
| PF | XP_006559359.1 | NVGSVAREHGLPYa            | 41.93 | 1396.721 | -0.5 | 699.3674 | 2 | 24.98  | 21 | Amidation                     |
| PF | XP_006559359.1 | YVASLARTGDLPIRGQ          | 40.96 | 1715.932 | 0    | 572.9846 | 3 | 37.62  | 10 |                               |
| PF | XP_006559359.1 | HIGALARLGWLPSLRTA         | 40.77 | 1831.058 | -0.1 | 611.3599 | 3 | 78.84  | 14 |                               |
| PF | XP_006559359.1 | NIASLMRDYDQSRENRVPFPa     | 39.13 | 2406.186 | 0.9  | 803.0701 | 3 | 69.67  | 13 | Amidation                     |
| PF | XP_006559359.1 | SVSSLARTGDLPVREQ          | 38.63 | 1713.901 | -0.4 | 572.3073 | 3 | 27.58  | 8  |                               |
| PF | XP_006559359.1 | NVGTLARDFALPPa            | 38.03 | 1368.751 | -0.6 | 685.3825 | 2 | 63.59  | 18 | Amidation                     |
| PF | XP_006559359.1 | GIFLPGSVILRALSRQa         | 37.1  | 1725.041 | 0    | 576.0211 | 3 | 98.8   | 12 | Amidation                     |
| PF | XP_006559359.1 | YVASLARTGDLPIRa           | 33.92 | 1529.868 | 0    | 510.9632 | 3 | 36.19  | 7  | Amidation                     |
| PF | XP_006559359.1 | LPGSVILRALS               | 28.72 | 1124.692 | 0.4  | 563.3533 | 2 | 76.05  | 10 |                               |
| PF | XP_006559359.1 | GIFLPGSVILR               | 27.16 | 1170.712 | 1.5  | 586.3644 | 2 | 80.54  | 14 |                               |

|    |                |                             | 1     | 1        | 1    | 1        | r | 1     | т <u> </u> |                               |
|----|----------------|-----------------------------|-------|----------|------|----------|---|-------|------------|-------------------------------|
| PF | XP_006559359.1 | HIGALARLGWLPSLRTARFS        | 25.34 | 2221.26  | 0.4  | 556.3224 | 4 | 81.47 | 4          |                               |
| PF | XP_006559865.1 | AFGLLTYPRIa                 | 34.68 | 1148.671 | -0.1 | 575.3425 | 2 | 73.38 | 13         | Amidation                     |
| PF | XP_006560385.1 | AYRKPPFNGSIFa               | 37.99 | 1394.746 | -0.3 | 698.38   | 2 | 40.92 | 20         | Amidation                     |
| PF | XP_006560385.1 | YRKPPFNGSIFa                | 26.07 | 1323.709 | 0.1  | 662.8617 | 2 | 41.73 | 5          | Amidation                     |
| PF | XP_006560385.1 | RKPPFNGSIFa                 | 24.15 | 1160.645 | 0.4  | 581.3302 | 2 | 33.49 | 11         | Amidation                     |
| PF | XP_006562922.1 | GFKPEYISTAYGFa              | 40.49 | 1477.724 | 0    | 739.8693 | 2 | 66.76 | 9          | Amidation                     |
| PF | XP_006565207.1 | SDPHLSILSKPMSAIPSYKFDD      | 45.28 | 2447.204 | -0.6 | 816.7415 | 3 | 75.81 | 11         |                               |
| PF | XP_006565207.1 | SPSLRLRFa                   | 30.48 | 973.5821 | -0.3 | 487.7982 | 2 | 28.72 | 19         | Amidation                     |
| PF | XP_006565207.1 | SDPHLSILS                   | 27.48 | 967.4974 | 0    | 484.756  | 2 | 36.83 | 8          |                               |
| PF | XP_006565207.1 | SQRSPSLRLRFa                | 24.3  | 1344.774 | 0.2  | 337.2008 | 4 | 20.45 | 5          | Amidation                     |
| PF | XP_006570344.1 | NSELINSLLGLPKNMNNAa         | 46.64 | 1940.015 | 0.2  | 971.015  | 2 | 91.06 | 12         | Amidation                     |
| PF | XP_006570344.1 | LINSLLGLPKNMNNAa            | 39.96 | 1609.897 | -0.2 | 805.9557 | 2 | 65.66 | 10         | Amidation                     |
| PF | XP_016769998.1 | LVDHRIPDLENEMFDSGNDPGSTVVRT | 45.09 | 3012.425 | -0.7 | 754.1129 | 4 | 66.6  | 23         |                               |
| NF | Q868G6.1       | NSIINDVKNELFPEDIN           | 71.58 | 1972.974 | -0.7 | 987.4937 | 2 | 96.19 | 11         |                               |
| NF | Q868G6.1       | VLSMDGYQNILDKKDELLGEWE      | 58.61 | 2594.257 | 5.3  | 1298.143 | 2 | 95.2  | 4          |                               |
| NF | A8CL69.1       | TSQDITSGMWFGPRLa            | 41.46 | 1693.825 | 1.1  | 847.9205 | 2 | 75.51 | 4          | Amidation                     |
| NF | A8CL69.1       | pQLHNIVDKPRQNFNDPRF         | 38.15 | 2220.119 | -1.1 | 556.0364 | 4 | 40.26 | 9          | Pyro-glu from Q               |
| NF | A8CL69.1       | pQITQFTPRLa                 | 18.4  | 1084.603 | 2    | 543.3098 | 2 | 65.6  | 8          | Pyro-glu from Q;<br>Amidation |
| NF | A8CL69.1       | GMWFGPRLa                   | 36.12 | 961.4956 | 1.3  | 481.7557 | 2 | 50.46 | 11         | Amidation                     |
| NF | A8CL69.1       | MWFGPRLa                    | 26.19 | 904.4741 | 0.9  | 453.2448 | 2 | 53.31 | 9          | Amidation                     |
| NF | A8CL69.1       | pQLHNIVDKPRQN               | 50.72 | 1443.758 | 0.9  | 482.2604 | 3 | 14.04 | 8          | Pyro-glu from Q               |
| NF | A8CL69.1       | pQLHNIVDKP                  | 45.19 | 1045.556 | 0.8  | 523.7855 | 2 | 23.94 | 9          | Pyro-glu from Q               |
| NF | A8CL69.1       | RVPWTPSPRLa                 | 41.57 | 1206.699 | -0.9 | 604.356  | 2 | 23.89 | 5          | Amidation                     |
| NF | ACI90290.1     | TWKSPDIVIRFa                | 51.85 | 1359.766 | -0.7 | 454.2624 | 3 | 56.58 | 5          | Amidation                     |
| NF | ACI90290.1     | GRNDLNFIRYa                 | 36.79 | 1265.663 | 0.2  | 633.8388 | 2 | 30.39 | 9          | Amidation                     |

| NF | ACI90290.1     | QITQFTPRLa                         | 33.64 | 1101.63  | -0.4 | 551.8218 | 2 | 32.4  | 10 | Amidation                     |
|----|----------------|------------------------------------|-------|----------|------|----------|---|-------|----|-------------------------------|
| NF | ACI90290.1     | AGFKNLNREQ                         | 36.45 | 1175.605 | -0.1 | 588.8096 | 2 | 10.17 | 12 |                               |
| NF | ACI90290.1     | SPDIVIRFa                          | 33.7  | 944.5443 | -0.9 | 473.279  | 2 | 45.58 | 8  | Amidation                     |
| NF | NP_001161192.1 | PEIFTSPEELRRYIDHVSDYYLLSGKARYa     | 46.23 | 3515.784 | 0.6  | 586.9714 | 6 | 94.48 | 7  | Amidation                     |
| NF | P85527.1       | pQDVDHVFLRFa                       | 52.69 | 1256.63  | 0    | 629.3223 | 2 | 72.23 | 6  | Pyro-glu from Q;<br>Amidation |
| NF | P85527.1       | QDVDHVFLRFa                        | 48.09 | 1273.657 | 0.3  | 425.5596 | 3 | 48.21 | 5  | Amidation                     |
| NF | P85527.1       | pQDVDHVFLRF                        | 49.46 | 1257.614 | 0.2  | 629.8145 | 2 | 74.75 | 6  | Pyro-glu from Q               |
| NF | P85527.1       | pQDVDHVFLR                         | 43.61 | 1110.546 | 2.4  | 556.2815 | 2 | 30.9  | 8  | Pyro-glu from Q               |
| NF | P85527.1       | pQDVDHVFL                          | 24.41 | 954.4447 | 0.5  | 478.2299 | 2 | 70.18 | 6  | Pyro-glu from Q               |
| NF | P85798.1       | LRNQLDIGDLQ                        | 49.85 | 1283.683 | 0    | 642.8489 | 2 | 41.44 | 6  |                               |
| NF | P85798.1       | LRNQLDIGDL                         | 46.57 | 1155.625 | 0.7  | 578.8201 | 2 | 35.03 | 3  |                               |
| NF | P85798.1       | IPAADKERLLN                        | 48.73 | 1238.698 | 0.9  | 620.3569 | 2 | 15.09 | 7  |                               |
| NF | P85799.1       | SQAYDPYSNAAQFQLSSQSRGYPYQHRL<br>VY | 76.59 | 3523.655 | -0.9 | 881.9201 | 4 | 60.11 | 31 |                               |
| NF | P85799.1       | SQAYDPYSNAAQFQLSSQSRGYPYQHRL       | 66.47 | 3261.523 | -1.1 | 816.3871 | 4 | 51.7  | 6  |                               |
| NF | P85799.1       | SQAYDPYSNAAQFQLSSQSRGYPYQHRL<br>V  | 62.02 | 3360.591 | -2   | 841.1534 | 4 | 55.98 | 5  |                               |
| NF | P85799.1       | LPTNLAEDTKKTEQTMRPKS               | 60.38 | 2287.184 | -0.6 | 572.803  | 4 | 20.72 | 19 |                               |
| NF | P85799.1       | NVPIYQEPRF                         | 46.81 | 1261.646 | -0.8 | 631.8295 | 2 | 45.2  | 8  |                               |
| NF | P85799.1       | VPIYQEPRF                          | 45.86 | 1147.603 | -0.2 | 574.8084 | 2 | 42.06 | 7  |                               |
| NF | P85799.1       | GYPYQHRLVY                         | 39.06 | 1294.646 | -0.3 | 648.33   | 2 | 23.28 | 7  |                               |
| NF | P85799.1       | PIYQEPRF                           | 25.88 | 1048.534 | 0.2  | 525.2745 | 2 | 45.14 | 3  |                               |
| NF | P85828.1       | ITGQGNRIF                          | 48.34 | 1004.54  | 0.4  | 503.2776 | 2 | 19.51 | 3  |                               |
| NF | P85828.1       | SLKAPFA                            | 40.92 | 732.417  | 0.1  | 367.2158 | 2 | 29.4  | 5  |                               |
| NF | P85828.1       | SLKAPF                             | 35.22 | 661.3799 | -0.1 | 331.6972 | 2 | 23.98 | 5  |                               |
| NF | P85829.1       | MVPVPVHHMADELLRNGPDTVI             | 49.4  | 2439.24  | 0.1  | 814.0874 | 3 | 74.93 | 6  |                               |

| NF | P85829.1 | VHHMADELLRNGPDTVI                    | 42.7  | 1915.957 | -0.5 | 639.6594 | 3 | 44.62 | 5  |           |
|----|----------|--------------------------------------|-------|----------|------|----------|---|-------|----|-----------|
|    |          |                                      |       |          |      |          |   |       |    |           |
| NF | P85829.1 | VPVPVHHMADELL                        | 49.99 | 1455.754 | 0.2  | 728.8846 | 2 | 33.13 | 7  |           |
| NF | P85829.1 | LLRNGPDTVI                           | 35.24 | 1096.624 | -0.1 | 549.3192 | 2 | 28.76 | 11 |           |
| NF | P85829.1 | LRNGPDTVI                            | 28.81 | 983.54   | 0.5  | 492.7775 | 2 | 16.64 | 12 |           |
| NF | P85830.1 | GLDLGLSRGFSGSQAAKHLMGLAAANYA<br>GGPa | 75.12 | 2985.524 | 0.3  | 996.1823 | 3 | 83.37 | 8  | Amidation |
| NF | P85830.1 | GLDLGLSRGFSGSQAAKH                   | 47.59 | 1799.928 | -0.2 | 600.9831 | 3 | 30.26 | 7  |           |
| NF | P85830.1 | GLDLGLSRGFSGSQAAKHLMa                | 34.44 | 2043.068 | 1.2  | 682.0309 | 3 | 54.93 | 8  | Amidation |
| NF | P85830.1 | GLDLGLSRGFSGSQAA                     | 70.04 | 1534.774 | 0.5  | 768.3947 | 2 | 43.37 | 5  |           |
| NF | P85830.1 | HLMGLAAANYAGGPa                      | 47.07 | 1340.666 | -0.8 | 671.3397 | 2 | 35.45 | 8  | Amidation |
| NF | P85831.1 | IDLSRFYGHFNT                         | 66.33 | 1468.71  | -0.8 | 735.3616 | 2 | 62.1  | 15 |           |
| NF | P85831.1 | IDLSRFYGHFN                          | 59.58 | 1367.662 | 0    | 684.8384 | 2 | 59.48 | 12 |           |
| NF | P85831.1 | IDLSRFYGHF                           | 54.45 | 1253.619 | 0.1  | 627.817  | 2 | 66.68 | 7  |           |
| NF | P85831.1 | IDLSRFYGHFNTKR                       | 45.5  | 1752.906 | 0.5  | 585.3095 | 3 | 39.93 | 6  |           |
| NF | P85831.1 | DLSRFYGHFN                           | 33.5  | 1254.578 | -0.6 | 628.8198 | 2 | 65.09 | 14 |           |
| NF | P85831.1 | FYGHFNT                              | 44.01 | 884.3817 | -0.2 | 443.1981 | 2 | 20.92 | 13 |           |
| NF | P85832.1 | LTNYLATTGHGTNTGGPVLT                 | 85.24 | 1987.001 | -0.6 | 994.5072 | 2 | 47.09 | 8  |           |
| NF | P85832.1 | NLDEIDRVGWSGFV                       | 56.68 | 1605.779 | -0.9 | 803.8959 | 2 | 86.63 | 4  |           |
| NF | P85832.1 | NIDEIDRTAFDNFF                       | 54.74 | 1715.779 | -0.7 | 858.8962 | 2 | 94.63 | 7  |           |
| NF | P85832.1 | LTNYLATTGHGTNTGGPVLTRRFa             | 52.84 | 2445.288 | 0    | 612.3292 | 4 | 38.23 | 12 | Amidation |
| NF | P85832.1 | ELVDELSPVSERETLERFa                  | 29.85 | 2146.091 | -1.2 | 716.3699 | 3 | 72.71 | 4  | Amidation |
| NF | P85832.1 | LVDELSPVSERETLERFa                   | 26.21 | 2017.048 | -1.1 | 673.3558 | 3 | 61.74 | 3  | Amidation |
| NF | P85832.1 | LTNYLATTGHGTNTGGPVL                  | 83.65 | 1885.953 | 3.4  | 943.9872 | 2 | 37.57 | 3  |           |
| NF | Q06601.1 | PNDMLSQRYHFGLa                       | 69.72 | 1575.762 | -0.4 | 526.2609 | 3 | 47.76 | 6  | Amidation |
| NF | Q06601.1 | AVHYSGGQPLGSKRPNDMLSQRYHFGLa         | 66.38 | 3013.509 | 0.1  | 754.3846 | 3 | 41.05 | 10 | Amidation |
| NF | Q06601.1 | AYTYVSEYKRLPVYNFGIa                  | 69.78 | 2181.126 | -1.2 | 1091.569 | 2 | 73.7  | 8  | Amidation |

|    |          |                            | 1     | 1        | 1    | 1        | <u> </u> | 1     | 1  |                               |
|----|----------|----------------------------|-------|----------|------|----------|----------|-------|----|-------------------------------|
| NF | Q06601.1 | ADYPLRLNLD                 | 50.74 | 1188.614 | 0.6  | 595.3146 | 2        | 57.13 | 15 |                               |
| NF | Q06601.1 | YPLRLNLD                   | 44.94 | 1002.55  | 0.3  | 502.2823 | 2        | 49.7  | 21 |                               |
| NF | Q06601.1 | LDYLPVDNPAFH               | 54.33 | 1399.677 | 1.6  | 700.8469 | 2        | 61.58 | 5  |                               |
| NF | Q06601.1 | RQYSFGLa                   | 34.76 | 868.4555 | 0.1  | 435.2351 | 2        | 23.68 | 7  | Amidation                     |
| NF | Q06601.1 | GRQPYSFGLa                 | 38.89 | 1022.53  | 0.2  | 512.2722 | 2        | 29.28 | 7  | Amidation                     |
| NF | Q06601.1 | GRDYSFGLa                  | 30.15 | 912.4453 | 0    | 457.2299 | 2        | 29.2  | 10 | Amidation                     |
| NF | Q06601.1 | WIDTNDNKRGRDYSFGLa         | 36.47 | 2054.992 | 1    | 686.0054 | 3        | 34.51 | 7  | Amidation                     |
| NF | Q06601.1 | AVHYSGGQPLGS               | 39.03 | 1171.562 | 0.3  | 586.7885 | 2        | 13.57 | 11 |                               |
| NF | Q06602.1 | EAEPEAEPGNNRPVYIPQPRPPHPRL | 66.9  | 2959.505 | 3.2  | 592.9102 | 5        | 21.55 | 23 |                               |
| NF | Q5DW47.1 | STSLEELANR                 | 36.25 | 1118.557 | 0.9  | 560.2861 | 2        | 24.18 | 7  |                               |
| NF | Q5DW47.1 | STSLEELANRN                | 39.72 | 1232.6   | 0.7  | 617.3075 | 2        | 23.07 | 9  |                               |
| NF | Q5DW47.1 | pQTFTYSHGWTNa              | 51.7  | 1322.568 | -0.6 | 662.2909 | 2        | 50.66 | 19 | Pyro-glu from Q;<br>Amidation |
| NF | Q868G6.1 | ASFDDEYYKRAPMGFQGMRa       | 58.13 | 2267.025 | -0.1 | 567.7635 | 4        | 43.53 | 9  | Amidation                     |
| NF | Q868G6.1 | ARMGFHGMRa                 | 54.74 | 1060.517 | -0.5 | 531.2656 | 2        | 8.87  | 7  | Amidation                     |
| NF | Q868G6.1 | APMGFQGMRa                 | 49.97 | 992.4684 | 0    | 497.2415 | 2        | 19.16 | 6  | Amidation                     |
| NF | Q868G6.1 | SLEEILDEIK                 | 47.34 | 1187.629 | 0.3  | 594.8217 | 2        | 84.58 | 9  |                               |
| NF | Q868G6.1 | NPRWEFRGKFVGV              | 45.98 | 1590.842 | 0.3  | 531.2881 | 3        | 40.1  | 9  |                               |
| NF | Q868G6.1 | SPFRYLGARa                 | 42.47 | 1064.588 | 0.1  | 533.3013 | 2        | 15.98 | 4  | Amidation                     |
| NF | Q868G6.1 | ALMGFQGVRa                 | 42.22 | 976.5276 | -0.3 | 489.2709 | 2        | 29.18 | 6  | Amidation                     |
| NF | Q868G6.1 | NPRWEFRGKFVGVRa            | 40.99 | 1745.959 | -0.2 | 437.4969 | 4        | 21.41 | 7  | Amidation                     |
| NF | Q868G6.1 | SPFRYLGA                   | 40.83 | 909.4708 | 0    | 455.7427 | 2        | 35.07 | 7  |                               |
| NF | Q868G6.1 | GVMDFQIGLQRKKD             | 40.37 | 1633.861 | 0.1  | 545.6276 | 3        | 34.17 | 7  |                               |
| NF | Q868G6.1 | SPFRYLGARG                 | 39.19 | 1122.593 | -0.4 | 375.2049 | 3        | 19.38 | 4  |                               |
| NF | Q868G6.1 | ALMGFQGVRG                 | 38.17 | 1034.533 | -0.1 | 518.2737 | 2        | 34.43 | 13 |                               |
| NF | Q868G6.1 | GVMDFQIGLQ                 | 37.68 | 1106.543 | 0.3  | 554.2789 | 2        | 84.25 | 6  |                               |

|    |                |                                           |       |          | [    | T        | r |        | 1  |                               |
|----|----------------|-------------------------------------------|-------|----------|------|----------|---|--------|----|-------------------------------|
| NF | Q868G6.1       | VLSMDGYQNILD                              | 36.56 | 1366.644 | 0.1  | 684.3292 | 2 | 79.28  | 3  |                               |
| NF | Q868G6.1       | APMGFYGTRa                                | 36.12 | 997.4803 | 1.1  | 499.748  | 2 | 16.97  | 3  | Amidation                     |
| NF | Q868G6.1       | ASFDDEYY                                  | 30.67 | 1008.371 | 0.1  | 505.1929 | 2 | 40.98  | 4  |                               |
| NF | Q868G6.1       | SLEEILDEI                                 | 23.62 | 1059.534 | -1.5 | 530.7733 | 2 | 104.74 | 3  |                               |
| NF | Q868G6.1       | IILDALEELD                                | 28    | 1142.607 | 0.6  | 572.3112 | 2 | 102.74 | 5  |                               |
| NF | Q868G6.1       | APMGFQGMRG                                | 50.06 | 1050.474 | -0.3 | 526.2441 | 2 | 23.14  | 5  |                               |
| NF | Q868G6.1       | APMGFYGTRG                                | 43.78 | 1055.486 | -0.3 | 528.7501 | 2 | 20.72  | 3  |                               |
| NF | XP_006557714.1 | pQQFDDYGHLRFa                             | 59.46 | 1406.637 | 0.4  | 704.3259 | 2 | 41.18  | 4  | Pyro-glu from Q;<br>Amidation |
| NF | XP_006559359.1 | SVSSLAKNSAWPVSL                           | 70.04 | 1544.82  | 0    | 773.4172 | 2 | 66.98  | 6  |                               |
| NF | XP_006559359.1 | NVASLARTYTLPQNAa                          | 66.96 | 1616.863 | -0.3 | 809.4387 | 2 | 42.45  | 6  | Amidation                     |
| NF | XP_006559359.1 | NVGSVAREHGLPYa                            | 62.66 | 1396.721 | -0.5 | 699.3675 | 2 | 20.47  | 11 | Amidation                     |
| NF | XP_006559359.1 | YVASLARTGDLPIRGQ                          | 57.46 | 1715.932 | 0.2  | 572.9846 | 3 | 35.02  | 9  |                               |
| NF | XP_006559359.1 | FLLLPATDNNYFHQKLPSSLRSKSL                 | 51.46 | 2888.555 | 1.1  | 578.7189 | 5 | 69.14  | 13 |                               |
| NF | XP_006559359.1 | SVSSLARTGDLPVREQ                          | 47.87 | 1713.901 | 0    | 572.3076 | 3 | 24.99  | 6  |                               |
| NF | XP_006559359.1 | NIASLMRDYDQSRENRVPFPa                     | 45.43 | 2406.186 | -0.5 | 803.069  | 3 | 60.51  | 5  | Amidation                     |
| NF | XP_006559359.1 | YVASLARTGDLPIRa                           | 35.3  | 1529.868 | 0.8  | 510.9636 | 3 | 31.89  | 4  | Amidation                     |
| NF | XP_006559359.1 | LPGSVILRALS                               | 34.9  | 1124.692 | 0.5  | 563.3534 | 2 | 70.13  | 8  |                               |
| NF | XP_006559359.1 | NVGTLARDFALPPa                            | 33.49 | 1368.751 | 0.1  | 685.383  | 2 | 59.01  | 11 | Amidation                     |
| NF | XP_006559359.1 | GIFLPGSVILR                               | 32.7  | 1170.712 | 0.2  | 586.3636 | 2 | 76.91  | 5  |                               |
| NF | XP_006559359.1 | GIFLPGSVILRALSRQa                         | 31.65 | 1725.041 | -1   | 576.0204 | 3 | 94.65  | 8  | Amidation                     |
| NF | XP_006559359.1 | HIGALARLGWLPSLRTARFS                      | 29.69 | 2221.26  | -0.6 | 556.3218 | 4 | 68.04  | 3  |                               |
| NF | XP_006559359.1 | HIGALARLGWLPSLRTA                         | 24.36 | 1831.058 | 0.4  | 611.3602 | 3 | 67.47  | 5  |                               |
| NF | XP_006559359.1 | NVGTLARDFALPPGRRNIASLMRDYDQSR<br>ENRVPFPa | 19.42 | 4127.135 | 0.3  | 688.8633 | 6 | 72.55  | 6  | Amidation                     |
| NF | XP_006559865.1 | AFGLLTYPRIa                               | 34    | 1148.671 | -0.2 | 575.3424 | 2 | 68.55  | 5  | Amidation                     |

| NF | XP_006559865.1 | EKLKPNMRRAFGLLTYPRIa                             | 21.02 | 2301.325 | 0.5  | 576.3389 | 4 | 45.4  | 4  | Amidation |
|----|----------------|--------------------------------------------------|-------|----------|------|----------|---|-------|----|-----------|
| NF | XP_006560385.1 | AYRKPPFNGSIFa                                    | 41.64 | 1394.746 | -0.1 | 698.3801 | 2 | 35.3  | 6  | Amidation |
| NF | XP_006560385.1 | KPPFNGSIFa                                       | 36.34 | 1004.544 | 0    | 503.2794 | 2 | 42.18 | 7  | Amidation |
| NF | XP_006560385.1 | YRKPPFNGSIFa                                     | 47.47 | 1323.709 | 0.3  | 662.8619 | 2 | 32.59 | 7  | Amidation |
| NF | XP_006560385.1 | RKPPFNGSIFa                                      | 40.45 | 1160.645 | -0.2 | 581.3298 | 2 | 24.42 | 9  | Amidation |
| NF | XP_006562922.1 | GFKPEYISTAYGFa                                   | 52.25 | 1477.724 | 0.6  | 739.8698 | 2 | 70.58 | 29 | Amidation |
| NF | XP_006565207.1 | SDPHLSILSKPMSAIPSYKFDD                           | 72.01 | 2447.204 | -0.3 | 816.7418 | 3 | 70.27 | 6  |           |
| NF | XP_006565207.1 | SQRSPSLRLRFa                                     | 32.44 | 1344.774 | -0.2 | 449.2651 | 3 | 15.82 | 6  | Amidation |
| NF | XP_006565207.1 | SPSLRLRFa                                        | 28.98 | 973.5821 | 0.5  | 487.7986 | 2 | 22.89 | 5  | Amidation |
| NF | XP_006565207.1 | SDPHLSILS                                        | 38.23 | 967.4974 | 0    | 484.756  | 2 | 33.67 | 7  |           |
| NF | XP_006570344.1 | NSELINSLLGLPKNMNNAa                              | 64.9  | 1940.015 | 3.8  | 971.0184 | 2 | 85.93 | 7  | Amidation |
| NF | XP_006570344.1 | LINSLLGLPKNMNNAa                                 | 54.36 | 1609.897 | -0.3 | 805.9557 | 2 | 61.69 | 6  | Amidation |
| NF | XP_016769998.1 | LVDHRIPDLENEMFDSGNDPGSTVVRT                      | 65.72 | 3012.425 | -0.4 | 1005.148 | 3 | 63.14 | 13 |           |
| NF | XP_016769998.1 | IGSLSIVNSMDVLRQRVLLELARRKALQD<br>QAQIDANRRLLETIa | 34.17 | 4913.782 | -0.5 | 819.9706 | 6 | 96.85 | 12 | Amidation |
| NF | XP_016769998.1 | HPISYNTYDERELSRDHPPLLL                           | 33.16 | 2664.33  | 0.3  | 667.0898 | 4 | 52.44 | 6  |           |

**Table S4. Neuropeptides identified in the brain of** *Apis cerana cerana* workers. "NB" is nurse bee. "PF" is pollen forager. "NF" is nectar forager. "Protein Accession" is the unique number given to mark the entry of a protein in the database NCBInr. "Peptide" is the amino acid sequence of the peptide as determined in PEAKS Search. "-10lgP" is the score indicates the scoring significance of a peptide-spectrum match. "Mass" is monoisotopic mass of the peptide. "ppm" is precursor mass error, calculated as  $10^6 \times (\text{precursor mass - peptide mass}) / \text{peptide mass.}$ "m/z" is precursor mass-to-charge ratio. "z" is peptide charge. "RT" is retention time (elution time) of the spectrums as recorded in the data. "#Spec" is the number of scanned spectrums of the peptide. "PTM" is post translational modification types present in the peptide.

| Sample | Protein<br>Accession | Peptide                                          | -10lgP | Mass     | ppm  | m/z      | z | RT    | #Spec | РТМ                           |
|--------|----------------------|--------------------------------------------------|--------|----------|------|----------|---|-------|-------|-------------------------------|
| NB     | PBC25365.1           | pQQFDDYGHLRFa                                    | 26.97  | 1406.637 | -2   | 704.3242 | 2 | 56.29 | 6     | Pyro-glu from Q;<br>Amidation |
| NB     | PBC27532.1           | LVDHRIPDLENEMF                                   | 48.92  | 1726.835 | 1.8  | 864.4263 | 2 | 49.73 | 8     |                               |
| NB     | PBC27532.1           | ISYDTYDERELSRDHPPLLL                             | 47.44  | 2431.202 | 2    | 811.4095 | 3 | 51.01 | 9     |                               |
| NB     | PBC27532.1           | HPISYDTYDERELSRDHPPLLL                           | 45.5   | 2665.314 | 0.7  | 889.4457 | 3 | 41.65 | 14    |                               |
| NB     | PBC27532.1           | SLPLYGGNMSKTGDSRLKSE                             | 45.37  | 2139.063 | 1    | 535.7736 | 4 | 19.63 | 8     |                               |
| NB     | PBC27532.1           | SLPLYGGNMSKTGDSRLKSEFE                           | 43.99  | 2415.174 | 1.1  | 806.0662 | 3 | 30.88 | 7     |                               |
| NB     | PBC27532.1           | IGSLSIVNSMDVLRQRVLLELARRKALQD<br>QAQIDANRRLLETIa | 41.71  | 4913.782 | 0.6  | 983.7643 | 5 | 87.07 | 14    | Amidation                     |
| NB     | PBC27532.1           | ARRKALQDQAQIDANRRLLETIa                          | 37.21  | 2577.458 | 0.4  | 516.499  | 5 | 22.74 | 4     | Amidation                     |
| NB     | PBC27532.1           | LVDHRIPDLENEMFDSGNDPGSTVVRT                      | 58.45  | 3012.425 | 0.6  | 1005.149 | 3 | 50.38 | 18    |                               |
| NB     | PBC27982.1           | ITGQGNRIF                                        | 39.25  | 1004.54  | 0.5  | 503.2777 | 2 | 18.96 | 8     |                               |
| NB     | PBC27982.1           | SLKAPFA                                          | 34.7   | 732.417  | -0.5 | 367.2156 | 2 | 20.05 | 5     |                               |
| NB     | PBC27985.1           | YLLSGKARYa                                       | 31.25  | 1068.608 | 0.7  | 535.3116 | 2 | 11.7  | 5     | Amidation                     |
| NB     | PBC28057.1           | GNNRPVYIPQPRPPHP                                 | 45.28  | 1837.97  | 0.8  | 613.6644 | 3 | 17.05 | 10    |                               |
| NB     | PBC28057.1           | GNNRPVYIPQPRPPHPRL                               | 38.71  | 2107.155 | 1.9  | 703.3936 | 3 | 19.33 | 10    |                               |
| NB     | PBC28057.1           | PVYIPQPRPPHP                                     | 36.58  | 1396.762 | 0    | 466.5944 | 3 | 22.15 | 3     |                               |
| NB     | PBC28214.1           | GLDLGLSRGFSGSQAAKHLMGLAAANYA<br>GGPa             | 55.91  | 2985.524 | 2.3  | 996.1843 | 3 | 69.28 | 15    | Amidation                     |

|    |            |                            | 1     |          | 1    | 1        | r |       | 1  |                               |
|----|------------|----------------------------|-------|----------|------|----------|---|-------|----|-------------------------------|
| NB | PBC28214.1 | GLDLGLSRGFSGSQAAKH         | 43.4  | 1799.928 | 0.6  | 900.9717 | 2 | 23.14 | 9  |                               |
| NB | PBC28214.1 | GLDLGLSRGFSGSQAA           | 51.79 | 1534.774 | 1.7  | 768.3955 | 2 | 42.16 | 6  |                               |
| NB | PBC28214.1 | GLDLGLSRGFSGSQAAKHLMa      | 37.61 | 2043.068 | 0.8  | 682.0306 | 3 | 41.21 | 3  | Amidation                     |
| NB | PBC30406.1 | SDPHLSIGILSKPISAIPSSKFDD   | 54.85 | 2523.322 | 1.1  | 842.1155 | 3 | 58.84 | 15 |                               |
| NB | PBC30406.1 | SPSLRLRFa                  | 33.83 | 973.5821 | 0.1  | 487.7984 | 2 | 18.81 | 4  | Amidation                     |
| NB | PBC30406.1 | SDPHLSIGILSKPISAIP         | 32.67 | 1844.041 | 1.8  | 615.6886 | 3 | 64.64 | 5  |                               |
| NB | PBC30406.1 | SQRSPSLRLRFa               | 30.49 | 1344.774 | -0.2 | 449.2651 | 3 | 14.25 | 3  | Amidation                     |
| NB | PBC30406.1 | SDPHLSIGILSKP              | 47.29 | 1362.751 | 1.1  | 682.3834 | 2 | 31.95 | 8  |                               |
| NB | PBC31004.1 | pQMFTYSHGWTNa              | 36.09 | 1352.561 | 1.4  | 677.2886 | 2 | 54.66 | 3  | Pyro-glu from Q;<br>Amidation |
| NB | PBC31004.1 | STSLEELVNR                 | 32.15 | 1146.588 | 0.5  | 574.3016 | 2 | 27.94 | 3  |                               |
| NB | PBC31251.1 | YRKPPFNGSIFa               | 37.89 | 1323.709 | 0.8  | 662.8622 | 2 | 24.67 | 4  | Amidation                     |
| NB | PBC31251.1 | AYRKPPFNGSIFa              | 36.33 | 1394.746 | 1.3  | 698.3811 | 2 | 25.09 | 13 | Amidation                     |
| NB | PBC31251.1 | KPPFNGSIFa                 | 27.98 | 1004.544 | 0.7  | 503.2798 | 2 | 30.98 | 5  | Amidation                     |
| NB | PBC31251.1 | RKPPFNGSIFa                | 20.29 | 1160.645 | 1    | 581.3306 | 2 | 21.64 | 12 | Amidation                     |
| NB | PBC31431.1 | APVGYQEMQGKKNSASLNSENFGIF  | 54.25 | 2715.296 | 2.7  | 906.1084 | 3 | 48.51 | 8  |                               |
| NB | PBC31431.1 | NSIINDVKNELFPEDIN          | 51.1  | 1972.974 | 0.9  | 987.4952 | 2 | 83.93 | 25 |                               |
| NB | PBC31431.1 | STDFQDVESGSESFKRARMGFHGMRa | 45.17 | 2860.313 | 0.4  | 573.0701 | 5 | 25.77 | 7  | Amidation                     |
| NB | PBC31431.1 | ARMGFHGMRa                 | 43.34 | 1060.517 | 1    | 531.2664 | 2 | 7.55  | 19 | Amidation                     |
| NB | PBC31431.1 | APMGFQGMRG                 | 41.6  | 1050.474 | 1    | 526.2448 | 2 | 19.99 | 4  |                               |
| NB | PBC31431.1 | SPFRYLGV                   | 41.02 | 937.5021 | 0.2  | 469.7584 | 2 | 36.47 | 9  |                               |
| NB | PBC31431.1 | APMGFYGTRG                 | 40.33 | 1055.486 | 0.8  | 528.7506 | 2 | 18.81 | 3  |                               |
| NB | PBC31431.1 | APMGFQGMRa                 | 40.14 | 992.4684 | 0.5  | 497.2418 | 2 | 17.14 | 9  | Amidation                     |
| NB | PBC31431.1 | ALMGFQGVRG                 | 38.56 | 1034.533 | 1.2  | 518.2744 | 2 | 26.54 | 4  |                               |
| NB | PBC31431.1 | ALMGFQGVRa                 | 38.13 | 976.5276 | 0.8  | 489.2715 | 2 | 23.4  | 5  | Amidation                     |
| NB | PBC31431.1 | APMGFYGTRa                 | 37.78 | 997.4803 | 0.3  | 499.7476 | 2 | 15.26 | 6  | Amidation                     |

|    |            |                      |       |          | -    |          | 1 | 1     |    |                               |
|----|------------|----------------------|-------|----------|------|----------|---|-------|----|-------------------------------|
| NB | PBC31431.1 | ARMGFHGMRG           | 36.45 | 1118.523 | -0.5 | 373.848  | 3 | 9.58  | 3  |                               |
| NB | PBC31431.1 | SPFRYLGVRa           | 35.49 | 1092.619 | 0.3  | 547.3171 | 2 | 17.93 | 10 | Amidation                     |
| NB | PBC31431.1 | ASFDDEYY             | 22.86 | 1008.371 | 0.6  | 505.1932 | 2 | 33.37 | 7  |                               |
| NB | PBC31431.1 | ASFDDEYYKRAPMGFQGMRa | 50.81 | 2267.025 | 1.1  | 567.7642 | 4 | 31.82 | 6  | Amidation                     |
| NB | PBC31431.1 | STDFQDVESGSESF       | 45.52 | 1533.611 | 0.9  | 767.8133 | 2 | 45.31 | 8  |                               |
| NB | PBC32274.1 | pQLHNIIDKPRQN        | 42.12 | 1457.774 | 1.2  | 729.8951 | 2 | 16.05 | 6  | Pyro-glu from Q               |
| NB | PBC32274.1 | RVPWTPSPRLa          | 36.39 | 1206.699 | 1.2  | 604.3572 | 2 | 19.93 | 5  | Amidation                     |
| NB | PBC32274.1 | pQLHNIIDKPRQNFNDPRF  | 36.19 | 2234.135 | 0.3  | 559.5411 | 4 | 32.1  | 7  | Pyro-glu from Q               |
| NB | PBC32274.1 | pQITQFTPRLa          | 33.03 | 1084.603 | 0.4  | 543.309  | 2 | 53.9  | 4  | Pyro-glu from Q;<br>Amidation |
| NB | PBC32274.1 | VPWTPSPRLa           | 32.1  | 1050.597 | 0.2  | 526.3061 | 2 | 25.14 | 3  | Amidation                     |
| NB | PBC32274.1 | pQLHNIIDKPRQNFNDP    | 28.81 | 1930.965 | 1.6  | 966.4913 | 2 | 26.9  | 4  | Pyro-glu from Q               |
| NB | PBC32274.1 | SGMWFGPRLa           | 27.1  | 1048.528 | 1.5  | 525.2719 | 2 | 49.17 | 3  | Amidation                     |
| NB | PBC32274.1 | TSQDITSGMWFGPRLa     | 42.69 | 1693.825 | 1.1  | 847.9205 | 2 | 63.45 | 10 | Amidation                     |
| NB | PBC32274.1 | DITSGMWFGPRLa        | 33.24 | 1377.686 | 1.6  | 689.8515 | 2 | 77.83 | 3  | Amidation                     |
| NB | PBC32274.1 | pQLHNIIDKP           | 32.19 | 1059.571 | -0.1 | 530.7928 | 2 | 24.84 | 5  | Pyro-glu from Q               |
| NB | PBC32274.1 | SQDITSGMWFGPRLa      | 31.19 | 1592.777 | 2.4  | 797.3976 | 2 | 67.49 | 3  | Amidation                     |
| NB | PBC32274.1 | GMWFGPRLa            | 31.02 | 961.4956 | 0.7  | 481.7554 | 2 | 50.43 | 5  | Amidation                     |
| NB | PBC32496.1 | IPAADKERLLN          | 41.66 | 1238.698 | 0.7  | 620.3568 | 2 | 14.79 | 5  |                               |
| NB | PBC32496.1 | LRNQLDIGDLQ          | 40.78 | 1283.683 | 2.1  | 642.8503 | 2 | 31.12 | 6  |                               |
| NB | PBC32496.1 | SYWKQCAFNAVSCFa      | 39.16 | 1651.728 | 1.1  | 826.8719 | 2 | 69.48 | 5  | Amidation                     |
| NB | PBC32545.1 | NSELINSLLGLPKNMNNAa  | 46.62 | 1940.015 | 1.7  | 971.0164 | 2 | 72.76 | 8  | Amidation                     |
| NB | PBC32608.1 | IDLSRFYGHFNTKR       | 47.18 | 1752.906 | 1.2  | 585.3099 | 3 | 28.6  | 11 |                               |
| NB | PBC32608.1 | IDLSRFYGHFNT         | 45.98 | 1468.71  | 1.8  | 735.3635 | 2 | 49.16 | 9  |                               |
| NB | PBC32608.1 | IDLSRFYGHF           | 43.61 | 1253.619 | 0.9  | 627.8174 | 2 | 53.8  | 6  |                               |
| NB | PBC32608.1 | DLSRFYGHF            | 26.84 | 1140.535 | 0.4  | 571.2751 | 2 | 36.46 | 7  |                               |

| NB | PBC32608.1 | IDLSRFYGHFNTK                      | 29.22 | 1596.805 | -0.1 | 533.2755 | 3 | 35.94 | 3  |                               |
|----|------------|------------------------------------|-------|----------|------|----------|---|-------|----|-------------------------------|
| NB | PBC32678.1 | pQDVDHVFLRFa                       | 40.98 | 1256.63  | 0.8  | 629.3228 | 2 | 61.33 | 6  | Pyro-glu from Q;<br>Amidation |
| NB | PBC32678.1 | QDVDHVFLRFa                        | 40.61 | 1273.657 | 0.9  | 637.8362 | 2 | 36.74 | 8  | Amidation                     |
| NB | PBC32678.1 | pQDVDHVFLR                         | 39.04 | 1110.546 | 1.2  | 556.2808 | 2 | 33.73 | 4  | Pyro-glu from Q               |
| NB | PBC32727.1 | LPTNLGEDTKKTEQTMRPKS               | 49.08 | 2273.169 | 0.9  | 569.2999 | 4 | 15.3  | 14 |                               |
| NB | PBC32727.1 | SQAYDPYSNAAQFQLSSQSRGYPYQHRL       | 48.8  | 3261.523 | 0.5  | 816.3884 | 4 | 39.12 | 7  |                               |
| NB | PBC32727.1 | NVPIYQEPRF                         | 35.7  | 1261.646 | 0.1  | 631.8301 | 2 | 32.71 | 5  |                               |
| NB | PBC32727.1 | YPYQHRLIY                          | 34.97 | 1251.64  | 1.2  | 626.8281 | 2 | 21.18 | 4  |                               |
| NB | PBC32727.1 | SQAYDPYSNAAQFQLSSQSRGYPYQHRLI<br>Y | 55.22 | 3537.67  | 1.8  | 885.4265 | 4 | 51.39 | 26 |                               |
| NB | PBC32727.1 | SQAYDPYSNAAQFQLSSQSRGYPYQHRLI      | 51.38 | 3374.607 | 1.7  | 844.6604 | 4 | 46.46 | 5  |                               |
| NB | PBC32727.1 | VPIYQEPRF                          | 36.9  | 1147.603 | 0.8  | 574.809  | 2 | 30.77 | 3  |                               |
| NB | PBC32727.1 | GYPYQHRLIY                         | 27.89 | 1308.662 | 1.5  | 655.339  | 2 | 22.03 | 5  |                               |
| NB | PBC32914.1 | SIATLAKNDDLPISLHDRMAENEDDEE        | 54.94 | 3040.393 | 0.8  | 1014.472 | 3 | 42.04 | 10 |                               |
| NB | PBC32914.1 | FLLLPATDNNYFHQKLPSSLRSKSL          | 47.88 | 2888.555 | 1.7  | 578.7192 | 5 | 54.83 | 13 |                               |
| NB | PBC32914.1 | YVASLARTGDLPIRGQ                   | 44.56 | 1715.932 | 1    | 858.974  | 2 | 24.87 | 10 |                               |
| NB | PBC32914.1 | NVGSVAREHGLPYa                     | 43.9  | 1396.721 | 1    | 699.3685 | 2 | 17.05 | 11 | Amidation                     |
| NB | PBC32914.1 | NIASLIRDYDQSRENRVSFPa              | 40.86 | 2378.209 | 0.9  | 793.7443 | 3 | 48.95 | 11 | Amidation                     |
| NB | PBC32914.1 | NVGTLARDFALPPa                     | 39.83 | 1368.751 | 1.4  | 685.3839 | 2 | 44    | 19 | Amidation                     |
| NB | PBC32914.1 | SISSLARTGDLPVREQ                   | 39.66 | 1727.917 | 1.5  | 576.9803 | 3 | 23.16 | 8  |                               |
| NB | PBC32914.1 | YVASLARTGDLPIRa                    | 36.12 | 1529.868 | 0.5  | 510.9635 | 3 | 22.56 | 6  | Amidation                     |
| NB | PBC32914.1 | NVASLARTYTLPQNAa                   | 34.95 | 1616.863 | 1.2  | 809.4399 | 2 | 30.41 | 7  | Amidation                     |
| NB | PBC32914.1 | GIFVPGSVILRALSRQa                  | 42.55 | 1711.026 | 1.8  | 856.5216 | 2 | 70.58 | 13 | Amidation                     |
| NB | PBC32914.1 | SVSSLAKNSAWPVSL                    | 38.37 | 1544.82  | 1.6  | 773.4184 | 2 | 53.19 | 5  |                               |
| NB | PBC34787.1 | AYTYVSEYKRLPVYNFGIa                | 51.99 | 2181.126 | 0.6  | 1091.571 | 2 | 58.6  | 7  | Amidation                     |

| NB | PBC34787.1     | PNDMLSQRYHFGLa               | 48.95 | 1575.762 | 0.4  | 788.8884 | 2 | 32.82 | 5  | Amidation                     |
|----|----------------|------------------------------|-------|----------|------|----------|---|-------|----|-------------------------------|
| NB | PBC34787.1     | AVHYSGGQPLGSKRPNDMLSQRYHFGLa | 47.29 | 3013.509 | 1.4  | 754.3856 | 4 | 26.02 | 14 | Amidation                     |
| NB | PBC34787.1     | AVHYSGGQPLGS                 | 37.66 | 1171.562 | 0.7  | 586.7888 | 2 | 13.39 | 6  |                               |
| NB | PBC34787.1     | RQYSFGLa                     | 31.08 | 868.4555 | 0.6  | 435.2353 | 2 | 21.52 | 3  | Amidation                     |
| NB | PBC34787.1     | WIDTNDNKRGRDYSFGLa           | 28.42 | 2054.992 | 1.5  | 686.0057 | 3 | 26.77 | 3  | Amidation                     |
| NB | PBC34787.1     | LDYLPVDNPAFH                 | 42.16 | 1399.677 | 1.7  | 700.847  | 2 | 52.91 | 3  |                               |
| NB | PBC34787.1     | YPLRLNLD                     | 32.63 | 1002.55  | 0.2  | 502.2823 | 2 | 35.29 | 3  |                               |
| NB | PBC34787.1     | GRDYSFGLa                    | 30.69 | 912.4453 | 0.4  | 457.2301 | 2 | 24.05 | 3  | Amidation                     |
| NB | PBC34787.1     | GRQPYSFGLa                   | 30.68 | 1022.53  | 0.4  | 512.2723 | 2 | 23.69 | 5  | Amidation                     |
| NB | XP_016905690.1 | LNSDSRNSQVNGYTPRLa           | 44.7  | 1918.961 | 1.8  | 640.662  | 3 | 15.42 | 3  | Amidation                     |
| NB | XP_016905690.1 | SNAPVSNLNFN                  | 42.02 | 1175.557 | 1.4  | 588.7867 | 2 | 30.68 | 3  |                               |
| NB | XP_016905690.1 | NSDSRNSQVNGYTPRLa            | 40.74 | 1805.877 | 1.5  | 602.9671 | 3 | 14.5  | 3  | Amidation                     |
| NB | XP_016905690.1 | RASGLLSYPRIa                 | 25.05 | 1230.72  | 0.3  | 411.2473 | 3 | 22.05 | 3  | Amidation                     |
| NB | XP_016908608.1 | LTNYLATGHRTNGGPVI            | 51.9  | 1782.938 | 1    | 892.477  | 2 | 24.82 | 11 |                               |
| NB | XP_016908608.1 | NLDEIDRVGWSGFV               | 49.71 | 1605.779 | 2.2  | 803.8984 | 2 | 74.07 | 6  |                               |
| NB | XP_016908608.1 | LTNYLATGHRTNGGPVIRRFa        | 35.11 | 2241.224 | 0.8  | 748.0826 | 3 | 18.66 | 14 | Amidation                     |
| NB | XP_016908608.1 | NIDEIDRTAFDNFF               | 48.19 | 1715.779 | 1    | 858.8976 | 2 | 83.39 | 6  |                               |
| NB | XP_016908970.1 | MVPVPVHHMADELLRSGPDTVI       | 54.41 | 2412.229 | 0.5  | 1207.123 | 2 | 60.48 | 21 |                               |
| NB | XP_016908970.1 | VHHMADELLRSGPDTVI            | 51.6  | 1888.947 | 0.8  | 945.4813 | 2 | 32.22 | 9  |                               |
| NB | XP_016908970.1 | MVPVPVHHMADEL                | 33.03 | 1473.711 | 1.3  | 737.8636 | 2 | 27.55 | 4  |                               |
| NB | XP_016908970.1 | LRSGPDTVI                    | 25.3  | 956.5291 | 0.3  | 479.2719 | 2 | 16.69 | 3  |                               |
| NB | XP_016908970.1 | VPVPVHHMADELL                | 47.4  | 1455.754 | 0.2  | 728.8846 | 2 | 32.18 | 6  |                               |
| NB | XP_016920932.1 | TWKSPDIVIRFa                 | 44.03 | 1359.766 | 0.2  | 454.2628 | 3 | 42.36 | 11 | Amidation                     |
| NB | XP_016920932.1 | GRNDLNFIRYa                  | 42.19 | 1265.663 | 1.3  | 633.8395 | 2 | 23.39 | 5  | Amidation                     |
| PF | PBC25365.1     | pQQFDDYGHLRFa                | 36.55 | 1406.637 | -1.5 | 704.3246 | 2 | 56.2  | 15 | Pyro-glu from Q;<br>Amidation |

|    |            |                                                  |       |          | -    |          |   |       |    |           |
|----|------------|--------------------------------------------------|-------|----------|------|----------|---|-------|----|-----------|
| PF | PBC27532.1 | LVDHRIPDLENEMF                                   | 57.77 | 1726.835 | 2    | 864.4264 | 2 | 49.65 | 10 |           |
| PF | PBC27532.1 | ISYDTYDERELSRDHPPLLL                             | 53.81 | 2431.202 | 1.3  | 811.4089 | 3 | 50.84 | 16 |           |
| PF | PBC27532.1 | SLPLYGGNMSKTGDSRLKSEFE                           | 52.9  | 2415.174 | 1.1  | 806.0662 | 3 | 30.78 | 16 |           |
| PF | PBC27532.1 | SLPLYGGNMSKTGDSRLKSE                             | 52.19 | 2139.063 | 1.2  | 1070.54  | 2 | 15.87 | 8  |           |
| PF | PBC27532.1 | HPISYDTYDERELSRDHPPLLL                           | 51.83 | 2665.314 | 1.1  | 889.4461 | 3 | 40.68 | 31 |           |
| PF | PBC27532.1 | IGSLSIVNSMDVLRQRVLLELARRKALQD<br>QAQIDANRRLLETIa | 40.04 | 4913.782 | 2.3  | 983.766  | 5 | 87.46 | 19 | Amidation |
| PF | PBC27532.1 | ARRKALQDQAQIDANRRLLETIa                          | 26.54 | 2577.458 | 0.2  | 516.4989 | 5 | 21.29 | 6  | Amidation |
| PF | PBC27532.1 | LVDHRIPDLENEMFDSGNDPGSTVVRT                      | 72.85 | 3012.425 | 0.5  | 1005.149 | 3 | 50.35 | 25 |           |
| PF | PBC27982.1 | ITGQGNRIF                                        | 44.58 | 1004.54  | 0.3  | 503.2776 | 2 | 15.7  | 12 |           |
| PF | PBC27982.1 | SLKAPFA                                          | 33.45 | 732.417  | -0.4 | 367.2156 | 2 | 18.98 | 3  |           |
| PF | PBC27985.1 | YLLSGKARYa                                       | 30.64 | 1068.608 | 0.9  | 535.3118 | 2 | 10.92 | 4  | Amidation |
| PF | PBC28057.1 | GNNRPVYIPQPRPPHP                                 | 52.22 | 1837.97  | 0.5  | 919.9927 | 2 | 17.43 | 18 |           |
| PF | PBC28057.1 | GNNRPVYIPQPRPPHPRL                               | 49.35 | 2107.155 | 0.4  | 703.3926 | 3 | 17.9  | 21 |           |
| PF | PBC28057.1 | PVYIPQPRPPHP                                     | 42.58 | 1396.762 | 0.4  | 466.5946 | 3 | 21.67 | 7  |           |
| PF | PBC28214.1 | GLDLGLSRGFSGSQAAKHLMGLAAANYA<br>GGPa             | 63.47 | 2985.524 | 2.3  | 747.39   | 4 | 69.13 | 14 | Amidation |
| PF | PBC28214.1 | GLDLGLSRGFSGSQAAKH                               | 45.58 | 1799.928 | 1.1  | 900.9721 | 2 | 22.16 | 8  |           |
| PF | PBC28214.1 | GLDLGLSRGFSGSQAA                                 | 58.47 | 1534.774 | 2.1  | 768.3959 | 2 | 42.52 | 5  |           |
| PF | PBC28214.1 | GLDLGLSRGFSGSQAAKHLMa                            | 25.64 | 2043.068 | 0.4  | 682.0303 | 3 | 41.15 | 4  | Amidation |
| PF | PBC28214.1 | HLMGLAAANYAGGPa                                  | 41.31 | 1340.666 | 1.6  | 671.3413 | 2 | 26.72 | 8  | Amidation |
| PF | PBC30406.1 | SDPHLSIGILSKPISAIPSSKFDD                         | 66.06 | 2523.322 | 1.2  | 842.1157 | 3 | 58.92 | 17 |           |
| PF | PBC30406.1 | SQRSPSLRLRFa                                     | 38.3  | 1344.774 | -0.2 | 449.2651 | 3 | 14.04 | 4  | Amidation |
| PF | PBC30406.1 | SPSLRLRFa                                        | 37.71 | 973.5821 | 0.2  | 487.7984 | 2 | 16.5  | 4  | Amidation |
| PF | PBC30406.1 | SDPHLSIGILSKPISAIP                               | 27.97 | 1844.041 | 1.2  | 923.0287 | 2 | 63.92 | 8  |           |
| PF | PBC30406.1 | SDPHLSIGILSKP                                    | 37.51 | 1362.751 | -0.6 | 455.2573 | 3 | 31.93 | 9  |           |
|    | •          | •                                                |       | •        |      | •        |   | •     |    |           |

| PF | PBC31004.1 | pQMFTYSHGWTNa              | 42.17 | 1352.561 | 1.5  | 677.2887 | 2 | 53.87 | 6  | Pyro-glu from Q;<br>Amidation |
|----|------------|----------------------------|-------|----------|------|----------|---|-------|----|-------------------------------|
| PF | PBC31004.1 | SFSENMINDHRQPASTNNNY       | 56.41 | 2338.003 | -0.2 | 1170.009 | 2 | 20.18 | 7  |                               |
| PF | PBC31251.1 | AYRKPPFNGSIFa              | 39.22 | 1394.746 | 1.1  | 698.381  | 2 | 23.96 | 9  | Amidation                     |
| PF | PBC31251.1 | RKPPFNGSIFa                | 27.47 | 1160.645 | 1.8  | 581.331  | 2 | 20.02 | 3  | Amidation                     |
| PF | PBC31251.1 | KPPFNGSIFa                 | 25.66 | 1004.544 | 0.6  | 503.2798 | 2 | 29.89 | 3  | Amidation                     |
| PF | PBC31431.1 | APVGYQEMQGKKNSASLNSENFGIF  | 77.23 | 2715.296 | 0.2  | 1358.656 | 2 | 48.2  | 11 |                               |
| PF | PBC31431.1 | NSIINDVKNELFPEDIN          | 57.78 | 1972.974 | 1.6  | 987.4959 | 2 | 84.36 | 25 |                               |
| PF | PBC31431.1 | ARMGFHGMRa                 | 51.41 | 1060.517 | 0.9  | 531.2663 | 2 | 6.72  | 21 | Amidation                     |
| PF | PBC31431.1 | APMGFQGMRG                 | 46.15 | 1050.474 | 0.4  | 526.2444 | 2 | 19.43 | 3  |                               |
| PF | PBC31431.1 | STDFQDVESGSESFKRARMGFHGMRa | 45.36 | 2860.313 | 1.5  | 716.0867 | 4 | 24.71 | 5  | Amidation                     |
| PF | PBC31431.1 | SPFRYLGV                   | 45.28 | 937.5021 | 0.6  | 469.7586 | 2 | 35.51 | 7  |                               |
| PF | PBC31431.1 | APMGFQGMRa                 | 44.07 | 992.4684 | -0.1 | 497.2415 | 2 | 15.49 | 6  | Amidation                     |
| PF | PBC31431.1 | APMGFYGTRG                 | 41.45 | 1055.486 | 0.8  | 528.7506 | 2 | 18.36 | 3  |                               |
| PF | PBC31431.1 | ARMGFHGMRG                 | 40.87 | 1118.523 | -0.6 | 373.8479 | 3 | 9.39  | 3  |                               |
| PF | PBC31431.1 | ALMGFQGVRG                 | 39.1  | 1034.533 | 0.9  | 518.2743 | 2 | 25.78 | 3  |                               |
| PF | PBC31431.1 | APMGFYGTRa                 | 39.01 | 997.4803 | 0.6  | 499.7478 | 2 | 15.72 | 4  | Amidation                     |
| PF | PBC31431.1 | ALMGFQGVRa                 | 37.61 | 976.5276 | 0.6  | 489.2714 | 2 | 22.47 | 4  | Amidation                     |
| PF | PBC31431.1 | SPFRYLGVRa                 | 34.87 | 1092.619 | 0.9  | 547.3174 | 2 | 16.65 | 10 | Amidation                     |
| PF | PBC31431.1 | ASFDDEYY                   | 26.92 | 1008.371 | 0.4  | 505.1931 | 2 | 32.7  | 4  |                               |
| PF | PBC31431.1 | ASFDDEYYKRAPMGFQGMRa       | 54.61 | 2267.025 | 0.7  | 567.764  | 4 | 30.79 | 8  | Amidation                     |
| PF | PBC31431.1 | STDFQDVESGSESF             | 46.63 | 1533.611 | 1.5  | 767.8138 | 2 | 44.9  | 12 |                               |
| PF | PBC32274.1 | pQLHNIIDKPRQN              | 47.32 | 1457.774 | 1.2  | 729.8951 | 2 | 16.62 | 6  | Pyro-glu from Q               |
| PF | PBC32274.1 | pQLHNIIDKPRQNFNDP          | 40.55 | 1930.965 | 1.2  | 966.4909 | 2 | 26.43 | 6  | Pyro-glu from Q               |
| PF | PBC32274.1 | pQITQFTPRLa                | 39.64 | 1084.603 | 1    | 543.3093 | 2 | 54    | 4  | Pyro-glu from Q;<br>Amidation |

|    |            |                              | 1     | 1        | 1    | 1        | 1 | 1     |    |                               |
|----|------------|------------------------------|-------|----------|------|----------|---|-------|----|-------------------------------|
| PF | PBC32274.1 | SGMWFGPRLa                   | 39.39 | 1048.528 | 1.1  | 525.2717 | 2 | 47.79 | 4  | Amidation                     |
| PF | PBC32274.1 | RVPWTPSPRLa                  | 39.12 | 1206.699 | 0.6  | 604.3569 | 2 | 19.13 | 7  | Amidation                     |
| PF | PBC32274.1 | VPWTPSPRLa                   | 37.19 | 1050.597 | 0.4  | 526.3062 | 2 | 24.2  | 4  | Amidation                     |
| PF | PBC32274.1 | pQLHNIIDKPRQNFNDPRF          | 30.58 | 2234.135 | 1.6  | 559.5418 | 4 | 32.43 | 4  | Pyro-glu from Q               |
| PF | PBC32274.1 | TSQDITSGMWFGPRLa             | 46.98 | 1693.825 | 1.5  | 847.9208 | 2 | 62.81 | 10 | Amidation                     |
| PF | PBC32274.1 | SQDITSGMWFGPRLa              | 39.1  | 1592.777 | 1.5  | 797.397  | 2 | 66.63 | 4  | Amidation                     |
| PF | PBC32274.1 | pQLHNIIDKP                   | 37.74 | 1059.571 | 0.2  | 530.793  | 2 | 24.59 | 3  | Pyro-glu from Q               |
| PF | PBC32274.1 | DITSGMWFGPRLa                | 36.73 | 1377.686 | 1.7  | 689.8516 | 2 | 76.96 | 4  | Amidation                     |
| PF | PBC32274.1 | GMWFGPRLa                    | 25.78 | 961.4956 | 0.9  | 481.7555 | 2 | 49.4  | 6  | Amidation                     |
| PF | PBC32496.1 | IPAADKERLLN                  | 44.95 | 1238.698 | -0.1 | 620.3563 | 2 | 15.01 | 4  |                               |
| PF | PBC32496.1 | LRNQLDIGDLQ                  | 43.76 | 1283.683 | 2.6  | 642.8506 | 2 | 30.89 | 5  |                               |
| PF | PBC32496.1 | SYWKQCAFNAVSCFa              | 41.11 | 1651.728 | 1.9  | 826.8726 | 2 | 69.18 | 7  | Amidation                     |
| PF | PBC32545.1 | NSELINSLLGLPKNMNNAa          | 50.59 | 1940.015 | 1.2  | 971.0159 | 2 | 72.01 | 11 | Amidation                     |
| PF | PBC32608.1 | IDLSRFYGHFNT                 | 52.52 | 1468.71  | 1.3  | 735.3632 | 2 | 47.67 | 11 |                               |
| PF | PBC32608.1 | IDLSRFYGHF                   | 45.01 | 1253.619 | 0.3  | 627.8171 | 2 | 52.78 | 9  |                               |
| PF | PBC32608.1 | IDLSRFYGHFNTKR               | 38.28 | 1752.906 | 0.4  | 439.2339 | 4 | 27.86 | 5  |                               |
| PF | PBC32608.1 | DLSRFYGHF                    | 26.3  | 1140.535 | 0.7  | 571.2753 | 2 | 35.46 | 8  |                               |
| PF | PBC32608.1 | IDLSRFYGHFNTK                | 34.1  | 1596.805 | -0.9 | 533.2751 | 3 | 35.46 | 10 |                               |
| PF | PBC32678.1 | pQDVDHVFLRFa                 | 43.61 | 1256.63  | 1.4  | 629.3232 | 2 | 60.92 | 9  | Pyro-glu from Q;<br>Amidation |
| PF | PBC32678.1 | pQDVDHVFLR                   | 36.49 | 1110.546 | -0.8 | 556.2797 | 2 | 32.82 | 3  | Pyro-glu from Q               |
| PF | PBC32678.1 | QDVDHVFLRFa                  | 30.34 | 1273.657 | 2.2  | 637.837  | 2 | 35.62 | 10 | Amidation                     |
| PF | PBC32727.1 | SQAYDPYSNAAQFQLSSQSRGYPYQHRL | 62.05 | 3261.523 | 1.3  | 816.389  | 4 | 38.35 | 9  |                               |
| PF | PBC32727.1 | LPTNLGEDTKKTEQTMRPKS         | 55.51 | 2273.169 | 1.6  | 569.3003 | 4 | 15.34 | 14 |                               |
| PF | PBC32727.1 | YPYQHRLIY                    | 44.17 | 1251.64  | 0.7  | 626.8277 | 2 | 19.76 | 5  |                               |
| PF | PBC32727.1 | NVPIYQEPRF                   | 40.73 | 1261.646 | 0.6  | 631.8304 | 2 | 32.28 | 3  |                               |

| PF | PBC32727.1 | SQAYDPYSNAAQFQLSSQSRGYPYQHRLI | 67.17 | 3537.67  | 1.4  | 885.4261 | 4        | 48.14 | 22 |           |
|----|------------|-------------------------------|-------|----------|------|----------|----------|-------|----|-----------|
| PF | PBC32727.1 |                               | 42.19 | 3374.607 | 1.3  | 844.66   | 4        | 46.04 | 3  |           |
|    |            | SQAYDPYSNAAQFQLSSQSRGYPYQHRLI |       |          |      |          | <u> </u> |       | -  |           |
| PF | PBC32727.1 | VPIYQEPRF                     | 39.88 | 1147.603 | 0.8  | 574.809  | 2        | 30.27 | 4  |           |
| PF | PBC32727.1 | GYPYQHRLIY                    | 35.91 | 1308.662 | 1.2  | 655.3388 | 2        | 20.49 | 7  |           |
| PF | PBC32914.1 | SIATLAKNDDLPISLHDRMAENEDDEE   | 66.67 | 3040.393 | 0.9  | 1014.473 | 3        | 41.42 | 13 |           |
| PF | PBC32914.1 | FLLLPATDNNYFHQKLPSSLRSKSL     | 51.8  | 2888.555 | 0.9  | 963.8597 | 3        | 53.93 | 7  |           |
| PF | PBC32914.1 | YVASLARTGDLPIRGQ              | 48.79 | 1715.932 | 0.7  | 858.9738 | 2        | 24.81 | 12 |           |
| PF | PBC32914.1 | NVGSVAREHGLPYa                | 47.94 | 1396.721 | 1    | 699.3685 | 2        | 15.44 | 7  | Amidation |
| PF | PBC32914.1 | NVASLARTYTLPQNAa              | 47.62 | 1616.863 | 1.3  | 809.44   | 2        | 30.12 | 4  | Amidation |
| PF | PBC32914.1 | NIASLIRDYDQSRENRVSFPa         | 46.82 | 2378.209 | 0.5  | 793.744  | 3        | 48.39 | 10 | Amidation |
| PF | PBC32914.1 | SISSLARTGDLPVREQ              | 45.9  | 1727.917 | 1.2  | 576.9802 | 3        | 23.96 | 9  |           |
| PF | PBC32914.1 | NVGTLARDFALPPa                | 45.12 | 1368.751 | 1.3  | 685.3839 | 2        | 44.83 | 20 | Amidation |
| PF | PBC32914.1 | YVASLARTGDLPIRa               | 37.25 | 1529.868 | 0.5  | 510.9634 | 3        | 22.77 | 6  | Amidation |
| PF | PBC32914.1 | SVSSLAKNSAWPVSL               | 47.07 | 1544.82  | 2.4  | 773.419  | 2        | 52.64 | 6  |           |
| PF | PBC32914.1 | GIFVPGSVILRALSRQa             | 38.99 | 1711.026 | 0.9  | 571.3497 | 3        | 69.51 | 19 | Amidation |
| PF | PBC34787.1 | AYTYVSEYKRLPVYNFGIa           | 59.77 | 2181.126 | 0.7  | 1091.571 | 2        | 58.48 | 9  | Amidation |
| PF | PBC34787.1 | PNDMLSQRYHFGLa                | 59.21 | 1575.762 | 1    | 788.8889 | 2        | 32.45 | 8  | Amidation |
| PF | PBC34787.1 | AVHYSGGQPLGSKRPNDMLSQRYHFGLa  | 50.41 | 3013.509 | 0.8  | 1005.511 | 3        | 26.04 | 12 | Amidation |
| PF | PBC34787.1 | AVHYSGGQPLGS                  | 38.4  | 1171.562 | 1    | 586.7889 | 2        | 13.02 | 5  |           |
| PF | PBC34787.1 | RQYSFGLa                      | 33.4  | 868.4555 | -0.2 | 435.235  | 2        | 19.76 | 3  | Amidation |
| PF | PBC34787.1 | WIDTNDNKRGRDYSFGLa            | 30.34 | 2054.992 | 1.4  | 686.0056 | 3        | 26.1  | 4  | Amidation |
| PF | PBC34787.1 | LDYLPVDNPAFH                  | 48.74 | 1399.677 | 1    | 700.8466 | 2        | 53.02 | 6  |           |
| PF | PBC34787.1 | GRQPYSFGLa                    | 33.85 | 1022.53  | 1.3  | 512.2728 | 2        | 23.75 | 5  | Amidation |
| PF | PBC34787.1 | GRDYSFGLa                     | 29.14 | 912.4453 | 0    | 457.2299 | 2        | 23.11 | 7  | Amidation |
| PF | PBC34787.1 | YPLRLNLD                      | 28.83 | 1002.55  | 0.5  | 502.2824 | 2        | 34.88 | 3  |           |

|    |                |                                                  |       |          |      | -        | - |       |    |                               |
|----|----------------|--------------------------------------------------|-------|----------|------|----------|---|-------|----|-------------------------------|
| PF | XP_016905690.1 | LNSDSRNSQVNGYTPRLa                               | 51.57 | 1918.961 | 1.2  | 640.6617 | 3 | 15.11 | 5  | Amidation                     |
| PF | XP_016905690.1 | NSDSRNSQVNGYTPRLa                                | 49.71 | 1805.877 | 1.4  | 602.967  | 3 | 14.65 | 4  | Amidation                     |
| PF | XP_016905690.1 | RASGLLSYPRIa                                     | 37.06 | 1230.72  | 1.3  | 616.3679 | 2 | 20.79 | 4  | Amidation                     |
| PF | XP_016908608.1 | LTNYLATGHRTNGGPVI                                | 61.58 | 1782.938 | -0.6 | 892.4755 | 2 | 24.48 | 7  |                               |
| PF | XP_016908608.1 | NLDEIDRVGWSGFV                                   | 55.78 | 1605.779 | 1.8  | 803.8981 | 2 | 73.08 | 9  |                               |
| PF | XP_016908608.1 | LTNYLATGHRTNGGPVIRRFa                            | 38.36 | 2241.224 | 0.2  | 449.2522 | 5 | 15.5  | 13 | Amidation                     |
| PF | XP_016908608.1 | NIDEIDRTAFDNFF                                   | 54.7  | 1715.779 | 0.8  | 858.8975 | 2 | 83.7  | 6  |                               |
| PF | XP_016908970.1 | MVPVPVHHMADELLRSGPDTVI                           | 63.82 | 2412.229 | 1    | 1207.123 | 2 | 59.89 | 23 |                               |
| PF | XP_016908970.1 | VHHMADELLRSGPDTVI                                | 59.42 | 1888.947 | 1    | 945.4814 | 2 | 31.3  | 12 |                               |
| PF | XP_016908970.1 | MVPVPVHHMADEL                                    | 38.66 | 1473.711 | 0.6  | 737.8632 | 2 | 26.32 | 4  |                               |
| PF | XP_016908970.1 | LRSGPDTVI                                        | 33.3  | 956.5291 | 0.5  | 479.2721 | 2 | 16.34 | 3  |                               |
| PF | XP_016908970.1 | VPVPVHHMADELL                                    | 33.21 | 1455.754 | 1.1  | 728.8853 | 2 | 31.73 | 13 |                               |
| PF | XP_016920932.1 | TWKSPDIVIRFa                                     | 42.29 | 1359.766 | 0.3  | 454.2628 | 3 | 41.77 | 11 | Amidation                     |
| PF | XP_016920932.1 | GRNDLNFIRYa                                      | 46.06 | 1265.663 | 0.5  | 633.839  | 2 | 23.5  | 8  | Amidation                     |
| NF | PBC25365.1     | pQQFDDYGHLRFa                                    | 57.86 | 1406.637 | 1.1  | 704.3264 | 2 | 57.22 | 3  | Pyro-glu from Q;<br>Amidation |
| NF | PBC27532.1     | SLPLYGGNMSKTGDSRLKSEFE                           | 72.83 | 2415.174 | -1.7 | 1208.592 | 2 | 29.14 | 9  |                               |
| NF | PBC27532.1     | SLPLYGGNMSKTGDSRLKSE                             | 70.09 | 2139.063 | -1.1 | 1070.538 | 2 | 19.53 | 9  |                               |
| NF | PBC27532.1     | HPISYDTYDERELSRDHPPLLL                           | 51.4  | 2665.314 | 1.7  | 889.4467 | 3 | 40.88 | 12 |                               |
| NF | PBC27532.1     | ARRKALQDQAQIDANRRLLETIa                          | 50.38 | 2577.458 | 0.9  | 645.3723 | 4 | 21.77 | 9  | Amidation                     |
| NF | PBC27532.1     | LVDHRIPDLENEMF                                   | 49.87 | 1726.835 | 1.2  | 576.6196 | 3 | 48.67 | 5  |                               |
| NF | PBC27532.1     | ISYDTYDERELSRDHPPLLL                             | 47.14 | 2431.202 | -1.4 | 811.4067 | 3 | 49.77 | 5  |                               |
| NF | PBC27532.1     | IGSLSIVNSMDVLRQRVLLELARRKALQD<br>QAQIDANRRLLETIa | 32.59 | 4913.782 | 2.9  | 819.9734 | 6 | 88.02 | 6  | Amidation                     |
| NF | PBC27532.1     | LVDHRIPDLENEMFDSGNDPGSTVVRT                      | 69.38 | 3012.425 | 2.7  | 1005.152 | 3 | 56.97 | 3  |                               |
| NF | PBC27982.1     | ITGQGNRIF                                        | 47.84 | 1004.54  | 1    | 503.2779 | 2 | 17.63 | 4  |                               |

|    |            |                                      | 1     | 1        |      | 1        |   | 1     | 1  |                               |
|----|------------|--------------------------------------|-------|----------|------|----------|---|-------|----|-------------------------------|
| NF | PBC27982.1 | SLKAPFA                              | 35.82 | 732.417  | -1.3 | 367.2153 | 2 | 19.3  | 3  |                               |
| NF | PBC27985.1 | YLLSGKARYa                           | 28.55 | 1068.608 | 0.4  | 535.3115 | 2 | 11.92 | 6  | Amidation                     |
| NF | PBC28057.1 | GNNRPVYIPQPRPPHP                     | 61.04 | 1837.97  | 0.9  | 613.6645 | 3 | 13.46 | 17 |                               |
| NF | PBC28057.1 | GNNRPVYIPQPRPPHPRL                   | 57.25 | 2107.155 | 1.7  | 703.3935 | 3 | 15.04 | 61 |                               |
| NF | PBC28057.1 | PVYIPQPRPPHP                         | 42.53 | 1396.762 | 0    | 466.5945 | 3 | 18.93 | 7  |                               |
| NF | PBC28214.1 | GLDLGLSRGFSGSQAAKHLMGLAAANYA<br>GGPa | 48.64 | 2985.524 | 2.3  | 996.1843 | 3 | 69.28 | 8  | Amidation                     |
| NF | PBC28214.1 | GLDLGLSRGFSGSQAA                     | 38.12 | 1534.774 | 1.7  | 768.3955 | 2 | 42.16 | 5  |                               |
| NF | PBC28214.1 | GLDLGLSRGFSGSQAAKH                   | 35.47 | 1799.928 | 0.4  | 450.9894 | 4 | 18.94 | 4  |                               |
| NF | PBC28214.1 | HLMGLAAANYAGGPa                      | 52.17 | 1340.666 | 0.2  | 671.3403 | 2 | 24.83 | 3  | Amidation                     |
| NF | PBC28214.1 | GLDLGLSRGFSGSQAAKHLMa                | 53.99 | 2985.524 | -1.5 | 1493.767 | 2 | 69.37 | 19 | Amidation                     |
| NF | PBC30406.1 | SDPHLSIGILSKPISAIPSSKFDD             | 66.11 | 2523.322 | -2.7 | 1262.665 | 2 | 57.71 | 9  |                               |
| NF | PBC30406.1 | SQRSPSLRLRFa                         | 41.59 | 1344.774 | 0.2  | 449.2653 | 3 | 13.35 | 8  | Amidation                     |
| NF | PBC30406.1 | SPSLRLRFa                            | 33.76 | 973.5821 | 0.3  | 487.7985 | 2 | 17.83 | 3  | Amidation                     |
| NF | PBC30406.1 | SDPHLSIGILSKPISAIP                   | 33.69 | 1844.041 | 3.3  | 923.0306 | 2 | 63.22 | 6  |                               |
| NF | PBC30406.1 | SDPHLSIGILSKP                        | 56.41 | 1362.751 | 0.6  | 682.3831 | 2 | 30.59 | 3  |                               |
| NF | PBC31004.1 | pQMFTYSHGWTNa                        | 35.37 | 1352.561 | 2.1  | 677.2891 | 2 | 54.56 | 16 | Pyro-glu from Q;<br>Amidation |
| NF | PBC31251.1 | AYRKPPFNGSIFa                        | 56.07 | 1394.746 | 1.2  | 698.381  | 2 | 20.1  | 23 | Amidation                     |
| NF | PBC31251.1 | KPPFNGSIFa                           | 39.77 | 1004.544 | 0.3  | 503.2796 | 2 | 26.3  | 8  | Amidation                     |
| NF | PBC31251.1 | RKPPFNGSIFa                          | 28.99 | 1160.645 | 0.6  | 581.3303 | 2 | 20.94 | 6  | Amidation                     |
| NF | PBC31431.1 | APVGYQEMQGKKNSASLNSENFGIF            | 76.23 | 2715.296 | 0.9  | 1358.657 | 2 | 47.19 | 9  |                               |
| NF | PBC31431.1 | NSIINDVKNELFPEDIN                    | 61.58 | 1972.974 | 1.8  | 987.4961 | 2 | 85.69 | 17 |                               |
| NF | PBC31431.1 | ARMGFHGMRa                           | 56.1  | 1060.517 | 0.4  | 531.2661 | 2 | 8.49  | 4  | Amidation                     |
| NF | PBC31431.1 | STDFQDVESGSESFKRARMGFHGMRa           | 52.07 | 2860.313 | -0.9 | 477.7257 | 6 | 24.04 | 8  | Amidation                     |
| NF | PBC31431.1 | SPFRYLGV                             | 49.43 | 937.5021 | 0.4  | 469.7585 | 2 | 34.68 | 6  |                               |

|    | -          |                      |       |          | -    |          |   |       |    |                               |
|----|------------|----------------------|-------|----------|------|----------|---|-------|----|-------------------------------|
| NF | PBC31431.1 | APMGFQGMRG           | 46.35 | 1050.474 | 1    | 526.2448 | 2 | 19.72 | 4  |                               |
| NF | PBC31431.1 | ARMGFHGMRG           | 45.29 | 1118.523 | -0.7 | 373.8479 | 3 | 9.3   | 3  |                               |
| NF | PBC31431.1 | APMGFYGTRa           | 45.15 | 997.4803 | 0.5  | 499.7477 | 2 | 15.19 | 4  | Amidation                     |
| NF | PBC31431.1 | APMGFYGTRG           | 44.23 | 1055.486 | 0.1  | 528.7502 | 2 | 17.78 | 3  |                               |
| NF | PBC31431.1 | APMGFQGMRa           | 43.83 | 992.4684 | -0.1 | 497.2414 | 2 | 16.14 | 3  | Amidation                     |
| NF | PBC31431.1 | ALMGFQGVRG           | 42.24 | 1034.533 | 0    | 518.2738 | 2 | 25.21 | 3  |                               |
| NF | PBC31431.1 | ALMGFQGVRa           | 39.26 | 976.5276 | 1.2  | 489.2717 | 2 | 22.01 | 3  | Amidation                     |
| NF | PBC31431.1 | SPFRYLGVRa           | 36.21 | 1092.619 | -0.1 | 365.2137 | 3 | 17.16 | 3  | Amidation                     |
| NF | PBC31431.1 | ASFDDEYY             | 24.23 | 1008.371 | 0.2  | 505.193  | 2 | 32.63 | 3  |                               |
| NF | PBC31431.1 | ASFDDEYYKRAPMGFQGMRa | 64.73 | 2267.025 | 1.2  | 567.7642 | 4 | 26.98 | 10 | Amidation                     |
| NF | PBC31431.1 | STDFQDVESGSESF       | 43.46 | 1533.611 | 1.2  | 767.8135 | 2 | 45.7  | 8  |                               |
| NF | PBC32274.1 | RVPWTPSPRLa          | 42.45 | 1206.699 | 1.2  | 604.3572 | 2 | 18.98 | 4  | Amidation                     |
| NF | PBC32274.1 | pQLHNIIDKPRQN        | 41.7  | 1457.774 | 3.2  | 729.8966 | 2 | 15.91 | 4  | Pyro-glu from Q               |
| NF | PBC32274.1 | pQLHNIIDKPRQNFNDPRF  | 33.79 | 2234.135 | 1.6  | 745.72   | 3 | 31.38 | 4  | Pyro-glu from Q               |
| NF | PBC32274.1 | pQITQFTPRLa          | 30.83 | 1084.603 | 1    | 543.3093 | 2 | 53.25 | 9  | Pyro-glu from Q;<br>Amidation |
| NF | PBC32274.1 | pQLHNIIDKPRQNFNDP    | 28.77 | 1930.965 | -2.1 | 966.4877 | 2 | 25.76 | 5  | Pyro-glu from Q               |
| NF | PBC32274.1 | SGMWFGPRLa           | 28    | 1048.528 | -0.7 | 525.2707 | 2 | 47.79 | 12 | Amidation                     |
| NF | PBC32274.1 | VPWTPSPRLa           | 27.27 | 1050.597 | 1.5  | 526.3068 | 2 | 23.67 | 3  | Amidation                     |
| NF | PBC32274.1 | DITSGMWFGPRLa        | 43.5  | 1377.686 | 1.1  | 689.8512 | 2 | 91.87 | 4  | Amidation                     |
| NF | PBC32274.1 | GMWFGPRLa            | 26.94 | 961.4956 | 0.8  | 481.7555 | 2 | 47.5  | 7  | Amidation                     |
| NF | PBC32274.1 | pQLHNIIDKP           | 33.03 | 1059.571 | 0.7  | 530.7933 | 2 | 20.67 | 12 | Pyro-glu from Q               |
| NF | PBC32274.1 | SQDITSGMWFGPRLa      | 48.18 | 1592.777 | 1    | 797.3965 | 2 | 75.27 | 4  | Amidation                     |
| NF | PBC32274.1 | TSQDITSGMWFGPRLa     | 54.49 | 1693.825 | 1.1  | 847.9205 | 2 | 72.22 | 5  | Amidation                     |
| NF | PBC32496.1 | LRNQLDIGDLQ          | 48.94 | 1283.683 | 1.5  | 642.8499 | 2 | 30.84 | 5  |                               |
| NF | PBC32496.1 | IPAADKERLLN          | 46.28 | 1238.698 | 0.4  | 620.3566 | 2 | 13.93 | 5  |                               |

|    |            |                                    |       | -        |      |          |   | -     |    |                               |
|----|------------|------------------------------------|-------|----------|------|----------|---|-------|----|-------------------------------|
| NF | PBC32496.1 | SYWKQCAFNAVSCFa                    | 38.98 | 1651.728 | 1.1  | 826.8719 | 2 | 70.16 | 9  | Amidation                     |
| NF | PBC32545.1 | NSELINSLLGLPKNMNNAa                | 37.17 | 1940.015 | 2.1  | 971.0167 | 2 | 71.55 | 3  | Amidation                     |
| NF | PBC32608.1 | IDLSRFYGHF                         | 50.48 | 1253.619 | 1.4  | 627.8178 | 2 | 51.77 | 4  |                               |
| NF | PBC32608.1 | IDLSRFYGHFNT                       | 44.72 | 1468.71  | 1    | 735.3629 | 2 | 47.98 | 3  |                               |
| NF | PBC32608.1 | IDLSRFYGHFNTKR                     | 37.96 | 1752.906 | -0.2 | 585.3091 | 3 | 26.76 | 4  |                               |
| NF | PBC32608.1 | DLSRFYGHF                          | 24.76 | 1140.535 | 1.2  | 571.2755 | 2 | 34.83 | 3  |                               |
| NF | PBC32608.1 | IDLSRFYGHFNTK                      | 28.71 | 1596.805 | 1.3  | 799.4107 | 2 | 36.19 | 9  |                               |
| NF | PBC32678.1 | pQDVDHVFLR                         | 49.86 | 1110.546 | 0.4  | 556.2804 | 2 | 30.38 | 5  | Pyro-glu from Q               |
| NF | PBC32678.1 | pQDVDHVFLRFa                       | 54.14 | 1256.63  | 1    | 629.3229 | 2 | 67.87 | 16 | Pyro-glu from Q;<br>Amidation |
| NF | PBC32678.1 | QDVDHVFLRFa                        | 54.26 | 1273.657 | 0.8  | 637.8362 | 2 | 32.44 | 3  | Amidation                     |
| NF | PBC32727.1 | LPTNLGEDTKKTEQTMRPKS               | 61.45 | 2273.169 | -0.7 | 1137.591 | 2 | 14.32 | 14 |                               |
| NF | PBC32727.1 | SQAYDPYSNAAQFQLSSQSRGYPYQHRL       | 55.41 | 3261.523 | 0.5  | 1088.182 | 3 | 37.25 | 3  |                               |
| NF | PBC32727.1 | NVPIYQEPRF                         | 46.81 | 1261.646 | 0.4  | 631.8303 | 2 | 31.89 | 4  |                               |
| NF | PBC32727.1 | YPYQHRLIY                          | 20.47 | 1251.64  | 1.1  | 418.2211 | 3 | 20.5  | 3  |                               |
| NF | PBC32727.1 | GYPYQHRLIY                         | 20.84 | 1308.662 | 0.3  | 437.2279 | 3 | 15.38 | 11 |                               |
| NF | PBC32727.1 | SQAYDPYSNAAQFQLSSQSRGYPYQHRLI      | 35.98 | 3374.607 | -0.2 | 1125.876 | 3 | 48.52 | 20 |                               |
| NF | PBC32727.1 | SQAYDPYSNAAQFQLSSQSRGYPYQHRLI<br>Y | 74.39 | 3537.67  | 1    | 885.4257 | 4 | 55.74 | 10 |                               |
| NF | PBC32727.1 | VPIYQEPRF                          | 46.09 | 1147.603 | 1.1  | 574.8092 | 2 | 27.03 | 10 |                               |
| NF | PBC32914.1 | SIATLAKNDDLPISLHDRMAENEDDEE        | 79.73 | 3040.393 | -0.6 | 1014.471 | 3 | 41.3  | 7  |                               |
| NF | PBC32914.1 | NVASLARTYTLPQNAa                   | 58.15 | 1616.863 | 1.6  | 809.4402 | 2 | 28.93 | 3  | Amidation                     |
| NF | PBC32914.1 | NVGSVAREHGLPYa                     | 56.28 | 1396.721 | 0.6  | 699.3682 | 2 | 16.87 | 6  | Amidation                     |
| NF | PBC32914.1 | YVASLARTGDLPIRGQ                   | 53.24 | 1715.932 | 1.1  | 572.9852 | 3 | 25.03 | 9  |                               |
| NF | PBC32914.1 | FLLLPATDNNYFHQKLPSSLRSKSL          | 51.67 | 2888.555 | 2.3  | 723.1476 | 4 | 52.88 | 4  |                               |
| NF | PBC32914.1 | SISSLARTGDLPVREQ                   | 49.75 | 1727.917 | 2.1  | 576.9807 | 3 | 22.94 | 6  |                               |

| NF | PBC32914.1     | NIASLIRDYDQSRENRVSFPa        | 47.5  | 2378.209 | 0.8  | 793.7443 | 3 | 47.24 | 6  | Amidation |
|----|----------------|------------------------------|-------|----------|------|----------|---|-------|----|-----------|
| NF | PBC32914.1     | YVASLARTGDLPIRa              | 26.48 | 1529.868 | 1.1  | 765.942  | 2 | 22.24 | 3  | Amidation |
| NF | PBC32914.1     | NVGTLARDFALPPa               | 19.92 | 1368.751 | 0.2  | 685.3831 | 2 | 43.82 | 4  | Amidation |
| NF | PBC32914.1     | GIFVPGSVILRALSRQa            | 48.99 | 1711.026 | 0.9  | 571.3497 | 3 | 83.9  | 14 | Amidation |
| NF | PBC32914.1     | SVSSLAKNSAWPVSL              | 48.47 | 1544.82  | 1.4  | 773.4183 | 2 | 57.72 | 4  |           |
| NF | PBC34787.1     | PNDMLSQRYHFGLa               | 66.58 | 1575.762 | 0.1  | 788.8882 | 2 | 31.07 | 4  | Amidation |
| NF | PBC34787.1     | AVHYSGGQPLGSKRPNDMLSQRYHFGLa | 53.14 | 3013.509 | 1.1  | 754.3854 | 4 | 24.91 | 11 | Amidation |
| NF | PBC34787.1     | AYTYVSEYKRLPVYNFGIa          | 49.81 | 2181.126 | -0.5 | 1091.57  | 2 | 57.15 | 4  | Amidation |
| NF | PBC34787.1     | AVHYSGGQPLGS                 | 38.77 | 1171.562 | 0.6  | 586.7887 | 2 | 13.17 | 3  |           |
| NF | PBC34787.1     | WIDTNDNKRGRDYSFGLa           | 37    | 2054.992 | 0.6  | 686.0051 | 3 | 24.87 | 6  | Amidation |
| NF | PBC34787.1     | RQYSFGLa                     | 32.4  | 868.4555 | -0.3 | 435.2349 | 2 | 19.73 | 3  | Amidation |
| NF | PBC34787.1     | GRQPYSFGLa                   | 32.58 | 1022.53  | 0.5  | 512.2724 | 2 | 18.09 | 3  | Amidation |
| NF | PBC34787.1     | YPLRLNLD                     | 34.51 | 1002.55  | 0.3  | 502.2823 | 2 | 32.93 | 8  |           |
| NF | PBC34787.1     | LDYLPVDNPAFH                 | 40.13 | 1399.677 | 2.2  | 700.8474 | 2 | 53.16 | 14 |           |
| NF | PBC34787.1     | GRDYSFGLa                    | 20.29 | 912.4453 | 0    | 457.2299 | 2 | 22.83 | 13 | Amidation |
| NF | XP_016905690.1 | RASGLLSYPRIa                 | 36.91 | 1230.72  | 1.6  | 616.368  | 2 | 17.49 | 5  | Amidation |
| NF | XP_016905690.1 | LNSDSRNSQVNGYTPRLa           | 43.12 | 1918.961 | 0.8  | 640.6614 | 3 | 15.95 | 22 | Amidation |
| NF | XP_016905690.1 | NSDSRNSQVNGYTPRLa            | 30.46 | 1805.877 | 2.7  | 602.9678 | 3 | 14.09 | 18 | Amidation |
| NF | XP_016908608.1 | LTNYLATGHRTNGGPVI            | 68.44 | 1782.938 | 1.1  | 892.4771 | 2 | 23.49 | 5  |           |
| NF | XP_016908608.1 | NLDEIDRVGWSGFV               | 65.24 | 1605.779 | 1.8  | 803.8981 | 2 | 73.95 | 5  |           |
| NF | XP_016908608.1 | LTNYLATGHRTNGGPVIRRFa        | 38.87 | 2241.224 | 0.5  | 449.2524 | 5 | 17.43 | 9  | Amidation |
| NF | XP_016908608.1 | NIDEIDRTAFDNFF               | 41.27 | 1715.779 | 2.6  | 858.899  | 2 | 96.53 | 8  |           |
| NF | XP_016908970.1 | MVPVPVHHMADELLRSGPDTVI       | 64.98 | 2412.229 | -0.6 | 1207.121 | 2 | 60.24 | 11 |           |
| NF | XP_016908970.1 | VHHMADELLRSGPDTVI            | 57.42 | 1888.947 | -0.9 | 945.4797 | 2 | 30.16 | 4  |           |
| NF | XP_016908970.1 | MVPVPVHHMADEL                | 38.96 | 1473.711 | 1.1  | 737.8635 | 2 | 26.34 | 6  |           |

| NF | XP_016908970.1 | LRSGPDTVI     | 33.48 | 956.5291 | 0.2  | 479.2719 | 2 | 15.76 | 3 |           |
|----|----------------|---------------|-------|----------|------|----------|---|-------|---|-----------|
| NF | XP_016908970.1 | VPVPVHHMADELL | 31.46 | 1455.754 | 0.5  | 486.259  | 3 | 33.15 | 4 |           |
| NF | XP_016920932.1 | TWKSPDIVIRFa  | 49.3  | 1359.766 | 0.3  | 454.2628 | 3 | 40.95 | 9 | Amidation |
| NF | XP_016920932.1 | GRNDLNFIRYa   | 47.92 | 1265.663 | -0.1 | 422.8949 | 3 | 17.89 | 3 | Amidation |

Table S5. Quantitative neuropeptide comparison of different behavioral phenotypes of *Apis mellifera ligustica* workers. "Protein Accession" is the unique number given to mark the entry of a protein in the database NCBInr. "Peptide" is the amino acid sequence of the peptide. "Significance (-10lgP)" is the peptide confidence score. "NB" is nurse bee. "PF" is pollen forager. "NF" is nectar forager. "Group Profile (Ratio)" is the relative abundance ratio to the base group. "PTM" is post translational modification types present in the peptide.

| Protein                              | Protein<br>Accession | Peptide                   | Significance | NB 1     | NB 2     | NB 3     | PF 1     | PF 2     | PF 3     | NB       | PF       | Group Profile<br>(Ratio) | РТМ                              |
|--------------------------------------|----------------------|---------------------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|--------------------------|----------------------------------|
| PBAN-type<br>neuropeptides<br>(PBAN) | A8CL69.1             | QITQFTPRLa                | 60           | 6.51E+06 | 6.29E+06 | 6.44E+06 | 4.23E+07 | 4.34E+07 | 4.42E+07 | 6.41E+06 | 4.33E+07 | 1.00 : 6.76              | Amidation                        |
|                                      |                      | TSQDITSGMWF<br>GPRLa      | 60           | 6.88E+08 | 6.55E+08 | 6.65E+08 | 1.88E+09 | 1.85E+09 | 1.95E+09 | 6.69E+08 | 1.89E+09 | 1.00 : 2.83              | Amidation                        |
|                                      |                      | MWFGPRLa                  | 27.89        | 2.04E+06 | 2.04E+06 | 2.15E+06 | 4.40E+05 | 4.64E+05 | 4.47E+05 | 2.08E+06 | 4.50E+05 | 1.00 : 0.22              | Amidation                        |
| FMRFamide                            | ACI90290.1           | TWKSPDIVIRFa              | 60           | 1.81E+07 | 1.85E+07 | 1.69E+07 | 4.27E+07 | 4.30E+07 | 4.18E+07 | 1.78E+07 | 4.25E+07 | 1.00 : 2.38              | Amidation                        |
|                                      |                      | GRNDLNFIRYa               | 42.6         | 2.94E+06 | 3.09E+06 | 3.11E+06 | 4.77E+06 | 4.84E+06 | 4.44E+06 | 3.05E+06 | 4.68E+06 | 1.00 : 1.54              | Amidation                        |
| Myosuppressin                        | P85527.1             | pQDVDHVFLRFa              | 30.88        | 1.33E+08 | 1.21E+08 | 1.28E+08 | 3.48E+08 | 3.65E+08 | 3.39E+08 | 1.27E+08 | 3.51E+08 | 1.00 : 2.75              | Pyro-glu<br>from Q;<br>Amidation |
|                                      |                      | pQDVDHVFLR                | 60           | 1.23E+07 | 1.33E+07 | 1.39E+07 | 6.40E+06 | 6.49E+06 | 6.72E+06 | 1.32E+07 | 6.54E+06 | 1.00 : 0.5               | Pyro-glu<br>from Q               |
| Prohormone-3                         | P85828.1             | SLKAPFA                   | 60           | 9.06E+06 | 9.13E+06 | 8.90E+06 | 1.88E+07 | 2.00E+07 | 2.06E+07 | 9.03E+06 | 1.98E+07 | 1.00 : 2.19              |                                  |
| Brian peptide                        | P85829.1             | MVPVPVHHMA<br>DEL         | 60           | 6.94E+05 | 7.00E+05 | 6.87E+05 | 2.39E+06 | 2.46E+06 | 2.57E+06 | 6.94E+05 | 2.47E+06 | 1.00 : 3.57              |                                  |
| Diuretic<br>hormone (DH)             | P85830.1             | GLDLGLSRGFSG<br>SQAAKHLMa | 24.42        | 4.01E+08 | 4.26E+08 | 4.21E+08 | 8.49E+07 | 8.43E+07 | 8.29E+07 | 4.16E+08 | 8.40E+07 | 1.00 : 0.2               | Amidation                        |
| Allatostatin<br>(AST)                | Q06601.1             | GRDYSFGLa                 | 53.26        | 8.32E+07 | 8.35E+07 | 8.56E+07 | 2.19E+08 | 2.46E+08 | 2.26E+08 | 8.41E+07 | 2.30E+08 | 1.00 : 2.74              | Amidation                        |
| Apidaecins                           | Q06602.1             | GNNRPVYIPQPR<br>PPHPRL    | 35.66        | 6.18E+09 | 6.04E+09 | 5.92E+09 | 3.37E+09 | 3.60E+09 | 3.47E+09 | 6.05E+09 | 3.48E+09 | 1.00 : 0.58              |                                  |
| Corazonin (CRZ)                      | Q5DW47.1             | pQTFTYSHGWT<br>Na         | 33.25        | 2.52E+06 | 2.65E+06 | 2.75E+06 | 7.79E+06 | 7.96E+06 | 8.01E+06 | 2.64E+06 | 7.92E+06 | 1.00 : 3                 | Pyro-glu<br>from Q;<br>Amidation |
| Tachykinins<br>(TK)                  | Q868G6.1             | ALMGFQGVRa                | 60           | 3.37E+08 | 3.66E+08 | 3.58E+08 | 1.47E+09 | 1.34E+09 | 1.32E+09 | 3.54E+08 | 1.38E+09 | 1.00 : 3.89              | Amidation                        |
|                                      |                      | APMGFQGMRa                | 60           | 3.60E+08 | 3.69E+08 | 3.80E+08 | 1.32E+09 | 1.24E+09 | 1.43E+09 | 3.70E+08 | 1.33E+09 | 1.00 : 3.6               | Amidation                        |
|                                      |                      | SPFRYLGARa                | 60           | 3.50E+07 | 3.75E+07 | 3.67E+07 | 1.21E+08 | 1.24E+08 | 1.15E+08 | 3.64E+07 | 1.20E+08 | 1.00 : 3.3               | Amidation                        |

|                                         |                      | ARMGFHGMRG                | 60           | 5.23E+06 | 5.02E+06 | 5.11E+06 | 1.19E+07 | 1.23E+07 | 1.11E+07 | 5.12E+06 | 1.18E+07 | 1.00 : 2.3                  |                                  |
|-----------------------------------------|----------------------|---------------------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------------------|----------------------------------|
|                                         |                      | GVMDFQIGLQ                | 60           | 5.17E+07 | 5.23E+07 | 5.19E+07 | 1.11E+08 | 1.28E+08 | 1.12E+08 | 5.20E+07 | 1.17E+08 | 1.00 : 2.25                 |                                  |
|                                         |                      | ALMGFQGVRG                | 26.66        | 8.62E+05 | 8.72E+05 | 8.56E+05 | 1.87E+06 | 1.75E+06 | 1.69E+06 | 8.63E+05 | 1.77E+06 | 1.00 : 2.05                 |                                  |
|                                         |                      | IILDALEELD                | 60           | 7.62E+06 | 7.96E+06 | 7.36E+06 | 4.66E+06 | 4.48E+06 | 4.39E+06 | 7.65E+06 | 4.51E+06 | 1.00 : 0.59                 |                                  |
|                                         |                      | SPFRYLGA                  | 60           | 3.01E+07 | 3.26E+07 | 3.10E+07 | 8.63E+06 | 8.72E+06 | 8.88E+06 | 3.12E+07 | 8.74E+06 | 1.00 : 0.28                 |                                  |
| Neuropeptide<br>like-1 (NPL1)           | XP_0065593<br>59.1   | YVASLARTGDL<br>PIRa       | 30.62        | 2.05E+07 | 2.18E+07 | 2.15E+07 | 3.39E+07 | 3.47E+07 | 3.55E+07 | 2.13E+07 | 3.47E+07 | 1.00 : 1.63                 | Amidation                        |
|                                         |                      | NVASLARTYTLP<br>QNAa      | 60           | 4.25E+07 | 4.23E+07 | 4.26E+07 | 2.11E+08 | 2.09E+08 | 2.12E+08 | 4.25E+07 | 2.11E+08 | 1.00 : 4.96                 | Amidation                        |
| Pigment-<br>dispersing<br>hormone (PDH) | XP_0065703<br>44.1   | LINSLLGLPKNM<br>NNAa      | 60           | 1.35E+07 | 1.49E+07 | 1.58E+07 | 2.85E+07 | 2.66E+07 | 2.98E+07 | 1.47E+07 | 2.83E+07 | 1.00 : 1.92                 | Amidation                        |
|                                         |                      |                           |              |          |          |          |          |          |          |          |          |                             |                                  |
| Protein                                 | Protein<br>Accession | Peptide                   | Significance | NB 1     | NB 2     | NB 3     | NF 1     | NF 2     | NF 3     | NB       | NF       | Group<br>Profile<br>(Ratio) | РТМ                              |
| Apidaecins                              | Q06602.1             | GNNRPVYIPQPR<br>PPHPRL    | 32.1         | 6.18E+09 | 6.04E+09 | 5.92E+09 | 3.15E+09 | 3.36E+09 | 3.31E+09 | 6.05E+09 | 3.27E+09 | 1.00 : 0.54                 |                                  |
|                                         |                      | VYIPQPRPPHPR<br>L         | 60           | 1.33E+09 | 1.30E+09 | 1.23E+09 | 2.84E+08 | 2.70E+08 | 2.74E+08 | 1.29E+09 | 2.76E+08 | 1.00 : 0.21                 |                                  |
| Corazonin (CRZ)                         | Q5DW47.1             | pQTFTYSHGWT<br>Na         | 53.03        | 2.52E+06 | 2.65E+06 | 2.75E+06 | 6.36E+06 | 6.55E+06 | 6.30E+06 | 2.64E+06 | 6.40E+06 | 1.00 : 2.43                 | Pyro-glu<br>from Q;<br>Amidation |
| Diuretic<br>hormone (DH)                | P85830.1             | GLDLGLSRGFSG<br>SQAAKHLMa | 60           | 4.01E+08 | 4.26E+08 | 4.21E+08 | 1.41E+08 | 1.25E+08 | 1.39E+08 | 4.16E+08 | 1.35E+08 | 1.00 : 0.33                 | Amidation                        |
| FMRFamide                               | ACI90290.1           | GRNDLNFIRYa               | 43.64        | 2.94E+06 | 3.09E+06 | 3.11E+06 | 4.86E+06 | 4.79E+06 | 4.65E+06 | 3.05E+06 | 4.68E+06 | 1.00 : 1.56                 | Amidation                        |
|                                         |                      | TWKSPDIVIRFa              | 60           | 1.81E+07 | 1.85E+07 | 1.69E+07 | 7.71E+06 | 7.80E+06 | 7.68E+06 | 1.78E+07 | 7.73E+06 | 1.00 : 0.43                 | Amidation                        |
| Myosuppressin                           | P85527.1             | pQDVDHVFLRFa              | 36.72        | 1.33E+08 | 1.21E+08 | 1.28E+08 | 4.23E+08 | 4.37E+08 | 4.36E+08 | 1.27E+08 | 4.32E+08 | 1.00 : 3.39                 | Pyro-glu<br>from Q;<br>Amidation |
|                                         |                      | pQDVDHVFLR                | 60           | 1.23E+07 | 1.33E+07 | 1.39E+07 | 4.15E+07 | 4.38E+07 | 4.21E+07 | 1.32E+07 | 4.25E+07 | 1.00 : 3.23                 | Pyro-glu<br>from Q               |
| Neuropeptide<br>like-1 (NPL1)           | XP_0065593<br>59.1   | YVASLARTGDL<br>PIRa       | 60           | 2.05E+07 | 2.18E+07 | 2.15E+07 | 4.49E+07 | 4.57E+07 | 4.39E+07 | 2.13E+07 | 4.48E+07 | 1.00 : 2.11                 | Amidation                        |
|                                         |                      | NVASLARTYTLP<br>QNAa      | 60           | 4.25E+07 | 4.23E+07 | 4.26E+07 | 8.16E+07 | 8.31E+07 | 8.37E+07 | 4.25E+07 | 8.28E+07 | 1.00 : 1.95                 | Amidation                        |
| PBAN-type<br>neuropeptides              | A8CL69.1             | TSQDITSGMWF<br>GPRLa      | 30.19        | 6.88E+08 | 6.55E+08 | 6.65E+08 | 1.04E+09 | 1.02E+09 | 9.98E+08 | 6.69E+08 | 1.02E+09 | 1.00 : 1.52                 | Amidation                        |

| (PBAN)                                  |                      |                                      |              |          |          |          |          |          |          |          |          |                             |            |
|-----------------------------------------|----------------------|--------------------------------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------------------|------------|
|                                         |                      | MWFGPRLa                             | 60           | 2.04E+06 | 2.04E+06 | 2.15E+06 | 7.56E+05 | 7.59E+05 | 7.49E+05 | 2.08E+06 | 7.55E+05 | 1.00 : 0.36                 | Amidation  |
| Pigment-<br>dispersing<br>hormone (PDH) | XP_0065703<br>44.1   | LINSLLGLPKNM<br>NNAa                 | 60           | 1.35E+07 | 1.49E+07 | 1.58E+07 | 2.78E+07 | 2.85E+07 | 2.66E+07 | 1.47E+07 | 2.76E+07 | 1.00 : 1.88                 | Amidation  |
| Prohormone-3                            | P85828.1             | ITGQGNRIF                            | 60           | 8.78E+06 | 8.66E+06 | 8.67E+06 | 4.36E+07 | 4.27E+07 | 4.25E+07 | 8.70E+06 | 4.29E+07 | 1.00 : 4.93                 |            |
|                                         |                      | SLKAPFA                              | 38.97        | 9.06E+06 | 9.13E+06 | 8.90E+06 | 1.71E+07 | 1.68E+07 | 1.75E+07 | 9.03E+06 | 1.71E+07 | 1.00 : 1.9                  |            |
| Tachykinins<br>(TK)                     | Q868G6.1             | ALMGFQGVRG                           | 60           | 8.62E+05 | 8.72E+05 | 8.56E+05 | 4.27E+06 | 4.33E+06 | 4.47E+06 | 8.63E+05 | 4.36E+06 | 1.00 : 5.05                 |            |
| · · ·                                   |                      | ALMGFQGVRa                           | 30.19        | 3.37E+08 | 3.66E+08 | 3.58E+08 | 3.57E+09 | 3.63E+09 | 3.39E+09 | 3.54E+08 | 3.53E+09 | 1.00 : 9.98                 | Amidation  |
|                                         |                      | APMGFQGMRa                           | 60           | 3.60E+08 | 3.69E+08 | 3.80E+08 | 3.38E+09 | 3.27E+09 | 3.59E+09 | 3.70E+08 | 3.41E+09 | 1.00 : 9.23                 | Amidation  |
|                                         |                      | ARMGFHGMRG                           | 60           | 5.23E+06 | 5.02E+06 | 5.11E+06 | 1.26E+07 | 1.33E+07 | 1.21E+07 | 5.12E+06 | 1.28E+07 | 1.00 : 2.49                 |            |
|                                         |                      | IILDALEELD                           | 41.85        | 7.62E+06 | 7.96E+06 | 7.36E+06 | 2.13E+06 | 2.22E+06 | 2.30E+06 | 7.65E+06 | 2.22E+06 | 1.00 : 0.29                 |            |
|                                         |                      | SPFRYLGA                             | 31.06        | 3.01E+07 | 3.26E+07 | 3.10E+07 | 7.52E+06 | 7.72E+06 | 7.69E+06 | 3.12E+07 | 7.64E+06 | 1.00 : 0.24                 |            |
|                                         |                      |                                      |              |          |          |          |          |          |          |          |          |                             |            |
|                                         |                      |                                      |              |          |          |          |          |          |          |          |          |                             |            |
| Protein                                 | Protein<br>Accession | Peptide                              | Significance | PF 1     | PF 2     | PF 3     | NF 1     | NF 2     | NF 3     | PF       | NF       | Group<br>Profile<br>(Ratio) | РТМ        |
| Allatostatin<br>(AST)                   | Q06601.1             | AVHYSGGQPLG<br>SKRPNDMLSQR<br>YHFGLa | 30.34        | 4.90E+08 | 4.69E+08 | 4.98E+08 | 3.18E+08 | 3.25E+08 | 3.17E+08 | 4.86E+08 | 3.20E+08 | 1.00 : 0.66                 | Amidation  |
|                                         |                      | WIDTNDNKRGR<br>DYSFGLa               | 60           | 4.38E+07 | 4.15E+07 | 4.29E+07 | 2.24E+07 | 2.52E+07 | 2.38E+07 | 4.27E+07 | 2.38E+07 | 1.00 : 0.56                 | Amidation  |
| Brian peptide                           | P85829.1             | MVPVPVHHMA<br>DELLRNGPDTVI           | 60           | 9.95E+08 | 9.90E+08 | 1.04E+09 | 1.89E+09 | 1.98E+09 | 1.77E+09 | 1.01E+09 | 1.88E+09 | 1.00 : 1.86                 |            |
| CAPA peptides-<br>like                  | XP_0065598<br>65.1   | AFGLLTYPRIa                          | 60           | 2.88E+07 | 2.78E+07 | 2.63E+07 | 4.99E+07 | 4.66E+07 | 4.94E+07 | 2.76E+07 | 4.86E+07 | 1.00 : 1.76                 | Amidation  |
| Diuretic<br>hormone (DH)                | P85830.1             | GLDLGLSRGFSG<br>SQAAKHLMa            | 60           | 8.49E+07 | 8.43E+07 | 8.29E+07 | 1.41E+08 | 1.25E+08 | 1.39E+08 | 8.41E+07 | 1.35E+08 | 1.00 : 1.61                 | Amidation  |
| FMRFamide                               | ACI90290.1           | TWKSPDIVIRFa                         | 60           | 4.27E+07 | 4.30E+07 | 4.18E+07 | 7.71E+06 | 7.80E+06 | 7.68E+06 | 4.25E+07 | 7.73E+06 | 1.00 : 0.18                 | Amidation  |
| Neuropeptide<br>like-1 (NPL1)           | XP_0065593<br>59.1   | SVSSLARTGDLP<br>VREQ                 | 35.02        | 4.01E+07 | 4.21E+07 | 4.11E+07 | 2.52E+07 | 2.33E+07 | 2.38E+07 | 4.11E+07 | 2.41E+07 | 1.00 : 0.59                 |            |
|                                         |                      | NIASLMRDYDQ                          | 60           | 2.005+08 | 2.965+09 | 2.98E+08 | 1.42E+08 | 1.47E+08 | 1.64E+08 | 2.95E+08 | 1.51E+08 | 1.00 : 0.51                 | Amidation  |
|                                         |                      | SRENRVPFPa                           | 60           | 3.00E+08 | 2.86E+08 | 2.98E+08 | 1.42E+08 | 1.4/E+08 | 1.041.00 | 2.951100 | 1.511.00 | 1.00 . 0.51                 | 7 minution |

|                                      |                    | PIRGQ        |       |          |          |          |          |          |          |          |          |             |                                  |
|--------------------------------------|--------------------|--------------|-------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------------------------------|
| PBAN-type<br>neuropeptides<br>(PBAN) | A8CL69.1           | QITQFTPRLa   | 60    | 4.23E+07 | 4.34E+07 | 4.42E+07 | 2.05E+07 | 2.24E+07 | 2.19E+07 | 4.33E+07 | 2.16E+07 | 1.00 : 0.5  | Amidation                        |
|                                      |                    | pQITQFTPRLa  | 33.65 | 3.50E+08 | 3.36E+08 | 3.38E+08 | 8.50E+07 | 8.36E+07 | 8.38E+07 | 3.41E+08 | 8.41E+07 | 1.00 : 0.25 | Pyro-glu<br>from Q;<br>Amidation |
| Prohormone-1                         | P85798.1           | LRNQLDIGDLQ  | 42.97 | 9.56E+08 | 9.48E+08 | 9.34E+08 | 4.52E+09 | 4.41E+09 | 4.45E+09 | 9.46E+08 | 4.46E+09 | 1.00 : 4.71 |                                  |
| Prohormone-4                         | P85831.1           | IDLSRFYGHFNT | 60    | 6.46E+08 | 6.50E+08 | 6.36E+08 | 3.46E+09 | 3.50E+09 | 3.36E+09 | 6.44E+08 | 3.44E+09 | 1.00 : 5.34 |                                  |
|                                      |                    | IDLSRFYGHFN  | 34.77 | 1.76E+08 | 1.64E+08 | 1.54E+08 | 3.77E+08 | 3.96E+08 | 3.66E+08 | 1.65E+08 | 3.80E+08 | 1.00 : 2.31 |                                  |
| Short<br>neuropeptide F<br>(sNPF)    | XP_0065652<br>07.1 | SDPHLSILS    | 33.58 | 1.93E+06 | 1.84E+06 | 1.93E+06 | 9.67E+05 | 9.50E+05 | 9.57E+05 | 1.90E+06 | 9.58E+05 | 1.00 : 0.5  |                                  |
|                                      |                    | SPSLRLRFa    | 42.51 | 6.44E+06 | 6.16E+06 | 6.37E+06 | 1.11E+06 | 1.12E+06 | 1.33E+06 | 6.32E+06 | 1.19E+06 | 1.00 : 0.19 | Amidation                        |
| Tachykinins<br>(TK)                  | Q868G6.1           | APMGFQGMRG   | 60    | 5.44E+07 | 5.60E+07 | 5.56E+07 | 2.38E+08 | 2.47E+08 | 2.43E+08 | 5.53E+07 | 2.43E+08 | 1.00 : 4.39 |                                  |
|                                      |                    | APMGFQGMRa   | 59.71 | 1.32E+09 | 1.24E+09 | 1.43E+09 | 3.38E+09 | 3.27E+09 | 3.59E+09 | 1.33E+09 | 3.41E+09 | 1.00 : 2.57 | Amidation                        |
|                                      |                    | ALMGFQGVRa   | 60    | 1.47E+09 | 1.34E+09 | 1.32E+09 | 3.57E+09 | 3.63E+09 | 3.39E+09 | 1.38E+09 | 3.53E+09 | 1.00 : 2.56 | Amidation                        |

**Table S6. Quantitative neuropeptide comparison of different behavioral phenotypes of** *Apis cerana cerana* workers. "Protein Accession" is the unique number given to mark the entry of a protein in the database NCBInr. "Peptide" is the amino acid sequence of the peptide. "Significance (-10lgP)" is the peptide confidence score. "NB" is nurse bee. "PF" is pollen forager. "NF" is nectar forager. "Group Profile (Ratio)" is the relative abundance ratio to the base group. "PTM" is post translational modification types present in the peptide.

| Protein                           | Protein<br>Accession | Peptide                           | Significance | NB 1     | NB 2     | NB 3     | PF 1     | PF 2     | PF 3     | NB       | PF       | Group Profile<br>(Ratio) | РТМ                              |
|-----------------------------------|----------------------|-----------------------------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|--------------------------|----------------------------------|
| Prohormone-3                      | PBC27982.1           | SLKAPFA                           | 60           | 5.93E+07 | 5.68E+07 | 5.76E+07 | 1.40E+08 | 1.46E+08 | 1.44E+08 | 5.79E+07 | 1.43E+08 | 1.00 : 2.48              |                                  |
|                                   |                      | ITGQGNRIF                         | 60           | 2.20E+07 | 2.39E+07 | 2.38E+07 | 6.70E+07 | 6.54E+07 | 6.88E+07 | 2.32E+07 | 6.71E+07 | 1.00 : 2.89              |                                  |
| Apidaecins                        | PBC28057.1           | GNNRPVYIPQPR<br>PPHPRL            | 60           | 4.98E+09 | 4.86E+09 | 5.07E+09 | 2.50E+09 | 2.59E+09 | 2.58E+09 | 4.97E+09 | 2.56E+09 | 1.00 : 0.51              |                                  |
| Diuretic<br>hormone (DH)          | PBC28214.1           | GLDLGLSRGFSG<br>SQAAKHLMa         | 39.87        | 4.60E+08 | 4.57E+08 | 4.22E+08 | 1.79E+09 | 1.91E+09 | 1.90E+09 | 4.46E+08 | 1.87E+09 | 1.00 : 4.18              | Amidation                        |
| Short<br>neuropeptide F<br>(sNPF) | PBC30406.1           | SDPHLSIGILSKPI<br>SAIPSSKFDD      | 60           | 3.73E+08 | 3.94E+08 | 3.79E+08 | 1.46E+08 | 1.60E+08 | 1.57E+08 | 3.82E+08 | 1.54E+08 | 1.00 : 0.4               |                                  |
| Corazonin<br>(CRZ)                | PBC31004.1           | pQMFTYSHGWT<br>Na                 | 28.91        | 9.94E+07 | 9.45E+07 | 9.63E+07 | 3.79E+08 | 3.73E+08 | 3.71E+08 | 9.67E+07 | 3.74E+08 | 1.00 : 3.87              | Pyro-glu<br>from Q;<br>Amidation |
| SIFamide                          | PBC31251.1           | KPPFNGSIFa                        | 60           | 1.97E+08 | 1.84E+08 | 1.81E+08 | 8.11E+07 | 9.40E+07 | 9.48E+07 | 1.87E+08 | 9.00E+07 | 1.00 : 0.48              | Amidation                        |
|                                   |                      | AYRKPPFNGSIFa                     | 60           | 1.68E+09 | 1.55E+09 | 1.64E+09 | 4.56E+08 | 4.76E+08 | 4.75E+08 | 1.62E+09 | 4.69E+08 | 1.00 : 0.29              | Amidation                        |
| Tachykinins<br>(TK)               | PBC31431.1           | ASFDDEYY                          | 56.6         | 6.50E+06 | 6.08E+06 | 6.11E+06 | 3.49E+07 | 3.10E+07 | 3.38E+07 | 6.23E+06 | 3.32E+07 | 1.00 : 5.33              |                                  |
|                                   |                      | APMGFQGMRa                        | 60           | 9.27E+08 | 9.24E+08 | 9.17E+08 | 4.58E+09 | 4.73E+09 | 4.55E+09 | 9.23E+08 | 4.62E+09 | 1.00 : 5.01              | Amidation                        |
|                                   |                      | APMGFYGTRG                        | 60           | 7.36E+06 | 7.35E+06 | 7.19E+06 | 3.19E+07 | 3.83E+07 | 3.85E+07 | 7.30E+06 | 3.62E+07 | 1.00 : 4.96              |                                  |
|                                   |                      | APMGFQGMRG                        | 40.07        | 9.10E+06 | 9.29E+06 | 9.11E+06 | 4.22E+07 | 4.19E+07 | 4.36E+07 | 9.17E+06 | 4.26E+07 | 1.00 : 4.64              |                                  |
|                                   |                      | ALMGFQGVRa                        | 60           | 8.14E+08 | 8.19E+08 | 8.28E+08 | 3.87E+09 | 3.66E+09 | 3.89E+09 | 8.20E+08 | 3.81E+09 | 1.00 : 4.64              | Amidation                        |
|                                   |                      | APVGYQEMQGK<br>KNSASLNSENFG<br>IF | 55.82        | 4.61E+07 | 4.43E+07 | 4.48E+07 | 1.85E+08 | 1.83E+08 | 1.82E+08 | 4.51E+07 | 1.83E+08 | 1.00 : 4.07              |                                  |
|                                   |                      | ARMGFHGMRG                        | 41.94        | 1.29E+07 | 1.40E+07 | 1.42E+07 | 4.16E+07 | 4.24E+07 | 4.17E+07 | 1.37E+07 | 4.19E+07 | 1.00 : 3.06              |                                  |
|                                   |                      | SPFRYLGV                          | 60           | 5.53E+07 | 5.86E+07 | 5.75E+07 | 1.45E+08 | 1.64E+08 | 1.61E+08 | 5.71E+07 | 1.57E+08 | 1.00 : 2.74              |                                  |
|                                   |                      | ALMGFQGVRG                        | 37.82        | 1.98E+06 | 2.09E+06 | 1.92E+06 | 3.64E+06 | 3.64E+06 | 3.91E+06 | 2.00E+06 | 3.73E+06 | 1.00 : 1.87              |                                  |

| Prohormone-2                                                                                                      | PBC32727.1                                                                                                         | NVPIYQEPRF                                                                                                     | 46.37                                                                     | 9.22E+08                                                             | 9.28E+08                                                             | 9.43E+08                                                             | 3.25E+08                                                             | 3.72E+08                                                             | 3.88E+08                                                             | 9.31E+08                                                             | 3.62E+08                                                             | 1.00 : 0.39                                                                                                                                 |                                                  |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|                                                                                                                   |                                                                                                                    | LPTNLGEDTKKT<br>EQTMRPKS                                                                                       | 60                                                                        | 5.12E+08                                                             | 5.16E+08                                                             | 5.02E+08                                                             | 1.44E+08                                                             | 1.56E+08                                                             | 1.47E+08                                                             | 5.10E+08                                                             | 1.49E+08                                                             | 1.00 : 0.29                                                                                                                                 |                                                  |
|                                                                                                                   |                                                                                                                    | VPIYQEPRF                                                                                                      | 33.21                                                                     | 9.74E+07                                                             | 9.61E+07                                                             | 9.48E+07                                                             | 2.38E+07                                                             | 2.16E+07                                                             | 2.06E+07                                                             | 9.61E+07                                                             | 2.20E+07                                                             | 1.00 : 0.23                                                                                                                                 |                                                  |
| Neuropeptide<br>like-1 (NPL1)                                                                                     | PBC32914.1                                                                                                         | SISSLARTGDLP<br>VREQ                                                                                           | 30.75                                                                     | 3.69E+08                                                             | 3.39E+08                                                             | 3.46E+08                                                             | 1.38E+09                                                             | 1.33E+09                                                             | 1.46E+09                                                             | 3.51E+08                                                             | 1.39E+09                                                             | 1.00 : 3.96                                                                                                                                 |                                                  |
| · ·                                                                                                               |                                                                                                                    | NVGSVAREHGL<br>PYa                                                                                             | 60                                                                        | 6.26E+08                                                             | 6.78E+08                                                             | 6.89E+08                                                             | 2.21E+09                                                             | 2.73E+09                                                             | 2.22E+09                                                             | 6.64E+08                                                             | 2.39E+09                                                             | 1.00 : 3.59                                                                                                                                 | Amidation                                        |
|                                                                                                                   |                                                                                                                    | NVGTLARDFAL<br>PPa                                                                                             | 36.07                                                                     | 5.22E+07                                                             | 5.05E+07                                                             | 5.14E+07                                                             | 1.31E+08                                                             | 1.52E+08                                                             | 1.21E+08                                                             | 5.14E+07                                                             | 1.35E+08                                                             | 1.00 : 2.62                                                                                                                                 | Amidation                                        |
| Pigment-<br>dispersing<br>hormone (PDH)                                                                           | PBC32545.1                                                                                                         | NSELINSLLGLP<br>KNMNNAa                                                                                        | 23.88                                                                     | 7.62E+07                                                             | 7.93E+07                                                             | 7.72E+07                                                             | 2.76E+08                                                             | 2.75E+08                                                             | 2.46E+08                                                             | 7.76E+07                                                             | 2.66E+08                                                             | 1.00 : 3.43                                                                                                                                 | Amidation                                        |
| PBAN-type<br>neuropeptides<br>(PBAN)                                                                              | PBC32274.1                                                                                                         | pQITQFTPRLa                                                                                                    | 33.45                                                                     | 2.79E+07                                                             | 2.85E+07                                                             | 2.58E+07                                                             | 1.59E+08                                                             | 1.71E+08                                                             | 1.55E+08                                                             | 2.74E+07                                                             | 1.62E+08                                                             | 1.00 : 5.9                                                                                                                                  | Pyro-glu<br>from Q;<br>Amidation                 |
| Orcokinin<br>(ORC)                                                                                                | XP_01690860<br>8.1                                                                                                 | NLDEIDRVGWS<br>GFV                                                                                             | 42.33                                                                     | 2.22E+08                                                             | 2.48E+08                                                             | 2.52E+08                                                             | 6.87E+08                                                             | 6.87E+08                                                             | 6.53E+08                                                             | 2.41E+08                                                             | 6.76E+08                                                             | 1.00 : 2.81                                                                                                                                 |                                                  |
| Prohormone-4                                                                                                      | PBC32608.1                                                                                                         | IDLSRFYGHFNT                                                                                                   | 30.72                                                                     | 9.52E+08                                                             | 9.58E+08                                                             | 9.13E+08                                                             | 3.06E+09                                                             | 3.12E+09                                                             | 3.03E+09                                                             | 9.41E+08                                                             | 3.07E+09                                                             | 1.00 : 3.26                                                                                                                                 |                                                  |
|                                                                                                                   |                                                                                                                    |                                                                                                                |                                                                           |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                                                                                             |                                                  |
|                                                                                                                   |                                                                                                                    |                                                                                                                |                                                                           |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                                                                                             |                                                  |
|                                                                                                                   |                                                                                                                    |                                                                                                                |                                                                           |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                                                                                             |                                                  |
| Protein                                                                                                           | Protein<br>Accession                                                                                               | Peptide                                                                                                        | Significance                                                              | NB 1                                                                 | NB 2                                                                 | NB 3                                                                 | NF 1                                                                 | NF 2                                                                 | NF 3                                                                 | NB                                                                   | NF                                                                   | Group Profile<br>(Ratio)                                                                                                                    | РТМ                                              |
| Protein<br>Prohormone-3                                                                                           |                                                                                                                    | Peptide<br>SLKAPFA                                                                                             | <b>Significance</b>                                                       | <b>NB 1</b><br>5.93E+07                                              | <b>NB 2</b><br>5.68E+07                                              | <b>NB 3</b><br>5.76E+07                                              | <b>NF 1</b><br>1.75E+08                                              | <b>NF 2</b><br>1.62E+08                                              | <b>NF 3</b><br>1.77E+08                                              | <b>NB</b><br>5.79E+07                                                | NF<br>1.71E+08                                                       |                                                                                                                                             | РТМ                                              |
| Prohormone-3                                                                                                      | Accession                                                                                                          | *                                                                                                              | 0                                                                         |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      | (Ratio)                                                                                                                                     | РТМ                                              |
| Prohormone-3<br>Apidaecins<br>Diuretic                                                                            | Accession PBC27982.1                                                                                               | SLKAPFA<br>GNNRPVYIPQPR                                                                                        | 60                                                                        | 5.93E+07                                                             | 5.68E+07                                                             | 5.76E+07                                                             | 1.75E+08                                                             | 1.62E+08                                                             | 1.77E+08                                                             | 5.79E+07                                                             | 1.71E+08                                                             | (Ratio)<br>1.00 2.96                                                                                                                        | <b>PTM</b><br>Amidation                          |
| Prohormone-3<br>Apidaecins<br>Diuretic<br>hormone (DH)<br>Short                                                   | Accession           PBC27982.1           PBC28057.1                                                                | SLKAPFA<br>GNNRPVYIPQPR<br>PPHPRL<br>GLDLGLSRGFSG                                                              | 60<br>35.67                                                               | 5.93E+07<br>4.98E+09                                                 | 5.68E+07<br>4.86E+09                                                 | 5.76E+07<br>5.07E+09                                                 | 1.75E+08<br>1.89E+09                                                 | 1.62E+08<br>1.92E+09                                                 | 1.77E+08<br>1.98E+09                                                 | 5.79E+07<br>4.97E+09                                                 | 1.71E+08<br>1.93E+09                                                 | (Ratio)<br>1.00 : 2.96<br>1.00 : 0.39                                                                                                       |                                                  |
| Prohormone-3<br>Apidaecins<br>Diuretic<br>hormone (DH)<br>Short<br>neuropeptide F<br>(sNPF)<br>Corazonin          | Accession           PBC27982.1           PBC28057.1           PBC28214.1                                           | SLKAPFA<br>GNNRPVYIPQPR<br>PPHPRL<br>GLDLGLSRGFSG<br>SQAAKHLMa                                                 | 60<br>35.67<br>60                                                         | 5.93E+07<br>4.98E+09<br>4.60E+08                                     | 5.68E+07<br>4.86E+09<br>4.57E+08                                     | 5.76E+07<br>5.07E+09<br>4.22E+08                                     | 1.75E+08<br>1.89E+09<br>2.39E+09                                     | 1.62E+08<br>1.92E+09<br>2.40E+09                                     | 1.77E+08<br>1.98E+09<br>2.51E+09                                     | 5.79E+07<br>4.97E+09<br>4.46E+08                                     | 1.71E+08<br>1.93E+09<br>2.43E+09                                     | (Ratio)           1.00 : 2.96           1.00 : 0.39           1.00 : 5.45                                                                   | Amidation                                        |
| Prohormone-3<br>Apidaecins<br>Diuretic<br>hormone (DH)<br>Short<br>neuropeptide F<br>(sNPF)<br>Corazonin<br>(CRZ) | Accession           PBC27982.1           PBC28057.1           PBC28214.1           PBC30406.1                      | SLKAPFA<br>GNNRPVYIPQPR<br>PPHPRL<br>GLDLGLSRGFSG<br>SQAAKHLMa<br>SPSLRLRFa<br>pQMFTYSHGWT                     | 60<br>35.67<br>60<br>60                                                   | 5.93E+07<br>4.98E+09<br>4.60E+08<br>3.86E+07                         | 5.68E+07<br>4.86E+09<br>4.57E+08<br>3.68E+07                         | 5.76E+07<br>5.07E+09<br>4.22E+08<br>3.63E+07                         | 1.75E+08<br>1.89E+09<br>2.39E+09<br>5.84E+06                         | 1.62E+08<br>1.92E+09<br>2.40E+09<br>5.43E+06                         | 1.77E+08<br>1.98E+09<br>2.51E+09<br>5.37E+06                         | 5.79E+07<br>4.97E+09<br>4.46E+08<br>3.72E+07                         | 1.71E+08<br>1.93E+09<br>2.43E+09<br>5.55E+06                         | (Ratio)           1.00 : 2.96           1.00 : 0.39           1.00 : 5.45           1.00 : 0.15                                             | Amidation                                        |
| Prohormone-3<br>Apidaecins<br>Diuretic<br>hormone (DH)<br>Short<br>neuropeptide F<br>(sNPF)<br>Corazonin<br>(CRZ) | Accession           PBC27982.1           PBC28057.1           PBC28214.1           PBC30406.1           PBC31004.1 | SLKAPFA<br>GNNRPVYIPQPR<br>PPHPRL<br>GLDLGLSRGFSG<br>SQAAKHLMa<br>SPSLRLRFa<br>pQMFTYSHGWT<br>Na               | 60<br>35.67<br>60<br>60<br>48.07                                          | 5.93E+07<br>4.98E+09<br>4.60E+08<br>3.86E+07<br>9.94E+07             | 5.68E+07<br>4.86E+09<br>4.57E+08<br>3.68E+07<br>9.45E+07             | 5.76E+07<br>5.07E+09<br>4.22E+08<br>3.63E+07<br>9.63E+07             | 1.75E+08<br>1.89E+09<br>2.39E+09<br>5.84E+06<br>4.49E+08             | 1.62E+08<br>1.92E+09<br>2.40E+09<br>5.43E+06<br>4.58E+08             | 1.77E+08<br>1.98E+09<br>2.51E+09<br>5.37E+06<br>4.78E+08             | 5.79E+07<br>4.97E+09<br>4.46E+08<br>3.72E+07<br>9.67E+07             | 1.71E+08<br>1.93E+09<br>2.43E+09<br>5.55E+06<br>4.62E+08             | (Ratio)           1.00 : 2.96           1.00 : 0.39           1.00 : 5.45           1.00 : 0.15           1.00 : 4.77                       | Amidation<br>Amidation<br>Amidation              |
| Prohormone-3<br>Apidaecins<br>Diuretic<br>hormone (DH)<br>Short<br>neuropeptide F                                 | Accession           PBC27982.1           PBC28057.1           PBC28214.1           PBC30406.1           PBC31004.1 | SLKAPFA<br>GNNRPVYIPQPR<br>PPHPRL<br>GLDLGLSRGFSG<br>SQAAKHLMa<br>SPSLRLRFa<br>pQMFTYSHGWT<br>Na<br>KPPFNGSIFa | 60           35.67           60           60           48.07           60 | 5.93E+07<br>4.98E+09<br>4.60E+08<br>3.86E+07<br>9.94E+07<br>1.97E+08 | 5.68E+07<br>4.86E+09<br>4.57E+08<br>3.68E+07<br>9.45E+07<br>1.84E+08 | 5.76E+07<br>5.07E+09<br>4.22E+08<br>3.63E+07<br>9.63E+07<br>1.81E+08 | 1.75E+08<br>1.89E+09<br>2.39E+09<br>5.84E+06<br>4.49E+08<br>6.87E+07 | 1.62E+08<br>1.92E+09<br>2.40E+09<br>5.43E+06<br>4.58E+08<br>6.79E+07 | 1.77E+08<br>1.98E+09<br>2.51E+09<br>5.37E+06<br>4.78E+08<br>6.70E+07 | 5.79E+07<br>4.97E+09<br>4.46E+08<br>3.72E+07<br>9.67E+07<br>1.87E+08 | 1.71E+08<br>1.93E+09<br>2.43E+09<br>5.55E+06<br>4.62E+08<br>6.79E+07 | (Ratio)           1.00 : 2.96           1.00 : 0.39           1.00 : 5.45           1.00 : 0.15           1.00 : 4.77           1.00 : 0.36 | Amidation<br>Amidation<br>Amidation<br>Amidation |

| Short<br>neuropeptide F<br>(sNPF)       | PBC30406.1           | SPSLRLRFa                         | 60             | 1.37E+07             | 1.59E+07             | 1.46E+07             | 5.84E+06             | 5.43E+06             | 5.37E+06             | 1.47E+07             | 5.55E+06             | 1.00 : 0.38                             | Amidation |
|-----------------------------------------|----------------------|-----------------------------------|----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------------------------|-----------|
| Protein                                 | Protein<br>Accession | Peptide                           | Significance   | PF 1                 | PF 2                 | PF 3                 | NF 1                 | NF 2                 | NF 3                 | PF                   | NF                   | Group Profile<br>(Ratio)                | РТМ       |
|                                         |                      |                                   |                |                      |                      |                      |                      |                      |                      |                      |                      |                                         |           |
|                                         |                      |                                   |                |                      |                      |                      |                      |                      |                      |                      |                      |                                         |           |
| Prohormone-4                            | PBC32608.1           | IDLSRFYGHFNT                      | 25.79          | 9.52E+08             | 9.58E+08             | 9.13E+08             | 6.23E+09             | 6.19E+09             | 6.34E+09             | 9.41E+08             | 6.25E+09             | 1.00 : 6.65                             |           |
| (0)                                     | 0.1                  | NLDEIDRVGWS<br>GFV                | 60             | 2.22E+08             | 2.48E+08             | 2.52E+08             | 9.30E+08             | 9.49E+08             | 9.42E+08             | 2.41E+08             | 9.40E+08             | 1.00 : 3.91                             |           |
| Orcokinin<br>(ORC)                      | XP_01690860<br>8.1   | LTNYLATGHRT<br>NGGPVI             | 43.31          | 4.29E+08             | 4.11E+08             | 4.24E+08             | 2.17E+09             | 2.13E+09             | 2.19E+09             | 4.21E+08             | 2.16E+09             | 1.00 : 5.13                             |           |
| PBAN-type<br>neuropeptides<br>(PBAN)    | PBC32274.1           | TSQDITSGMWF<br>GPRLa              | 36.94          | 8.63E+07             | 8.83E+07             | 8.45E+07             | 2.38E+08             | 2.50E+08             | 2.47E+08             | 8.64E+07             | 2.45E+08             | 1.00 : 2.84                             | Amidation |
| Pigment-<br>dispersing<br>hormone (PDH) | PBC32545.1           | NSELINSLLGLP<br>KNMNNAa           | 60             | 7.62E+07             | 7.93E+07             | 7.72E+07             | 3.02E+08             | 3.19E+08             | 3.18E+08             | 7.76E+07             | 3.13E+08             | 1.00 : 4.04                             | Amidation |
|                                         |                      | SISSLARTGDLP<br>VREQ              | 60             | 5.22E+07             | 5.05E+07             | 5.14E+07             | 1.53E+08             | 1.55E+08             | 1.42E+08             | 5.14E+07             | 1.50E+08             | 1.00 : 2.92                             |           |
|                                         |                      | NVGSVAREHGL<br>PYa                | 36.43          | 3.69E+08             | 3.39E+08             | 3.46E+08             | 1.45E+09             | 1.40E+09             | 1.50E+09             | 3.51E+08             | 1.45E+09             | 1.00 : 4.13                             | Amidation |
| Neuropeptide<br>like-1 (NPL1)           | PBC32914.1           | YVASLARTGDL<br>PIRa               | 60             | 6.26E+08             | 6.78E+08             | 6.89E+08             | 3.17E+09             | 3.41E+09             | 3.20E+09             | 6.64E+08             | 3.26E+09             | 1.00 : 4.91                             | Amidation |
|                                         |                      | NVPIYQEPRF                        | 60             | 9.22E+08             | 9.28E+08             | 9.43E+08             | 2.88E+08             | 3.15E+08             | 3.00E+08             | 9.31E+08             | 3.01E+08             | 1.00 : 0.32                             |           |
| Prohormone-2                            | PBC32727.1           | VPIYQEPRF                         | 25.35          | 9.74E+07             | 9.51E+07             | 9.48E+07             | 3.12E+07             | 3.29E+07             | 3.30E+07             | 9.58E+07             | 3.24E+07             | 1.00 : 0.34                             |           |
|                                         |                      | ARMGFHGMRG                        | 28.15          | 1.29E+07             | 1.40E+07             | 1.42E+07             | 5.47E+07             | 5.44E+07             | 5.44E+07             | 1.37E+07             | 5.45E+07             | 1.00 : 3.98                             |           |
|                                         |                      | APVGYQEMQGK<br>KNSASLNSENFG<br>IF | 35.68          | 4.61E+07             | 4.43E+07             | 4.48E+07             | 1.86E+08             | 1.82E+08             | 1.92E+08             | 4.51E+07             | 1.87E+08             | 1.00 : 4.14                             |           |
|                                         |                      | ALMGFQGVRG                        | 60             | 1.98E+06             | 2.09E+06             | 1.92E+06             | 1.07E+07             | 1.21E+07             | 1.23E+07             | 2.00E+06             | 1.17E+07             | 1.00 : 5.86                             |           |
|                                         |                      | APMGFYGTRG                        | 60             | 7.36E+06             | 7.35E+06             | 7.19E+06             | 4.62E+07             | 4.58E+07             | 4.99E+07             | 7.30E+06             | 4.73E+07             | 1.00 : 6.48                             |           |
|                                         |                      | ASFDDEYY                          | 39.72          | 6.50E+06             | 6.08E+06             | 6.11E+06             | 4.46E+07             | 4.32E+07             | 4.21E+07             | 6.23E+06             | 4.33E+07             | 1.00 : 6.95                             |           |
|                                         |                      | APMGFQGMRG<br>ASFDDEYY            | 56.21<br>39.72 | 9.10E+06<br>6.50E+06 | 9.29E+06<br>6.08E+06 | 9.11E+06<br>6.11E+06 | 8.10E+07<br>4.46E+07 | 7.91E+07<br>4.32E+07 | 7.86E+07<br>4.21E+07 | 9.17E+06<br>6.23E+06 | 7.96E+07<br>4.33E+07 | 1.00       8.68         1.00       6.95 |           |

| Tachykinins                          | PBC31431.1         | ALMGFQGVRG                           | 51.11 | 3.64E+06 | 3.64E+06 | 3.91E+06 | 1.07E+07 | 1.21E+07 | 1.23E+07 | 3.73E+06 | 1.17E+07 | 1.00 : 3.14 |                                  |
|--------------------------------------|--------------------|--------------------------------------|-------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------------------------------|
| (TK)                                 |                    | ALMGFQGVRa                           | 60    | 3.87E+09 | 3.66E+09 | 3.89E+09 | 9.80E+09 | 9.58E+09 | 9.57E+09 | 3.81E+09 | 9.65E+09 | 1.00 : 2.54 | Amidation                        |
|                                      |                    | APMGFQGMRa                           | 60    | 4.58E+09 | 4.63E+09 | 4.55E+09 | 9.93E+09 | 1.02E+10 | 9.93E+09 | 4.59E+09 | 1.00E+10 | 1.00 : 2.18 | Amidation                        |
|                                      |                    | APMGFQGMRG                           | 47.56 | 4.22E+07 | 4.19E+07 | 4.36E+07 | 8.10E+07 | 7.91E+07 | 7.86E+07 | 4.26E+07 | 7.96E+07 | 1.00 : 1.87 |                                  |
| PBAN-type<br>neuropeptides<br>(PBAN) | PBC32274.1         | pQLHNIIDKPRQ<br>NFNDPRF              | 60    | 6.45E+07 | 6.61E+07 | 6.72E+07 | 1.56E+07 | 1.61E+07 | 1.74E+07 | 6.59E+07 | 1.64E+07 | 1.00 : 0.25 | Pyro-glu<br>from Q               |
|                                      |                    | pQITQFTPRLa                          | 26.86 | 1.59E+08 | 1.71E+08 | 1.55E+08 | 4.20E+07 | 4.55E+07 | 4.41E+07 | 1.62E+08 | 4.39E+07 | 1.00 : 0.27 | Pyro-glu<br>from Q;<br>Amidation |
|                                      |                    | pQLHNIIDKPRQ<br>NFNDP                | 34.07 | 6.24E+06 | 6.13E+06 | 6.39E+06 | 2.29E+06 | 2.13E+06 | 2.01E+06 | 6.25E+06 | 2.14E+06 | 1.00 : 0.34 | Pyro-glu<br>from Q               |
| Prohormone-4                         | PBC32608.1         | IDLSRFYGHFN                          | 49.52 | 2.50E+09 | 2.51E+09 | 2.49E+09 | 5.28E+09 | 5.29E+09 | 5.21E+09 | 2.50E+09 | 5.26E+09 | 1.00 : 2.1  |                                  |
|                                      |                    | IDLSRFYGHFNT                         | 60    | 3.06E+09 | 3.12E+09 | 3.03E+09 | 6.23E+09 | 6.19E+09 | 6.34E+09 | 3.07E+09 | 6.25E+09 | 1.00 : 2.04 |                                  |
| Neuropeptide<br>like-1 (NPL1)        | PBC32914.1         | SISSLARTGDLP<br>VREQ                 | 56.01 | 1.38E+09 | 1.33E+09 | 1.46E+09 | 1.53E+08 | 1.55E+08 | 1.42E+08 | 1.39E+09 | 1.50E+08 | 1.00 : 0.11 |                                  |
|                                      |                    | NIASLIRDYDQS<br>RENRVSFPa            | 39.6  | 1.40E+08 | 1.59E+08 | 1.34E+08 | 2.99E+08 | 2.86E+08 | 3.03E+08 | 1.44E+08 | 2.96E+08 | 1.00 : 2.05 | Amidation                        |
|                                      |                    | YVASLARTGDL<br>PIRGO                 | 30.32 | 3.13E+08 | 3.00E+08 | 3.05E+08 | 1.50E+08 | 1.56E+08 | 1.58E+08 | 3.06E+08 | 1.55E+08 | 1.00 : 0.5  |                                  |
| Allatostatin<br>(AST)                | PBC34787.1         | AVHYSGGQPLG<br>SKRPNDMLSQR<br>YHFGLa | 60    | 8.06E+08 | 7.84E+08 | 7.90E+08 | 5.10E+08 | 5.17E+08 | 5.00E+08 | 7.93E+08 | 5.09E+08 | 1.00 : 0.64 | Amidation                        |
|                                      |                    | WIDTNDNKRGR<br>DYSFGLa               | 28.34 | 7.12E+07 | 7.11E+07 | 7.06E+07 | 4.35E+07 | 4.19E+07 | 4.22E+07 | 7.10E+07 | 4.25E+07 | 1.00 : 0.6  | Amidation                        |
| Brain peptide                        | XP_01690897<br>0   | MVPVPVHHMA<br>DELLRSGPDTVI           | 60    | 5.20E+08 | 4.91E+08 | 4.94E+08 | 9.09E+08 | 9.84E+08 | 9.14E+08 | 5.02E+08 | 9.36E+08 | 1.00 : 1.87 |                                  |
| FMRFamide                            | XP_01692093<br>2.1 | TWKSPDIVIRFa                         | 60    | 1.94E+07 | 2.20E+07 | 2.10E+07 | 3.86E+07 | 3.92E+07 | 4.09E+07 | 2.08E+07 | 3.96E+07 | 1.00 : 1.9  | Amidation                        |

**Table S7. Quantitative neuropeptide comparison between** *Apis cerana cerana* and *Apis mellifera ligustica.* "NB" is nurse bee. "PF" is pollen forager. "NF" is nectar forager. "Peptide" is the amino acid sequence of the peptide. "Significance (-10lgP)" is the peptide confidence score. "Group Profile (Ratio)" is the relative abundance ratio to the base group. "PTM" is post translational modification types present in the peptide.

| Protein                             | Peptide                          | Significance | ACC-NB<br>1 | ACC-NB<br>2 | ACC-NB<br>3 | AML-NB<br>1 | AML-NB<br>2 | AML-NB<br>3 | ACC-NB        | AML-NB   | Group Profile<br>(Ratio) | РТМ                              |
|-------------------------------------|----------------------------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|----------|--------------------------|----------------------------------|
| Allatostatin<br>(AST)               | AYTYVSEYKRLPVYNFGIa              | 60           | 3.41E+08    | 3.10E+08    | 3.21E+08    | 1.09E+08    | 1.07E+08    | 1.11E+08    | 3.24E+08      | 1.09E+08 | 1.00 : 0.34              | Amidation                        |
| Diuretic<br>hormone (DH)            | GLDLGLSRGFSGSQAA                 | 36.51        | 1.22E+06    | 1.11E+06    | 1.08E+06    | 3.24E+06    | 3.37E+06    | 3.08E+06    | 1.14E+06      | 3.23E+06 | 1.00 : 2.84              |                                  |
|                                     | GLDLGLSRGFSGSQAAKHLMa            | 60           | 2.39E+08    | 2.20E+08    | 2.27E+08    | 4.01E+08    | 4.26E+08    | 4.21E+08    | 2.29E+08      | 4.16E+08 | 1.00 : 1.82              | Amidation                        |
| SIFamide                            | YRKPPFNGSIFa                     | 60           | 4.54E+07    | 4.35E+07    | 4.46E+07    | 1.22E+08    | 1.17E+08    | 1.15E+08    | 4.45E+07      | 1.18E+08 | 1.00 : 2.65              | Amidation                        |
|                                     | KPPFNGSIFa                       | 35.18        | 1.97E+08    | 1.84E+08    | 1.81E+08    | 3.97E+08    | 4.10E+08    | 3.83E+08    | 1.87E+08      | 3.97E+08 | 1.00 : 2.12              | Amidation                        |
| Myosuppressin                       | pQDVDHVFLRFa                     | 49.38        | 6.80E+07    | 6.50E+07    | 6.67E+07    | 1.33E+08    | 1.21E+08    | 1.28E+08    | 6.66E+07      | 1.27E+08 | 1.00 : 1.91              | Pyro-glu<br>from Q;<br>Amidation |
| PBAN-type<br>neuropeptide<br>(PBAN) | GMWFGPRLa                        | 60           | 7.02E+06    | 6.96E+06    | 6.87E+06    | 1.53E+07    | 1.37E+07    | 1.43E+07    | 6.95E+06      | 1.44E+07 | 1.00 : 2.08              | Amidation                        |
| Prohormone-2                        | SQAYDPYSNAAQFQLSSQSRGYP<br>YQHRL | 60           | 4.18E+07    | 4.36E+07    | 4.23E+07    | 1.24E+08    | 1.19E+08    | 1.08E+08    | 4.26E+07      | 1.17E+08 | 1.00 : 2.75              |                                  |
| Prohormone-4                        | IDLSRFYGHF                       | 41.13        | 2.19E+08    | 2.21E+08    | 2.01E+08    | 7.73E+08    | 7.77E+08    | 7.53E+08    | 2.14E+08      | 7.68E+08 | 1.00 : 3.59              |                                  |
|                                     | DLSRFYGHF                        | 52.14        | 1.52E+07    | 1.57E+07    | 1.43E+07    | 3.30E+06    | 3.76E+06    | 3.32E+06    | 1.51E+07      | 3.46E+06 | 1.00 : 0.23              |                                  |
| Tachykinins<br>(TK)                 | ALMGFQGVRG                       | 33.23        | 1.98E+06    | 2.09E+06    | 1.92E+06    | 8.62E+05    | 8.72E+05    | 8.56E+05    | 2.00E+06      | 8.63E+05 | 1.00 : 0.43              |                                  |
|                                     | ALMGFQGVRa                       | 60           | 8.14E+08    | 8.19E+08    | 8.28E+08    | 3.37E+08    | 3.66E+08    | 3.58E+08    | 8.20E+08      | 3.54E+08 | 1.00 : 0.43              | Amidation                        |
|                                     | APMGFQGMRa                       | 60           | 9.27E+08    | 9.24E+08    | 9.17E+08    | 3.60E+08    | 3.69E+08    | 3.80E+08    | 9.23E+08      | 3.70E+08 | 1.00 : 0.4               | Amidation                        |
|                                     | APMGFQGMRG                       | 60           | 9.10E+06    | 9.29E+06    | 9.11E+06    | 3.36E+06    | 3.19E+06    | 3.23E+06    | 9.17E+06      | 3.26E+06 | 1.00 : 0.36              |                                  |
|                                     |                                  |              |             |             |             |             |             |             |               |          |                          |                                  |
| Protein                             | Peptide                          | Significance | ACC-PF1     | ACC-PF2     | ACC-<br>PF3 | AML-PF1     | AML-<br>PF2 | AML-<br>PF3 | ACC-PF        | AML-PF   | Group Profile<br>(Ratio) | РТМ                              |
| Apidaecins                          | GNNRPVYIPQPRPPHPRL               | 60           | 1.38E+09    | 1.50E+09    | 1.46E+09    | 3.37E+09    | 3.60E+09    | 3.47E+09    | 1.447E+0<br>9 | 3.48E+09 | 1.00 : 2.41              |                                  |

| Callisulfakinin                             | pQQFDDYGHLRFa                   | 60           | 6.46E+06    | 6.42E+06    | 6.39E+06    | 4.16E+06    | 4.32E+06    | 4.14E+06    | 6423333.<br>3 | 4206667  | 1.00 : 0.65              | Pyro-glu<br>from Q;<br>Amidation |
|---------------------------------------------|---------------------------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|----------|--------------------------|----------------------------------|
| FMRFamide-<br>related<br>peptides-like      | GRNDLNFIRYa                     | 60           | 1.66E+07    | 1.45E+07    | 1.48E+07    | 4.77E+06    | 4.84E+06    | 4.44E+06    | 15300000      | 4683333  | 1.00 : 0.31              | Amidation                        |
| Neuropeptide<br>like precursor 1<br>(NPLP1) | NVGSVAREHGLPYa                  | 60           | 2.21E+09    | 2.73E+09    | 2.22E+09    | 6.84E+09    | 6.84E+09    | 6.87E+09    | 2.39E+09      | 6.85E+09 | 1.00 : 2.87              | Amidation                        |
| · · ·                                       | YVASLARTGDLPIRa                 | 60           | 1.73E+07    | 1.77E+07    | 1.81E+07    | 3.39E+07    | 3.47E+07    | 3.55E+07    | 1.77E+07      | 47500000 | 1.00 : 1.96              | Amidation                        |
| PBAN-type<br>neuropeptide<br>(PBAN)         | RVPWTPSPRLa                     | 60           | 7.45E+06    | 7.17E+06    | 7.21E+06    | 2.62E+07    | 2.50E+07    | 2.37E+07    | 7276666.<br>7 | 24967000 | 1.00 : 3.43              | Amidation                        |
|                                             | GMWFGPRLa                       | 31.51        | 3.25E+06    | 3.45E+06    | 3.52E+06    | 7.93E+06    | 7.83E+06    | 8.00E+06    | 3406666.<br>7 | 7920333  | 1.00 : 2.32              |                                  |
| Prohormone-1                                | LRNQLDIGDLQ                     | 60           | 4.46E+08    | 4.18E+08    | 4.51E+08    | 9.56E+08    | 9.48E+08    | 9.34E+08    | 43833333<br>3 | 9.46E+08 | 1.00 : 2.16              |                                  |
| Prohormone-4                                | IDLSRFYGHF                      | 43.86        | 1.95E+08    | 1.88E+08    | 1.72E+08    | 2.94E+08    | 3.07E+08    | 2.88E+08    | 18500000      | 2.96E+08 | 1.00 : 1.6               |                                  |
| Tachykinins<br>(TK)                         | ALMGFQGVRa                      | 60           | 3.87E+09    | 3.66E+09    | 3.89E+09    | 1.47E+09    | 1.34E+09    | 1.32E+09    | 3.807E+0      | 1.38E+09 | 1.00 : 0.36              | Amidation                        |
| (11)                                        | APMGFQGMRa                      | 60           | 4.58E+09    | 4.63E+09    | 4.55E+09    | 1.32E+09    | 1.24E+09    | 1.43E+09    | 4.587E+0      | 1.33E+09 | 1.00 : 0.29              | Amidation                        |
|                                             | ASFDDEYY                        | 60           | 3.49E+07    | 3.10E+07    | 3.38E+07    | 4.73E+06    | 4.93E+06    | 4.80E+06    | 3.32E+07      | 4.82E+06 | 1.00 : 0.14              |                                  |
|                                             |                                 |              |             |             |             |             |             |             |               |          |                          |                                  |
|                                             |                                 |              |             |             |             |             |             |             |               |          |                          |                                  |
| Protein                                     | Peptide                         | Significance | ACC-<br>NF1 | ACC-<br>NF2 | ACC-<br>NF3 | AML-<br>NF1 | AML-<br>NF2 | AML-<br>NF3 | ACC-NF        | AML-NF   | Group Profile<br>(Ratio) | РТМ                              |
| Diuretic<br>hormone (DH)                    | LVDHRIPDLENEMFDSGNDPGST<br>VVRT | 31.21        | 2.54E+06    | 2.31E+06    | 2.51E+06    | 7.87E+06    | 7.99E+06    | 8.03E+06    | 2.45E+06      | 7.96E+06 | 1.00 : 3.25              |                                  |
| Neuropeptide<br>like precursor 1<br>(NPLP1) | SVSSLAKNSAWPVSL                 | 60           | 1.53E+08    | 1.55E+08    | 1.42E+08    | 2.62E+08    | 2.76E+08    | 2.89E+08    | 1.50E+08      | 2.76E+08 | 1.00 : 1.84              |                                  |
|                                             | NVASLARTYTLPQNAa                | 27.49        | 4.77E+07    | 4.79E+07    | 4.99E+07    | 8.16E+07    | 8.31E+07    | 8.37E+07    | 4.85E+07      | 8.28E+07 | 1.00 : 1.71              | Amidation                        |
| PBAN-type<br>neuropeptide<br>(PBAN)         | TSQDITSGMWFGPRLa                | 60           | 2.38E+08    | 2.50E+08    | 2.47E+08    | 1.04E+09    | 1.02E+09    | 9.98E+08    | 2.45E+08      | 1.02E+09 | 1.00 : 4.16              | Amidation                        |
| · · · ·                                     | pQITQFTPRLa                     | 46.66        | 4.20E+07    | 4.55E+07    | 4.41E+07    | 8.50E+07    | 8.36E+07    | 8.38E+07    | 4.39E+07      | 8.41E+07 | 1.00 : 1.92              | Pyro-glu<br>from Q;<br>Amidation |
| Pigment-<br>dispersing<br>hormone (PDH)     | NSELINSLLGLPKNMNNAa             | 60           | 3.02E+08    | 3.19E+08    | 3.18E+08    | 5.49E+07    | 5.67E+07    | 5.49E+07    | 3.13E+08      | 5.55E+07 | 1.00 : 0.18              | Amidation                        |

| Prohormone-4                      | IDLSRFYGHFNT | 39.91 | 6.23E+09 | 6.19E+09 | 6.34E+09 | 3.46E+09 | 3.50E+09 | 3.36E+09 | 6.25E+09 | 3.44E+09 | 1.00 : 0.55 |           |
|-----------------------------------|--------------|-------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|-----------|
| Short<br>neuropeptide F<br>(sNPF) | SPSLRLRFa    | 28.41 | 5.84E+06 | 5.43E+06 | 5.37E+06 | 1.11E+07 | 1.12E+07 | 1.23E+07 | 5.55E+06 | 1.15E+07 | 1.00 : 2.08 | Amidation |
| Tachykinins<br>(TK)               | ALMGFQGVRa   | 60    | 9.80E+09 | 9.58E+09 | 9.57E+09 | 3.57E+09 | 3.63E+09 | 3.39E+09 | 9.65E+09 | 3.53E+09 | 1.00 : 0.37 | Amidation |
|                                   | APMGFQGMRa   | 55.7  | 9.93E+09 | 1.02E+10 | 9.93E+09 | 3.38E+09 | 3.27E+09 | 3.59E+09 | 1.00E+10 | 3.41E+09 | 1.00 : 0.34 | Amidation |

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426394; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

## Table S8. The proboscis extension response of workers after injection of ddH<sub>2</sub>O and TRP2.

|          |               |           | ddH <sub>2</sub> O |        |      | TRP2 |        |
|----------|---------------|-----------|--------------------|--------|------|------|--------|
|          | Concentration | Show      | No                 | PER    | Show | No   | PER    |
|          | Concentration | PER       | PER                | ratio  | PER  | PER  | ratio  |
|          | 0.1%          | 19        | 36                 | 34.55% | 9    | 44   | 16.98% |
|          | 0.3%          | 21        | 34                 | 38.18% | 11   | 42   | 20.75% |
| Pollen   | 1.0%          | 30        | 25                 | 54.55% | 12   | 41   | 22.64% |
| foragers | 3.0%          | 36        | 19                 | 65.45% | 15   | 38   | 28.30% |
|          | 10.0%         | 38        | 17                 | 69.09% | 17   | 36   | 32.08% |
|          | 30.0%         | <b>48</b> | 7                  | 87.27% | 25   | 28   | 47.17% |
|          | Pollen        | 22        | 34                 | 39.29% | 9    | 44   | 16.98% |
|          | Larva         | 11        | 45                 | 19.64% | 12   | 41   | 22.64% |

|          |               |      | ddH <sub>2</sub> O |        |      | TRP2 |        |
|----------|---------------|------|--------------------|--------|------|------|--------|
|          | Concentration | Show | No                 | PER    | Show | No   | PER    |
|          | Concentration | PER  | PER                | ratio  | PER  | PER  | ratio  |
|          | 0.1%          | 10   | 45                 | 18.18% | 6    | 52   | 10.34% |
|          | 0.3%          | 14   | 41                 | 25.45% | 6    | 52   | 10.34% |
| Nectar   | 1.0%          | 16   | 39                 | 29.09% | 7    | 51   | 12.07% |
| foragers | 3.0%          | 19   | 36                 | 34.55% | 8    | 50   | 13.79% |
|          | 10.0%         | 25   | 30                 | 45.45% | 12   | 46   | 20.69% |
|          | 30.0%         | 29   | 26                 | 52.73% | 15   | 43   | 25.86% |
|          | Pollen        | 7    | 46                 | 13.21% | 8    | 44   | 15.38% |
|          | Larva         | 9    | 44                 | 16.98% | 6    | 46   | 11.54% |

|       |               |      | ddH <sub>2</sub> O |        |      | TRP2 |        |
|-------|---------------|------|--------------------|--------|------|------|--------|
|       | Concentration | Show | No                 | PER    | Show | No   | PER    |
|       | Concentration | PER  | PER                | ratio  | PER  | PER  | ratio  |
|       | 0.1%          | 12   | 41                 | 22.64% | 8    | 44   | 15.38% |
|       | 0.3%          | 13   | 40                 | 24.53% | 10   | 42   | 19.23% |
| Nurse | 1.0%          | 18   | 35                 | 33.96% | 13   | 39   | 25.00% |
| bees  | 3.0%          | 19   | 34                 | 35.85% | 16   | 36   | 30.77% |
|       | 10.0%         | 22   | 31                 | 41.51% | 21   | 31   | 40.38% |
|       | 30.0%         | 29   | 24                 | 54.72% | 25   | 27   | 48.08% |
|       | Pollen        | 5    | 50                 | 9.09%  | 7    | 48   | 12.73% |
|       | Larva         | 21   | 32                 | 39.62% | 10   | 45   | 18.18% |

|                 |               |      | ds <i>GFP</i> |        |      | ds <i>TRP</i> |        |          | ds <i>TRPR</i> |           |
|-----------------|---------------|------|---------------|--------|------|---------------|--------|----------|----------------|-----------|
|                 | Concentration | Show | No            | PER    | Show | No            | PER    | Show PER | No PER         | PER ratio |
|                 | Concentration | PER  | PER           | ratio  | PER  | PER           | ratio  | SHOW PER | NOPER          | PEK ratio |
|                 | 0.1%          | 20   | 36            | 35.71% | 30   | 24            | 55.56% | 33       | 23             | 58.93%    |
|                 | 0.3%          | 22   | 34            | 39.29% | 33   | 21            | 61.11% | 35       | 21             | 62.50%    |
| Dollon foregoes | 1.0%          | 30   | 26            | 53.57% | 40   | 14            | 74.07% | 41       | 15             | 73.21%    |
| Pollen foragers | 3.0%          | 37   | 19            | 66.07% | 41   | 13            | 75.93% | 43       | 13             | 76.79%    |
|                 | 10.0%         | 38   | 18            | 67.86% | 45   | 9             | 83.33% | 46       | 10             | 82.14%    |
|                 | 30.0%         | 49   | 7             | 87.50% | 51   | 3             | 94.44% | 49       | 7              | 87.50%    |
|                 | Pollen        | 19   | 33            | 36.54% | 32   | 20            | 61.54% | 33       | 21             | 61.11%    |
|                 | Larva         | 10   | 42            | 19.23% | 13   | 39            | 25.00% | 12       | 42             | 22.22%    |

## Table S9. The proboscis extension response of workers after injection of ds*GFP*, ds*TRP*, and ds*TRPR*.

|                 |               |      | ds <i>GFP</i> |        |      | ds <i>TRP</i> |        |           | ds <i>TRPR</i> |             |
|-----------------|---------------|------|---------------|--------|------|---------------|--------|-----------|----------------|-------------|
|                 | Concentration | Show | No            | PER    | Show | No            | PER    | Show PER  | No PER         | PER ratio   |
|                 |               | PER  | PER           | ratio  | PER  | PER           | ratio  | SHOW I EK |                | I EK l'atio |
|                 | 0.1%          | 9    | 44            | 16.98% | 17   | 33            | 34.00% | 19        | 34             | 35.85%      |
|                 | 0.3%          | 12   | 41            | 22.64% | 22   | 28            | 44.00% | 22        | 31             | 41.51%      |
| Naatan fanagang | 1.0%          | 15   | 38            | 28.30% | 27   | 23            | 54.00% | 28        | 25             | 52.83%      |
| Nectar foragers | 3.0%          | 18   | 35            | 33.96% | 29   | 21            | 58.00% | 32        | 21             | 60.38%      |
|                 | 10.0%         | 24   | 29            | 45.28% | 31   | 19            | 62.00% | 33        | 20             | 62.26%      |
|                 | 30.0%         | 28   | 25            | 52.83% | 34   | 16            | 68.00% | 38        | 16             | 70.37%      |
|                 | Pollen        | 7    | 49            | 12.50% | 13   | 42            | 23.64% | 11        | 44             | 20.00%      |
|                 | Larva         | 10   | 46            | 17.86% | 11   | 44            | 20.00% | 12        | 43             | 21.82%      |

|             |               |      | ds <i>GFP</i> |        |      | ds <i>TRP</i> |        |          | ds <i>TRPR</i> |                 |
|-------------|---------------|------|---------------|--------|------|---------------|--------|----------|----------------|-----------------|
|             | Concentration | Show | No            | PER    | Show | No            | PER    | Show PER | No PER         | PER ratio       |
|             | Concentration | PER  | PER           | ratio  | PER  | PER           | ratio  | SHOW FER | NUILK          | <b>FEKTALIO</b> |
|             | 0.1%          | 12   | 43            | 21.82% | 8    | 45            | 15.09% | 9        | 46             | 16.36%          |
|             | 0.3%          | 13   | 42            | 23.64% | 8    | 45            | 15.09% | 13       | 42             | 23.64%          |
| Nurse bees  | 1.0%          | 18   | 37            | 32.73% | 14   | 39            | 26.42% | 16       | 39             | 29.09%          |
| Ivurse bees | 3.0%          | 20   | 35            | 36.36% | 23   | 30            | 43.40% | 25       | 30             | 45.45%          |
|             | 10.0%         | 23   | 32            | 41.82% | 29   | 24            | 54.72% | 27       | 28             | 49.09%          |
|             | 30.0%         | 30   | 25            | 54.55% | 31   | 22            | 58.49% | 33       | 22             | 60.00%          |
|             | Pollen        | 6    | 50            | 10.71% | 13   | 41            | 24.07% | 12       | 43             | 21.82%          |
|             | Larva         | 21   | 35            | 37.50% | 31   | 23            | 57.41% | 32       | 23             | 58.18%          |

| Concentration                   | 0.10% | 0.30% | 1.00% | 3.00% | 10.00% | 30.00% |
|---------------------------------|-------|-------|-------|-------|--------|--------|
| Pollen foragers                 |       |       |       |       |        |        |
| ds <i>TRP</i> vs ds <i>GFP</i>  | *     | *     | *     | ns    | ns     | ns     |
| ds <i>TRPR</i> vs ds <i>GFP</i> | *     | *     | *     | ns    | ns     | ns     |
| ds <i>TRP</i> vs ds <i>TRPR</i> | ns    | ns    | ns    | ns    | ns     | ns     |
| Nectar foragers                 |       |       |       |       |        |        |
| ds <i>TRP</i> vs ds <i>GFP</i>  | *     | *     | **    | *     | ns     | ns     |
| ds <i>TRPR</i> vs ds <i>GFP</i> | *     | *     | *     | **    | ns     | ns     |
| ds <i>TRP</i> vs ds <i>TRPR</i> | ns    | ns    | ns    | ns    | ns     | ns     |
| Nurse bees                      |       |       |       |       |        |        |
| dsTRP vs dsGFP                  | ns    | ns    | ns    | ns    | ns     | ns     |
| dsTRPR vs dsGFP                 | ns    | ns    | ns    | ns    | ns     | ns     |
| ds <i>TRP</i> vs ds <i>TRPR</i> | ns    | ns    | ns    | ns    | ns     | ns     |

Table S10. Statistical differences in sucrose responsiveness after injection of ds*GFP*, ds*TRP*, and ds*TRPR*.

ns = P > 0.05, \*P < 0.05, \*\*P < 0.01

Table S11. Sequence information of primers used in this study.

| Gene name                                           | Forward primer (5'-3')                        | Reverse primer (5'-3')                         |
|-----------------------------------------------------|-----------------------------------------------|------------------------------------------------|
| <i>TRPR</i> clone (for FLAG-tag expression vectors) | AAGCTTAAGCTTATGCAGACCGTAGAAGTTTTTCTA<br>AAC   | GGATCCTCAAGACACGTGACCCGTAGTTTGCGA              |
| <i>TRPR</i> clone (for EGFP-tag expression vectors) | AAGCTTGCCACCATGCAGACCGTAGAAGTTTTTCTA          | GGATCCAGACACGTGACCCGTAGTTTGC                   |
| TRPR RNAi                                           | TAATACGACTCACTATAGGGGAGCAAACGAAGGGT<br>GGTAA  | TAATACGACTCACTATAGGGCGCGTCGAAATCT<br>GGAGT     |
| <i>TRPR</i> qPCR                                    | GAGCAAACGAAGGGTGGTAA                          | ACTCCAGATTTCGACGCG                             |
| <i>TRP</i> RNAi                                     | TAATACGACTCACTATAGGGGGGTGTGCGTGGAAAG<br>AAAAA | TAATACGACTCACTATAGGGTTTGATATCCATCC<br>ATCGACAA |
| <i>TRP</i> qPCR                                     | GTTATCAAGATATGAGGAAT                          | ATGGATTAGAAGACAGTT                             |
| GFP RNAi                                            | TAATACGACTCACTATAGGGAGTGGAGAGGGTGAA<br>GGTGA  | TAATACGACTCACTATAGGGGGGTAAAAGGACAG<br>GGCCATC  |

Red font indicates T7 promoter sequence.