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Summary 

The extent to which resting-state fMRI (rsfMRI) reflects direct neuronal changes remains unknown. 

Using 160 simultaneous rsfMRI and intracranial brain stimulation recordings acquired in 26 

individuals with epilepsy (with varying electrode locations), we tested whether brain networks 

dynamically change during intracranial brain stimulation, aiming to establish whether switching 

between brain networks is reduced during intracranial brain stimulation. As the brain spontaneously 

switches between a repertoire of intrinsic functional network configurations and the rate of switching 

is typically increased in brain disorders, we hypothesised that intracranial stimulation would reduce 

the brain’s switching rate, thus potentially normalising aberrant brain network dynamics. To test this 

hypothesis, we quantified the rate that brain regions changed networks over time in response to brain 

stimulation, using network switching applied to multilayer modularity analysis of time-resolved 

rsfMRI connectivity. Network switching was significantly decreased during epochs with brain 

stimulation compared to epochs with no brain stimulation. The initial stimulation onset of brain 

stimulation was associated with the greatest decrease in network switching, followed by a more 

consistent reduction in network switching throughout the scans. These changes were most commonly 

observed in cortical networks spatially distant from the stimulation targets. Our results suggest that 

neuronal perturbation is likely to modulate large-scale brain networks, and multilayer network 

modelling may be used to inform the clinical efficacy of brain stimulation in neurological disease. 

Highlights 

• rsfMRI network switching is attenuated during intracranial brain stimulation 

• Stimulation-induced switching is observed distant from electrode targets 

• Our results are validated across a range of network parameters 

• Network models may inform clinical efficacy of brain stimulation 
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Introduction 

Network modularity encompasses a family of algorithms that quantify whether a collection of 

network nodes exert stronger ‘intramodular’ connectivity than expected by chance – i.e., modularity 

provides a set of subnetworks with stronger than average within-network connectivity (Sporns and 

Betzel, 2016). Multilayer network modularity represents a multidimensional version of network 

modularity (De Domenico, 2017; Mucha et al., 2010). A multilayer network is conceptualised as a 

‘network of networks’ that are connected across several dimensions (Bassett et al., 2013; Betzel and 

Bassett, 2017; Vaiana and Muldoon, 2018). This is an explicit modelling framework that allows 

information to be shared across edges connected, for example in space and time, enabling us to track 

where and when entities in a network transit between different sub-networks or modules. In turn, 

spatiotemporal network measures like multilayer modularity are promising approaches that can 

enhance our understanding of human brain function, and a way to monitor the clinical response to 

invasive treatment strategies, including intracranial brain stimulation. 

By extending the concept of modularity to several dimensions, rsfMRI connectivity can be 

represented in terms of a spatiotemporal network model of the brain (Finc et al., 2020; Lydon-Staley 

et al., 2018; Shine et al., 2016). Multilayer network flexibility, or switching, is associated with 

cognitive functions including working memory (Braun et al., 2015), reasoning (Pedersen et al., 

2018a), reward (Gerraty et al., 2018) and fatigue (Betzel et al., 2017) as well as alterations in multiple 

psychological and neurological disorders (Gifford et al., 2020; Harlalka et al., 2019; Long et al., 2019; 

Paban et al., 2019; Shao et al., 2019; Tian et al., 2020a). There is also evidence that brain network 

switching changes in response to behavioural training. For example, Bassett et al. (2011) showed that 

motor training is associated with greater network switching, particularly in association cortices 

involved in higher-order cognition. A follow-up study demonstrated that brain network switching on 

the first day of motor training was correlated with individual differences in overall motor learning 

rate (Telesford et al., 2017). Another study showed increased brain network switching in people who 

underwent half-a-year of musical training, compared to people with no musical training (Li et al., 

2019). These studies suggest cause-and-effect relationships such as overt learning (e.g., motor, and 

musical training) can alter the brain’s network switching rate. 

It remains unknown whether focal neuronal perturbation –for example via invasive brain stimulation– 

leads to observable changes in the rate at which the brain switches between rsfMRI networks. In this 

study, we used the above-mentioned multilayer modularity model (Mucha et al., 2010) to investigate 

spatiotemporal network changes that occur during short periods of intermittent brain stimulation. 

Such spatiotemporal network models are advantageous for this purpose as they can pinpoint the 
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specific time-points when brain regions transit between networks. Elucidating network switching 

during brain stimulation will provide new insights into the dynamical properties of rsfMRI networks. 

To test whether brain network switching is altered during intracranial brain stimulation, we used 

rsfMRI data with concurrent intracranial stimulation acquired from individuals with treatment-

resistant focal epilepsy and uncontrollable seizures. Focal epilepsy is a neurological disease 

associated with increased rsfMRI connectivity (Bernhardt et al., 2011, 2015; Hong et al., 2017; 

Pedersen et al., 2015, 2016, 2017), and prior electrophysiology research in epilepsy suggests that the 

impact of brain stimulation results in changes to neuronal networks and provides clinical benefits 

likely by ‘steering’ the brain into a temporary state associated with modulated network events (Li and 

Yang, 2017). We hypothesise that stimulation-induced network changes can also be observed at the 

macroscale with advanced rsfMRI methods. As high-frequency stimulation (here, 100 Hz) is 

commonly thought to be associated with neuronal inhibition (see Garcia et al. 2005, for a review), 

our directed hypothesis was that rsfMRI network switching significantly decreases during epochs 

with brain stimulation (Stim) compared to epochs with no brain stimulation (NoStim), in people with 

epilepsy. 

Results 

We studied 26 patients with treatment-resistant epilepsy for whom 160 rsfMRI scans were acquired 

while simultaneously receiving 100Hz intracranial electrical stimulation (Figure S1 – see also Oya et 

al., 2017 and Thompson et al., 2020). Intracranial brain stimulation is a common part of the pre-

surgical work-up in treatment-resistant focal epilepsy patients. This is a useful way to detect surgical 

brain targets in epilepsy and it is known to reduce seizure frequency in focal epilepsy (Gummadavelli 

et al., 2015; Khan et al., 2009; Schulze-Bonhage, 2017; Toprani and Durand, 2013; Zangiabadi et al., 

2019). Most participants had seizures originating from the mesial temporal lobes. The most common 

stimulation target was the amygdala followed by the Heschl’s gyrus and the frontal/cingulate gyri. 

For the most part, participants were implanted with multiple electrodes, as shown in Figure 1. 

As shown in Figure 2, a rsfMRI block design was used in this study with alternating 30 seconds 

NoStim epochs followed by 30-second Stim epochs. To quantify time-varying fMRI connectivity 

within relatively short half-a-minute epochs, we used instantaneous phase synchrony. Instantaneous 

phase synchrony quantifies narrow-band fMRI connectivity by estimating the phase difference 

between brain regions, at a single time-point resolution (Glerean et al., 2012; Pedersen et al., 2018b; 

Ponce-Alvarez et al., 2015). We used instantaneous phase synchrony as an input to an ordinal 

multilayer modularity network model, enabling us to quantify the percentage of times each brain 

region changes network allegiance –i.e., network switching– during intracranial brain stimulation.  
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Figure 1: Location of brain electrodes across 26 epilepsy patients: The most common stimulation site 

included the amygdala (26 electrodes) followed by Heschl’s gyrus (15 electrodes) and the frontal/cingulate 

cortex. Note that most individuals were implanted with more than one electrode. 

We used a brain parcellation atlas that included 196 brain regions, to test our main hypothesis that 

brain network switching is reduced during brain stimulation (i.e., Stim), compared to periods with no 

brain stimulation (i.e., NoStim). This parcellation mask was created by combining a parcellation atlas 

from the Human Connectome Project that included 180 cortical brain regions (Glasser et al., 2016) 

and a parcellation atlas from Tian et al., (2020b) that includes 16 subcortical brain regions (Figure 

S2). We conducted our analyses using symmetric homologous brain regions, to counter laterality 

effects of focal epilepsy, as patients have seizures that originate from a single hemisphere (Adcock 

et al., 2003). For each rsfMRI scan, we obtained a regions × regions × time connectivity tensor (196 

× 196 × 160). We included 80 Stim and 80 NoStim time-points (10 time-points per 30-second epoch 

with a rsfMRI repetition time of 3 seconds), to ensure that all rsfMRI scans contain the same number 

of time-points.  

 

Figure 2: Study paradigm used during rsfMRI scans: rsfMRI scans had 10 data-points with NoStim (30 

seconds) followed by 10 data points of Stim (30 seconds), repeated eight times (16 epochs in total). This 

resulted in 80 Stim data points (4.5 minutes) and 80 NoStim data points (4.5 minutes), for each rsfMRI scan. 
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We report findings based on thresholded/binarized instantaneous phase synchrony tensors at a 15% 

network density (i.e., retaining the top-15% synchronous connection-pairs, and a 

topological/temporal modularity resolution of 𝛾/𝜔 = 1, consistent with previous studies (Bassett et 

al., 2013). Replication analyses for multiple network densities (van den Heuvel et al., 2017; Langer 

et al., 2013) and multiple recommended  𝛾/𝜔 parameters (Yang et al., 2020) are also reported.  

Group-level network switching is decreased during brain stimulation 

As hypothesised, we observed significantly decreased network switching during Stim epochs 

compared to NoStim epochs, averaged across all brain regions (paired t-test: t(159) = 5.8, p < 0.001; 

based on an average of all Stim/NoStim epochs – see Figure 3A). A one-way repeated measures 

ANOVA demonstrated a significant main effect of network switching between all possible epochs, 

F(15,2385) = 22.97, p < 0.001. Post-hoc tests showed that 45% (54/120) of epoch combinations were 

statistically significant (p < 0.05, Bonferroni correction – see Figure 3B and Figure S4, for all 

statistical comparisons). The greatest reduction in network switching occurred after the first 

stimulation epoch (Figure 3A – left). The initial stimulation may ‘startle’ the brain as these epilepsy 

patients did not receive stimulation less than 1.5 hours (and up to 3 hours) before the rsfMRI 

acquisition. In subsequent epochs, network switching stabilized but continued to significantly 

decrease throughout the rsfMRI epochs. This implies a lasting network effect beyond the initial 

impact of brain stimulation and may reflect a long-lasting inhibition of local neuronal activity 

(Lafreniere-Roula et al., 2010). 

We employed a temporal null model previously described by Bassett et al. (2013) to test whether the 

stimulation-induced changes in network switching could be explained by random dynamical 

processes. In this temporal null model, we randomly permuted rsfMRI time-points 100 times per 

rsfMRI scan before computing 100 ‘temporally random’ multilayer modularity models per rsfMRI 

scan. This procedure preserves the topological modularity of networks but changes their temporal 

order. As seen in Figure 3B, we observed no differences between epochs when randomly permuting 

rsfMRI time-points (repeated measures ANOVA (F(15,2385) = 0.1, p = 1). The network switching 

was approximately six times greater in the temporal null model (Figure 3C), compared to the original 

data (Figure 3A). This finding suggests that temporal fluctuations of network switching in response 

to brain stimulation are unlikely to occur by chance.  
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Figure 3: Stimulation-induced changes in network switching at group level: A) Network switching shown 

as a function of time throughout the rsfMRI scans, stratified according to NoStim and Stim epochs (epoch 

numbers in parentheses). Here, network switching is the proportion of time that nodes switch network 

allegiance during Stim and NoStim epochs. The shaded red area is the 95th confidence interval of the mean. 

The shaded blue area is one standard deviation of the mean. B) An overview of post-hoc comparisons 

between all epochs. The white numbers inside the bars refer to the epoch numbers that are statistically 

significant for a reduction in network switching within the current epoch (Bonferroni corrected). C) Same as 

A, but here the rsfMRI time-points are randomly permuted 100 times before computing the multilayer 

modularity model – i.e., a temporal null model. We report the mean of the 100 permutations.  
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Individual-level network switching is decreased during brain stimulation  

Next, we tested the consistency of the above group-average results for each rsfMRI scan and 

individual. To do so, we computed the gradients –i.e., the direction of temporal brain changes– of 

network switching from NoStim to Stim epochs and vice versa, for each rsfMRI scan. Consistent 

with the group-average results, a negative gradient during the initial transition from NoStim to Stim 

(decreased network switching) was evident for 85% (136/160) of rsfMRI scans. There also appeared 

to be a ‘rebound’ effect between the third and fifth epoch, where the gradients are positive for most 

individuals (increased network switching). Subsequent transitions appear to show a balance between 

positive and negative gradients (Fig. 4). This suggests that network effects from the initial stimulation 

may be detected at both the group and individual level. 

 

Figure 4: Individual changes in network switching during brain stimulation: The percentage of 

rsfMRI scans with a negative and positive gradient of network switching are shown in blue and 

green, respectively. Gradients are computed between successive Stim and NoStim epochs. Negative 

gradients indicate a decrease in network switching induced by stimulation, while positive gradients 

indicate an increase. 

Specific brain regions display decreased network switching during brain stimulation 

After establishing that brain-averaged network switching is reduced during brain stimulation, we 

aimed to delineate brain regions where this reduction was most prominent. We conducted a paired t-

test for each of the 196 brain regions, between Stim and NoStim epochs (average of all NoStim and 

Stim epochs). Following False Discovery (FDR) correction for the 196 tests (Benjamini and 

Hochberg, 1995), the frontal cortex, parietal cortex, and temporal cortex displayed the strongest 

reduction in network switching during brain stimulation (Figure 5A and Figure S4).  

Notably, significant differences in network switching between NoStim and Stim epochs were 

localized to regions distant from the most common stimulation sites, particularly the amygdala. Only 

39% of statistically significant brain regions overlapped with intracranial electrodes, suggesting that 

brain stimulation may influence brain networks beyond the focal stimulation targets (Figure 5B).  
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Figure 5: Regional changes in network switching between NoStim and Stim epochs: A) Cortical and 

subcortical regions with a significant decrease in stimulation-induced network switching (paired t-test 

between Stim and NoStim, FDR corrected at q<0.05). B) Same as A, but here used to highlight the spatial 

proximity between intracranial electrodes and statistically significant brain regions, in 2D and 3D planes 

(NoStim<Stim). Electrodes are highlighted with red dots and significant brain regions are highlighted in 

yellow. 3/26 individuals in this study did not have coordinates for the intracranial electrodes. C) The number 

of significant brain regions within each of the seven resting-state networks (Yeo et al., 2011).  

Specific brain networks display decreased network switching during brain stimulation 

To test the network-specific effect of stimulation-induced brain switching, we summarised the 

number of statistically significant brain regions (NoStim<Stim) residing in seven previously validated 

‘resting-state networks’ (Yeo et al., 2011). The two brain networks with the most significant brain 

regions between Stim and NoStim were the default-mode and frontoparietal network (Figure 5C), 

both spatially distant from the most common stimulation sites. These two networks harbour several 

integral brain hubs, often referred to as the brain's rich-club, with strong inter-region connectivity 

(van den Heuvel and Sporns, 2011). This provides further evidence that focal brain stimulation 

induces widespread network effects. 

Replication across multiple network parameters and densities 

We replicated our result of reduced network switching during Stim versus NoStim epochs (FDR 

corrected) for 16 𝛾/𝜔 parameter combinations (𝛾 = 1, 1.1, 1.2 and 1.3 and 𝜔 = 0.1, 1, 2 and 3). We 

also replicated our results across several proportionally thresholded network densities, preserving 
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10%, 15% and 20% of phase synchrony connection-pairs. Although all network densities were 

statistically significant between Stim and NoStim epochs (FDR corrected), there was a trend towards 

greater statistical power between Stim and NoStim epochs at a lower network density threshold with 

fewer network connections (Figure S5). Sparse networks may be advantageous in multilayer network 

models as they are less likely to contain spurious connections (Fornito et al., 2012). 

Instantaneous phase synchrony is also decreased during brain stimulation 

Lastly, we investigated whether the underlying instantaneous phase synchrony between brain regions 

–i.e., the input data to our multilayer modularity model– was also modulated by the effect of brain 

stimulation. We found that the coefficient of variation of instantaneous phase synchrony was reduced 

during Stim epochs compared to NoStim epochs (averaged across all brain regions and Stim/NoStim 

epochs – paired t-test: t(159) = 10.7, p < 0.001). The coefficient of variation was computed as the 

standard deviation of instantaneous phase synchrony divided by the mean of instantaneous phase 

synchrony (𝜎 𝜇⁄ ), using a network density of 15%. In total, 81% (130/160) of rsMRI scans displayed 

reduced coefficient of variance of phase synchrony during intracranial brain stimulation, all with a 

negative gradient between NoStim and Stim epochs. In turn, reduced instantaneous phase synchrony 

may be a potential mechanism of attenuated network switching during brain stimulation (Figure S6). 

 

Figure 6: Examples of instantaneous phase synchrony time-series: These four time-series each represent 

the synchrony between two brain regions for representative individuals. The blue colour highlight brain 

regions that harbour an intracranial electrode. The Spearman’s 𝜌 correlation between the instantaneous 

phase synchrony time-series and the block design (Stim/NoStim) was -0.48 (p<0.001 – first row), -0.51 

(p<0.001 – second row), -0.47 (p<0.001 – third row) and -0.42 (p<0.001 – last row) 
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In Figure 6 we present four time-series, each representing the instantaneous phase synchrony between 

two brain regions, where one brain region is located proximate to a stimulation site and the other 

brain region is distant from a stimulation site. These time-series show an inverse correlation between 

brain stimulation and instantaneous phase synchrony and highlights that distant network properties 

are associated with stimulation targets. 

Discussion 

We observed a reduction in brain network switching during intracranial brain stimulation (Figure 

3A), which was stable across a range of network parameters (Figure S5). Intracranial stimulation 

affected widespread brain networks beyond the stimulation sites (Figure 5), likely reflecting a 

reduction in phase synchrony between brain regions during brain stimulation (Figure S6). This 

suggests that perturbation of the human brain is observable with rsfMRI network models and it is 

associated with widespread network changes. Our results validate multilayer network models as a 

potential tool to understand how the brain dynamically change over time and also how spatiotemporal 

brain properties are altered in neurological disease. From a clinical standpoint, our results suggest 

that stimulation-induced reduction of network switching can potentially normalize aberrant brain 

dynamics associated with disorders such as epilepsy (Pedersen et al, 2017).   

Although the neuronal mechanisms of intracranial brain stimulation are complex, it is well established 

that invasive brain stimulation affects the cellular, electrical, molecular and network architecture of 

the brain (Jakobs et al., 2019). Network effects of brain stimulation (i.e., brain changes that occur 

distant to the stimulation target) are thought to be mediated by large and myelinated axons becoming 

depolarised and transformed into action potentials (Johnson et al., 2008). In line with our results, 

Alhourani et al. (2015) suggest that the underlying network mechanisms of intracranial brain 

stimulation represent a reduction of synchrony between remote brain regions that is achieved by 

perturbing afferent and efferent neurons that are (directly or indirectly) connected to the stimulation 

target. This is supported by Middlebrooks et al. (2018) who showed that epilepsy individuals who 

had a positive clinical response to brain stimulation to the anterior thalamus displayed greater 

connectivity in the default-mode network, compared to patients who did not respond positively to 

brain stimulation. This reinforces that brain stimulation impacts widespread brain networks beyond 

the stimulation target. 

Invasive brain stimulation has Class I evidence for seizure reduction in treatment-resistant epilepsy 

(Li and Cook, 2018), from randomised controlled trials with two different stimulation targets (Fisher 

et al., 2010; Morrell and RNS System in Epilepsy Study Group, 2011). Brain networks may normalise 

during invasive brain stimulation and attenuated network switching may represent a putative marker 
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of therapeutic normalisation. This fits the clinical pattern of epilepsy, given that increased rsfMRI 

brain connectivity is a common trait in people with treatment-resistant focal epilepsy (Pedersen et al., 

2015). Similarly, people with Parkinson’s disease undergo a normalisation of functional connectivity 

similar to healthy controls, during brain stimulation of the subthalamic nucleus (Horn et al., 2019). 

In combination with our findings, these studies suggest that novel network models may be used to 

inform the efficacy of brain stimulation in a range of neurological conditions (Halu et al., 2019).  

The most common stimulation sites in this study were in the mesial temporal lobes (and especially 

the amygdala) but decreased network switching during intracranial stimulation was predominantly 

observed in the spatially distant default-mode and frontoparietal networks. In total, less than 40% of 

intracranial electrodes overlapped with statistically significant brain regions with reduced network 

switching during brain stimulation (Figure 5B). Brain stimulation is unlikely to only affect rsfMRI 

network properties that are distant from the stimulation sites. There are two plausible explanations of 

why we did not observe a statistically significant reduction in network switching in all the stimulation 

sites. The first explanation is based on our group-level research design. Electrode locations varied 

markedly between participants in this study (even within the amygdala), and rsfMRI effects from 

individual stimulation sites may cancel out within a group-level statistical test. Future studies will 

benefit from investigating brain regions associated with individual-level network switching during 

intracranial brain stimulation. For example, what network properties are affected by specific cortical 

or sub-cortical stimulation sites in individual subjects, and what is their relationship with individual 

clinical symptomatology and treatment efficacy? The second explanation is that spatial distortion 

induced by the intracranial electrodes attenuate the fMRI signal near the stimulation sites (Lee et al., 

2012). We are encouraged by recent advances in the field demonstrating that graphene fibre 

electrodes reduce MRI distortion proximate to the stimulation site (Zhao et al., 2020). Graphene fibre 

electrodes will benefit future rsfMRI and brain stimulation studies as we seek to further understand 

local and global brain network variability in response to intracranial brain stimulation. 

Another limitation of this study is the relatively short duration of the rsfMRI scans (9 minutes). This 

precluded testing of the long-lasting network effects of intracranial brain stimulation. However, we 

observed a sudden drop in brain network switching in the early epochs of the rsfMRI scans, followed 

by a plateau in brain network switching, suggesting that the initial effects of brain stimulation may 

persist for at least 10 minutes (Fig. 4). Longer rsfMRI scans are needed to clarify the duration of 

stimulation-induced brain network effects A longer period of rsfMRI recording before the onset of 

the first brain stimulation (here, ~30 seconds into the scan) is also beneficial to ensure the participants 

are settled and relaxed before the onset of brain stimulation, and it would allow for improved control 

of filter-related issues that can occur at the start/end of rsfMRI signals. 
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Our results suggest that large-scale networks are dynamically modulated by neuronal perturbation 

induced by intracranial brain stimulation, affecting brain regions and networks distant from the 

stimulation target. We believe that this research is a necessary first step to enable further investigation 

into subject-specific network changes following intracranial brain stimulation, as this may aid the 

clinical decision support of refractory neurological diseases. 

Methods 

Participants  

We downloaded 160 rsfMRI datasets from 26 people with epilepsy from openneuro.org 

(https://openneuro.org/datasets/ds002799/versions/1.0.3). The dataset is described in detail in Oya et 

al. (2017) and Thompson et al. (2020).  

Data and code availability 

Open-access MATLAB-based scripts for computing instantaneous phase synchrony, multilayer 

modularity and network switching can be found at https://github.com/MangorPedersen/fMRI_codes/. 

rsfMRI and brain stimulation parameters 

The length of each rsfMRI scan varied between participants. We included rsfMRI scans that were 

more than 9 minutes long (160 scans in total). The rsfMRI echo time (TE) was 30 milliseconds, and 

the data had a voxel size of 3×3×3 millimetre. There was no significant difference in head motion 

between NoStim and Stim epochs (Thompson et al., 2020). The repetition time (TR) of the rsfMRI 

data was 3000 milliseconds with a delay in TR of 100 milliseconds. The electrical stimulation was 

delivered during this TR delay and ensured no artefacts between MRI radiofrequency coils and 

electrodes (Oya et al., 2017). The brain stimulation consisted of bi-phasic charge-balanced square 

pulses (50-90 milliseconds in length, 8-12 milliamps, and 5-9 pulses at a 100 Hz stimulation rate). 

Results included in this manuscript come from pre-processing performed using fMRIPrep 1.5.1rc1 

(RRID: SCR_016216 - Esteban et al., 2019, 2020), which is based on Nipype 1.3.0-rc1 (RRID: 

SCR_002502 - Gorgolewski et al., 2011).  

Anatomical MRI pre-processing 

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.2.0 (RRID: SCR_004757) 

(Avants et al., 2008), and used as T1w-reference throughout the workflow. The T1w-reference was 

then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from 

ANTs), using OASIS30ANTs as a target template. Brain tissue segmentation of cerebrospinal fluid 
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(CSF), white matter (WM) and grey matter (GM) were performed on the brain extracted T1w using 

fast (FSL 5.0.9, RRID: SCR_002823 - Zhang et al., 2001). Brain surfaces were reconstructed using 

recon-all (FreeSurfer 6.0.1, RRID: SCR_001847 - Dale et al., 1999), and the brain mask estimated 

previously was refined with a custom variation of the method to reconcile ANTs-derived and 

FreeSurfer-derived segmentation of the cortical grey-matter of Mindboggle (RRID: SCR_002438 - 

Klein et al., 2017).  

Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym) was 

performed through nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-extracted 

versions of both T1w reference and the T1w template. The following template was selected for spatial 

normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c (RRID:SCR_008796; 

TemplateFlow ID: [MNI152NLin2009cAsym] - Fonov et al., 2009). 

rsfMRI pre-processing 

For each of the BOLD runs found per subject (across all tasks and sessions), the following pre-

processing was performed. First, a reference volume and its skull-stripped version were generated 

using a custom methodology of fMRIPrep. A deformation field to correct for susceptibility distortions 

was estimated based on fMRIPrep’s field map-less approach. The deformation field is that resulting 

from co-registering the BOLD reference to the same-subject T1w-reference with its intensity inverted 

(Huntenburg, 2014; Wang et al., 2017). Registration was performed with antsRegistration (ANTs 

2.2.0), and the process regularized by constraining deformation to be nonzero only along the phase-

encoding direction and modulated with an average field map template (Treiber et al., 2016). Based 

on the estimated susceptibility distortion, an unwarped BOLD reference was calculated for a more 

accurate co-registration with the anatomical reference. The BOLD reference was then co-registered 

to the T1w reference using bbregister (FreeSurfer) which implements boundary-based registration 

(Greve and Fischl, 2009). Co-registration was configured with six degrees of freedom.  

Head-motion parameters for the BOLD reference (transformation matrices, and six corresponding 

rotation and translation parameters) were estimated before any spatiotemporal filtering using mcflirt 

(FSL 5.0.9) (Jenkinson et al., 2002). BOLD runs were slice-time corrected using 3dTshift from AFNI 

20160207 (RRID: SCR_005927 - Cox and Hyde, 1997). The BOLD time-series were resampled to 

surfaces on the following spaces: fsnative, fsaverage5. The BOLD time-series (including slice-timing 

correction when applied) were resampled onto their original, native space by applying a single, 

composite transform to correct for head-motion and susceptibility distortions. These resampled 

BOLD time-series will be referred to as pre-processed BOLD in original space, or just pre-processed 

BOLD. The BOLD time-series were resampled into standard space, generating a pre-processed 
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BOLD run in [‘MNI152NLin2009cAsym’] space. First, a reference volume and its skull-stripped 

version were generated using a custom methodology of fMRIPrep. Several confounding time-series 

were calculated based on the pre-processed BOLD: framewise displacement (FD), DVARS and three 

region-wise global signals. FD and DVARS are calculated for each functional run, both using their 

implementations in Nipype (following the definitions in Power et al., 2014). The three global signals 

are extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of 

physiological regressors were extracted to allow for component-based noise correction (CompCor) 

(Behzadi et al., 2007). Principal components are estimated after high-pass filtering the pre-processed 

BOLD time-series (using a discrete cosine filter with 128-second cut-off) for the two CompCor 

variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor components are then 

calculated from the top 5% variable voxels within a mask covering the subcortical regions. This 

subcortical mask is obtained by heavily eroding the brain mask, which ensures it does not include 

cortical GM regions.  

For aCompCor, components are calculated within the intersection of the aforementioned mask and 

the union of CSF and WM masks calculated in T1w space, after their projection to the native space 

of each functional run (using the inverse BOLD-to-T1w transformation). Components are also 

calculated separately within the WM and CSF masks. For each CompCor decomposition, the k 

components with the largest singular values are retained, such that the retained components’ time-

series are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, 

or temporal). The remaining components are dropped from consideration. The head-motion estimates 

calculated in the correction step were also placed within the corresponding confounds file. The 

confound time-series derived from head motion estimates and global signals were expanded with the 

inclusion of temporal derivatives and quadratic terms for each (Satterthwaite et al., 2013). Frames 

that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated as motion 

outliers. All resamplings can be performed with a single interpolation step by composing all the 

pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion correction, 

and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were 

performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize 

the smoothing effects of other kernels (Lanczos, 1964).  

Many internal operations of fMRIPrep use Nilearn 0.5.2 (RRID: SCR_001362 - Abraham et al., 

2014), mostly within the functional processing workflow. For more details of the pipeline, see the 

section corresponding to workflows in fMRIPrep’s documentation (https://fmriprep.org//downloads 

/en/0.2.0/pdf/). 
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Filtering and parcellation of rsfMRI data 

The rsfMRI data was zero-phase filtered within narrow-band frequencies of 0.03 and 0.07 Hz, using 

a 5th order Butterworth filter (‘filtfilt’ function in MATLAB). After filtering the rsfMRI in the forward 

direction, we also filtered the data in the reverse order to minimise distortion and filter effects at the 

beginning and end of the signals (Dwivedi and Vyas, 2011). Narrow-band filtering is a requirement 

of instantaneous phase synchrony, to satisfy the Bedrossian’s theorem when using the Hilbert 

transform for time-series analyses (Honari et al., 2020). 

The average fMRI signal within 196 brain regions was extracted for analysis. We combined the 

cortical parcellation mask the Human Connectome Project (Glasser et al., 2016) with 180 bilateral 

cortical regions and the sub-cortical parcellation mask from Tian et al. (2020b) with 16 bilateral sub-

cortical regions. We used a symmetric brain parcellation mask –i.e., the same parcel in homologous 

brain regions– to counter the laterality effects of temporal lobe epilepsy where seizures predominantly 

originate from a single hemisphere (Adcock et al., 2003). For each rsfMRI scan, this results in a 3D 

tensor of size 196 x 196 x 160 that represents the interconnectivity between each of the 196 brain 

regions, for 160 rsfMRI time-points (80 Stim time-points and 80 NoStim time-points, partitioned into 

alternating epochs each containing 10 time-points – see Figure 2). 

Instantaneous Phase Synchrony 

Instantaneous phase synchrony is calculated by using the Hilbert transform (Bedrosian, 1963) to 

extract phase information between all brain regions (see Figure S7). In the equation below, 𝑌 is a 2D 

matrix comprising the average narrow-band rsfMRI data across 196 brain regions and 160 time-

points, using the same procedure as reported in Glerean et al. (2012); Pedersen et al. (2018b); and 

Ponce-Alvarez et al. (2015). 𝑧𝑚1
[𝑡] and 𝑧𝑚2

[𝑡] is the analytic representations of the rows in 𝑌 (𝑦𝑚1
[𝑡] 

and 𝑦𝑚2
[𝑡]): 

𝑧𝑚1
[𝑡] = 𝑦𝑚1

[𝑡] + 𝑗�̃�𝑚1
[𝑡] = 𝑎𝑚1

[𝑡]𝑒𝑗𝜑𝑚1
[𝑡]    

𝑧𝑚2
[𝑡] = 𝑦𝑚2

[𝑡] + 𝑗�̃�𝑚2
[𝑡] = 𝑎𝑚2

[𝑡]𝑒𝑗𝜑𝑚2[𝑡]. 
   

Here, 𝑗 = √−1, �̃� represents the Hilbert transformation of 𝑦 where 𝑎𝑚1
[𝑡] ad 𝑎𝑚2

[𝑡] is the 

instantaneous amplitudes. 𝜑𝑚1
[𝑡] and 𝜑𝑚2

[𝑡] being the instantaneous phases of 𝑦𝑚1
[𝑡] and 𝑦𝑚2

[𝑡], 

respectively. 𝑦𝑚1
[𝑡] and 𝑦𝑚2

[𝑡] are phase-locked if: 

           |𝜑𝑚1
[𝑡] − 𝜑𝑚2

[𝑡]| ≈ 0,                
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with | . | as an absolute value operator. The instantaneous phase difference between 𝜑𝑚1
[𝑡] and 

𝜑𝑚2
[𝑡] is derived from the rows in the analytic matrix 𝑍. 

                  𝐼𝑃𝑆𝑚1,𝑚2
[𝑡] = abs(sin(𝜑𝑚1

[𝑡] − 𝜑𝑚2
[𝑡])).                

The angle information between signals allows us to quantify their phase synchrony by estimating the 

absolute sinusoid difference between the signals, at each time-point, 𝑡. We then computed 1 minus 

phase synchrony (1 – 𝐼𝑃𝑆) to obtain a numerical range of phase coherence between 0 and 1. A value 

of 0 indicates no phase synchrony between two brain regions, and a value of 1 indicates that two brain 

regions are fully synchronous (Mormann et al., 2000).  

It remains debated what sparsity level matrices contain optimal levels of biological information and 

a minimal influence of noise confounders (Fornito et al., 2012; van den Heuvel et al., 2017; Langer 

et al., 2013). To minimise potential confounders in this study, we thresholded and binarized matrices 

at several density thresholds, retaining 10%, 15%, and 20% of the strongest instantaneous phase 

synchrony connection-pairs. In Figure S8, we provide the minimum phase synchrony values (i.e., 

threshold cut-off values) for each of these thresholds. 

Multilayer modularity and network switching rate 

To quantify the rate of brain network switching we first generated a multilayer modularity model 

(Mucha et al., 2010). The multilayer modularity model is based on the Louvain modularity 

algorithm (Blondel et al., 2008; Lancichinetti and Fortunato, 2012): 

𝑄(𝛾, 𝜔) =
1

 2𝜇 
∑ [((𝐴𝑖𝑗𝑟 − 𝛾𝑟

𝑘𝑖𝑟𝑘𝑗𝑟

2𝑚𝑟
) δ(𝑀𝑖𝑟 , 𝑀𝑗𝑟) + 𝛿(𝑖, 𝑗)  × 𝜔𝑗𝑡𝑟]  𝛿(𝑀𝑖𝑟 , 𝑀𝑗𝑡).

𝑖𝑗𝑟𝑡

 

The input to the multilayer modularity model is 𝐴 and denote the thresholded and binarized 3D 

instantaneous phase synchrony tensors, for each rsfMRI scan. 𝐴𝑖𝑗𝑟 is the phase synchronisation 

between brain region, 𝑖 and 𝑗, for time-point 𝑟. 𝑘 is the degree (the total number of connections) at 

brain region 𝑖 at time-point 𝑟, and 𝑚 refers to the total degree across the 196 brain regions at timepoint 

𝑟. The Newman-Girvan null model of intra-network connectivity (2𝑚𝑟) is used to quantify whether 

the intramodular degree is greater than expected by chance (Sarzynska et al., 2016). Topological 

modularity is controlled by the network resolution parameter, 𝛾𝑟, at time-point 𝑟. We used 𝛾 = 1, 1.1, 

1.2 and 1.3 in this study where low 𝛾 values will return larger and fewer brain modules whereas high 

𝛾 values will return smaller and more brain modules. Temporal connectivity is controlled by the 

coupling parameter, 𝜔𝑗𝑡𝑟, at brain region 𝑗 between adjacent layers (i.e., adjacent time-points) 𝑟 and 
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𝑡. We used 𝜔 temporal coupling parameters of 0.1, 1, 2 and 3 (in line with recommendations from 

Yang et al., 2020). 

δ(𝑀𝑖𝑟 , 𝑀𝑗𝑟) and δ(𝑀𝑖𝑟 , 𝑀𝑗𝑡) has a value of 1 if two brain regions of interest (𝑖, 𝑗) are located within 

the same module, and 0 if they are allocated to two separate modules (Bassett et al., 2013). Modularity 

maximisation methods are inherently heuristic (Good et al., 2010), and our multilayer modularity 

models converged after an average of 4 iterations across all rsfMRI scans. The modular 

decomposition across all participants is displayed in Figure S9 and the most common modules that 

resembled i) the visual network, ii) the somatomotor network, iii) the frontoparietal network, iv) the 

default-mode network and v) sub-cortical brain regions. The average network modularity was 

calculated with the 𝑄-value, which range between 0 connections (no modular structure and between-

module connectivity) to 1 (fully modular structure and within-module connectivity). Q-values and 

number of modules for all network densities (10%, 15% and 20%) as well as 𝛾 (𝛾  = 1, 1.1, 1.2, and 

1.3) and 𝜔 (𝜔 = 0.1, 1, 2, 3) values are found in Figure S10.  

The network switching rate is derived from the multilayer modularity model and can be written as: 

𝑆 =  
1

𝑁
 ∑ 𝑠𝑖

𝑁

𝑖

,  

where 𝑠𝑖 is the network switching at node 𝑖, calculated as the number of times a brain region transits 

between network modules, divided by the total number of possible network transitions (Bassett et al., 

2011).  

Statistical analysis 

As reported in Figure 3, we used one-way within-subjects (repeated measures) ANOVA to infer 

statistical differences between all eight Stim epochs and eight NoStim epochs (120 Stim/NoStim 

epoch combinations in total). Post-hoc comparisons between all possible epochs were computed with 

Bonferroni correction with a critical probability value of p < 0.05. We used a univariate paired-

samples t-test to infer statistical differences in network switching for 196 brain regions between the 

mean of all Stim and NoStim epochs. We used FDR correction at q < 0.05 (Benjamini and Hochberg, 

1995) to control for multiple comparisons across all brain regions (Figure 5A). 
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