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Abstract 

The extent to which functional MRI (fMRI) reflects direct neuronal changes remains unknown. Using 

160 simultaneous electrical stimulation (es-fMRI) and intracranial brain stimulation recordings 

acquired in 26 individuals with epilepsy (with varying electrode locations), we tested whether brain 

networks dynamically change during intracranial brain stimulation, aiming to establish whether 

switching between brain networks is reduced after intracranial brain stimulation. As the brain 

spontaneously switches between a repertoire of intrinsic functional network configurations and the 

rate of switching is typically increased in brain disorders, we hypothesised that intracranial 

stimulation would reduce the brain’s switching rate, thus potentially normalising aberrant brain 

network dynamics. To test this hypothesis, we quantified the rate that brain regions changed networks 

over time in response to brain stimulation, using network switching applied to multilayer modularity 

analysis of time-resolved es-fMRI connectivity. Network switching and synchrony was decreased 

after the first brain stimulation followed by a more consistent pattern of network switching over time. 

This change was commonly observed in cortical networks and adjacent to the electrode targets. Our 

results suggest that neuronal perturbation is likely to modulate large-scale brain networks, and 

multilayer network modelling may be used to inform the clinical efficacy of brain stimulation in 

epilepsy. 
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Introduction 
Network modularity encompasses a family of algorithms that quantify whether a collection of 

network nodes exert stronger ‘intramodular’ connectivity than expected by chance – i.e., modularity 

provides a set of subnetworks with stronger than average within-network connectivity (Sporns and 

Betzel, 2016). Multilayer network modularity represents a multidimensional version of network 

modularity (De Domenico, 2017; Mucha et al., 2010). A multilayer network is conceptualised as a 

‘network of networks that are connected across several dimensions (Bassett et al., 2013; Betzel and 

Bassett, 2017; Vaiana and Muldoon, 2018). This is an explicit modelling framework that allows 

information to be shared across edges connected, for example in space and time, enabling us to track 

where and when entities in a network transit between different sub-networks or modules. In turn, 

spatiotemporal network measures like multilayer modularity are promising approaches that can 

enhance our understanding of human brain function, and a way to monitor the clinical response to 

invasive treatment strategies, including intracranial brain stimulation. 

By extending the concept of modularity to several dimensions, es-fMRI connectivity can be 

represented in terms of a spatiotemporal network model of the brain (Finc et al., 2020; Lydon-Staley 

et al., 2018; Shine et al., 2016). Multilayer network flexibility, or switching, is associated with 

cognitive functions including working memory (Braun et al., 2015), reasoning (Pedersen et al., 

2018a), reward (Gerraty et al., 2018) and fatigue (Betzel et al., 2017) as well as alterations in multiple 

psychological and neurological disorders (Gifford et al., 2020; Harlalka et al., 2019; Long et al., 2019; 

Paban et al., 2019; Shao et al., 2019; Tian et al., 2020a). There is also evidence that brain network 

switching changes in response to behavioural training. For example, Bassett et al. (2011) showed that 

motor training is associated with greater network switching, particularly in association cortices 

involved in higher-order cognition. A follow-up study demonstrated that brain network switching on 

the first day of motor training was correlated with individual differences in overall motor learning 

rate (Telesford et al., 2017). Another study showed increased brain network switching in people who 

underwent half a year of musical training, compared to people with no musical training (Li et al., 

2019). These studies suggest cause-and-effect relationships such as overt learning (e.g., motor, and 

musical training) can alter the brain’s network switching rate. 

It remains unknown whether focal neuronal perturbation –for example via invasive brain stimulation– 

leads to observable changes in the rate at which the brain switches between es-fMRI networks. In this 

study, we used the above-mentioned multilayer modularity model (Mucha et al., 2010) to investigate 

spatiotemporal network changes that occur during short periods of intermittent brain stimulation. 

Such spatiotemporal network models are advantageous for this purpose as they can pinpoint the 
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specific time points when brain regions transit between networks. Elucidating network switching 

during brain stimulation will provide new insights into the dynamical properties of es-fMRI networks. 

To test whether brain network switching is altered during intracranial brain stimulation, we used es-

fMRI data with concurrent intracranial stimulation acquired from individuals with focal epilepsy. 

Focal epilepsy is a neurological disease associated with seizures arising from a circumscribed part of 

the brain that in some cases progress from a focal to bilateral tonic-clonic seizure (Fisher et al., 2017). 

Focal epilepsy is associated with increased fMRI connectivity (Bernhardt et al., 2011, 2015; Hong et 

al., 2017; Pedersen et al., 2015, 2016, 2017), and prior electrophysiology research in epilepsy 

suggests that the impact of brain stimulation results in changes to neuronal networks and provides 

clinical benefits (Gummadavelli et al., 2015; Khan et al., 2009; Schulze-Bonhage, 2017; Toprani and 

Durand, 2013; Zangiabadi et al., 2019) likely by ‘steering’ the brain into a temporary state associated 

with modulated network events (Li and Yang, 2017). High-frequency stimulation (here, 100 Hz) is 

thought to be associated with neuronal inhibition (see Garcia et al. 2005, for a review) and neuronal 

inhibition is also associated with attenuated fMRI activity (Aksenov et al., 2019). We believe once 

the fMRI activity of brain regions is attenuated due to high-frequency stimulation, it is less likely that 

the brain regions can switch between different modular networks or states. Consequently, we 

hypothesise that es-fMRI network switching decreases after brain stimulation, in people with focal 

epilepsy. 

 

Figure 1: Location of brain electrodes across 26 epilepsy patients: The most common stimulation site 

included the amygdala (26 electrodes) followed by Heschl’s gyrus (15 electrodes) and the frontal/cingulate 

cortex. Note that most individuals were implanted with more than one electrode. 
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Materials and Methods 
Participants  

We studied 26 patients with treatment-resistant epilepsy for whom 160 es-fMRI scans were acquired 

while simultaneously receiving 100Hz intracranial electrical stimulation (Figure A.1 – see also Oya 

et al., 2017 and Thompson et al., 2020). Intracranial brain stimulation is a common part of the pre-

surgical work-up in treatment-resistant focal epilepsy patients. The most common stimulation target 

was the amygdala followed by the Heschl’s gyrus and the frontal/cingulate gyri. For the most part, 

participants were implanted with multiple electrodes, as shown in Figure 1. All es-fMRI datasets were 

downloaded from openneuro.org (https://openneuro.org/datasets/ds002799/versions/1.0.3). The 

dataset is described in detail in Oya et al. (2017) and Thompson et al. (2020). Open-access MATLAB-

based scripts for computing instantaneous phase synchrony, multilayer modularity and network 

switching can be found at https://github.com/MangorPedersen/fMRI_codes/. 

es-fMRI and brain stimulation parameters 

The length of each es-fMRI scan varied between participants. We included es-fMRI scans that were 

more than 9 minutes long (160 scans in total). The es-fMRI echo time was 30 milliseconds, and the 

data had a voxel size of 3×3×3 millimetre. There was no significant difference in head motion 

between NoStim and Stim epochs (Thompson et al., 2020). The repetition time of the es-fMRI data 

was 3000 milliseconds with a delay in repetition time of 100 milliseconds. The electrical stimulation 

was delivered during this repetition time delay and ensured no artefacts between MRI radiofrequency 

coils and electrodes (Oya et al., 2017). The brain stimulation consisted of bi-phasic charge-balanced 

square pulses (50-90 milliseconds in length, 8-12 milliamps, and 5-9 pulses at a 100 Hz stimulation 

rate). Pre-processing performed using fMRIPrep – see Appendix A, for full details about fMRI 

preprocessing in this cohort.  

Filtering and parcellation of es-fMRI data 

The pre-processed es-fMRI data was zero-phase filtered within narrow-band frequencies of 0.03 and 

0.07 Hz, using a 5th order Butterworth filter (‘filtfilt’ function in MATLAB). After filtering the es-

fMRI in the forward direction, we also filtered the data in the reverse order to minimise distortion 

and filter effects at the beginning and end of the signals (Dwivedi and Vyas, 2011). Narrow-band 

filtering is a requirement of instantaneous phase synchrony, to satisfy the Bedrossian’s theorem when 

using the Hilbert transform for time-series analyses (Honari et al., 2020). 

The average fMRI signal within 196 brain regions was extracted for analysis. We combined the 

cortical parcellation mask from the Human Connectome Project (Glasser et al., 2016) with 180 

bilateral cortical regions and the sub-cortical parcellation mask from Tian et al. (2020b) with 16 
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bilateral sub-cortical regions (Figure A.2). We used a symmetric brain parcellation mask –i.e., the 

same parcel in homologous brain regions– to counter the laterality effects of temporal lobe epilepsy 

where seizures predominantly originate from a single hemisphere (Adcock et al., 2003). For each es-

fMRI scan, this results in a 3D tensor of size 196 x 196 x 160 that represents the interconnectivity 

between each of the 196 brain regions, for 160 es-fMRI time-points (80 Stim time-points and 80 

NoStim time-points, partitioned into alternating epochs – see Figure 2). In line with Thompson et al. 

(2021), we excluded the first three time-points from each epoch to avoid overlap between Stim and 

NoStim, resulting in a total of 112 es-fMRI time-points for analysis. 

 
Figure 2: Study paradigm used during es-fMRI scans: es-fMRI scans had 10 data-points with NoStim (30 

seconds) followed by 10 data points of Stim (30 seconds), repeated eight times (16 epochs in total). This 

resulted in 80 Stim data points (4.5 minutes) and 80 NoStim data points (4.5 minutes), for each es-fMRI 

scan. After excluding the first three time-points from each epoch, we analysed 112 time-points.  

Instantaneous Phase Synchrony 

As shown in Figure 2, an es-fMRI block design was used in this study with alternating 30 seconds 

NoStim epochs followed by 30-second Stim epochs. To quantify time-varying fMRI connectivity 

within relatively short half-a-minute epochs, we used instantaneous phase synchrony. Instantaneous 

phase synchrony quantifies narrow-band fMRI connectivity by estimating the phase difference 

between brain regions, at a single time-point resolution (Glerean et al., 2012; Pedersen et al., 2018b; 

Ponce-Alvarez et al., 2015). 

Instantaneous phase synchrony is calculated by using the Hilbert transform (Bedrosian, 1963) to 

extract phase information between all brain regions (see Figure A.3). In the equation below, 𝑌 is a 

2D matrix comprising the average narrow-band es-fMRI data across 196 brain regions and 160 time-

points, using the same procedure as reported in Glerean et al. (2012); Pedersen et al. (2018b); and 

Ponce-Alvarez et al. (2015). 𝑧!![𝑡] and	𝑧!"[𝑡] is the analytic representations of the rows in 𝑌 (𝑦!![𝑡] 

and 𝑦!"[𝑡]): 
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𝑧!!
[𝑡] = 𝑦!!

[𝑡] + 𝑗𝑦+!!
[𝑡] = 𝑎!!

[𝑡]𝑒"##![%]    

𝑧!"[𝑡] = 𝑦!"[𝑡] + 𝑗𝑦+!"[𝑡] = 𝑎!"[𝑡]𝑒
"##"[%]. 

   

Here, 𝑗 = √−1, 𝑦+ represents the Hilbert transformation of 𝑦 where 𝑎!![𝑡] ad 𝑎!"[𝑡] is the 

instantaneous amplitudes. 𝜑!![𝑡] and 𝜑!"[𝑡] being the instantaneous phases of 𝑦!![𝑡] and 𝑦!"[𝑡], 

respectively. 𝑦!![𝑡] and 𝑦!"[𝑡] are phase-locked if: 

           3𝜑!![𝑡] − 𝜑!"
[𝑡]3 ≈ 0,                

with |	. | as an absolute value operator. The instantaneous phase difference between𝜑!![𝑡] and 𝜑!"
[𝑡] 

is derived from the rows in the analytic matrix 𝑍. 

																		𝐼𝑃𝑆!!,!"
[𝑡] = abs(sinB𝜑!!

[𝑡] − 𝜑!"
[𝑡]C).                

The angle information between signals allows us to quantify their phase synchrony by estimating the 

absolute sinusoid difference between the signals, at each time point, 𝑡. We then computed 1 minus 

phase synchrony (1 – 𝐼𝑃𝑆) to obtain a numerical range of phase coherence between 0 and 1. A value 

of 0 indicates no phase synchrony between two brain regions, and a value of 1 indicates that two brain 

regions are fully synchronous (Mormann et al., 2000).  

It remains debated what sparsity level matrices contain optimal levels of biological information and 

a minimal influence of noise confounders (Fornito et al., 2012; van den Heuvel et al., 2017; Langer 

et al., 2013). To minimise potential confounders in this study, we thresholded and binarized matrices 

at several density thresholds, retaining 10%, 15%, and 20% of the strongest instantaneous phase 

synchrony connection pairs. In Figure A.4, we provide the minimum phase synchrony values (i.e., 

threshold cut-off values) for each of these thresholds. 

Multilayer modularity and network switching rate 

To quantify the rate of brain network switching we first generated a multilayer modularity model 

(Mucha et al., 2010). The multilayer modularity model is based on the Louvain modularity 

algorithm (Blondel et al., 2008; Lancichinetti and Fortunato, 2012): 

𝑄(𝛾, 𝜔) =
1
	2𝜇	JKL(𝐴(") − 𝛾)

𝑘()𝑘")
2𝑚)

P δ(𝑀() , 𝑀")) + 𝛿(𝑖, 𝑗) 	× 𝜔"%)V 	𝛿(𝑀() , 𝑀"%).
(")%
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The input to the multilayer modularity model is 𝐴 and denote the thresholded and binarized 3D 

instantaneous phase synchrony tensors, for each es-fMRI scan. 𝐴(") is the phase synchronisation 

between brain region, 𝑖 and 𝑗, for time-point 𝑟. 𝑘 is the degree (the total number of connections) at 

brain region 𝑖 at time-point 𝑟, and 𝑚 refers to the total degree across the 196 brain regions at timepoint 

𝑟. The Newman-Girvan null model of intra-network connectivity (2𝑚)) is used to quantify whether 

the intramodular degree is greater than expected by chance (Sarzynska et al., 2016). Topological 

modularity is controlled by the network resolution parameter, 𝛾), at time-point 𝑟. We used 𝛾 = 1, 1.1, 

1.2 and 1.3 in this study where low 𝛾 values will return larger and fewer brain modules whereas high 

𝛾 values will return smaller and more brain modules. Temporal connectivity is controlled by the 

coupling parameter, 𝜔"%), at brain region 𝑗 between adjacent layers (i.e., adjacent time-points) 𝑟 and 

𝑡. We used	𝜔 temporal coupling parameters of 0.1, 1, 2 and 3 (in line with recommendations from 

Yang et al., 2020). 

δ(𝑀() , 𝑀")) and δ(𝑀() , 𝑀"%) has a value of 1 if two brain regions of interest (𝑖, 𝑗) are located within 

the same module, and 0 if they are allocated to two separate modules (Bassett et al., 2013). Modularity 

maximisation methods are inherently heuristic (Good et al., 2010), and our multilayer modularity 

models converged after an average of 4 iterations across all es-fMRI scans. The modular 

decomposition across all participants is displayed in Figure A.5 and the most common modules that 

resembled i) the visual network, ii) the somatomotor network, iii) the frontoparietal network, iv) the 

default-mode network and v) sub-cortical brain regions. The average network modularity was 

calculated with the 𝑄-value, which range between 0 connections (no modular structure and between-

module connectivity) to 1 (fully modular structure and within-module connectivity). Q-values and 

number of modules for all network densities (10%, 15% and 20%) as well as 𝛾 (𝛾  = 1, 1.1, 1.2, and 

1.3) and 𝜔 (𝜔 = 0.1, 1, 2, 3) values are found in Figure A.6.  

We used instantaneous phase synchrony as an input to an ordinal multilayer modularity network 

model, enabling us to quantify the percentage of times each brain region changes network allegiance 

–i.e., network switching– during intracranial brain stimulation. The network switching rate is derived 

from the multilayer modularity model and can be written as: 

𝑆 = 	
1
𝑁	J𝑠(

*

(

,	 

where 𝑠( is the network switching at node 𝑖, calculated as the number of times a brain region transits 

between network modules, divided by the total number of possible network transitions (Bassett et al., 

2011). S was calculated within each NoStim and Stim epoch, excluding the first three time-points to 

avoid overlap between epochs.  
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Analysis 

All findings are based on thresholded/binarized instantaneous phase synchrony tensors at a 15% 

network density (i.e., retaining the top-15% synchronous connection-pairs, and a 

topological/temporal modularity resolution of 𝛾/𝜔 = 1, consistent with previous studies (Bassett et 

al., 2013). Replication analyses for multiple network densities (van den Heuvel et al., 2017; Langer 

et al., 2013) and multiple recommended  𝛾/𝜔 parameters (Yang et al., 2020) are also reported.  

As reported in Figure 3, we used one-way within-subjects (repeated measures) ANOVA to infer 

differences between all epochs. Post-hoc comparisons between epochs were computed with 

Bonferroni correction with a critical probability value of p < 0.05. We used a one-tail univariate 

paired-samples t-test to infer the reduction in network switching for the 196 brain regions between 

the first epoch (no brain stimulation) and the average of all remaining epochs. We used false discovery 

rate correction at q < 0.05 (Benjamini and Hochberg, 1995) to control for multiple comparisons across 

all brain regions (Figure 4).  

We also used Pearson’s correlation coefficient to determine brain regions that positively correlated 

with the study block design values (Stim/NoStim – see Figure 2). We permuted all network switching 

and block design values (NoStim time points = 0; Stim time points = 1), 500 times to generate a null 

distribution. Brain regions that displayed greater correlation than the 95th percentile of the null 

distribution are displayed in Figure 5.  

To infer individual-specific changes after brain stimulation, we calculated the difference between 

network switching in the first epoch (NoStim) and the average of all remaining epochs, divided by 

the standard deviation of all remaining epochs, for each subject with electrode location information 

available (23/26 epilepsy participants had electrode locations). This resulted in node-specific z-scores 

for each subject, representing brain regions with stronger network switching in the first epoch 

compared to subsequent epochs. We averaged network switching from all es-fMRI scans that subjects 

underwent were averaged before calculating the z-scores (minimum = 2 scans; maximum = 10 scans 

– see Figure A.1, for full information). We set a z-score threshold of 2.32 corresponding to the 99th 

percentile of the standard z-distribution. 
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Results 
Group-level network switching is decreased after the initial brain stimulation 

A one-way repeated measures ANOVA demonstrated a significant main effect of network switching 

between epochs, F(15,2385) = 4.07, p < 0.001. Post-hoc tests showed that all the first epoch had 

greater network switching than all the 15 subsequent epochs (p < 0.05, Bonferroni correction – see 

Figure 3A, for all statistical comparisons), meaning that the main reduction in whole-brain averaged 

network switching occurred after the first stimulation epoch (Figure 3A – left). 101/160 (63%) of es-

fMRI scans had a reduction in network switching after the first stimulation.  

 

Figure 3: Stimulation-induced changes in network switching at group level: A) Network switching shown 

as a function of time throughout the es-fMRI scans, stratified according to NoStim and Stim epochs (epoch 

numbers in parentheses). Here, network switching is the proportion of time that nodes switch network 

allegiance during Stim and NoStim epochs. The shaded red area is the 95th confidence interval of the mean. 

The shaded blue area is one standard deviation of the mean. B) An overview of post-hoc comparisons 

between all epochs. The white numbers inside the bars refer to the epoch numbers that are statistically 

significant for a reduction in network switching within the current epoch (Bonferroni corrected). C) Same as 

A, but here the es-fMRI time-points are randomly permuted 100 times before computing the multilayer 

modularity model – i.e., a temporal null model. We report the mean of the 100 permutations.  
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We employed a temporal null model previously described by Bassett et al. (2013) to test whether the 

stimulation-induced changes in network switching could be explained by random dynamical 

processes. In this temporal null model, we randomly permuted es-fMRI time-points 100 times per es-

fMRI scan before computing 100 ‘temporally random’ multilayer modularity models per es-fMRI 

scan. This procedure preserves the topological modularity of networks but changes their temporal 

order. As seen in Figure 3B, we observed no differences between epochs when randomly permuting 

es-fMRI time-points (repeated measures ANOVA (F(15,2385) = 0.1, p = 1). The network switching 

was approximately six times greater in the temporal null model (Figure 3B), compared to the original 

data (Figure 3A). This finding suggests that temporal fluctuations of network switching in response 

to brain stimulation are unlikely to occur by chance.  

 
Figure 4: Regional changes in network switching after brain stimulation: A) Brain regions with a 

significant decrease in network switching after the first stimulation (paired t-test between first NoStim epoch 

and the average of all other epochs, FDR corrected at q<0.05). Electrodes are highlighted with blue dots. 

3/26 individuals in this study did not have coordinates for the intracranial electrodes. B) The number of 

brain regions from A within seven resting-state networks from Yeo et al. (2011).  

Specific brain regions display decreased network switching during brain stimulation 

After establishing that brain-averaged network switching is reduced during brain stimulation, we 

aimed to delineate brain regions where this reduction was most prominent. We conducted a paired t-

test for each of the 196 brain regions, between the first NoStim epoch and the average of all 

subsequent epochs. Following false discovery rate correction for the 196 tests (Benjamini and 

Hochberg, 1995), the frontal cortex, parietal cortex, and temporal cortex displayed the strongest 

reduction in network switching during brain stimulation (Figure 4A). Notably, significant differences 

in network switching between NoStim and Stim epochs were localized to regions distant from the 

most common stimulation sites, particularly the amygdala.   
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Statistically significant brain regions were commonly observed adjacent to, but not overlapping, with 

intracranial electrodes, suggesting that brain stimulation may influence brain networks beyond the 

focal stimulation targets (Figure 4 – blue dots). The two brain networks with the most significant 

brain regions between Stim and NoStim were the default-mode and frontoparietal network (Figure 

4B), both spatially distant from the most common stimulation sites. These two networks harbour 

several integral brain hubs, often referred to as the brain's rich-club, with strong inter-region 

connectivity (van den Heuvel and Sporns, 2011). This provides further evidence that focal brain 

stimulation induces widespread network effects. 

Next, we conducted a Pearson’s correlation analysis for each of the 196 brain regions, testing which 

brain regions positively correlate with the brain stimulation paradigm seen in Figure 2. This 

correlation analysis quantifies brain regions that display a pattern of decreased network switching 

during NoStim and increased network switching during Stim. After generating a null distribution 

using 500 permuted values, we found that the amygdala, parahippocampus, Heschl’s gyrus, cingulate 

gyrus and frontal cortex positively correlated with brain stimulations. Contrary to the nodal decreases 

of network switching after the first brain stimulation (Figure 4), the brain regions that correlated with 

the stimulation paradigm overlapped more with intracranial electrodes, particularly the amygdala and 

Heschl’s gyrus. This is supported by the resting-state network result showing that limbic and 

somatomotor networks contained the majority of significant regions (Figure 5). 

 
Figure 5: Nodes that correlate with the Stim/NoStim paradigm: A) Brain regions with a greater correlation 

than the 95th percentile of the null distribution (based on 500 permutations). Electrodes are highlighted with 

blue dots. B) The number of brain regions from A within seven resting-state networks from Yeo et al. (2011). 
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Individual-level network switching is decreased during brain stimulation  

We conducted an exploratory individual-level analysis by computing a z-score by measuring the 

standardised difference between network switching in the first epoch (before stimulation) and all 

subsequent epochs. We observed that all subjects with electrode information available (23/26 

subjects) displayed different spatial patterns of network switching after the initial Stim epoch. 

Notably, all subjects displayed increased network switching proximate, or overlapping, to the 

individual electrode locations (see blue dots in Figure 6 and Figure A.7).  

 
Figure 6: Individual results – first NoStim epoch versus all other epochs: Here we have presented 

individual-level decreases in network switching occurring after the first NoStim epoch. Included are the first 

15 of the 23 epilepsy subjects (from a total of 26 epilepsy subjects) with electrode information available. 

Electrodes = blue dots. The remaining 8 subjects are presented in Figure A.7. 

 

Replication across multiple network parameters and densities 

We replicated our result of reduced network switching during Stim versus NoStim epochs (FDR 

corrected) for 16 𝛾/𝜔 parameter combinations (𝛾 = 1, 1.1, 1.2 and 1.3 and 𝜔 = 0.1, 1, 2 and 3). We 

also replicated our results across several proportionally thresholded network densities, preserving 

10%, 15% and 20% of phase synchrony connection pairs. Although all network densities were 

statistically significant between Stim and NoStim epochs (FDR corrected), there was a trend towards 

greater statistical power between Stim and NoStim epochs at a higher network density threshold with 

more network connections (Figure A.8).  
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Instantaneous phase synchrony is also decreased during brain stimulation 

Lastly, we investigated whether the underlying instantaneous phase synchrony between brain regions 

–i.e., the input data to our multilayer modularity model– was also modulated by the effect of brain 

stimulation. We found that the mean of instantaneous phase synchrony averaged across all brain 

regions was reduced during the first NoStim epoch compared to the remaining epochs (paired t-test: 

t(159) = 10.02, p < 0.001), using a network density of 15%. Reduced instantaneous phase synchrony 

may therefore explain the attenuated network switching during brain stimulation (Figure A.9). 

 

Figure 7: Examples of instantaneous phase synchrony time series: These three time series each represent 

the synchrony between two brain regions for representative individuals. The blue colour highlight brain 

regions proximate to an intracranial electrode. The Pearson’s r correlation between the instantaneous phase 

synchrony time-series and the block design (Stim/NoStim) was -0.62 (p<0.001 – first row), -0.59 (p<0.001 – 

the second row) and -0.61 (p<0.001 – the third row). 

In Figure 7 we present three-time series, each representing the instantaneous phase synchrony 

between two brain regions, where one brain region is located proximate to a stimulation site and the 

other brain region is distant from a stimulation site. These time series show a negative correlation 

between brain stimulation and instantaneous phase synchrony and highlights that distant network 

properties are associated with stimulation targets. 
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Discussion 
We observed a reduction in brain network switching and synchrony after the initial intracranial brain 

stimulation (Figure 3A and Figure A.9), which was stable across a range of network parameters 

(Figure A.8). The initial stimulation may ‘startle’ the brain as the epilepsy patients in this study did 

not receive stimulation less than 1.5 hours (and up to 3 hours) before the es-fMRI acquisition. In 

subsequent epochs, network switching stabilized. This implies a lasting network effect beyond the 

initial impact of brain stimulation and may reflect a long-lasting inhibition of local neuronal activity 

(Lafreniere-Roula et al., 2010). The initial change in network switching is supported by previous deep 

brain stimulation Parkinson’s disease showing that tremors are reduced within seconds after 

administration of brain stimulation to the subthalamic nuclei (Blahak et al., 2009), and the neural 

effects from a single train of high-frequency stimulation can also last for several minutes (Benazzouz 

et al., 1995). This suggests that the brain likely reacts rapidly to brain stimulation, and can be 

maintained for minutes. From a clinical standpoint, our results suggest that stimulation-induced 

reduction of network switching may normalize aberrant brain dynamics associated with disorders 

such as epilepsy (Pedersen et al, 2017). 

Although the neuronal mechanisms of intracranial brain stimulation are complex, it is well established 

that invasive brain stimulation affects the cellular, electrical, molecular and network architecture of 

the brain (Jakobs et al., 2019). Network effects of brain stimulation (i.e., brain changes that occur 

distant to the stimulation target) are thought to be mediated by large and myelinated axons becoming 

depolarised and transformed into action potentials (Johnson et al., 2008). In line with our results, 

Alhourani et al. (2015) suggest that the underlying network mechanisms of intracranial brain 

stimulation represent a reduction of synchrony between remote brain regions that is achieved by 

perturbing afferent and efferent neurons that are (directly or indirectly) connected to the stimulation 

target. This is supported by Middlebrooks et al. (2018) who showed that epilepsy individuals who 

had a positive clinical response to brain stimulation to the anterior thalamus displayed greater 

connectivity in the default-mode network, compared to patients who did not respond positively to 

brain stimulation. This reinforces that brain stimulation impacts widespread brain networks beyond 

the stimulation target. 

Invasive brain stimulation has Class I evidence for seizure reduction in treatment-resistant epilepsy 

(Li and Cook, 2018), from randomised controlled trials with two different stimulation targets (Fisher 

et al., 2010; Morrell and RNS System in Epilepsy Study Group, 2011). Brain networks may normalise 

during invasive brain stimulation and attenuated network switching may represent a putative marker 

of therapeutic normalisation. This fits the clinical pattern of epilepsy, given that increased es-fMRI 
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brain connectivity is a common trait in people with treatment-resistant focal epilepsy (Pedersen et al., 

2015). Similarly, people with Parkinson’s disease undergo a normalisation of functional connectivity 

similar to healthy controls, during brain stimulation of the subthalamic nucleus (Horn et al., 2019). 

In combination with our findings, these studies suggest that novel network models may be used to 

inform the efficacy of brain stimulation in a range of neurological conditions (Halu et al., 2019).  

On a group level, we observed decreased network switching during intracranial stimulation also in 

spatially distant default-mode and frontoparietal networks. There are two plausible explanations of 

why we observed a reduction in network switching beyond the stimulation sites. The first explanation 

is based on the inherent nature of group-level research designs. Electrode locations varied between 

participants in this study (even within the amygdala), and es-fMRI effects from individual stimulation 

sites may cancel out within a group-level statistical test. As we observed in our exploratory 

individual-specific analysis, each subject’s network pattern is different with changes in network 

switching proximate to the electrode location (Figure 6 and Figure A.7). This suggests that es-fMRI 

group studies in epilepsy can delineate large-scale network effects of brain stimulation whereas 

individual-level studies may locate brain changes related to distinct stimulation sites. For example, 

what network properties are affected by specific cortical or sub-cortical stimulation sites in individual 

subjects, and what is their relationship with individual clinical symptomatology and treatment 

efficacy? Improving individual-level prediction from quantitative MRI data is needed to provide an 

answer to these questions. The second explanation is that spatial distortion induced by the intracranial 

electrodes attenuate the fMRI signal near the stimulation sites (Lee et al., 2012). We are encouraged 

by recent advances in the field demonstrating that graphene fibre electrodes reduce MRI distortion 

proximate to the stimulation site (Zhao et al., 2020). Graphene fibre electrodes will benefit future es-

fMRI and brain stimulation studies as we seek to further understand local and global brain network 

variability in response to intracranial brain stimulation. 

Another limitation of this study is the relatively short duration of the es-fMRI scans (typically 9 

minutes in length). This precluded testing of the long-lasting network effects of intracranial brain 

stimulation. However, we observed a sudden drop in brain network switching in the early epochs of 

the es-fMRI scans, followed by a plateau in brain network switching, suggesting that the initial effects 

of brain stimulation may persist for at least 10 minutes (Figure 3). Longer es-fMRI scans are needed 

to clarify the duration of stimulation-induced brain network effects A longer period of es-fMRI 

recording before the onset of the first brain stimulation (here, ~30 seconds into the scan) is also 

beneficial to ensure the participants are settled and relaxed before the onset of brain stimulation, and 

it would allow for improved control of filter-related issues that can occur at the start/end of es-fMRI 

signals.  
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Conclusions 

Our results suggest that large-scale networks are dynamically modulated by neuronal perturbation 

induced by intracranial brain stimulation, affecting brain regions and networks distant from the 

stimulation target. We believe that this research is a necessary first step to enable robust investigation 

into individual-level network changes following intracranial brain stimulation, as this may aid the 

clinical decision support of refractory neurological diseases. 
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