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Abstract 

The rise of spatial transcriptomics technologies is leading to new insights about how gene 

regulation happens in a spatial context. Here, we present CoSTA- a novel approach to learn 

spatial representation from gene expression matrices via convolutional neural network (ConvNet) 

clustering. We reanalyze published spatial transcriptomics data and demonstrate that our method 

learns spatial relationships of genes by distinguishing them from noise. 
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Background 

Spatial transcriptomics has recently gained extensive attention from the scientific 

community. Different technologies have enabled high resolution measurements of how gene 

regulation is spatially organized across a tissue or thousands of single cells.[1] However, current 

analysis pipelines often lose spatial information by treating each pixel in an expression matrix as 

an independent feature. For example, the new seqFISH+ technique can fluorescently detect 

10,000 mRNAs in situ at single cell resolution, and there are often groups of cells that have 

correlated gene expression with their neighbors to make up larger structures. However, the 

original report analyzed these expression patterns using PCA and hierarchical clustering, treating 

each cell as an independent feature, rather than preserving spatial positions of cell neighbors.[2] 

Slide-seq similarly produces high-throughput spatially resolved transcription information, using 

sequencing rather than fluorescence. Previous analyses of Slide-seq data first identified spatially 

non-random gene expression, but then looked for genes expressed in similar patterns using 

overlap analysis rather than preserving spatial features.[3] So far, the existing algorithms that are 

used for analysis of spatial transcriptomics are based on statistical modeling and primarily 

propose to distinguish spatially expressing or variable (SE or SV) genes from random spatial 

expression noise. For example, both SpatialDE and SPARK analysis approaches estimate how 

significant the spatial pattern of a gene is.[4, 5] SpatialDE further builds in an unsupervised pattern 

detection algorithm to cluster significant SE genes into different groups which should have certain 

spatial patterns in collective. SPARK, in contrast, was designed only for finding SE genes. To 

examine spatial relationships between genes, this method still relies on hierarchical clustering 

with individual pixels as features. Therefore, even with a distinct power to identify highly significant 

SE genes, the latter part of the SPARK analysis decouples the expression from its original spatial 
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context. Thus far, existing spatial transcriptomics analyses involve either multi-step complex 

feature engineering for spatial quantification or human-imposed rigid or statistical modeling-based 

screening of candidate SE genes. In this work, we propose an approach inspired by computer 

vision and image classification to find relationships between spatial expression patterns of 

different genes while preserving the full spatial context (Fig. 1). 

Results 

Convolutional neural networks have demonstrated a wide range of applications in 

computer vision, including image classification and object recognition. A few groups have 

proposed different approaches to use convolutional neural networks (ConvNet) in unsupervised 

learning.[6-8] Here, we adopt an unsupervised ConvNet learning strategy for Spatial 

Transcriptomics Analysis (CoSTA) (Fig. 1a and see Methods for detailed description). Though 

there are many unsupervised learning strategies, we chose to apply the workflow of DeepCluster, 

because it is straightforward and easy to implement.[6] Our CoSTA approach consists of two main 

parts:  clustering by Gaussian mixture model (GMM) and weight updating as commonly performed 

in training neural networks. Our inputs are sets of images, where each image represents the 

spatial expression pattern of one gene and all images represent the same biological space. These 

can also be thought of as a set of gene expression matrices where the matrix records the 

expression of a given gene at a given position in the space.  We first initialize a ConvNet randomly 

and then forward these gene expression matrices through the ConvNet. The ConvNet for our 

analyses consists of three convolutional layers, and each convolutional layer is followed by a 

batch normalization layer and a max pooling layer. Finally, we flatten the matrix output from the 

last max pooling layer into a vector that captures the spatial features of the gene expression data. 

The size of this vector will vary depending on the image size from a given spatial transcriptomics 

technique. We then apply L2-normalization across features and reduce dimensionality by UMAP 

before we perform GMM clustering of genes. UMAP can preserve global and local structures 

during dimension reduction and previously showed better performance in image clustering than 

other dimension-reduction methods, for example Isomap and t-SNE.[7, 9] The purpose of 

clustering is generating labels, so that we can update the ConvNet like most common supervised 

neural network training. When the ConvNet is randomly initialized, features extracted by this 

ConvNet are weak. However, using them to generate labels can still guide the ConvNet to learn 

more discriminative features. Indeed, Caron et al. showed DeepCluster can learn from weak 

signal to bootstrap the discriminative power of a ConvNet.[6] Instead of giving each gene an 

arbitrary cluster label, we assign an auxiliary target distribution as a soft assignment. This 

approach will emphasize genes with high confidence in the clustering task and discount noisy 

labels due to random initialization of ConvNet. Doing this can also lead to more stable target 

values for training the neural network.[8] Finally, we can use the soft assignments we generated 

from clustering to train the ConvNet. We add a fully connected layer after the ConvNet. This fully 

connected layer produces probabilities for each gene. Thus, we can optimize the model by 

minimizing bi-tempered logistic loss based on Bregman Divergences between the generated soft 

assignments and the probabilities from the fully connected layer.[10] In summary, the CoSTA 

approach uses a ConvNet clustering architecture which repeats 1) generating features by 

ConvNet, 2) generating soft assignments by GMM clustering, and 3) using soft assignments to 

update ConvNet. Once we finish training, we only retain the trained ConvNet for the purpose of 

feature extraction. Further details about the rationale of this learning architecture can be found in 

Methods. 
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To demonstrate the spatial information lost by overlap analysis and why a spatial 

representation approach such as CoSTA is needed, we present a simplified biologically-inspired 

example (Fig. 1b). These cartoons represent a feature commonly observed in biological tissue 

sections: a tightly connected epithelial layer of cells (rectangles) adjacent to a collection of stromal 

cells (circles). In this example, the spatial expression patterns of three genes are shown. 

Comparing gene expression patterns by overlap only, we observe that Gene 1 and 2 have the 

same amount of overlap as Gene 1 and 3 (40%). Thus, an overlap approach to measure gene 

pattern similarity, like the one used in previous Slide-seq analysis [3], would report that Gene 1 is 

equally similar to both Gene 2 and Gene 3. However, biologically, it is relevant that Gene 1 and 

Gene 2 are expressed primarily in the epithelial layer while Gene 3 is expressed in the stroma.  

This biological difference is not detected by strict overlap, but instead requires a spatial 

representation that would detect the vertical stripe of epithelial layer expression as a salient 

pattern. Therefore, we are motivated to use our ConvNet clustering based CoSTA approach to 

prioritize similar shape more than overlap for biological cases where layers of cells and the overall 

patterns of groups of cells matter more than independent individual cell identities.[11]  

As a first test of CoSTA’s ability to detect correlated spatial patterns in the absence of 

exact overlap, we use the MNIST handwritten digit image data.[12] For example, when the aim is 

to find which digits have correlated handwritten patterns to the digit 3, CoSTA identifies only other 

instances of digit 3 as correlated. In contrast, overlap analysis will include all other digits as 

correlated digits of 3 (Fig. S1). Meanwhile, we notice CoSTA finds a smaller number of correlated 

digit 3 while overlap analysis returns more correlated digits overall (Fig. S1). As observed again 

below in biological analyses, this broader but less specific vs. narrower and more specific 

correlated sets is a general feature of overlap vs. spatial pattern analysis.  

Before we apply CoSTA to real spatial transcriptomics data, we simulated 5 synthetic 

datasets following the simulation method in SPARK.[5] Each dataset is generated based on three 

real expression patterns from mouse olfactory bulb data replicate 11 (Fig. 1c left panel).[13] We 

generated 2500 fake spatial expression matrices for each pattern, to mimic data for 7500 total 

genes, and then simulated noise and variability around the patterns as follows.  For each gene, 

we added non-spatial residual errors onto each spatial coordinate independently based on a 

normal distribution with mean of zero and variance from 0.2 to 0.6. The variance introduces 

different levels of noise. We then evaluated whether CoSTA can separate these 3 patterns by 

assigning right clustering label to each gene. When the model was initialized, the Normalized 

Mutual Information (NMI) against the true class label ranged from 0.24 to 0.57 (Fig. 1c right panel). 

As training proceeded, CoSTA learned discriminative features to distinguish the 3 patterns, and 

CoSTA eventually achieved NMIs from 0.92 to 0.97 against the true class label (Fig. 1c right panel, 

Table S1). Notably, when the introduced variance was 0.6 and the starting point of NMI was below 

0.3, the CoSTA approach using only bi-tempered logistic loss failed this task. We introduced 

center loss (CL) as an additional loss function to train CoSTA, and CoSTA with center loss was 

able to separate the 3 patterns and achieved 0.92 NMI against the true class label. To 

demonstrate that features learned by CoSTA from these synthetic datasets are spatially related, 

we shuffled these synthetic datasets. Shuffling all the gene matrices exactly the same way keeps 

the pixelwise overlap information identical while disrupting correlations between neighboring 

pixels, causing disruption of the spatial pattern. We found that CoSTA cannot distinguish the 

genes into correct pattern labels as well with shuffled data (NMI = 0.23 to 0.87), demonstrating 

that CoSTA is detecting spatial features that depend on the positions of neighboring pixels, rather 

than features that can be captured by a set of single pixels (Fig. S2 and Table S1). We also tested 
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SpatialDE on these true and shuffled synthetic datasets. SpatialDE performed very well on the 

true datasets, as expected. However, shuffling the data did not usually change the performance 

of SpatialDE (Table S1), indicating an important difference between CoSTA and SpatialDE: 

SpatialDE is more likely to detect patterns of individual pixels while CoSTA emphasizes the spatial 

positions of these pixels relative to each other and overall shapes of patterns.  Overall, the 

performance of CoSTA with synthetic data demonstrates that CoSTA can learn discriminating 

spatial features.   

To extend the application of CoSTA to real spatial transcriptomics data, we first applied it 

to reanalyze a MERFISH dataset (see MERFISH Analysis in Methods for complete details).[14] 

In order to compare with published analyses with the SPARK approach, we focused on the same 

slice of the mouse hypothalamus (Bregma + 0.11 mm from animal 18).[5] The expression patterns 

of a set of 155 genes expected to be spatially variable were measured with MERFISH for this 

slice, along with 5 blank control genes.  We first initialized a ConvNet and forwarded the MERFISH 

spatial gene expression matrices through it to obtain gene feature vectors. Then we clustered the 

155 spatially variable genes with the 5 blank genes and with 9 cell type-specific expression 

patterns defined by the original publication through a combination of MERFISH and scRNA-seq 

data. We clustered these genes, controls, and cell type patterns into 10 groups and visualized 

them by UMAP. Without training, SE genes, control genes, and cell types are spread across the 

2-dimensional space and boundaries between groups are not distinctively defined (Fig. 2a). Next, 

we trained the CoSTA model to obtain refined feature vectors.  After training, SE genes, control 

genes and cell types formed distinct groups that have clearer boundaries in the 2D visualization 

(Fig. 2b) and refined cluster memberships that reproducibly and quantitatively form tighter clusters 

according to a linear intrinsic dimensionality (LID) estimator (Fig. 2c) [15].  

From this MERFISH data, SPARK identified 145 SE genes including one blank control, 

and SpatialDE found 139 SE genes with one blank control.[5] Because CoSTA is not designed 

for estimation of spatial relevance but primarily for detection of spatial similarity and spatial 

relationships between gene expression patterns, we cannot use approaches in SPARK and 

SpatialDE to call SE genes directly. Therefore, we took advantage of the existence of 9 defined 

cell type specific expression patterns and tested how genes are retrieved as highly correlated to 

one of these patterns without retrieving blank controls. CoSTA revealed 133 SE genes that are 

associated with the different cell type patterns, and none of the blank controls were called 

associated with a pattern (Table S2). This number is slightly lower than the SE genes identified 

by SPARK and SpatialDE, but with higher specificity (no blank controls detected). Our result is 

also more sensitive than Trensceek which only identified 108 SE genes with one blank control.[16] 

Three genes, Avpr1a, Chat, and Nup62cl, were highlighted by Sun et al., because they were only 

identified by SPARK.[5]  CoSTA is also able to identify the spatial expression patterns of these 

genes. Chat is significantly correlated to the Endothelium pattern. Avpr1a is grouped with Nnat 

and Cd24a that both have similar spatial pattern to Ependymal, and Nup62cl is grouped with Mbp 

and Opalin which are correlated to Mature OD (Fig. 2d and Table S2). However, we also note 

that on visual inspection, the spatial patterns of some of these genes are ambiguous. This is likely 

why CoSTA associates these genes with other gene patterns, but not directly with the original cell 

type pattern.    

After successfully demonstrating the application of CoSTA to MERFISH data, we next 

expand our application of CoSTA to Slide-seq data. Slide-seq takes advantage of high-throughput 

single cell RNA sequencing and barcoding. Therefore, it enables spatial gene expression 
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measurement for all genes in the genome.[3] As a first demonstration that CoSTA can be applied 

to this type of high-throughput spatial transcriptomics data, we performed an experiment-mixing 

test to evaluate whether CoSTA can separate different spatial patterns. Due to the unavailability 

of a “gold standard” for positive and negative spatial similarity of gene expression, we mixed gene 

matrices from four different spatial transcriptomics experiments by Slide-seq and tested the ability 

of CoSTA to deconvolve them.[3]  Each overall experiment is performed on an independent brain 

slice of a different mouse, so the shapes and spatial features of each experimental sample overall 

consitute a large difference between experiments.  Each gene within each experiment will have 

a somewhat different pattern (and it will be our next goal to distinguish those differences and 

similarities), but we first tested whether genes within the same experiment could be classified 

together based on their overall spatial features.  We implemented training as above and then 

clustered the mixed experiment gene matrices into 4 clusters. The confusion matrix shows 

clustering labels are largely consistent with true experimental labels (Table S3).  

We next performed a shuffling test on gene matrices from one Slide-seq experiment, to 

break correlated patterns of neighboring regions in the way described for the shuffling of synthetic 

data above.  We trained a new model and examined model-reported similarity among expression 

patterns of ten random genes. If CoSTA successfully learned spatial features that distinguish the 

expression of these genes, the distances between two gene patterns should change when spatial 

patterns and relationships between neighboring pixels are disrupted.  We randomly selected 

Prdx5 as the reference gene and calculated Euclidean distances of 9 other genes with it. We 

order these ten genes based on their distances to Prdx5. Then, we shuffled gene matrices 100 

times, passed the shuffled matrices through the trained ConvNet, and recalculate paired 

distances with Prdx5 (Fig.3a). We find that in 5 of 9 comparisons, distances decreased upon 

shuffling, as the distinctive patterns captured by CoSTA were removed by shuffling, converting 

the matrices into generic, more similar patterns.  In 4 of 9 comparisons, distances increased with 

shuffling, likely indicating that key similarities between the spatial patterns became disrupted 

during shuffling (Fig. 3b). In contrast, the similarity measured by overlap analysis would not 

change after shuffling since individual pixels were shuffled identically. This result suggests that 

the learned features by CoSTA are relevant to the spatial expression pattern. 

We next applied CoSTA to reanalyze two spatial transcriptomics datasets measured by 

Slide-seq.[3] These datasets are derived from two biological conditions: 3 days after brain injury 

(“3 days”) and 2 weeks after brain injury (“2 weeks”). In the first investigation of these two datasets 

in Slide-seq, Rodriques et al. primarily focused on genes that were spatially correlated with Vim, 

Ctsd and Gfap at both 3 days and 2 weeks after brain injury.[3]  For comparison, we also 

examined genes correlated with Vim, Ctsd and Gfap from our CoSTA results. One property of our 

approach is that features of each gene change every epoch when weights are updated. This may 

result in changes to the nearest neighbors of a gene during model training and can be used to 

infer how strong and stable the inferred spatial patterns are in a given condition. We measured 

the overlap between detected Vim, Ctsd, and Gfap neighbor genes before and after weight 

updating across training epochs, and we found neighbors tend to be more stable for the 2-week 

dataset than for the 3 days dataset (Fig. 3b and Fig. S3). This may indicate that in the acute phase 

after injury, Vim, Ctsd and Gfap are more variable and less spatially patterned, but these patterns 

become stronger at 2-week time point after injury.  

To screen truly spatially patterned genes out from noise, we use ensemble learning. Briefly, 

we initialized 5 ConvNets and trained them separately. We then calculated the nearest neighbors 
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for every gene in the same dataset, at neighbor set sizes of 5, 10, 15, 20, 25, 30, 40, 50, and 100. 

We use a broad range of neighboring levels because we think different genes may form different 

sizes of communities. Next, we calculated Jaccard similarities across the 5 CoSTA models and 

keep genes that have an averaged Jaccard similarity larger than 0.2 at least in one level. Through 

ensemble learning, we obtain a refined set of SE genes by CoSTA. The majority of the SE genes 

identified by CoSTA are also called SE by SPARK (Fig. S4a, b). Vim, Ctsd, and Gfap passed this 

threshold in 2-week data but do not pass the threshold to be considered SE genes for the 3-day 

dataset. Overall, a smaller proportion of genes were considered SE at 3 days, consistent with the 

more variable gene neighbors observed for 3-day above.  Notably, Vim, Ctsd, and Gfap are also 

not present in the 3 days SE gene list identified by SPARK, and only Ctsd and Gfap were identified 

as SE genes by SPARK in the 2 weeks data. We call genes that pass the threshold are “stable”, 

and genes that are filtered out as “unstable”. We propose that the percentage of stable vs. 

unstable genes represents the degree of spatial patterning in the experiment set. We also note 

that less strongly patterned genes could reflect actively variable biological regulation (such as 

might happen during acute response to injury), not only technique noise. Unfortunately, we are 

unable to distinguish a weak spatial pattern from inherent noise, because of lack of “ground truth” 

for pattern matching. However, we can devise systematically noisy datasets by shuffling true 

datasets. This test serves as our final control for CoSTA’s ability to distinguish patterns from 

random noise. We shuffled a whole set of gene matrices from 3 days and 2 weeks and applied 

CoSTA to these two shuffled datasets. We reason that if spatial expression patterns of all genes 

were random, CoSTA should not learn any meaningful spatial features. We find that this shuffled 

dataset has overall lower NMI than its original dataset during training (Fig. S4b; see Methods for 

details of NMI use). Further, more genes were filtered out in the shuffled 2-week data (Fig. S4c). 

This demonstrates that CoSTA captures spatial features that are distinct from noise.  For true 3-

day and shuffled 3-day data, the numbers of genes that pass the threshold do not have an obvious 

difference (Fig. S4c). This may indicate that the inherent noise within 3-day dataset is so high that 

it is not very distinct from systematically simulated noise. Indeed, few patterns are visually obvious 

for example gene matrices from 3 days (Fig. S5a). However, we note that CoSTA on true 3-day 

data did pull out more SE genes that overlap with SPARK SE genes than did CoSTA with shuffled 

data (Fig. S4a), indicating that some patterns are consistently detectable and specific in the true 

data.  

We focused our further analysis on the 2-week data. We applied SpatialDE and SPARK 

to this dataset for comparison to CoSTA. The original Slide-seq publication previously identified 

843 genes that are correlated with Vim, Ctsd, and Gfap via overlap analysis.[3] However, our 

CoSTA, with a rigid threshold, identified many fewer correlated genes (63 with z-scores < -2.325), 

and only 19 genes matched the original Slide-seq set (Fig. 3c). SPARK first identified 1294 

significantly SE genes and then clustered them into 10 groups by hierarchical clustering with 

individual pixels as features. Our CoSTA correlated gene list only has 5 gene overlaps with genes 

that are grouped with Vim, Ctsd, and Gfap by SPARK. This further supports that correlated genes 

identified by CoSTA are different from what is obtained using individual pixel similarity. We also 

used SpatialDE to find significant SE genes. Surprisingly, the whole dataset passed the SpatialDE 

test for significant spatial expression. Then, we applied the unsupervised pattern detection 

algorithm built in SpatialDE to cluster genes into 10 groups. This resulted in a large number of 

genes grouped with Vim, Ctsd, and Gfap. A majority of our CoSTA set (41 genes) overlaps with 

genes identified by SpatialDE (Fig. 3c). Though the set of correlated genes identified by CoSTA 

is much smaller than sets identified by the other 3 methods, we find that these genes are highly 
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enriched for meaningful biological function. In the original study, Rodriques et al. highlighted that 

genes correlated with Vim, Ctsd, and Gfap are enriched for functions in immune response, 

gliogenesis and oligodendrocyte development—all functions that are biologically expected in 

response to injury.[3] We found that the correlated genes identified by CoSTA have higher 

enrichment in immune response and gliogenesis than the genes identified by SpatialDE, SPARK 

and this original Slide-seq report (Fig. 3d). However, none of genes fall into category of 

oligodendrocyte development. When we visually inspected expression patterns of genes in the 

category of oligodendrocyte development, their individual and collective patterns do not have 

similarities to expression patterns of Vim, Ctsd, and Gfap. They are either noisy or expressed 

globally (Fig. S5b). As we noted before, overlap analysis tends to include more correlated genes 

that have high global expression. Therefore, certain genes would be called correlated simply 

because they have more overlaps. From results above, we conclude that CoSTA returns a 

reduced, stringent set of correlated genes while retaining biological significance. 

Finally, we compared the types of spatial patterns detected by CoSTA and other previous 

methods.  For each method (CoSTA, SpatialDE, SPARK, and the original Slide-seq overlap 

approach), we obtain the set of genes classified as spatially correlated with Vim, Ctsd, and Gfap. 

The SpatialDE list was generated by following default analysis procedure of SpatialDE.[4] 

Because SPARK doesn’t have a built-in pattern detection algorithm, we used hierarchical 

clustering to assign SE genes identified by SPARK into 10 groups, as suggested in SPARK.[5] 

On the diagonal of Fig. 4a, we show the average expression pattern of the set of correlated genes 

obtained from CoSTA, SPARK, SpatialDE, and Slide-seq, respectively. Other images show 

expression patterns of genes unique to the method listed in the row vs. the method listed in the 

column. For example, the image on the 1st row and 2nd column is the expression pattern of 

correlated genes identified by CoSTA but not SPARK, and the image on the 2nd row and 1st 

column is the expression pattern of genes found in SPARK but not CoSTA.  We note that CoSTA 

detects a localized, specific pattern of gene expression (bright in the upper middle) shared within 

its correlated gene set while the patterns detected by the other methods look similar to the 

average expression across all genes (Fig S6; thus being less distinctive to this specific correlated 

set).    Using the learned spatial representation, we further clustered all CoSTA-determined SE 

genes at the 2-week time point into 6 groups. The cluster that contains Vim, Ctsd, and Gfap 

(cluster 3) is composed of 89 genes expressed in a distinct pattern (Fig. 4b and Table S4). Other 

clusters also successfully identify distinctive spatial patterns of expression (Fig. 4b and Fig. S6) 

We also used SpatialDE to cluster SE genes identified by CoSTA into 6 clusters. We found that 

the two methods share some commonalities in detecting patterns but also have some 

disagreements (Fig. S6). 

Discussion 

We have shown that our CoSTA approach can successfully implement deep learning 

ideas from computer vision to infer spatial gene expression relationships. Identifying spatial 

patterns from high-throughput spatial transcriptomics data is still challenging, however. We often 

do not have a clear ground truth answer for what should be detected as a pattern vs. noise and 

what similarities in patterns are most biologically relevant. Different approaches will have different 

strengths and weaknesses depending on the types of patterns and relationships to be detected. 

The very first step in any approach to analyzing spatial transcriptomics data is estimating 

significant SE genes. To identify SE genes, SpatialDE relies on the assumption that spatial 

expression of a given gene follows a multivariate normal distribution across spatial coordinates.[4] 
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However, this assumption leads all genes in a Slide-seq dataset to be identified as SE genes by 

SpatialDE. This may occur because noisy signals generated by the Slide-seq experiment may 

also follow or are confounded within the multivariate normal distribution. Therefore, a multivariate 

normal model will not be able to distinguish spatial patterns from noise in certain types of 

experimental data. Different from SpatialDE, both SPARK and CoSTA make use of kernels to 

identify SE genes. SPARK defined 5 periodic and 5 gaussian kernels to cover a range of possible 

spatial patterns that the authors believe are observed in common biological datasets.[5] Therefore, 

identifying SE genes involves a statistical evaluation of how well kernels match spatial patterns 

of interest. This SPARK approach is very valuable if an experimental dataset is accompanied by 

prior knowledge about relevant spatial patterns. Kernels in CoSTA also serve a similar purpose 

but are not predefined. Instead, kernels in CoSTA are learned through training a neural network. 

To identify SE genes, we rely on the idea that a true spatial pattern should be collective, which 

means a group of genes should share a spatial pattern. Therefore, when we apply kernels learned 

independently from 5 ConvNets, genes in the same group should have similar responses to these 

kernels. Conversely, a noisy gene expression pattern would respond to the 5 sets of ConvNet 

kernels differently, clustered with different groups of genes each time. Indeed, this kernel 

approach helps identify SE genes in Slide-seq data, and we see agreement between CoSTA with 

SPARK on the identification of SE genes, but without requiring an a priori definition of relevant 

patterns. 

Identification of SE genes is just the beginning of extracting biological meaning from 

spatial gene expression. Careful analysis of the spatial relationships between genes is also 

necessary. Often, as in overlap analysis, studying gene relationships is based on vectorizing gene 

expression patterns and measuring their similarities in a latent space without considering spatial 

information such as the position of neighboring datapoints. One key motivation for CoSTA, 

therefore, is to preserve a spatial and shape representation of gene expression patterns. In 

comparison, SPARK does not have a pattern detection function, but can be combined with 

hierarchical clustering with pixels as features to assign each gene a pattern label. SpatialDE 

implements a clustering model based on a spatial Gaussian-process-based (GP) prior.[4] This 

clustering model is an extension of GMM with the addition of a spatial prior on cluster centroids. 

Therefore, pattern detection by SpatialDE goes beyond the pixel level.  In our method, we define 

the key goal as learning a spatial representation for each gene. We have demonstrated that 

features learned by CoSTA are not isolated to individual pixels. Because of use of convolutional 

layers, spatial features learned by our method represent local patterns and multiple local patterns 

together form the global pattern for the gene matrix. Finally, vectorizing gene matrices allows us 

not only to find different spatial patterns within a dataset by clustering but also to study spatial 

relationships of pairs of genes. Such a pairwise examination, in contrast, is not implemented in 

SpatialDE.  

Again, depending on the biological reality underlying the data, different approaches will 

have different advantages.  The CoSTA approach will have advantages in cases where overall 

pattern shape is important, while direct overlap calculations may perform better when exact cell 

to cell correlation is more biologically relevant. The CoSTA approach may also have future 

applications to datasets in which images of different genes are not from the identical biological 

section, but instead from neighboring tissue slices, as is common in traditional histology. If a 

pattern or shape of expression is maintained while exact overlap is lost, CoSTA could still detect 

such a pattern similarity where an overlap approach would not.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.12.426400doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.12.426400


Throughout our analyses, we find that overlap approaches, as well as SPARK and 

SpatialDE tend to capture more global patterns, grouping together as significantly correlated 

genes that are more distant in their spatial pattern relationships, while CoSTA captures a narrower 

and more specific set of genes, more likely to be based on local features of a pattern. This was 

observed in our analysis of digit image data as well as in applications to Slide-Seq and, to a lesser 

extent, MERFISH. This difference in outcomes again demonstrates the different advantages and 

disadvantages of different approaches.  CoSTA would likely be more useful in a case where users 

want to narrow their set of candidate related genes and extract specific expression patterns. We 

also note throughout the Methods section alterations to parameters of CoSTA that could allow for 

detection of more general patterns.  

 

Conclusions 

In this study, we demonstrated that our deep learning CoSTA approach provides a 

different angle to spatial transcriptomics analysis by focusing on the shape of expression patterns. 

CoSTA includes more information about the positions of neighboring pixels than does an overlap 

or individual pixel correlation approach.  CoSTA can be applied to any form of spatial 

transcriptomics data that are represented in matrix to find genes expressed in similar patterns as 

well as to evaluate the strength of the spatial patterning of each gene. We find that CoSTA 

captures more focused groups of spatially related genes while still detecting the biological function 

information found by other approaches that report larger sets of related genes.     

Methods 

Resize Gene Images and Normalization 

The raw images of Slide-seq consist of over 1,000,000 pixels, which makes computation difficult. 

Therefore, we first binned 100 pixels into one pixel and resized matrices from different 

experiments into the same 48X48 image size. This results in a lower resolution, which may 

obscure small-scale fine details, but large scale global features of expression patterns of genes 

are preserved. CoSTA can be applied to any spatial transcriptomics dataset at any resolution, as 

long as the user has sufficient computational resources available. To avoid extreme 

computational burden, we recommend that users interested in high resolution features zoom into 

regions of interest and crop images in that region to efficiently apply CoSTA to their data. After 

binning, we normalized gene matrices as described in Svensson et al.[4] This normalization 

involves finding the total gene expression counts for each pixel across all gene matrices and then 

normalizing each pixel of each matrix by the log total counts across all matrices for this pixel. If 

this normalization is not performed, the expression of a gene could be over or undercounted at 

certain spatial locations where expression levels were systematically high or low for all genes. 

Normalization by total counts at each pixel ensures that our approach captures the spatial 

covariance for each gene beyond this potential artifactual effect. For visualization of expression 

patterns, we instead use averaged raw count values, and scale values from 0 to 1 divided by the 

maximum value. Thus, expression images in all figures are in 0 to 1 scale. This allows a more 

direct visual inspection of the raw data.  

CoSTA Architecture  

1. ConvNet 
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The ConvNet stage of CoSTA consists of 3 convolutional layers for Slide-seq and MERFISH 

analysis. Inputs are sets of spatial gene expression images (matrices) as described above. We 

first initialize a ConvNet randomly and then forward these gene expression matrices through the 

ConvNet. All weights in convolutional layers are initialized on a Xavier uniform distribution. Each 

convolutional layer is activated by a rectified linear unit function and is followed by a batch 

normalization layer and a max pooling layer to reduce the size of the output. To produce a feature 

vector for each gene, we flatten the matrix output from the last max pooling layer by concatenating 

all matrix columns into a single column. One fully connected layer is added to the model after the 

last max pooling layer with a customized softmax activation to produce outputs as probabilities 

(See 4. Loss Function). The fully connected layer is only used during training, when we need 

gradients to pass backwards through the model. Once trained, this fully connected layer will be 

discarded, and we use L2-normalized outputs as the spatial representations. Specific parameters 

used in ConvNet, such as the number and size of filters in each convolutional layer, can be found 

in python code.  We note that different numbers of convolutional layers have been used for 

different image classification tasks. We recommend that users start with a 3-convolutional-layer 

network for initial data exploration. However, if a dataset has a larger size of gene matrices, 

outputs from the 3-convolutional-layer network will be very long vectors. Therefore, users can 

increase the number of convolutional layers to decrease the dimensions of outputs if needed.   

2. UMAP and Clustering 

The flattened spatial representation vector output from the three convolutional layers is reduced 

by UMAP before GMM clustering. We implemented UMAP using the original python source 

code[9]. We set up “n_neighbors=20” and “min_dist=0”, while using UMAP for dimension 

reduction. To cluster samples into N clusters, a user can reduce dimensions to N UMAP-

dimensions. In this study, we reduce all samples to 30 UMAP-dimensions and cluster all samples 

into 30 clusters by GMM. While 30 clusters are used here for the model training purpose, once 

the model is trained, the user can use the final output vector of spatial features to cluster genes 

into any number of groups desired. To test the influence of the initial choice of number of clusters, 

we tested 10, 20, and 30, 50, 75, and 100 clusters in 2-week Slide-seq data. Using larger numbers 

of clusters leads to the identification of fewer SE genes (Fig. S7a). Our model can converge no 

matter how many clusters are used for training (Fig. S7b). For a purpose of comparison, we called 

the 15 nearest genes of Vim, Ctsd, and Gfap individually, and total 45 genes in one test as 

correlated genes were used for comparing effects of the number of clusters. The choice of the 

number of clusters will influence the scale of correlated expression pattern detected (Fig. S7c). 

More global pattern differences will be detected using smaller numbers of clusters while finer 

scale pattern distinctions are detected with larger numbers of clusters (Fig. S7c). Increasing the 

number of clusters will also bring a disadvantage of larger computational cost and longer training 

time (Table S5). In this case, 30 clusters show good specificity, and the detected spatial pattern 

is not further refined with increasing cluster numbers (Fig. S7c). Without ground truth for a dataset, 

the number of clusters must be chosen based on the scale of patterns desired to be detected for 

a particular biological application and the results inspected visually.  

3. Auxiliary Target Distribution as Soft Assignment 

After clustering, we calculate centroids by averaging samples in the same cluster (Eq. 1).  
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𝐸𝑞. 1: 𝑐𝑖 =  
1

𝑀𝑖
∑ 𝑥𝑖𝑗

𝑀𝑖

𝑗=1

 

Where 𝑐𝑖 is the centroid for the 𝑖𝑡ℎ cluster, 𝑀𝑖 is the total number of samples in this cluster, and 

𝑥𝑖,𝑗 is a reduced UMAP vector for the 𝑗𝑡ℎ sample in the 𝑖𝑡ℎ cluster. 

Then, each sample is assigned probabilities based on Euclidean distances to cluster centroids 

(Eq. 2).  

𝐸𝑞. 2: 𝑝(𝑦 = 𝑖| 𝑥) =  
ⅇ1∕ⅆ𝑖

∑ ⅇ1∕ⅆ𝑖
𝑁

𝑖=1

 

Where ⅆ𝑖 is the Euclidean distance of sample 𝑥 to the centroid 𝑐𝑖, and 𝑁 is the total number of 

clusters. 

Next, we transform probabilities of each sample to an auxiliary target distribution using equation 

3. 

𝐸𝑞. 3: 𝑞𝑖𝑗 =  
𝑝𝑖𝑗

2 /𝑓

∑ (𝑝𝑖𝑗
2

𝑁

𝑖=1
/𝑓)

 

where 𝑓 = ∑ 𝑝𝑖𝑗

𝑀

𝑗=1
. 𝑖 denotes the 𝑖𝑡ℎ cluster and 𝑗 denotes the 𝑗𝑡ℎ sample, 𝑝𝑖𝑗 is probability that 

the 𝑗𝑡ℎ  sample belongs to the 𝑖𝑡ℎ  that we get through Equation 2. 𝑞𝑖𝑗  is the auxiliary target 

probability that the 𝑗𝑡ℎ sample belongs to the 𝑖𝑡ℎ  cluster. This transformation was proposed by 

Xie et al, which is raising 𝑝𝑖𝑗  to the second power and then normalizing by frequency per 

cluster.[17] The use of power 2 is to highlight samples that have high confidence in the clustering 

task and discount samples for which the model is uncertain about cluster assignment.  

4. Loss Function 

To optimize the neural network, we use bi-tempered logistic loss based on Bregman Divergences 

as the primary loss function. Bi-tempered logistic loss was proposed by Amid et al and showed 

advantage of making supervised learning robust to noise.[10] To achieve the robustness, they 

devised tempered softmax function and tempered logistic loss and gave detailed mathematical 

reasons behind (Eq. 4 and 5). We reason that training CoSTA also faces the problem of unknown 

noise within the data, because clustering will assign wrong labels to samples. This is even true 

when clustering is based on the ConvNet that is randomly initialized. Therefore, use of bi-

tempered logistic loss is to deal with wrong or uncertain labels generated by clustering. When 

both 𝑡1 and 𝑡2 are equal to 1, bi-tempered logistic loss is the common KL-divergence loss with 

softmax activation. 

𝐸𝑞. 4: 𝐿 = 𝑦𝑖(𝑙𝑜𝑔𝑡1
𝑦𝑖 − 𝑙𝑜𝑔𝑡1

�̂�𝑖) −  
1

2 − 𝑡1
(𝑦𝑖

2−𝑡1  −  �̂�𝑖
2−𝑡1) 

Where 𝑙𝑜𝑔𝑡1
(𝑥) can approximate to 

1

1−𝑡1
(𝑥1−𝑡1 − 1). 𝑦𝑖 is the target value and �̂�𝑖 is the predicted 

value out of the fully connected layer. 
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𝐸𝑞. 5: �̂�𝑖 =  ⅇ𝑥𝑝𝑡2
(�̂�𝑖 − 𝜆𝑡2

(�̂�)) 

Where �̂�𝑖 is linear activation of output of the fully connected layer for the 𝑖𝑡ℎ cluster, and 𝜆𝑡2
(�̂�) ∈

ℝ is s.t. ∑ ⅇ𝑥𝑝𝑡2
(�̂�𝑗 − 𝜆𝑡2

(�̂�))
𝑘

𝑗=1
= 1. 

Center loss is an optional setting in our model. Center loss was first proposed to assist models to 

learn discriminative representations in supervised learning.[18] Optimizing models with center 

loss is equal to minimizing intra-class variation defined by Eq. 6.  

𝐸𝑞. 6: 𝐿𝑐 =  
1

2
 ∑‖𝑥𝑖 − 𝑐𝑗‖

2

𝑀𝑖

𝑗=1

 

Where 𝑐𝑖 is the centroid of 𝑖𝑡ℎ cluster, and 𝑥𝑗 is the hidden features of 𝑗𝑡ℎ sample in this cluster. 

Because lowering center loss will push samples closer to the cluster center, the learned 

representations will be more discriminative in the hidden space. Though we did not use center 

loss to train models for Slide-seq data, we found that adding center loss during training can 

substantially improve accuracy in Fashion image data (Fig. S8) and the synthetic data with 

variance as 0.6. If a user has a biological dataset with some degree of known ground truth for 

comparison, initial data exploration should explore whether combining center loss and bi-

tempered logistic loss is more appropriate to capture the known spatial features of the data.  

5. Normalized Mutual Information 

Unlike supervised learning, we do not have ground truth for training in the CoSTA approach. To 

monitor how well training proceeds, we use normalized mutual information (NMI) to compare 

clustering labels before and after weight updating across training epochs. Increase of NMI during 

training indicates a decreased changing of clustering labels and thus suggests convergence of 

model. We cannot hold aside a validation set during CoSTA training. Therefore, NMI also serves 

as a metric of overfitting. Once we do not observe a large jump of NMI in consecutive epochs, we 

consider that the model has converged. 

6.Experiments with Common Image datasets 

While experimenting with MNIST handwritten, USPS-digit, and Fashion image datasets that come 

with true labels, we noticed that the CoSTA approach can learn to predict more true labels than 

the model that is just initialized and exceeds UMAP+GMM with pixel values as features (Fig. S8). 

For the Fashion image dataset, CoSTA was greatly improved after we add center loss with bi-

tempered logistic loss as a whole loss function. However, the learning ability of CoSTA with these 

datasets is less than with supervised learning approaches (typically >95% accuracy). The highest 

accuracy we got is 0.961 (MNIST handwritten), 0.931 (USPS-digit) and 0.686 (Fashion), as 

measured by NMI between the clustering label and true class label. NMIs achieved with CoSTA 

applied to the MNIST and Fashion datasets are higher than for all other deep learning clustering 

methods, and the CoSTA NMI for USPS scores second in the ranking of deep learning approach 

performance.[7] We also tested whether SpatialDE can identify patterns in these three image 

datasets. We used the automatic histology pattern detection implemented in SpatialDE to cluster 

images in MNIST handwritten, USPS-digit, and Fashion into 10 groups, and SpatialDE achieved 
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0.532 (MNIST handwritten), 0.658 (USPS-digit), and 0.568 (Fashion) NMIs, which are even lower 

than UMAP+GMM clustering with pixels (Fig. S8). 

SE Gene Calling 

To call out SE genes, we use an approach of ensemble learning. Simply put, we train 5 CoSTA 

models independently. We then calculate a set of nearest neighbors for every gene in the same 

dataset, using neighbor set sizes of 5, 10, 15, 20, 25, 30, 40, 50, and 100. This is because different 

genes with their neighbors may form a community with different sizes. Using a broad range of 

neighboring set sizes can enable us to include SE genes that only form a small community with 

a few genes as well as SE genes that fall into a large gene group. Next, we calculated Jaccard 

similarities across the 5 ConvNets and keep genes that have averaged Jaccard similarity larger 

than 0.2 at least in one level of neighbor set sizes: 5, 10, 15, 20, 25, 30, 40, 50, or 100.  

Correlated Gene Calling 

To find significant correlated genes, we use the learned features from one of 5 CoSTA models to 

calculate Euclidean distance pairwise between all genes. For example, to get significant 

correlated genes with Vim, we calculated distances of all other SE genes to Vim based on the 

learned features. Then, we used these distances to create a null distribution. Distances that have 

Z-scores lower than -2.323 (p<0.01) are considered significant, and genes that have significant 

distances would be called out as correlated genes to Vim. Because we trained 5 independent 

models, we obtain 5 sets of correlated genes for each SE gene in the data. Then, we keep 

correlated genes that show up in at least in 3 models. 

MERFISH Analysis 

We obtained the MERFISH dataset collected on the mouse preoptic region of the hypothalamus 

from Dryad[14](https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248), and we used the 

slice at Bregma + 0.11 mm from animal 18 for analysis as used for SPARK analysis.[5] We 

reduced the image resolution 10-fold and resized images to 85X85 matrices. Next, we directly 

applied a customized CoSTA model to the MERFISH dataset. This customized approach has the 

same general architecture that defines CoSTA, as described above. The customized ConvNet 

also has three convolutional layers but each convolutional layer has a larger filter, to reduce the 

overall size of the output. To compare with results from SPARK, we created null distributions for 

correlated gene calling by permuting images 100 times. Permuted images are forwarded through 

CoSTA to get permuted spatial features. Then we calculated their Euclidean distances with the 

spatial features of the true image, and these distances serve as the null distribution. Because the 

9 defined cell type expression patterns are known, significantly correlated genes to these 9 

expression patterns were called SE genes. For each gene in this MERFISH dataset, including the 

5 blank controls, we calculated its Euclidean distances and its 100-time shuffled distances to the 

9 expression patterns. If the true Euclidean distance of one gene to one cell type pattern are lower 

than Z-score -2.323, we call this gene an SE gene that is correlated to the expression pattern 

typical of this particular cell type.   To visualize the training process, we project the feature vectors 

of each gene onto the first two UMAP dimensions and label each gene according to clusters 

defined using the whole feature vector.  We use a linear intrinsic dimensionality (LID) estimator 

to quantify the change in cluster distinctness before and after training. This estimator mainly 

measures a ratio between distance of each datapoint to its the second closest datapoint and 

distance to its closest datapoint. Ratios are ordered from low to high and it fits a line that crosses 

the origin. The slope of this line represents the LID of this data in the latent space. Simply put, the 
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lower LID, the more clustered datapoints are in the latent space. Indeed, among 10 different runs, 

spatial representations after training show lower LIDs than without training. 

Analysis of Slide-seq with SPARK and SpatialDE 

Analysis of Slide-seq with SPARK and SpatialDE follows the standard analysis pipelines 

proposed by these two methods, with default parameters. Code of analysis can be found at the 

GitHub repository (https://github.com/rpmccordlab/CoSTA ). 

Figure Legends 

Fig. 1 

CoSTA model approach and motivation. a, Overall CoSTA pipeline. Inputs are gene matrices 

from spatial transcriptomic experiments. ConvNet stage forwards images through 3 convolutional 

layers and then flattens the output into a spatial representation vector. UMAP reduces 

dimensionality of the spatial representations from the ConvNet stage before these gene 

representations are used to cluster genes with GMM. Each gene is then assigned cluster 

probabilities based on distances to cluster centroids, which are transformed to an auxiliary target 

distribution that can be minimized by reducing bi-tempered logistic loss and/or center loss. 

Gradients are backpropagated through a fully connected layer to ConvNet. The process is 

repeated until the model converges, at which point the output from the ConvNet is used as the 

final spatial representation (red arrow). b, Biologically-inspired example in which overlap does not 

capture all aspects of spatial pattern similarity. Rectangles represent an epithelial cell layer while 

ovals represent stromal cells. By overlap comparison, Gene 1 has the same similarity to both 

Gene 2 and Gene 3 (40% overlap). However, the biologically relevant expression along the 

epithelial layer is only shared between Gene 1 and Gene 2. Detecting this shape similarity 

requires learning a spatial representation. c, Performance of CoSTA in synthetic datasets. left 

panel: the 3 real expression patterns in mouse olfactory bulb data replicate 11; right panel: 

learning curves of CoSTA in 5 synthetic datasets with different noise levels. NMIs are measured 

between clustering labels by CoSTA and true class label. 

Fig. 2 

Analyzing MERFISH data with CoSTA approach. a and b, Visualization of the spatial feature 

vectors obtained for each gene, blank control, and cell type pattern from MERFISH data in a 2D 

UMAP layout. a, features extracted from a randomly initialized ConvNet with no training. Each dot 

is a gene, blank control, or cell type pattern. Colors indicate cluster labels obtained from clustering 

on the full feature vectors; b, features extracted by trained ConvNet. Each dot is colored with the 

original clustering labels from a to show how some cluster memberships rearrange. c, Local 

intrinsic dimensionalities of spatial representations by CoSTA without and after training (10 

independent runs of CoSTA). d, CoSTA-detected spatial correlations of genes identified as SE 

only by SPARK. Top row displays known cell type specific expression patterns for 3 cell types. 

Lower rows display genes with expression patterns identified as significantly correlated to these 

cell types by CoSTA. Chat, Avpr1a, and Nup62cl were detected as SE genes by SPARK but not 

other approaches. Raw count values for each image are scaled from 0 to 1 to normalize the visual 

comparison. 

Fig. 3  
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CoSTA Analysis of Slide-seq data. a, Shuffling test to disrupt spatial patterns. Left panel: The first 

row shows the three original spatial expression patterns of three example genes. Images in the 

second row are spatial patterns after shuffling (all images shuffled in the same way so that pixel-

level overlap is preserved while spatial neighbor relationships are broken). Right panel: Distances 

between 9 randomly selected genes and Prdx5. Genes are ordered based on how close they are 

to Prdx5 using spatial features extracted by CoSTA from true gene matrices (left to right: closest 

to farthest). Shuffled gene matrices are forwarded through CoSTA, and distances between gene 

pairs are subtracted from the unshuffled distances. Each point represents distance change for 

one shuffling (100 shufflings total). Red line at 0 indicates no change in distance would be 

observed using overlap calculations. b, The number of overlapped gene neighbors of Vim, Ctsd, 

and Gfap before and after each weight updating across all training epochs (30 nearest neighbors 

considered, see Fig. S3 for different size neighbor sets). Results shown for two experiments: 3 

days (blue) or 2 weeks (red) after brain injury. c, Overlap of gene lists correlated with Vim, Ctsd, 

and Gfap at 2 weeks identified by CoSTA, SPARK, SpatialDE, and overlap analysis (“Slide-seq”). 

d, GO term enrichment in the correlated gene sets from different approaches for biologically 

relevant functions identified by the original Slide-seq analysis. Quantified along the axis is the 

fraction of genes in each method’s correlated gene list that are annotated with the given GO term. 

Fig. 4 

Collective expression patterns detected in Slide-seq data. a, Collective expression pattern of Vim, 

Gfap, Ctsd and their correlated genes after 2 weeks brain injury defined by different methods. 

Patterns on the diagonal derived from genes correlated with Vim, Gfap, Ctsd defined by CoSTA, 

SPARK, SpatialDE, and overlap analysis, respectively. Other images show expression patterns 

of unique genes identified by 1 approach (row) over another approach (column). For example, 

the image on the first row and 4th column is the expression pattern of correlated genes found by 

CoSTA but not Slide-seq overlap analysis, and the image on the 4th row and 1st column presents 

expression pattern of genes identified by Slide-seq overlap as correlated to the key 3, but not 

identified by CoSTA. b, Gene clusters of CoSTA SE genes at 2-week time point on 2 UMAP 

dimensions. Mean expression patterns are presented for selected clusters. Visualization with raw 

count values that are scaled from 0 to 1. 

Supplementary Fig. 1 

Comparison of CoSTA and overlap analysis performance in finding correlated digits to digit 3. 

1000 images are sampled from the full MNIST dataset, and each digit contains 100 samples. 

CoSTA (red bars) uniquely calls samples of digit 3 as correlated to digit 3. However, overlap 

analysis (blue bars) reports that all digits show some overlap with digit 3. CoSTA also reports a 

smaller number of digit 3 images but overlap analysis report a greater number of correlated digits 

overall. 

Supplementary Fig. 2 

Learning curve of CoSTA in true and shuffled synthetic datasets, with different variances. 

Clustering label generated by CoSTA is against true class label for measurement of NMI. 

Supplementary Fig. 3 
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The number of overlapped neighbors of Vim, Ctsd, and Gfap before and after each weight 

updating across all epochs, considering either 10 nearest neighbors (left), 20 nearest neighbors 

(center), or 50 nearest neighbors (right).  

Supplementary Fig. 4 

The number of SE genes after 3 days and 2 weeks brain injury. a, Overlap of SE genes identified 

by SPARK, CoSTA learned with true data and CoSTA learned with shuffled data. b, learning curve 

of CoSTA with true and shuffled data. Y-axis shows NMI calculated between cluster labels at 

training epoch t and cluster labels at previous epoch t-1. X-axis shows training epoch t. c, Percent 

of all measured genes that are called SE genes by the 3 approaches.  

Supplementary Fig. 5 

Expression patterns of Vim, Ctsd, and Gfap 3 days and 2 weeks after brain injury. a, Expression 

patterns of Vim, Ctsd, and Gfap after 3 days after brain injury. b, Expression patterns of Vim, Ctsd, 

Gfap and genes involved in oligodendrocyte development (bottom row) 2 weeks after brain injury. 

Patterns that are visibly similar between Vim, Gfap, and Ctsd (small red boxes) are not strikingly 

visible in oligodendrocyte development genes.  

Supplementary Fig. 6 

Expression patterns of SE genes identified by CoSTA 2 weeks after brain injury. SE genes were 

clustered into 6 groups by SpatialDE and CoSTA.  CoSTA cluster numbers correspond to Figure 

4b and the most similar SpatialDE cluster is placed below the corresponding CoSTA cluster when 

possible. Average expression pattern in 3rd row shows the overall pattern of all genes combined 

in the 2-week dataset. 

Supplementary Fig. 7 

Effect of cluster number on CoSTA results with 2-week post injury Slide-seq data. a, SE genes 

identified by CoSTA with 10-100 clusters. b, CoSTA learning curve with 10-100 clusters. Y-axis 

shows NMI calculated between cluster labels at training epoch t and cluster labels at previous 

epoch t-1. X-axis shows training epoch t. c, Mean expression pattern of genes found to be 

correlated with Vim, Gfap and Ctsd identified by CoSTA with cluster numbers ranging from 10-

100. Raw count values are scaled from 0 to 1 for these visualizations. 

Supplementary Fig. 8 

CoSTA approach applied to clustering USPS, MNIST and Fashion datasets. Left panels: Models 

were trained for 10 epochs. After each weight updating, we clustered images into 10 clusters and 

directly compared them to true class labels through NMI. The grey line indicates clustering by 

UMAP+GMM with pixel values as features. The black line indicates clustering by SpatialDE. The 

orange line represents learning with combined center loss and bi-tempered logistic loss in Fashion 

dataset. Right panels: NMIs between clustering at the 𝑡𝑡ℎ updating and the previous (𝑡 − 1)𝑡ℎ 

updating. 

Supplementary Table 1 

Comparison of CoSTA and SpatialDE on 5 true and shuffled synthetic datasets. Adjusted Rand 

Index and Normalized Mutual Information are used to measure the ability of separating different 
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spatial patterns. For shuffled data, each gene matrix still keeps its ground truth label but the 

original spatial pattern is disrupted. 

Supplementary Table 2 

Clusters of SE genes identified by CoSTA in the MERFISH dataset (cell type patterns are included 

in clusters). 

Supplementary Table 3 

Confusion matrix of clustering labels derived from CoSTA results compared to the original known 

experimental label. 

Supplementary Table 4 

Genes in each cluster of SE genes detected by CoSTA from the 2-week data, as shown in figure 

4b.  

Supplementary Table 5 

Runtime of CoSTA for 3-day and 2-week Slide-seq data. Runtimes are measured in minutes and 

under different numbers of clusters being assigned during training.  

Abbreviations 

ConvNet: convolutional neural network 

SE or SV gene: spatial expression or spatial variable gene 

CoSTA: unsupervised ConvNet learning strategy for spatial transcriptomics analysis 
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Fig. S1
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Fig. S3
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Fig. S5

A 3 days after brain injury

B 2 weeks after brain injury
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Fig. S7
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Fig. S8
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Supplementary Table 1

NMI
noise level (variance) True data Shuffled data True data Shuffled data

0.2 0.97 0.87 0.99 0.72
0.3 0.97 0.85 1 0.99
0.4 0.95 0.74 0.99 0.98
0.5 0.92 0.74 0.98 0.97
0.6 0.29|0.92 0.23 0.95 0.95

CoSTA SpatialDE
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Supplementary Table 2 Cluster Cluster Cluster
Gene Cluster Slc17a6 1 Gad1 4 Slc15a3 7
Endothelial 1 0 Sox4 1 Gal 4 Slc18a2 7
Ermn 0 Sox6 1 Gda 4 Sln 7
Gabra1 0 Sox8 1 Npy2r 4 Tac1 7
Gjc3 0 Syt4 1 Penk 4 Tiparp 7
Igf1r 0 Tmem108 1 Rgs2 4 Avpr2 8
Man1a 0 Adora2a 2 Serpinb1b 4 Egr2 8
Ndrg1 0 Bdnf 2 Th 4 Galr2 8
OD Mature 2 0 Brs3 2 Trhr 4 Pgr 8
Sema3c 0 Ccnd2 2 Coch 5 Synpr 8
Sgk1 0 Chat 2 OD Immat 5 Vgf 8
Slco1a4 0 Endothelia 2 Pcdh11x 5
Ttyh2 0 Gbx2 2 Pdgfra 5
Aldh1l1 1 Gem 2 Traf4 5
Amigo2 1 Grpr 2 Crhbp 6
Ar 1 Krt90 2 Cyr61 6
Arhgap36 1 Lpar1 2 Ebf3 6
Astrocyte 1 Microglia 2 Endothelia 6
Cbln1 1 Nts 2 Fst 6
Cbln2 1 OD Mature 2 Gnrh1 6
Cckar 1 Rgs5 2 Lmod1 6
Cpne5 1 Rxfp1 2 Mki67 6
Creb3l1 1 Selplg 2 Myh11 6
Crhr2 1 Cdkn1a 3 OD Immat 6
Cspg5 1 Cenpe 3 OD Mature 6
Dgkk 1 Cplx3 3 Oxt 6
Excitatory 1 Cyp19a1 3 Pericytes 6
Gabrg1 1 Fezf1 3 Sst 6
Galr1 1 Fn1 3 Syt2 6
Glra3 1 Klf4 3 Tac2 6
Gpr165 1 Mbp 3 Ucn3 6
Htr2c 1 Ndnf 3 Adcyap1 7
Igf2r 1 Necab1 3 Aqp4 7
Inhibitory 1 Ntng1 3 Avpr1a 7
Irs4 1 Nup62cl 3 Cckbr 7
Isl1 1 OD Mature 3 Cd24a 7
Kiss1r 1 Opalin 3 Ependyma 7
Onecut2 1 Plin3 3 Etv1 7
Oprd1 1 Ramp3 3 Fos 7
Oprk1 1 Slc17a8 3 Mlc1 7
Oprl1 1 Sp9 3 Nnat 7
Pak3 1 Sytl4 3 Nos1 7
Pnoc 1 Tacr1 3 Npy1r 7
Prlr 1 Calcr 4 Omp 7
Rnd3 1 Cxcl14 4 Pou3f2 7
Scg2 1 Esr1 4 Sema4d 7
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Supplementary Table 3

0 1 2 3 Clustering label
0 2266 36 2 6
1 1 5117 115 157
2 0 78 7396 102
3 4 114 91 7085

Experiment label

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2021.01.12.426400doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.12.426400


Supplementary Table 4

Cluster 0 Cluster 1 Cluster 3 Cluster 4 Cluster 5

Cdkn1b Gpm6b Psma7 Dlgap1 Trf Car14 Cpne6 Chgb Dlgap4 Itpr1 Smap1
Vps13c Ssb Prrc2c Cbx5 Xpnpep3 Pbxip1 Grin2a Cfl1 Atl1 Hlf Elavl3
Hap1 Lmo4 Peg3 Prkar1b Ppp1r1b Hemk1 Mycbp2 Npm1 Dgkz Hpcal4 Igfbp6
Wbscr17 Prdx2 Sltm Scn1b Sox5 Igfbp7 Arpc1a Nfib Ktn1 Nlk Prpf40b
Scn3b Rock2 Ldha Elavl4 Gcnt2 Ier3 Enc1 Ywhaz Prkcz Phactr3 Nudt4
Pitpnm2 Gria3 Soga3 Prkacb Tmem98 Cldn11 Xist Ncdn Ndfip2 Tbl1x Ppap2b
Gm26917 Cmip Phactr1 Atp2b2 Cryab C1qb Wasf1 Cacna1e Rora Flywch1 Tsnax
Marcksl1 Ppp1r9a Tuba4a B2m Phactr2 Stk39 Gnaq Ppp3r1 Ccl27a Fam107a Fgf12
Jph1 Rtf1 Ankrd12 Lpgat1 Otx2 Cd63 Hpca Atp1a3 Cdc5l Oxr1 Luc7l
Vav3 Vamp2 Srrm2 Ndrg3 Acaa2 Ezr Zeb2 Btbd9 Fnbp1l Rapgef4 Ube2r2
Slc17a6 Snap47 Myo5a Sncb Atox1 Aldh2 Epha4 Cttnbp2 Plcb4 Btbd10 Serpine2
C1ql2 Arpp19 Strbp Dclk1 Ifi27 Cox8b Neurod6 Ap2a2 Pik3r1 Emc4 Lamp5
Sema5a Ensa Klf9 Gnb1 Qdpr C1qc Olfm1 Ppfia2 Pmm1 Slc1a3 Fabp3
Nr3c2 Cfap36 Egr1 Trim37 Haus2 Rbp1 Camk2b Kif5c Chga Nos1ap Kif3a
Prox1 Ube2k Ntrk2 Sult4a1 Ccnd2 Vat1l Gria1 Ndufb7 Cdk11b Car10 Zfp91
Rasl10a Pdap1 Zfr mt‐Tp Slc31a1 Slc16a2 Herc1 Ppp3cb D430041D Pcdh7 Pfkm
Limd2 Rsrp1 Map1a Fam81a Crhbp Vim Grin2b Ank3 Sv2b Satb1 Ndufaf2
Plk5 Tuba1b Luc7l3 Pak1 Gpr88 Gfap Syn2 Brinp1 Ccdc186 Clstn3 Camk2g
Ahcyl2 Rabep1 Kif21a Kifap3 Hist1h2bc Tgfb2 Auts2 Camkk1 Arhgap32 Srp72 Ldb2
Epha7 Acot7 Stmn1 Gabra1 Cnp Lyz2 Ubxn4 Mapk1 Phf3 Stx1a
Tcf7l2 Zc3h13 R3hdm1 Pde1a Itpk1 Lars2 Nptx1 Capza2 Psmd2 Akap8l
Fam163b Chd3os Sptbn1 Ddx24 Col1a2 Spint2 Erc2 Gabra5 Mgll Rabl6
Vamp1 Syngr1 Fam171b Igfbp2 Ctnnal1 Thra Nell2 Pin1 Nap1l2
Dock10 Mapt Eef1a2 Etfb Npc2 Zbtb20 Bdnf Meis2 Necap1

Eid1 Atp6v0e2 Tnfaip8 Dcn Kalrn Nbea Rims2 Rufy2
Nrn1 6330403K07Rik Ranbp9 Trpm3 Bcl11b Napa Srrm3 Slc39a10
Rgs4 Ptprn Slco1c1 Calb2 Cnih2 Ywhah Golga4 Nktr
Zranb2 Mphosph8 Plin3 Mag Celf2 Dynll1 Snw1 Kcnb1
Nars 2210016L21Rik Elovl7 Cdkn1c Gng2 Ncam1 Nemf Pcdh9
Zfand5 Rbm25 Krt12 Gng5 Camta1 Abr Thoc2 Gabra3
Eif5b Zfp365 Ctsd Sh3d19 Sh3bgrl3 Ptk2b Clasp2 Chd5
Mapk10 3110035E14Rik Pcp4l1 Sostdc1 Rab2a Rbfox1 Rims1 Kcna2
Atp5o Rangap1 Ctss Vamp8 Lppr2 Fam131a R3hdm2 Gpbp1
Ntm Ttyh1 Tesk1 Pvrl3 Arf3 Rnf112 Tubb4b Bend6
Prkcb S100b Kl Syne1 Neurod2 Htatsf1 Sgtb
Zmynd11 Sf3b1 Kcnj13 Epha5 Nptxr Ttc9b Scrn1
Psmc1 Plcb1 Mgp Cpne4 Ak5 Glrx2 Cfdp1

Cluster 2 Basp1 Pcmt1 S100a1 Trim2 Snca Cabp1 Homer1
Dnaja1 Fam168a Gda Tbc1d9 Ddx5 Cadm2 Nr3c1 Cobl
Matr3 Oxct1 Ncl Pltp Synj1 Ddx1 Lingo1
Dnm1 Rufy3 Rph3a Cd59a Sepw1 Stau2 Asap1
Snap25 Apba2 Klc1 Calml4 Ogfrl1 Map9 Pak1ip1
Rab6a Ndufb9 Mdh2 Ccdc66 Pnmal2 Foxp1 Dnajc21
Cox4i1 Cdk5r1 Atp1a2 Cab39l Zbtb18 Wdr26 1700025G04Rik
Arpp21 Ghitm Srpk2 Gas6 Nrxn1 Sept11 A830010M20Rik
Gria2 Ndufa10 Tmem50a Nwd2 Tubb2a Pacsin1 Add1
Ywhag Ppig Sars Clic6 Rap1gds1 Scn1a Lin7a

Atp5c1 Nefm Mal 2010300C02Rik Cacng2 Tia1
Aplp1 Rrp1 Nnat Wipf3 Ankrd11 Usp7
Ndrg2 Son Igf2 Arpc5 Cxxc5 Gm10419
Scd2 Pgm2l1 Folr1 Stxbp6 Zfp148 Esf1
Srsf11 Nrxn2 Fxyd1 Schip1 Cep290 Epb4.1l3
Tagln3 Cplx1 1500015O10Rik Sirt3 Smarcc1 Apc
Sbno1 Eif3c Slc16a6 Pfn1 Rap2a Camkk2
Uqcc2 Ctsb Prlr Mrfap1 Pip5k1c Rcan2
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Supplementary Table 5

Slide‐seq 3‐day 2‐week

# of genes 7576 7294
size of image 48X48 48X48

runtime (in min) 11.5 12.5

2‐week 10 clusters 20 clusters 30 clusters 50 clusters 75 clusters 100 clusters
runtime (in min) 8 9.5 12.5 14.5 21 29.5

CPU
Memory
GPU

(running with 30 clusters)

Intel i9‐9880H
64GB

NVIDIA Quadro T2000

(running with assigning different clusters)
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