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 9 
Abstract 10 

Organisms can adapt to an environment by taking multiple mutational paths. This redundancy at the 11 
genetic level, where many mutations have similar phenotypic and fitness effects, can make untangling the 12 
molecular mechanisms of complex adaptations difficult. Here we use the E. coli long-term evolution 13 
experiment (LTEE) as a model to address this challenge. To bridge the gap between disparate genomic 14 
changes and parallel fitness gains, we characterize the landscape of transcriptional and translational changes 15 
across 11 replicate populations evolving in parallel for 50,000 generations. By quantifying absolute changes 16 
in mRNA abundances, we show that not only do all evolved lines have more mRNAs but that this increase in 17 
mRNA abundance scales with cell size. We also find that despite few shared mutations at the genetic level, 18 
clones from replicate populations in the LTEE are remarkably similar to each other in their gene expression 19 
patterns at both the transcriptional and translational levels. Furthermore, we show that the bulk of the 20 
expression changes are due to changes at the transcriptional level with very few translational changes. 21 
Finally, we show how mutations in transcriptional regulators lead to consistent and parallel changes in the 22 
expression levels of downstream genes, thereby linking genomic changes to parallel fitness gains in the 23 
LTEE. These results deepen our understanding of the molecular mechanisms underlying complex 24 
adaptations and provide insights into the repeatability of evolution. 25 

 26 
Introduction 27 

Comparative genomic approaches and large scale mutation experiments have allowed us to map 28 
genetic changes to phenotypic changes underlying adaptation in many cases involving individual genes such 29 
as hemoglobin1, hormone receptors2, and influenza proteins3,4. However, when organisms adapt to novel 30 
environments such as during yeast evolution under nutrient limitation5–7, adaptation to high-temperature 31 
stress8, bacterial evolution during infections9, and long-term adaptation of Escherichia coli to minimal media10–32 
13, genomic changes are widespread. Understanding how these changes lead to functional changes at the 33 
molecular level is critical to understand the mechanistic basis of adaptations. 34 
 35 

Here we use the E. coli long-term evolution experiment as a model system to characterize the 36 
mechanistic basis of adaptation to a novel environment. Recent studies using LTEE have quantified the 37 
dynamics of fitness growth14, identified the proportion of beneficial mutations12, characterized mutational 38 
dynamics in the system13,  and identified the mechanistic basis of specific adaptations such as citrate 39 
utilization in Ara-315.  Despite significant contributions to the understanding of adaptation in the LTEE, the role 40 
that changes in transcription and translation play in increasing growth rates remains unexplored. An earlier 41 
study of gene expression changes in LTEE showed parallel changes in transcription profiles in two of the 42 
twelve evolved lines, Ara-1 and Ara+1, at 20,000 generations using radioactive microarrays16. Whether 43 
parallelism in gene expression changes extends to the other lines and persists over a more extended period 44 
remains unknown. Furthermore, since changes at the transcriptional level can be buffered at the translational 45 
level17,18, changes to both must be considered. Finally, significant changes in cell-size and morphology of the 46 
bacteria19,20 over the course of adaptation indicate a need to quantify both relative and absolute changes in 47 
expression. 48 
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 49 
Results 50 

To address these questions, we performed RNA-seq and ribosomal footprinting (also called Ribo-51 
seq)21 in the exponential phase of the ancestral strains and single clones from each of the 12 evolved lines 52 
at 50,000 generations (Fig. 1A). We analyzed single clones from Tenaillon et al. 2016 and considered 4216 53 
protein-coding genes from the ancestors. We aligned sequencing data for each evolved clone to its unique 54 
genome. We restricted our analysis to 11 out of 12 evolved lines due to ancestral contamination in one of our 55 
samples (Ara+6). We averaged between 151 and 1693 reads per gene across the 52 libraries (Fig. S1A, 56 
Table S1). The distributions of read counts per gene were similar across lines, replicates, and sequencing 57 
methods (Fig S1C). We also observed a clear three-nucleotide periodicity in our Ribo-seq datasets (Fig. S1B, 58 
Table S2). 59 
 60 
Evolved lines are larger and carry more mRNAs 61 

Contrary to expectations, every evolved line in the LTEE has become larger in size compared to the 62 
ancestor19,20,22. While bacterial size (cell volume) is a function of its growth rate, which typically depends on 63 
nutrient availability23–25, the increase in cell size in LTEE is not entirely a consequence of faster growth rate19. 64 
This increase appears to be under selection and is partly caused by mutations in Penicillin-binding protein 65 
genes, which also led to the increased circularity of the cells26. Moreover, cultures of the evolved lines were 66 
recently found to have higher biomass with proportionally higher amounts of nucleic acids compared to the 67 
ancestors27. Because changes to cell volume can affect transcription rates and alter relative concentrations 68 
of RNA molecules28, we chose to quantify changes in the absolute abundance of mRNAs. 69 
 70 

We used phase-contrast microscopy to measure the size and shape of cells in each of the ancestral 71 
and evolved lines and calculated cell volume based on these measurements (see methods, Table S3). We 72 
find that each evolved line has a larger volume than the ancestor (Welch's t-test, p < 0.0001 for all lines) (Fig. 73 
1B). We also find that evolved lines form filaments more frequently and formed longer filaments than the 74 
ancestor (see Supplementary Analysis). However, the larger size of evolved lineages is not entirely due to 75 
higher filamentation. Even after filtering out filaments (cells >3x median volume), all evolved lines were still 76 
significantly larger compared to the ancestor (Welch's t-test, p < 0.0001 for all lines) (Fig. S2B).  77 

 78 
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Figure 1: A. Schematic of the experimental design. B. All evolved lines are larger than the ancestral strain. 79 
Distributions of cellular volume as determined by phase-contrast microscopy and assuming sphero-cylindrical 80 
shape of E. coli along with representative images for each line. Numbers underneath a line's name indicates 81 
the total number of cells imaged (scale bar is 10um, see Figure S3 for representative images.). The dashed 82 
line indicates the ancestral median, p-values indicate the results of a t-test when each line is compared to the 83 
ancestor, **** p ≤ 0.0001. Lines listed in red have mutator phenotypes. C. Spike-in RNA control abundances 84 
are correlated with their estimates in sequencing data. Linear models relating the number of molecules of 85 
each ERCC control sequence added to their RNA-seq TPM (transcripts per million) in Ara+1 RNA-seq 86 
samples (see Fig. S4 for all lines). D. Most genes have a higher absolute expression in evolved lines. Changes 87 
in the absolute number of mRNA molecules per CFU (colony forming unit) in the 50,000th generation of Ara+1 88 
relative to the ancestor. The values plotted are the average between 2 replicates of the evolved lines and 89 
both replicates from both ancestors (REL606 and REL607; see Fig. S4 for all lines). E. Absolute changes in 90 
mRNA abundances in evolved lines are significantly larger than the variation between biological replicates (t-91 
test, p < .0001 in all cases). Distributions of fold-changes of mRNA molecules per CFU. Pink curves indicate 92 
gene-specific fold-changes between biological replicates for each line (centered around 1). Purple curves 93 
show the fold-change from the 50,000th generation of an evolved line to the ancestor. Fold-change was 94 
calculated in the same manner as in D. F. Larger evolved lines have more mRNA per CFU. Relationship 95 
between the median volume for each line and the total number of RNA molecules per CFU for each line. Total 96 
molecules of RNA are calculated as the sum of the average number of molecules for each gene between 97 
replicates. 98 
 99 

To measure how changes in cell size affect absolute RNA abundances, we measured the number of 100 
colony-forming units (CFU) that went into each library (Table S4). We added the ERCC RNA spike-in 101 
controls29, a set of 92 RNA oligos in known amounts, to our RNA-seq libraries (table S5). This allowed us to 102 
quantify the number of molecules per CFU for each transcript. We find a linear relationship between the 103 
number of molecules of ERCC oligos and the number of transcripts quantified using RNA-seq (TPM) (Fig. 104 
1C, S4A). Fold-changes in absolute counts ranged widely in each of the lines (Fig. 1E, Table S6) but were 105 
overwhelmingly greater than one. Moreover, the increase in mRNA abundances in evolved lines relative to 106 
the ancestor were greater than differences in abundances between corresponding biological replicates (Fig. 107 
1E, t-test, p < .0001 in all cases). This suggests that all evolved lines have more mRNA molecules compared 108 
to the ancestral strains. Finally, we show that evolved lineages with larger cells have more mRNAs (Fig. 1F), 109 
suggesting that absolute abundances of mRNAs scale with cell size.  110 
 111 
Gene expression changes are parallel at both transcriptional and translational levels  112 

Despite a high degree of parallelism in fitness, few mutations are shared across the evolved lineages, 113 
and each of the lines was founded on a unique set of mutations12. At the gene level, only 57 genes have 114 
mutations in two or more lines12. Moreover, it remains unclear if the functional effects of these mutations are 115 
similar across lines. To bridge the weak parallelism at the genotypic level with the strong parallelism at the 116 
fitness level, we took gene expression as a molecular phenotype and quantified transcription and translation. 117 
Earlier radioactive microarray-based experiments with two evolved lineages (Ara+1 and Ara-1) at 20,000 118 
generations have showed that the expression patterns between the two evolved lines were more similar to 119 
each other than either were to the ancestor16. However, it remains unclear if the pattern of parallel gene 120 
expression changes is identical across all evolved lineages and has remained mostly parallel over a more 121 
extended period.  122 

 123 
We find that expression levels of genes were surprisingly similar across evolved lineages. Pairwise 124 

correlations based on TPM showed a high degree of similarity among the evolved lines for RNA-seq and 125 
Ribo-seq datasets (Fig. S5A, Table S1). Interestingly, pairwise correlations between evolved lines were not 126 
significantly different from correlations between evolved lines and the ancestors (Fig. S5B). This suggests 127 
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that expression patterns of many genes remained mostly unchanged over 50,000 generations. We then 128 
sought to systematically quantify the degree of expression changes in both RNA-seq and Ribo-seq datasets 129 
using DESeq230 in each of the evolved lines (Table S7). Overall, half of all genes across all lines had less 130 
than a 30% change in their expression levels (Fig. S5C). However, several genes showed large changes in 131 
their expression patterns that varied by a thousand-fold (log2 fold-change > 10).  132 

 133 

 134 
 135 
 136 
Figure 2: A. Parallelism in expression changes across evolved lines. The fold-changes of top 100 down and 137 
upregulated genes in each of the lines in the RNA-seq datasets. Genes are ordered from left to right in order 138 
of increasing mean fold-change across evolved lines. Gray bars represent gene deletions. B. Downregulated 139 
genes have larger effect sizes than upregulated genes. Distribution of statistically significant fold-changes in 140 
each line. Statistical significance was based on DESeq2 results using q ≤ 0.01. C. Pairwise correlations of 141 
evolved lines based on all (yellow curve) or only statistically significant (blue curve) RNA-seq fold-changes. 142 
Each of these curves is significantly different from a distribution based on correlations made after randomizing 143 
the fold-changes (grey curve) within each line (p ≤ 0.01, t-test). D. Fold-changes in expression levels of genes 144 
in evolved lines scale negatively with their ancestral expression levels. The relationship between ancestral 145 
TPM in the RNA-seq dataset and RNA-seq fold-change in Ara+1. The red dots represent significantly altered 146 
genes, and the black dots represent the remaining genes. E. The number of significantly down and 147 
upregulated genes in each line. 148 
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 149 
We find a high degree of parallelism in expression changes at both the transcriptional and translational 150 

levels (Fig. 2 and S6). The top 100 up and downregulated genes (defined as having the largest mean positive 151 
or negative fold-change across the evolved lines) showed remarkably similar fold-changes (RNA-seq, Fig. 152 
2A; Ribo-seq, Fig. S6A). Distributions of all pairwise comparisons of fold-changes in evolved lines showed 153 
positive correlations, which became even more positive when considering only statistically significant genes 154 
(RNA-seq, Fig. 2B; Ribo-seq, Fig. S6D). Interestingly, we find that a higher number of genes were 155 
downregulated than upregulated across most lines (RNA-seq, Fig. 2E; Ribo-seq, Fig S6C). Moreover, the 156 
magnitude of downregulations was larger than that of upregulations in all but Ara+3 (Welch's t-test, p < 0.05 157 
in all cases) (RNA-seq, Fig. 2B; Ribo-seq, Fig S6B). Surprisingly, evolved lines arrived at similar 158 
transcriptional and translational profiles regardless of whether they had a mutator phenotype or not (Fig. S6E).  159 
 160 

 161 
Figure 3: A. The number of non-mutator lines in which a gene has at least one SNP inside the coding 162 
sequence. B. The number of evolved lines in which a gene's expression level was significantly altered (q ≤ 163 
0.01) was based on the DESeq2 results for RNA-seq datasets. C. Frequently altered genes are typically 164 
downregulated. The proportion of up and downregulated genes as a function of their frequency of expression 165 
changes across lines. D. Frequently downregulated genes have larger effect sizes than upregulated genes. 166 
Distributions of the RNA-seq fold-changes for the genes in the x-axis categories of C. 167 

 168 
We next examined if changes in expression levels of a gene were somehow related to their expression 169 

in the ancestor. When we considered all genes, we observed a weak negative relationship between ancestral 170 
TPM and fold-change in an evolved line (Fig. 2D, S6F). This negative relationship is likely a by-product of the 171 
overall increase in mRNA abundances with cell-size. Due to biophysical constraints, genes with high ancestral 172 
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expression are unlikely to see large increases in mRNA abundances relative to genes with low expression. 173 
As a result, genes with low ancestral mRNA abundances appear more upregulated when considering only 174 
relative expression levels. However, when only statistically significant genes were considered, we see a very 175 
strong negative relationship in most lines. The slope of this relationship is distinctly more negative than for all 176 
genes. Additionally, the proportions of significantly upregulated genes decreased with the ancestral gene 177 
expression level for most lines (Fig. S6G).  178 

 179 
We observed high levels of parallelism in expression changes despite few shared mutations across 180 

multiple lines (Fig. 3A, Table S8). We find that both the proportions of downregulated genes and their 181 
magnitude of downregulation increased with the number of lines a gene was significantly altered in (Fig. 3C 182 
and D), indicating that more downregulations were shared across lines than upregulations. This implies that 183 
there are fewer genes and pathways whose downregulation increases fitness, whereas genes and pathways 184 
whose expression increases enable higher fitness are more varied and unique to each line. We find similar 185 
patterns for the Ribo-seq datasets (Fig. S7). 186 
 187 
Transcriptional changes drive translational changes 188 

Translational regulation affects the rate at which an mRNA produces its protein product. Different 189 
mRNAs are translated with varying efficiencies in both eukaryotes and prokaryotes21,31,32. However, the role 190 
of changes in translational regulation during adaptation and speciation remains poorly understood and is 191 
heavily debated18,33. To study translational changes, we performed high-throughput ribosome-footprinting in 192 
both the evolved lines and their ancestors. 193 
 194 

Interestingly, we find that gene-specific ribosome-footprint abundances were highly correlated with 195 
mRNA abundances (R ≥ 0.92 for all lines, Fig. 4A and S8A). Since the number of ribosome-footprints from a 196 
gene also depends on its mRNA abundances, we used Riborex34 to evaluate gene-specific changes in 197 
ribosomal-densities in each of the evolved lines relative to the ancestor. Surprisingly, we find very little 198 
evidence of translational changes (Fig. 4B, Table S9). The number of genes with significantly altered (q ≤ 199 
0.01) ribosome-densities ranged from 0-6 genes across all lines, with a total of only 18 unique genes showing 200 
altered ribosome-densities. Overall, changes in ribosome-densities on transcripts were sparse, suggesting 201 
that transcriptional changes are the dominant force behind expression changes in the LTEE. 202 
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 203 
Figure 4: A. Translational changes are positively correlated with transcriptional changes. The relationship 204 
between RNA-seq and Ribo-seq TPM in Ara+1. The TPMs are averaged between the replicates. B. The 205 
distribution and identity of genes with significantly altered ribosomal densities (q ≤ 0.01). C. Evolved lines 206 
have faster translation termination. Stop codons had lowered ribosome density compared to amino acid 207 
codons. Each point represents a stop codon from an evolved line, and the y-axis is fold-change in ribosomal 208 
density relative to the ancestor. P-value based on a t-test. D. Fold-changes in expression levels of translation 209 
termination factors and related genes ykfJ, prfH, prfA, prmC, prfB, fusA, efp, prfC. E. Changes in codon-210 
specific ribosome densities in each of the evolved lines relative to the ancestor. Codons are arranged from 211 
left to right in order of increasing mean fold-change for their respective amino acid across the lines. 212 
 213 

While ribosome-density changes reflect changes to the overall number of ribosomes per transcript, 214 
they do not reveal information about the translation of specific codons or amino acids. We find that the 215 
ribosome-densities at stop codons were significantly lower in all the evolved lines than in the ancestors (Fig. 216 
4C and 4E, Table S10), suggesting that translation termination was significantly faster in evolved lines. 217 
Translation initiation and termination are relatively slow processes compared to elongation. As a result, faster 218 
termination might be adaptive in that it allows faster recycling of ribosomes, thereby increasing overall protein 219 
synthesis rates. Furthermore, we reasoned that this change in stop-codon ribosome-densities might be due 220 
to changes in expression levels of proteins that aid translation termination, such as release factors. We 221 
examined changes in genes related to termination, namely frr (ribosome recycling factor35), fusA (elongation 222 
factor G36), prfABC (peptide release factors A, B, C37,38), and prmC (a methylase required for the function of 223 
prfAB39). These genes showed differing directions and magnitudes of alteration at the RNA level, and these 224 
changes were rarely statistically significant (Fig. 4D, S8C). prfB and prfC facilitate the release of a protein 225 
from the ribosome at a stop codon and were typically upregulated, indicating an increase in their expression 226 
might be responsible for faster translation termination.  227 
 228 

We also find higher ribosome-densities at Proline codons across all lines, indicating that elongation 229 
rates at these codons have slowed. Given this apparent slowdown at proline codons, we examined if genes 230 
involved in proline biosynthesis had altered expression levels. However, the three enzymes directly involved 231 
in proline biosynthesis - proA, proB, and proC, the proline tRNA ligase - proS, and elongation factor P involved 232 
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in alleviating ribosome pausing at polyproline motif 40, were not significantly altered in any of the lines (Fig. 233 
S8B). We suspect that the higher ribosome-densities at Proline codons are likely due to lower levels of 234 
charged proline tRNAs. 235 
 236 
Transcriptional and translational changes of frequently deleted genes 237 

Large deletions are among the most frequent class of mutations in the LTEE11,12 and several gene 238 
deletions are shared across multiple evolved lineages (Fig. 5A). For example, the rbs operon is partially or 239 
entirely deleted in every evolved line, making them unable to catabolize ribose. This loss of rbs operon leads 240 
to increased fitness relative to the ancestor41. We also find that genes deleted entirely in at least four lines 241 
had lower expression in the ancestor (Fig. 5B). While the fitness benefit of specific deletions such as rbs 242 
operon has been experimentally validated, it is more challenging to systematically assess the effects of 243 
deletions in only some of the lines. This is especially true of the large deletions that encompass multiple genes 244 
of unrelated functions. Since downregulation and deletions of genes have similar functional effects (that is, 245 
removal of the gene product), we hypothesized that frequently deleted genes would be typically 246 
downregulated in lines where the gene was still present. Surprisingly, we find no enrichment in the 247 
downregulation of genes deleted in at least four lines (Fig. 5C). One reason for this lack of enrichment might 248 
be the mechanism by which most genes are deleted in LTEE. Deletions in LTEE are typically mediated by 249 
insertion-elements, spanning multiple kilobases and encompassing multiple genes (Fig. 5D). On average, 17 250 
genes were lost per deletion event. Our results suggest that while deletions of a few genes within these large 251 
deletions might be under selection, most of other deletions are simply genetic hitchhikers. 252 

 253 

 254 
Figure 5: A. The frequency with which a gene was deleted entirely across the lines. B. Frequently deleted 255 
genes have lower expression levels in the ancestors. The distributions of ancestral TPMs of genes were 256 
deleted entirely in at least four lines (red) or were never deleted in any of the lines (grey). P-values based on 257 
a t-test. C. Frequently deleted genes are not typically downregulated in lines where they are present. Heatmap 258 
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represents RNA-seq fold-changes of all genes deleted in at least four lines. Genes are ordered from left to 259 
right in order of increasing mean fold-change across evolved lines. Gray bars represent gene deletions. The 260 
histogram above the heatmap indicates the frequency of deletion of corresponding genes in the heatmap. D. 261 
Number of genes deleted per large deletion in LTEE across all 12 lines. The dashed line indicates the average 262 
number of genes deleted per deletion (~17).  263 
 264 
Functional characterization of differentially expressed genes 265 

To identify functional categories and pathways that are altered as a result of expression changes in 266 
each line, we looked for enrichment in KEGG pathways42, gene ontology terms43, and pathway perturbation 267 
scores (PPS) from the BioCyc collection of databases44 (Fig. S10, Table S13, see methods for details on 268 
each). For these analyses, we considered deleted and pseudogenized genes as being downregulated.  269 

 270 
Though many categories were altered across the lines in the KEGG analysis (see Table S11 for 271 

complete results), we chose to focus on those that were significantly altered (FDR ≤ 0.05) in at least four lines. 272 
We find a high degree of parallelism between the evolved lines for KEGG pathways that are significantly 273 
altered based on RNA-seq datasets (Fig. 6A, C; see Fig. S9A for Ribo-seq scores). Consistent with earlier 274 
microarray experiments, we find that the flagellar assembly genes are significantly downregulated16 in 10 out 275 
of 11 evolved lines. In addition, because the evolved lines are growing in a stable environment over 276 
evolutionary timescales, it stands to reason that genes involved in responding to stress and environmental 277 
changes will be downregulated. As expected, we find that genes associated with biofilm formation, two-278 
component signaling pathways, and ABC transporters are all downregulated across most lines. Furthermore, 279 
we find that selection for faster growth in LTEE has led to significant increases in expression levels of genes 280 
involved in amino acid biosynthesis and sugar metabolism across all lines. These findings are also mirrored 281 
when we use Ribo-seq data for the KEGG analysis (Fig. S9A). 282 
 283 

 284 
Figure 6: A. Parallel changes in functional categories. KEGG enrichment scores from the RNAseq data. 285 
Enrichment score represents the degree to which a pathway was up (positive) or downregulated (negative). 286 
The functional categories are ordered by increasing the mean enrichment score across the lines. B. Pathway 287 
perturbation score (PPS) is calculated from RNA-seq fold changes. Higher PPS indicates larger degrees of 288 
alteration but does not indicate directionality. C. Pairwise correlations of KEGG enrichment scores for all 289 
pathways that were significantly altered in at least one line. D. Pairwise correlations of PPS scores. PPS 290 
scores for the randomized set was calculated by randomizing the fold-changes within each line.  291 
 292 

While KEGG pathway analysis encompasses molecular interactions and reaction networks, we 293 
wondered which specific metabolic pathways were altered across all lines and which ones remained mostly 294 
unchanged over 50,000 generations. Because E. coli REL606 is annotated in the Biocyc collection of 295 
databases, we used their metabolic mapping tool to score pathway alterations with a pathway perturbation 296 
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score (PPS) in each of the evolved lines (see methods for a detailed explanation of the scoring). Similar to 297 
the KEGG pathway analysis, we find a high degree of parallelism, even at the level of specific metabolic 298 
pathways (Fig. 6B, D). Interestingly, 4 out of 5 most altered pathways are involved in lipopolysaccharides 299 
(LPS) biosynthesis, a major component of Gram-negative bacteria's outer membrane. This indicates that in 300 
addition to changes in cell size and shape, the composition of the evolved lines' outer membrane has 301 
significantly changed. Nonetheless, there is a core set of unaltered pathways, even in clones with a mutator 302 
phenotype. Pathways with low PPS scores, indicating low levels of alteration included D-serine degradation 303 
(mean RNAseq PPS =  0.12, sd = 0.13), pseudouridine degradation (mean RNAseq PPS = 0.11, sd = 0.06), 304 
and others (see Table S12 for complete PPS scores). These may represent pathways with activity levels that 305 
cannot be altered or whose alteration provides little to no fitness benefit.  306 
 307 
Mutations to transcriptional regulators explain many parallel expression changes 308 

Given the high degree of parallelism in evolved lines at the gene expression level, we wondered 309 
whether some of these patterns could be explained by a parallel set of mutations at the genetic level. Because 310 
KEGG, PPS, and GO analyses all identified metabolism and catabolism of various sugars to be significantly 311 
altered, we started by looking at mutations to genes involved in these categories. Previous work has shown 312 
that depending on the generation sampled, evolved clones grow poorly (20,000th generation) or not at all 313 
(50,000th generation) on maltose45. Because maltose is absent from the growth media in the LTEE, 314 
maintenance of these transporters is likely unnecessary46. Additionally, at 20,000 generations, the 315 
transcriptional activator of the operon responsible for maltose metabolism, malT, was the frequent target of 316 
mutations that reduced its ability to act as a transcriptional factor, and introduction of malT mutations in the 317 
ancestor had a fitness benefit46. In E. coli, MalT regulates the transcription of several operons - malEFG 318 
(maltose ABC transporter), malK-lamB-malM (MalK, part of maltose ABC transporter; LamB, maltose 319 
transporter; MalM, conserved gene of unknown function, MalPQ (two enzymes involved in maltose 320 
metabolism), and the genes malZ (maltodextrin glucosidase) and malS (an α-amylase). We find that each of 321 
these operons was consistently and significantly downregulated across all lines (Fig. 6E). Changes to the 322 
LamB transporter have also been shown to affect susceptibility to phage infection in the LTEE47.  323 
 324 

 325 
Figure 7. Mutations in transcriptional regulators lead to parallel changes in gene expression. RNA-seq fold-326 
changes for genes belonging to A. maltose-transport/metabolism and B. NAD biosynthesis. Gene names in 327 
each category are colored based on their operon membership. Mutations in transcriptional activator malT 328 
decrease expression of its downstream genes/operons. Mutations in transcriptional repressor nadR increase 329 
expression of its downstream genes/operons. Asterisks indicate statistical significance of fold-changes, ** q 330 
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≤ 0.01, * q ≤ 0.05. Grey panels in the heatmap indicate gene deletion. Lower panels show the type and 331 
location of mutations in each transcription factor. 332 
 333 

In the LTEE, NadR, a transcriptional repressor of genes involved in NAD biosynthesis, is known to be 334 
frequently mutated, with many mutations occurring in its DNA binding domain 48,49. In fact, all evolved clones 335 
used in this study are known to have some mutation in nadR12. Given the high frequency of parallel inactivating 336 
mutations in nadR, it is likely that these mutations are adaptive as they might increase intracellular NAD 337 
concentrations leading to faster growth48,49. We find that genes directly under the regulation of nadR -- the 338 
nadAP operon consisting of nadA (quinolinate synthase) and pnuC (nicotinamide riboside transporter), and 339 
genes -- nadB (L-aspartate oxidase) and pncB (nicotinate phosphoribosyltransferase, were significantly 340 
upregulated in all lines. We also found enrichment of NAD pathways based on KEGG, GO (GO:0019674, 341 
GO:0009435), and PPS analysis. Interestingly, four non-operonic genes nadCDEK, which play various NAD 342 
biosynthesis roles but are not regulated by nadR, were largely unaltered (nadE was statistically significantly 343 
upregulated in 4 lines, DESeq2 q ≤ 0.01, Table S7). Concordantly, their transcriptional regulator, nac, is rarely 344 
mutated. This may suggest some sort of specificity to how NAD levels may be increased.   345 
 346 

In addition to linking the effects of specific mutations on gene expression changes in maltose and NAD 347 
regulation, we have also identified mutations that likely change the expression of genes involved in arginine 348 
biosynthesis, glyoxylate bypass system, and copper balance (Fig. S11, see supplementary methods). 349 
However, there also exist several functionally-related sets of genes, such as flagellar assembly, sulfur 350 
homeostasis, and biosynthesis of one-carbon compounds – that have parallel changes in expression levels 351 
without any obvious sets of parallel mutations linking these changes (Fig. S11). The data generated in this 352 
study will likely prove to be a rich resource for understanding the metabolic changes that occur over long 353 
periods of evolution in a simple environment such as in the LTEE, thereby adding a rich new dimension to 354 
the well-studied mutational changes and gene-expression changes described here.  355 
 356 
Discussion 357 

Adaptation to novel environments often takes unique mutational paths even when the tempo and mode 358 
of adaptation are similar across populations8,12,50–53. This is due, in part, to the fact that most genetic networks 359 
are highly redundant and that many mutations have pleiotropic effects. To bridge the gap between parallel 360 
fitness gains in a system with mostly unique genetic changes, we wanted to study gene expression – a main 361 
link between genotype and fitness. To that end, we generated RNA-seq and Ribo-seq datasets for individual 362 
clones from the ancestral strains and 11 populations evolving under a constant environment for 50,000 363 
generations in the E. coli long-term evolution experiment. Using these datasets, we have characterized the 364 
landscape of gene expression changes and elucidated several key features of the molecular mechanisms 365 
involved. First, we show that the evolved lines in the LTEE have remarkably parallel exponential phase 366 
expression profiles after 50,000 generations. Second, these changes primarily occurred at the transcriptional 367 
level, with translational changes following suit. Nonetheless, we identified signatures of global increases in 368 
translation termination rates. Third, transcriptional regulators of genes that were mutated in multiple lines had 369 
similar functional effects on their downstream targets across all lines. This indicates a strong penetrance of 370 
mutational effects to the phenotypic level even when half of the evolved lines had a hypermutable phenotype. 371 
Fourth, we show how functional consequences of mutations are consistent with adaptation in a constant 372 
environment -- genes involved in central metabolism and amino-acid biosynthesis are consistently 373 
upregulated, and genes involved in sensing environmental changes and stress responses are downregulated. 374 
 375 

Relating gene expression changes to specific mutations in LTEE is far from perfect. For many genes 376 
that are functionally related and show parallel changes in gene expression, such as the ones involved in 377 
flagellar assembly and sulfur homeostasis, we find few mutations around their coding sequences or 378 
sequences of their known transcriptional regulators. This might be due to two factors: (i) a lack of complete 379 
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knowledge of gene regulatory networks underlying these functions, and (ii) parallel epigenetic changes such 380 
as changes in DNA supercoiling heterogeneities, affecting promoter activity54. Indeed, changes to DNA 381 
superhelicity occur in multiple LTEE lines55. Another key challenge in attributing expression changes to 382 
mutations is that half of the evolved lines in LTEE have a hypermutable phenotype. These genotypes have 383 
~100-fold higher mutational load than their non-mutator counterparts. It is remarkable that despite a higher 384 
mutational burden, expression patterns between mutator and non-mutator lines are highly correlated, 385 
suggesting that the bulk of the additional mutations are indeed passenger mutations13. While our current study 386 
has focused on expression patterns in the exponential phase, populations in the LTEE spend most of their 387 
time before serial transfer in the stationary phase. However, it remains unclear if we would observe a similar 388 
level of parallelism in the stationary growth phase or how similar the expression profiles might be across 389 
distinct growth phases. Taking a multi-omics approach, like the one presented above, will provide critical 390 
insights into the tradeoff between expression patterns across phases. Lab evolution experiments combined 391 
with high-throughput multi-level sequencing approaches offer a rich resource for studying the molecular 392 
mechanisms underlying complex adaptations and provide insights into the repeatability of evolution. 393 
 394 
ACKNOWLEDGEMENTS 395 
We thank Richard Lenski for generously providing clones from ancestral and 50,000 generations of the LTEE. 396 
P.S. is supported by NIH/NIGMS grant R35 GM124976, NSF DBI 1936046, subcontracts from NIH/NIDDK 397 
R01 DK056645, R01 DK109714, and R01 DK124369, as well as start-up funds from the Human Genetics 398 
Institute of New Jersey at Rutgers University. S.S.Y is supported by start-up funds from the Waksman Institute 399 
and Rutgers University 400 
 401 
AUTHOR CONTRIBUTIONS 402 
P.S. conceived the study and designed the experiments; J.S.F., S.L, and S.S.Y. conducted experiments; 403 
J.S.F., S.S.Y., and P.S. analyzed data. J.S.F. and P.S. wrote the manuscript with input from S.L. and S.S.Y. 404 
 405 
METHODS 406 
 407 
Bacterial cell culture, recovery, and lysis 408 

Richard Lenski generously provided clones from LTEE. Specifically, the following clones were used: 409 
Ara-1, 11330; Ara+1, 11392; Ara-2, 11333; Ara+2, 11342; Ara-3, 11364; Ara+3, 11345; Ara-4, 11336; Ara+4, 410 
11348; Ara-5, 11339; Ara+5, 11367; Ara-6, 11389; Ara+6, 11370. Clones were grown in DM25 medium 411 
(HiMedia M390) supplemented with 4 g/L glucose. Each culture was grown in 50 mL in a shaking incubator 412 
at 37 C at 125 rpm until an OD600 of 0.4-0.5 was reached. Cells were recovered via vacuum filtration and 413 
immediately frozen in liquid nitrogen (LN2). Frozen pellets were stored at -80 C until lysis. For lysis, a mortar 414 
and pestle were chilled to cryogenic temperatures with LN2. The pellet was ground to a powder while 415 
submerged in LN2. Once pulverized, 650 uL of lysis buffer was added to each sample and ground further. 416 
Lysis buffer contained the following: 20 mM Tris pH 8, 10 mM MgCl2, 100 mM NH4Cl, 5 mM CaCl2, 1 mM 417 
chloramphenicol, 0.1% v/v sodium deoxycholate, 0.4% v/v Triton X-100, 100 U/mL DNase I, 1 uL/mL 418 
SUPERase-In (Thermo Fisher Scientific AM2694). The frozen lysate was allowed to thaw until liquid, then 419 
incubated for 10 min on ice to allow complete lysis. Afterward, the lysate was centrifuged at 20,000g for 10 420 
minutes at 4 C, and the supernatant recovered and transferred to a new tube. Each sample was split into two 421 
for RNA-seq and Ribo-seq libraries.  422 
 423 
RNA-seq library preparation 424 

Lysate destined for RNA-seq libraries was subjected to total RNA extraction using the Trizol method 425 
(Thermo Fisher Scientific 15596026) as per the manufacturer's instructions. RNA was quantified using UV 426 
spectrophotometry. We used the ERCC RNA Spike-In Mix (Thermo Fisher Scientific 4456740) in library 427 
preparation. For RNA-seq libraries, 3 uL of a 1:100 dilution of the set 1 oligos was added to the first replicate 428 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2021.01.12.426406doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.12.426406
http://creativecommons.org/licenses/by-nc-nd/4.0/


and 4 uL to the second replicate. The spike-ins were added directly to the lysate destined for RNA-seq before 429 
Trizol based RNA extraction. 2 ug of RNA with ERCC controls were subjected to fragmentation in a buffer 430 
containing final concentrations of 1 mM EDTA, 6 mM Na2CO3, and 44 mM NaHCO3 in a 10 uL reaction volume 431 
for 15 minutes at 95 C. 5 uL of loading buffer (final concentrations of 32% v/v formamide, 3.3 mM EDTA, 100 432 
ug/mL bromophenol blue) was added to each sample, and the resulting 15 uL mixture was separated by gel 433 
electrophoresis with a 15% polyacrylamide TBE-urea gel (Invitrogen EC68852BOX) at 200 V for 30 minutes. 434 
Gels were stained for 3 minutes with SYBR Gold (Thermo Fisher Scientific S11494), and the region 435 
corresponding to the 18-50 nucleotide sized fragments excised. We excised this region so that we would have 436 
similarly sized fragments for both RNA-seq and Ribo-seq libraries. RNA was recovered from the extracted 437 
fragments by adding 400 uL a buffer containing 300 mM sodium acetate, 1 mM EDTA, and .25% w/v SDS, 438 
and freezing the samples on dry ice for 30 minutes. Then, samples were incubated overnight on a shaker at 439 
22 C. 1.5 uL of GlycoBlue (Thermo Fisher Scientific AM9515) was added as a co-precipitant, followed by 500 440 
uL of 100% isopropanol. The samples were chilled on ice for 1 hour then centrifuged for 30 minutes at 20,000g 441 
at 4 C. The supernatant was removed, and the pellet was allowed to air dry for 10 minutes. The pellet was 442 
resuspended in 5 uL of water, and 1 uL was used to check RNA concentration via UV spectrophotometry.  443 
 444 
Ribo-seq library preparation 445 

Lysate destined for Ribo-seq was incubated with 1500 units of micrococcal nuclease (Roche 446 
10107921001) and 6 uL of SUPERase-In at 25 C for 1 hour and shaken at 1400 rpm. 2 uL of .5 M EGTA pH 447 
8 was added to quench the reaction, which was then placed on ice. The reaction was centrifuged over a 448 
900uL sucrose cushion (final concentrations of 20 mM Tris pH 8, 10 mM MgCl2, 100 mM NH4Cl, 1 mM 449 
chloramphenicol, 2 mM DTT, .9 M sucrose, 20 U/mL SUPERase-In) using a Beckman Coulter TLA100 rotor 450 
at 70,000 rpm at 4 C for 2 hours in a 13 mm x 51 mm polycarbonate ultracentrifuge tube (Beckman Coulter 451 
349622). The sucrose solution was removed from the tube, and the pellet resuspended in 300 uL of Trizol, 452 
mixed by vortexing, and RNA was extracted according to the manufacturer's protocol. Samples were then 453 
separated by gel electrophoresis and purified in the same manner as for RNA-seq.  454 
 455 
Unified library preparation 456 

Once fragments were obtained from RNA-seq and Ribo-seq samples, they could be subject to a 457 
unified library preparation protocol. In total, 8 pooled libraries were prepared, with each library consisting of a 458 
single replicate of 6 Ara+  or 6 Ara- clones of one sequencing type. For example, one library would consist of 459 
replicate 1 of Ara- 1-6 for RNA-seq, and another would consist of the second replicate. The final library 460 
structure was 5' adapter - 4 random bases - insert - 5 random bases - sample barcode - 3' adapter. The 461 
randomized bases function as UMIs for deduplication. 462 
 463 

3' dephosphorylation was performed by incubating fragments with 10 U/uL T4 Polynucleotide Kinase 464 
(New England Biolabs M0201S) in the supplied buffer (NEB B0201S) along with SUPERase-In for 1 hour at 465 
37 C in a reaction volume of 5 uL. 466 
 467 

Linker ligation took place by adding the following reagents to the above reaction to the indicated final 468 
concentrations: 17% w/v PEG-8000, 200 U/uL of T4 RNA Ligase 2 (NEB M0351S), 1X T4 RNA Ligase 469 
Reaction Buffer (NEB B0216L), and 20 uM pre-adenylated linkers. The reaction volume totaled 10 uL, and 470 
was incubated for 3 hours at 22 C. Afterwards, 10 U/uL of 5' deadenylase (NEB M0331S), 10 U/uL Rec J 471 
exonuclease (Epicentre RJ411250), and the included buffer were added and incubated at 30 C for 45 minutes. 472 
 473 

RNA was purified using a Zymo Research Oligo Clean & Concentrator Kit (Zymo, D4060), and then 474 
rRNA depleted using the Illumina Ribo-Zero rRNA Depletion Kit for bacteria, both steps being performed 475 
according to the manufacturer's instructions.  476 
 477 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2021.01.12.426406doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.12.426406
http://creativecommons.org/licenses/by-nc-nd/4.0/


5' phosphorylation was performed by mixing 6 uL of rRNA depleted RNA with 1 uL of 10X PNK buffer 478 
(NEB B0201S), 1 uL of PNK enzyme (NEB M0236S), and 2 uL of 1mM ATP to total 10 uL and incubated at 479 
37 C for 30 minutes followed by inactivation by heating to 65 C for 20 minutes.  480 
 481 

Hybridization with the reverse transcription primers was performed by adding 1 uL of SR RT Primer 482 
(NEB E7333A) to the above reaction and incubating at 75 C for 5 minutes, 37 C for 15 minutes, and 25 C for 483 
15 minutes. 484 
 485 

5' adapter ligation was performed by adding 3 uL of 10uM 5' adaptor (which was previously denatured 486 
by heating to 70 C for 2 minutes and placed on ice, NEB E7330L), 2 uL of 10X T4 RNA ligation buffer (NEB 487 
B0216L), 2 uL of 10mM ATP, 2 uL of T4 RNA ligase I (NEB M0204S) totaling 20 uL and incubated for 1 hour 488 
at 30 C. 489 
 490 

Reverse transcription was performed by adding the following to the above reaction: 8 uL of 5x first 491 
strand buffer (NEB E7330L), 2 uL of 10mM dNTPs (each), 4 uL of 10X DTT (Invitrogen something), 2 uL of 492 
SUPERase-In, 2uL of SuperScript II (NEB M0368L), and 2 uL of water, totaling 40 uL and incubated at 50 C 493 
for 1 hour then inactivated by heating to 70 C for 15 minutes. 494 
 495 

PCR amplification of the above reaction was performed by taking 150 ng of cDNA template and adding 496 
10 uL 5X Phusion HF buffer (Thermo Fisher Scientific F518L), 1uL 10 mM dNTPs (each), 1.25 uL 10uM SR 497 
primer (from NEB E7330L), 1.25 uL 10uM index 3 primers, .5 uL of Phusion polymerase (NEB M0530S), and 498 
enough to water to total the reaction volume at 50 uL. This was cycled as follows in a thermocycler: 30 sec at 499 
90 C; 14 cycles of 15 sec at 94 C, 30 sec at 62 C, 15 sec at 70 C; 5 min at 70 C. 500 
 501 

PCR products were separated by gel electrophoresis on a 6% polyacrylamide gel at 120 V for 45 502 
minutes. The region corresponding to the expected product size was excised and purified from the gel by 503 
soaking the resected pieces in 250 ul DNA gel elution buffer (NEB E7324A) at 22 C and 200 rpm overnight 504 
on a rotator and transferring the solution to a gel filtration spin column (Corning 8160) and centrifuging for 2 505 
minutes at 16,000g. 1.5 uL of GlycoBlue, 25 uL of 3M sodium acetate pH 5.5, and 750 uL of 100% ethanol 506 
were added, and the solution was held on ice for 2 hours, then centrifuged at 20,000g at 4 C for 30 minutes. 507 
The supernatant was removed, and the pellet washed with 75 % ethanol and again centrifuged at 20,000g at 508 
4 C for 5 minutes. The pellet was allowed to air dry and resuspended with 11 uL of water. 1 uL was used to 509 
check concentration via UV spectrophotometry. The completed libraries were sequenced on Illumina NextSeq 510 
in 75 bp single-end mode. 511 
 512 
ERCC spike-in controls and modeling 513 

ERCC RNA Spike-In Mix (Thermo Fisher Scientific 4456740) was used in library preparation. For 514 
RNA-seq libraries, 3 uL of a 1:100 dilution of the set 1 oligos was added to the first replicate and 4 uL to the 515 
second replicate. The spike-ins were added directly to the lysate destined for RNA-seq before Trizol based 516 
RNA extraction. The file "absolute_counts.Rmd" contains the code for the linear modeling using the ERCC 517 
data.  518 
 519 
CFU determination 520 

Before recovery, 1mL of culture was extracted for CFU determination. LB agar plates were used for 521 
colony growth. We performed a dilution series of that 1mL culture from 1:10 to 1:1e6 in increments of 10. 522 
100uL of each dilution was spread on a plate and incubated overnight at 37C. We determined CFU counts 523 
manually from the most appropriate dilution for each culture, usually between 1:1e3 and 1:1e6 dilutions.  524 
 525 
Optical microscopy 526 
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(i) Media and growth conditions 527 
Liquid cultures were grown at 37 °C with aeration, unless otherwise indicated, in DM25 liquid medium (Davis 528 
minimal broth supplemented with glucose at a concentration of 25 mg per L10).  529 
 530 
(ii) Microscopy 531 
Prior to each experiment, clones were grown in liquid cultures in DM25 medium overnight at 37 °C with 532 
aeration. OD600 of the cultures were ∼0.1–0.3. Microscope slides were prepared with 1% agarose pads, and 533 
cells were imaged by microscopy. Phase-contrast microscopy was performed using an Olympus IX81 534 
microscope with a 100-W mercury lamp and 100× NA 1.35 objective lens. 16-bit images were acquired with 535 
a SensiCam QE cooled charge-coupled device camera (Cooke Corp.) and IPLab version 3.7 software 536 
(Scanalytics) with 2 × 2 binning. Average cell lengths were determined from phase contrast images using 537 
ImageJ56 and the MicrobeJ plugin57.  538 
 539 
Sequencing data processing 540 
Sequencing data are deposited here - https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164308. 541 
Code for all data processing and subsequent analysis can be found in a series of R markdown documents 542 
here – (https://github.com/shahlab/LTEE-gene-expression). The file titled "data_processing.Rmd" contains 543 
the code for processing of the raw sequencing data. We processed 8 raw data files. We used Cutadapt58 to 544 
remove adapters and retained only reads that had successful trimming. We then used the dedupe.sh script 545 
from the BBtools suite to remove PCR duplicates. Files were demultiplexed using the FASTX-Toolkit 546 
barcode splitter script. After demultiplexing, barcodes and the randomized adapters were removed using 547 
cutadapt. The 4 nucleotide UMIs were removed from the 5' end of a read and 10 nucleotides from the 3' end 548 
(5 UMI + 5 barcode). Only reads longer than 24 nucleotides after trimming were retained. 549 
 550 
Alignment 551 
 552 
Differential expression 553 

Code for this section can be found in the file titled "DEseq2.Rmd". We used DEseq230 with the 554 
"apeglm" normalization59 for differential expression. In estimating fold-changes, we compared the 4 replicates 555 
of the ancestors (2 each from ancestors of Ara+ and Ara-) to 2 replicates of each of the evolved lines. Because 556 
some genes in some lines contained indels or were deleted entirely, some transcripts were missing from the 557 
transcriptome fastas used to create indices for alignment. We added these genes back to Kallisto's counts 558 
with estimated counts of 0 and assigned them fold-changes of NA. Count matrices containing identical 559 
complements of transcripts were used in the differential expression analysis for each line, such that all evolved 560 
lines had the same complement of genes as the ancestors.    561 
 562 
Change in ribosomal density analysis 563 

We used Riborex34 to analyze changes in ribosomal density. The same count matrices used for 564 
DEseq2 were used here, and comparisons were made in the same manner of 4 ancestral samples (2 lines, 565 
2 replicate each) to 2 evolved clones (1 line, 2 replicates). The code for this section can be found in the file 566 
"riborex.Rmd" 567 
 568 
Codon specific positioning of Ribo-seq data 569 

Code for this section can be found in the file "codon_specific_densities.Rmd". We used hisat260 to 570 
align our Ribo-seq data to each clone's unique genome and marked the A site position of a read using a fixed 571 
offset of 37nt from the 3' end of a read. It has been shown that mapping bacterial Ribo-seq reads by their 3' 572 
ends is more accurate than 5' mapping61. We then calculated genome-wide ribosome density at each codon 573 
using only genes that had at least 100 reads. The distributions of read counts per gene can be seen in figure 574 
S1C. Only bacterial protein-coding genes (not tRNA or insertional element genes) were considered. To 575 
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calculate ribosome densities on a codon for a gene, the number of reads mapping to a codon was normalized 576 
to the total number of reads mapping to that gene in a replicate and line-specific manner. Genome-wide codon 577 
density is calculated by taking genes with at least 100 reads mapping to them and taking the average number 578 
of normalized reads mapping to each codon across that set of genes as the genome-wide codon density. 579 
 580 
Functional analysis 581 

We used three different functional analysis methods – GO (using the R package topGO), KEGG (using 582 
the R package clusterprofiler62, and PPS44. The code for each of these analyses can be found in the Rmd 583 
files named "go. Rmd", "kegg_analysis.Rmd", and "manual_PPS.Rmd," respectively. We used a manual 584 
implementation of the Biocyc PPS score because the website was not capable of high throughput analysis. 585 
Briefly, each pathway is composed of at least one reaction, and each reaction is completed by at least one 586 
enzyme. First, a reaction perturbation score is calculated for each reaction in a pathway. It is defined as the 587 
absolute value of the largest fold-change of an enzyme associated with that reaction. To calculate PPS, for a 588 
pathway having N reactions,  PPS = sqrt((Σ RPS2) / N). 589 
 590 
SUPPLEMENTAL ANALYSIS 591 
 592 
Cell size and filamentation  593 

Evolved lines form filaments more frequently and form longer filaments compared to the ancestor. 594 
This is supported by the fact that all evolved lines except Ara+1 had significantly longer cells compared to the 595 
ancestor (Welch's t-test, p<.0001 for all lines) (Fig. S2A). Additionally, volume and aspect ratio are positively 596 
correlated in all lines (0.53 ≤ R ≤ 0.94). Length and volume was positively correlated (0.76 ≤ R ≤ 0.95), but 597 
width and volume showed a low correlation (0.12 ≤ R ≤ 0.45) (Fig. S2C). Taken together, increases in the 598 
volume to large values are due to increases in one dimension, length, suggesting increased filamentation. 599 
We designated cells that are greater than three times the median volume of a given line as filaments. Even 600 
after removing filaments from the comparisons, each evolved line was still larger in volume than the ancestor 601 
(Fig. S2B). Removal of filaments did not alter the relationship between the median volume and RNAs per 602 
CFU (Fig. S2D). 603 
 604 
CFU counts 605 

One caveat to the relationship between CFU counts and RNA abundance is that the CFU counts may 606 
be misleading, especially in light of the increased filamentation suggested by our microscopy data. Because 607 
a single chain of bacteria composed of multiple cells could be the source of a single colony, the CFUs may 608 
be an underestimate of the number of cells that had gone into the preparation of each of the evolved lines 609 
libraries. If this was the case, it might contribute to the observed results. 610 
 611 
GO analysis 612 

We also performed GO searches in all three ontologies, Cellular compartment (CC), Biological process 613 
(BP), and Molecular function (MF). The top 5 up and downregulated terms for each ontology can be seen in 614 
Fig. S11, and the complete results can be found in Supplementary Table S13. These searches found results 615 
similar to the KEGG and PPS results. For example, terms related to the flagellar apparatus (BP, GO:0044780, 616 
GO:0044781, GO:0071978, GO:0097588, GO:0071973, GO:0001539; CC, GO:0009288 GO:0009424, 617 
GO:0044461), polysaccharide transport (BP, GO:0015774, GO:0033037), specifically, maltodextrin transport 618 
(BP, GO:0042956), arginine biosynthesis (BP: GO:0006526), and others reach statistical significance 619 
(Fisher's exact test, p ≤ 0.05) in many of the lines. Other terms related to iron were also found to be enriched 620 
and many genes related to iron transport or incorporation into organic molecules were found to have 621 
significant fold-changes in the DESeq2 results (data not shown, see table S7 for complete DESeq2 results).  622 

 623 
Analysis of altered pathways 624 
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Flagella are used for bacterial motility and allow bacteria to move to new environments by swimming. 625 
Previous experiments in the LTEE have shown the downregulation of flagellar apparatus genes in Ara+1 and 626 
Ara-1 at 20,000 generations, though the exact source of these downregulations was not determined16. We 627 
find that genes related to the flagellar apparatus are significantly downregulated in 10 of the 11 lines 628 
considered here (Fig. S11A). The flgBCDEFGHIJK, flgAMN, and flhABE operons are significantly 629 
downregulated in all but Ara-6, where only some of these genes were downregulated. These operons 630 
contribute various proteins to the flagellar apparatus and are regulated in part by the transcription factors flhC 631 
and flhD, which have complicated regulation dictated by various environmental factors63. flhC and flhD are 632 
downregulated in 3 of the evolved lines but mostly unaltered in the others. These genes are rarely mutated in 633 
the clones used in this study (Fig. S11A, bottom). The fitness benefits of downregulation to the flagellar 634 
apparatus may be multifaceted. The flagellar apparatus is an expensive piece of machinery to produce, and 635 
it requires energy to move. Other E. coli evolution studies have shown that mutations in flagellar genes are 636 
common and provide a fitness advantage64. Additionally, the E. coli B strain is thought to be non-motile65. 637 
Taken together, the downregulation of flagella may simply be the removal of an unused system. Surprisingly,  638 
the lack of parallel changes in transcriptional regulators flhCD indicates that it is unlikely that transcriptional 639 
changes are the primary mode for downregulation of the flagellar protein operons.  640 

 641 
Amino acids are the building blocks for proteins, and translation of new proteins is required for cellular 642 

growth. Hence, increased levels of intracellular amino acids would allow faster translation of proteins and 643 
faster growth. Terms involving amino acid biosynthesis showed up frequently in all three methods used for 644 
functional analysis (KEGG, GO, and PPS). Arginine biosynthesis (KEGG and GO:0006526) was a frequently 645 
upregulated category. We find that genes related to arginine biosynthesis were upregulated in 8 out of 11 646 
lines (Fig. S11B). These genes are partly controlled by the argR repressor, which represses their transcription 647 
when L-arginine is abundant66. 5 out of 10 lines had mutations to the argR coding sequence, and other lines 648 
had mutations occurring nearby. Interestingly, we find that expression levels of argR remain unchanged in all 649 
lines indicating that these mutations may have disabled argR function, causing de-repression of its 650 
downstream targets.  651 
 652 

The glyoxylate bypass system allows E. coli to utilize acetate as a carbon source, is composed of the 653 
aceBAK operon, and regulated by iclR and arcAB67. Acetate is a metabolic by-product but can be returned to 654 
central carbon metabolism for biosynthetic reactions by this system. Previous studies have shown that 655 
mutations in iclR and arcB cause depression of their target genes are beneficial in the LTEE68. Consistent 656 
with these results, we found that the aceBAK operon was upregulated in 9 of 11 evolved lines (Fig. S11C).  657 

 658 
Copper and silver have antibacterial properties69, and bacteria have evolved systems to mitigate 659 

toxicity from these elements. The cusCFBA operon, regulated by the cusRS sensor kinase, codes for proteins 660 
that transport copper and silver ions out of the cell70. Additionally, the cytoplasmic copper chaperone copA, 661 
regulated by cueR71, and cueO (multicopper oxidase72) regulate copper homeostasis in the cell. These genes 662 
contained deletions 5 of our clones and were downregulated in 3 of the 6 lines where they remained (Fig. 663 
S11D). Overall, 8 of the 11 lines surveyed here had defects in these systems. This suggests that there may 664 
be the selection for removal or downregulation of these genes. In contrast to natural environments, the 665 
laboratory environment is likely free of copper and silver, rendering these systems dispensable.  666 

 667 
Sulfur is a critical component of many biological molecules, like amino acids, and participates in 668 

creating other structures like iron-sulfur cluster proteins. Organic sulfur is transported across the cell 669 
membrane by proteins from the cysPUWAM operon, which encodes for a sulfate/thiosulfate importer73, the 670 
gsiABCD operon which encodes for a glutathione importer74, the tauABCD operon which codes for a taurine 671 
importer75, and tcyP, the major L-cysteine importer76. We found that many of these genes were downregulated 672 
in many of the lines (Fig. S11E). The cysB gene positively regulates these genes and was downregulated in 673 
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most lines. This gene contained few mutations across the lines. The sources of organic sulfur in the medium 674 
used in the LTEE are ammonium and magnesium sulfate, for which the cysPUWAM operon functions as the 675 
importer. The mechanism and reasons for alterations to these operons remain unclear. The amount of organic 676 
sulfur in the medium may be sufficient to allow the downregulation of sulfur transport systems without 677 
impacting downstream pathways that require sulfur.  678 

 679 
Glycine plays a role in protein construction and can serve as a building block for other metabolic 680 

pathways such as one-carbon metabolism or serine synthesis67,77. We found that the gcvTHP operon, which 681 
encodes for proteins in the glycine cleavage system, were upregulated in 6 of the 11 lines. Increases in the 682 
levels of compounds involved in this set of reactions directly may increase the growth rate. Though there are 683 
some mutations in and around transcriptional regulators of these genes, their effects are unclear. Whether 684 
changes to these genes are due to changes in their transcription factors or other changes, the upregulation 685 
of these genes in many lines suggests that it may be beneficial. 686 
  687 
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 688 
Supplemental tables 689 
 690 
A description of the supplemental tables: 691 
 692 
Table S1: The file "table_s1_read_counts.csv" contains quantification of read counts per gene based on 693 
Kallisto for each sample. Counts in this file were rounded, and new TPMs were calculated based on rounded 694 
counts. This file was generated using "data_cleaning.Rmd". 695 
Table S2: The file "table_s2_three_nt_periodicity.csv" contains the data needed to show periodicity in the 696 
Ribo-seq data. This file was generated using "3nt_periodicty.Rmd". 697 
Table S3:  The file "table_s3_cell_size.csv" contains cell size data derived from phase-contrast microscopy.  698 
Table S4: The file "table_s4_colony_counts.csv" contains information about colony forming units for each of 699 
the samples. 700 
Table S5: The file "table_s5_ercc_molecules_per_sample.csv" contains information about the use of ERCC 701 
controls in each sample and the counts/TPMs of each control in each sample. 702 
Table S6: The file "table_s6_mRNAs_per_cfu.csv" shows the absolute counts of mRNAs per CFU for each 703 
gene in each sample. This file was generated using "absolute_counts.Rmd".  704 
Table S7: The file "table_s7_fold-changes.csv" contains the results of gene-expression fold-changes based 705 
on DESeq2 analysis. This file was generated using "DEseq2.Rmd". 706 
Table S8: The file "table_s8_mutations.csv" contains data on mutations accumulating in LTEE and was 707 
derived from Good et al. 2017 and downloaded from https://barricklab.org/shiny/LTEE-Ecoli/. 708 
Table S9: The file "table_s9_riborex_results.csv" contains the results of differential ribosome-density analysis 709 
using Riborex. This file was generated using "riborex.Rmd". 710 
Table S10: The file "table_s10_genome_wide_codon_densities.csv" contains the genome-wide codon-711 
specific ribosome-densities. This file was generated using "codon_specific_densities.Rmd". 712 
Table S11:  The file "table_s11_kegg_results.csv" shows the results of KEGG enrichment analyses. This file 713 
was generated using "kegg_analysis.Rmd" 714 
Table S12: The file "table_s12_pps_scores" shows the PPS scores analyses. This file was generated using 715 
"manual_PPS.Rmd." 716 
Table S13: The file "table_s13_go_results.csv" shows the results of GO enrichment analyses. This file was 717 
generated using "go.Rmd".  718 
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 884 

 885 

Figure S1: Summary of sequencing data. A. The average number of reads aligned per protein-coding gene 886 
by Kallisto for each sample. The color scheme remains the same for the other panels. B. The periodicity of 887 
the ribo-seq datasets is determined using a fast Fourier transform (see methods). C. Distributions of reads 888 
per protein-coding gene in each sample.  889 
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 890 

Figure S2: A. Length distributions of cells as determined by phase contrast microscopy. The dotted line 891 
indicates the median of ancestral strain, and the numbers beneath the line names indicate the number of 892 
cells imaged. p-values indicate the results of a t-test when each line is compared to the ancestor. **** p ≤ 893 
.0001, *** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05, ns = not significant. B. Distributions of cell volume with 894 
filamentous cells removed (cells with a volume larger than 3x the median for that line). C. Increase in 895 
volume is more strongly correlated with cell length compared to cell width. Each dot represents one cell. D. 896 
Relationship between the median volume with filaments removed and the total number of molecules of RNA 897 
per CFU. E. Correlation between total RNA per CFU for each replicate of each line. F. Correlation between 898 
the median cell volumes as determined in this work and cell volumes determined in Grant et al. 2020, figure 899 
5. Error bars indicate the 25th and 75th quantiles of our data.   900 
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 901 
Figure S3: Representative phase contrast images of each of the 902 
lines used in this study. Scale bar is 3um. 903 
 904 
 905 
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 906 

Figure S4: A, linear models relating the number of molecules of each ERCC control sequence added to their 907 
RNA-seq TPM (transcripts per million) in each line. B, changes in the absolute number of mRNAs/CFU in 908 
each line relative to the ancestor. The values plotted are the average between 2 replicates of the evolved line 909 
and both replicates from both ancestors (4 in total). A. Spike-in RNA control abundances are correlated with 910 
their estimates in sequencing data. Linear models relating the number of molecules of each ERCC control 911 
sequence added to their RNA-seq TPM (transcripts per million) in all RNA-seq samples. D. Most genes have 912 
a higher absolute expression in evolved lines. Changes in the absolute number of mRNA molecules per CFU 913 
(colony forming unit) in the 50,000th generation of each line relative to the ancestor. The values plotted are 914 
the average between 2 replicates of the evolved lines and both replicates from both ancestors. REL606 and 915 
REL607 are ancestral strains.  916 
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 917 

Figure S5: A. Pairwise correlations between expression levels of genes across lines based on log10(TPM). 918 
The upper triangle shows RNA-seq data, and the lower triangle indicates Ribo-seq data. B. Distributions of 919 
pairwise correlations between evolved lines and ancestors (purple) and amongst evolved lines (orange). C. 920 
Distributions of all DESeq2 fold-changes for both sequencing methods for all lines. The left panel is a zoom 921 
of the right panel.  922 
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923 
Figure S6: A. Parallelism in expression changes across evolved lines. The fold-changes of top 100 down and 924 
upregulated genes in each of the lines in the Ribo-seq datasets. Genes are ordered from left to right in order 925 
of increasing mean fold-change across evolved lines. Gray bars represent gene deletions. B. Downregulated 926 
genes have larger effect sizes than upregulated genes. Distribution of statistically significant fold-changes in 927 
Ribo-seq data in each line. Statistical significance was based on DESeq2 results using q ≤ 0.01. C. The 928 
number of significantly down and upregulated genes in each line. D. Pairwise correlations of evolved lines 929 
based on all (yellow curve) or statistically significant (blue curve) Ribo-seq fold-changes. Each of these curves 930 
is significantly different from a distribution based on correlations made after randomizing the fold-changes 931 
(grey curve) within each line (p ≤ 0.01, t-test). E. Pairwise-correlations between fold-changes in expression 932 
levels of genes based on their mutator status. F. Fold-changes in expression levels of genes in evolved lines 933 
scale negatively with their ancestral expression levels. The relationship between ancestral TPM in both RNA- 934 
and Ribo-seq datasets corresponding fold-changes across all lines. The black dots represent all the points 935 
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(all genes), and the red dots represent significantly altered genes. G. Genes with high ancestral expression 936 
are typically downregulated. The panel shows the proportion of differentially expressed genes that are 937 
up/down-regulated as a function of ancestral expression (TPM).   938 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2021.01.12.426406doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.12.426406
http://creativecommons.org/licenses/by-nc-nd/4.0/


 939 

Figure S7: A. The number of evolved lines in which a gene's expression level was significantly altered (q ≤ 940 
0.01) was based on the DESeq2 results for the Ribo-seq dataset. B. Frequency downregulated genes have 941 
larger effect sizes than upregulated genes. Distributions of the Ribo-seq fold-changes for the genes. C. 942 
Frequently altered genes are typically downregulated. The proportion of up and downregulation of genes in 943 
the Ribo-seq dataset as a function of their frequency of expression changes across lines.  944 
  945 
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 946 

Figure S8: A. Translational changes are positively correlated with transcriptional changes. The relationship 947 
between RNA-seq and Ribo-seq TPM across all evolved lines. The TPMs are averaged between the 948 
replicates. B. Fold-changes in expression levels of genes involved in proline biosynthesis. C. Fold-changes 949 
in expression levels of translation termination factors and related genes. 950 
  951 
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 952 

 953 

Figure S9: A. Parallel changes in functional categories. KEGG enrichment scores from the Ribo-seq data. 954 
Enrichment score represents the degree to which a pathway was up (positive) or downregulated (negative). 955 
Functional categories are ordered by increasing mean enrichment score across the lines. Enrichment score 956 
represents the degree to which a pathway was up (positive) or downregulated (negative). B. Pathway 957 
perturbation score (PPS) calculated from Ribo-seq fold changes. Higher PPS indicates larger degrees of 958 
alteration but does not indicate directionality. C. Pairwise correlations of KEGG enrichment scores for all 959 
pathways that were significantly altered in at least one line. D. Distribution of PPS scores in both RNA-seq 960 
and Ribo-seq datasets across all lines.  961 
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 962 

Figure S10: The top 5 up and downregulated GO categories for each ontology term. For each ontology, only 963 
terms with a p-value ≤ 0.01 based on Fisher's exact test in at least 4 lines were considered. White spaces 964 
indicate that a particular category was not significantly altered in a line. 965 

  966 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2021.01.12.426406doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.12.426406
http://creativecommons.org/licenses/by-nc-nd/4.0/


 967 

Figure S11: A-F. Mutations in transcriptional regulators lead to parallel changes in gene expression (RNA-968 
seq). Gene names in each category are colored based on their operon membership. Transcription factors for 969 
each class of genes are underlined. Asterisks indicate statistical significance of fold-changes, ** q ≤ 0.01, * q 970 
≤ 0.05. Grey panels in the heatmap indicate gene deletion. Lower panels show the type and location of 971 
mutations in each transcription factor.  972 
 973 
 974 
 975 
 976 
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