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Abstract

Pattern matching is a key step in a variety of biological sequence analysis pipelines. The
FM-index is a compressed data structure for pattern matching, with search run time
that is independent of the length of the database text. We present
AvxWindowedFMindex (AWFM-index), an open-source, thread-parallel FM-index
library written in C that is highly optimized for indexing nucleotide and amino acid
sequences. AWFM-index is easy to incorporate into bioinformatics software and is able
to perform exact match count and locate queries approximately 4x faster than Seqan3’s
FM-index implementation for nucleotide search, and approximately 8x faster for amino
acid search in a single-threaded context. This performance is due to (i) a new approach
to storing FM-index data in a strided bit-vector format that enables extremely efficient
computation of the FM-index occurrence function via AVX2 bitwise instructions, and
(ii) inclusion of a cache-efficient lookup table for partial k-mer searches. AWFM-index
also trivially parallelizes to multiple threads, and scales well in multithreaded contexts.
The open-source library is available for download at
https://github.com/TravisWheelerLab/AvxWindowFmIndex.

Author summary

AvxWindowedFMIndex is a fast, open-source library implementation of the FM-index
algorithm. This library takes advantage of powerful ‘single-instruction, multiple data’
(SIMD) CPU instructions to quickly perform the most difficult part of the algorithm,
counting the number of occurrences of a given letter in a block of text. Algorithms like
FM-index are widely used many places in bioinformatics like biosequence database
searching, taxonomic classification, and sequencing error correction. Using the
AvxWindowedFMIndex library will ease the burden of including the FM index into
bioinformatic software, thus enabling faster pattern matching and overall faster software
in practice.

Introduction 1

String pattern matching is the problem of counting or locating occurrences of a query 2

text pattern P within a large database text T. While not limited to the analysis of 3

biological sequences, string pattern matching is a problem integral to many tasks in 4

bioinformatics, including mapping sequences of reads to a reference genome [1,2], 5

taxonomic classification [3, 4], sequencing error correction [5], and seeding for sequence 6

alignments [6–8]. 7
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The need for high-throughput pattern matching in bioinformatics has motivated 8

myriad approaches including hashing, lookup tables, suffix arrays [9], and compressed 9

suffix array data structures such as the FM-index [10]. Use of the FM-index across 10

bioinformatic applications is due to its fast performance and low memory footprint. 11

Unfortunately, its adoption is likely limited by the lack of an optimized and easy-to-use 12

FM-index library; the only robust, currently maintained FM-index implementation we 13

are aware of is found in the Seqan3 library [11]. Here, we present a lightweight, 14

open-source library called AvxWindowedFMindex (hereafter shortened to 15

AWFM-index), which enables highly optimized string pattern matching over nucleotide 16

or amino acid sequence datasets that demonstrates significantly faster performance than 17

Seqan3’s library. 18

AWFM-index achieves significant performance gains through multiple algorithmic 19

and data structure changes over a traditional FM-index implementation. Rather than 20

storing the database text T in ascii symbols or as a range of integral values representing 21

the symbols in T, AWFM-index stores bit compressed symbols strided over 256-bit 22

(AVX2) vectors that can be efficiently reduced with a low number of bitwise SIMD 23

instructions. A table of k-mer seed ranges makes it possible to skip an early portion of 24

the search computation for every query. Collections of multiple k-mers are queried in a 25

thread-parallel manner, with good parallel scaling performance. AWFM-index is an 26

open-source library written in C, with a simple API to facilitate easy integration into 27

bioinformatics tools. 28

Data Structure Background: 29

Suffix Array 30

The suffix array [9] is a classic data structure that supports efficient determination of 31

the count and locations of all occurrences of a query pattern, P, within a database 32

sequence T. Given a text T that ends with a special sentinel symbol ‘$’ (defined as a 33

symbol in the text’s alphabet Σ that otherwise does not occur in T, and is the smallest 34

symbol in Σ), a suffix array SA is a permutation of integers [0..|T-1|], such that the 35

suffix of T beginning at position SA[i] is lexicographically smaller than the suffix 36

denoted by SA[j] if and only if i < j. 37

Because a suffix array lexicographically orders the suffixes of T, all indices of a given 38

substring of T can be found in a contiguous range of elements in the suffix array. This 39

fact is the key to the suffix array’s fast search, as it enables counting in O(|P| log|T|) 40

time through binary search across the suffix array and locating in O(|P| log|T| + k) 41

time for k instances of the pattern. Without any data compression techniques, suffix 42

arrays generally require 4 bytes of per symbol for sequences < 4GB long, or 8 bytes per 43

symbol for sequences ≥ 4GB. 44

Numerous highly-efficient algorithms have been devised to quickly construct a suffix 45

array from text T. The optimal asymptotic performance for suffix array construction is 46

O(|T|) [12], but the O(|T| log |T|) complexity divsufsort [13] is commonly used because 47

of its excellent speed as an in-memory suffix sorter for genome-scale inputs; 48

AWFM-index utilizes libdivsufsort [14] for suffix array construction. 49

Burrows-Wheeler Transform (BWT) 50

The BWT is a reversible text transform that was originally proposed for lossless data 51

compression [15]. Given a text T and a associated suffix array SA, a BWT is defined as 52

the transformation: 53
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BWT(i) =

{
T[SA[i]− 1] if i 6= 0

$ otherwise
(1)

In other words, each element in the BWT holds the symbol directly preceding the 54

suffix denoted at that element’s index in the suffix array. This is effectively the last 55

column in a table of sorted rotations of T (see Fig 1), and is easily computed from a 56

suffix array on T. 57

Fig 1. Example of generating a Burrows-Wheeler Transform for a given text. (A) All
rotations of the input text ‘banana’, with appended sentinel ‘$’ symbol. The position of
each rotation is given in the left column. (B) After sorting the rotations, the left column
retains the original position of each rotation, and is thus the suffix array of the text.
The final column of this sorted rotation matrix is the BWT. Note: the actual rotation
matrix need not be stored, or even computed; it is represented here as a visual aid.

FM-index 58

While the BWT can be viewed as a data-product of a suffix array, it can also be used as 59

an alternative method for identifying pattern matches when used in conjunction with a 60

suffix array. Using both data structures, Ferragina and Manzini introduced the 61

FM-index [10]. A FM-index constructed from a given text T of alphabet Σ is comprised 62

of the following: a suffix array SA, a Burrows-Wheeler Transform B, and a counts array 63

C where C[s] is the count of all symbols in T that are lexicographically less than or 64

equal to symbol s. Using these data structures, the FM-index supports efficient 65

counting of the number of occurrences of each symbol preceding each position in the 66

BWT (see below for details). Using these data structures, an FM-index can perform 67

two key query functions called Count() and Locate(). The Count() function returns the 68

number of occurrences of the query pattern P in O(|P |) time. The Locate() function 69

returns the position in T of all k instances of P, in expected time O(|P |+ k). 70

Exact pattern matching with FM-index 71

Search for a pattern P in text T is performed one character at a time, beginning with 72

the final character of the pattern and moving backwards. To begin, the search process 73

establishes a start-pointer and end-pointer [SP..EP] that correspond to the range in SA 74

pointing to all occurrences of the final letter of P in T.(Alg 1). In each successive step, 75

the preceding character in P is prepended to the searched string P’, and the range 76

[SP..EP] is updated (via Alg 2) to correspond to all positions in the text T that match 77

the growing suffix, P’. This continues until each symbol in P has been processed. SP 78
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and EP are updated each time a new prefix symbol is added to the query using a 79

function called occ() (short for occurrence). The occ(s, p) function takes as parameters 80

a symbol s ∈ Σ− {$} and a position p where 0 ≤ i < |T | and returns the number of 81

occurrences of s in B before position p. To avoid unnecessary counting over large ranges 82

of B, a milestone table is used to store the count S[s, p’] of symbol s preceding regularly 83

sampled positions p’. When computing occ(s, p), the closest milestone position p’ < p 84

is identified, and the value S[s, p’] is added to the count of symbol s between p’ and p. 85

If the interval between milestones is r, the milestones table will require (Σ · b|B|/rc · 8) 86

bytes, assuming 64-bit integers are used to store the symbol counts. After the 87

conclusion of Alg 3, the range [SP..EP] of the query represents the range of positions in 88

the suffix array that represent suffixes that begin with pattern P (i.e., the locations of 89

P). If at any point of the process SP > EP, P is not a substring of T, and the backward 90

search is halted. 91

Algorithm 1: Constructing the initial [SP..EP] range for pattern P.

createInitialRange(P, C):
last = P[|P | -1]
SP ← C[last]
EP ← C[last+ 1] -1
return [SP, EP]

92

Algorithm 2: FM-Index backward search extending a BWT range [SP, EP]
with prefix symbol s.

backwardsExtendQuery(C, s, SP, EP):
SP ← C[s] + occ(s, SP-1) + 1
EP ← C[s] + occ(s, EP)
return [SP, EP]

93

Algorithm 3: FM-index backwards search.

backwardSearch(P, C):
[SP, EP] ← createInitialRange(P, C)
k ← |P | − 2
while k ≥ 0 and SP ≤ EP:

s ← P[k]
[SP, EP] ← BackwardsExtendQuery(C, s, SP, EP)
k ← k - 1

return [SP, EP]

94

Reducing space requirements by sampling the suffix array. 95

While locating query sequences using an FM-index has better complexity scaling than 96

using only a suffix array for the same task ( O(|P|) for FM-index as opposed to 97

O(|P| log |T|) for suffix arrays), a naive FM-index requires more memory than suffix 98
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array alone, since it includes the BWT and milestone counts. By down-sampling the 99

suffix array [16], the memory footprint of the suffix array inside an FM-index can be 100

dramatically reduced at the cost of a modest performance hit. A common SA sampling 101

strategy is called subscript sampling [17], in which a sampling ratio r is chosen, and the 102

sampled SA’ is generated from all SA values at positions p where p ≡ 0 (mod r). 103

At the conclusion of the backwardSearch algorithm, each position in the [SP..EP] 104

range corresponds to a position in the full SA, which itself indicates the location of an 105

instance of P in T. Under SA down-sampling, only 1/r of the positions in [SP..EP] are 106

present in SA’ (i.e., only positions p ≡ 0 (mod r) for p in [SP..EP]). For positions that 107

are not sampled, the backtracePosition() function steps backwards through positions in 108

the original text until a position sampled in SA’ is reached, then returns the correct 109

position by adding the number of steps that were taken to this SA’ value. 110

A position p in B references some position B[p] in T. The backtrace step seeks to 111

walk back in T until finding a position sampled by SA’; by construction, this is the 112

character found at B[p]. Thus, to take one step back in T from a current position p, the 113

symbol at p in B is found and the symbol is used in the occurrence function to find the 114

BWT position of the previous symbol in the original text T (Alg 4). 115

Algorithm 4: Backtracing a position p to the nearest previous position
sampled in SA’; this supports identification of the position in T corresponding
to position p in SA.

backtracePosition(B, SA, p, s):
offset ← 0
while not p ≡ 0 (mod s):

c ← B[p]
p ← C[c] + occ(c, p)
offset ← offset + 1

return SA[p / s] + offset

116

Methods 117

The primary contribution represented by this work is an optimized FM-index library 118

that is lightweight, easy-to-incorporate, and provides clients with FM-index 119

functionality at both a high-level (count or locate all instances of a query string) and 120

low-level (step-wise control of the reverse-search process). Here, we describe the various 121

strategies that contribute to the library’s fast text indexing performance. The key 122

innovation is the development of a representation of BWT sequence data with a strided 123

bit-compressed vector format interleaved with the milestone data. This format supports 124

efficient computation of the most expensive aspect of FM-index calculations: the 125

occurrence function. 126

We begin by describing a method for representing symbols in both nucleotide and 127

amino acid alphabets with a carefully-selected combination of bits, and describe a 128

method for efficiently testing for a match of a query symbol against such a bit 129

representation, using a small number of boolean operations. We then demonstrate that 130

this symbol representation can be used to compactly store an FM index in memory 131

blocks representing 256 symbols at a time, and that these blocks can be efficiently 132

processed using AVX2 vector instructions. This is followed by description of other 133

aspects of the implementation, including a partial k-mer query lookup table that allows 134

AWFM-index to skip the first few [SP..EP] update steps for each query. 135
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Bitwise Symbol Matching 136

Consider an alphabet Σ, with each symbol in the alphabet encoded using n bits. In 137

order to count the occurrences of a query symbol s in a range of symbols in the BWT, 138

each symbol in the range must be checked for equality to s. While nearly all CPU 139

architectures contain instructions to directly compare two numbers, we explore solutions 140

that exploit bitwise operations for comparing symbols. Given two symbols s1, s2 ∈ Σ, it 141

is possible to compare s1 against s2 using a straightforward combination of bitwise 142

operations. For all set bits in s1, the corresponding bits in s2 are ANDed together. For 143

all clear bits in s1, the corresponding bits in s2 are ORed together, and then bitwise 144

NOTed. The boolean values that result from these actions are then ANDed together. 145

The resulting value is true iff s1 = s2, and can be computed in n bitwise operations, or 146

n-1 operations for the case where all bits in s2 are set. By performing bitwise operations 147

in this way, we can check for symbol equality even in situations where a direct symbol 148

comparison operation is not possible (as is the case when performing vectorized 149

computations, as described shortly). For the purposes of this implementation we 150

consider the following bitwise operations on a and b: AND(a,b) = a&b, OR(a,b) = a|b, 151

and ANDNOT(a,b) = (!a)&b to each be single bitwise operations, as they are each a 152

single CPU instruction within our target instruction set. 153

In AWFM-index, two alphabets are supported, one for nucleotide data, one for 154

amino acid data. Each alphabet contains symbols for each of the possible residues (4 for 155

nucleotides, 20 for amino acids), a sentinel symbol, and an ambiguity symbol, denoted 156

here as X, defined to be lexicographically greater than all other symbols in Σ. The 157

resulting alphabets are length 6 and 22 respectively, and symbols in each alphabet are 158

represented with dlog2(6)e=3 and dlog2(22)e=5 bits. Note that each of these alphabets 159

have fewer symbols than the number of possible values for each of their corresponding 160

bit lengths. A naive approach to assigning encodings to the |Σ| symbols in each 161

alphabet would be to assign them to the integers [0 .. |Σ| − 1]. Instead, AWFM-index 162

assigns alphabet symbol encodings using a strategy that aims to reduce the number of 163

bitwise operations needed to compare symbols for equality. These encodings are 164

presented in Table 1, and explained in the next two sections. 165

Nucleotide alphabet symbol encodings 166

Nucleotide symbols are represented by two groups of unique 3-bit encodings. Group-1 167

encodings have 2 of the 3 bits set, while group-2 encodings have only a single set bit. 168

With a group-1 nucleotide query symbol, equality to another symbol is determined by 169

ANDing the 2 bits corresponding to the set bits of the query. This produces a true 170

boolean result if the symbol matches, and precludes a true result for any other symbol: 171

(i) any other group 1 encoding would have a different pair of set bits, so that one of the 172

compared bits would not be set, yielding a false result from the AND operation; (ii) any 173

group-2 symbol contains only one set bit, so again the AND operation would return 174

false, and (iii) since no encodings have more than 2 bits set, we can be sure that no 175

other symbol could match to our query. Group-2 encodings can be checked for equality 176

in 2 bitwise operations by taking the ANDNOT of the set bit and one of the clear bits, 177

then ANDNOTing the result with the last clear bit. This strictly forces each of the 3 178

bits to match the query symbol. 179

Amino acid alphabet symbol encodings 180

Amino acid symbol encodings are split between 3 groups of unique 5-bit encodings. 181

Group-1 encodings are represented by all 12 possible encodings in which exactly 2 bits 182

in the lower 4 bits (bits [0..3]) differ from the most significant bit (bit 4). Group-2 183

encodings are represented by all 8 possible encodings in which exactly 1 of the bits in 184
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Table 1. Bit encodings for all nucleotide and amino acid symbols, and the
number of bitwise operations required to check for equality when used as a
query symbol.

Nucleotide
IUPAC Code

Bit Encoding Symbol Group
# Bitwise Ops
for Comparison

A 110
G 101 1 1
C 011
T 001
X 010 2 2
$ 100

Amino Acid
IUPAC Code

Bit Encoding Symbol Group
# Bitwise Ops
for Comparison

A 01100
D 00011
E 00110
G 11010
I 11001
K 11001

1 2
L 11100
P 01001
R 10011
S 01010
T 00101
V 10110
C 10111
F 11110
H 11011
M 11101

2 3
N 01000
Q 00100
W 00001
Y 00010
X 11111

3 3$ 00000

[0..3] differs from bit 4. Group-3 encodings are represented by all 5 bits being either set 185

or cleared, and denote the ambiguity symbol and the sentinel respectively. For a group-1 186

amino acid query symbol, equality can be tested in 2 bitwise operations, with the 187

required operations depending on the state of bit 4 in the query symbol. If a query 188

symbol is in group-1 and its bit 4 is set, one of the two bits corresponding to the query’s 189

clear bits is ANDNOTed with bit 4, then the other clear bit is ANDNOTed with the 190

result. If bit 4 is clear for a group-1 symbol, the two bits corresponding to the query set 191

bits are ANDed together, and the result is ANDNOTed with bit 4. Both of these 192

options return true if and only if bit 4 matches the query, and the 2 bits that are 193

supposed to differ from bit 4 in fact do so. Further, if the result is true, it shows that 194

the symbol cannot be a group-2 encoding, since more than 1 bit differs from bit 4. In 195

the same way, it shows that the symbol cannot encode for group-3. If the result is true, 196

therefore, it cannot encode for any symbols other than our query. 197

For a group-2 amino acid query symbol, equality can be tested in 3 bitwise 198

operations. If bit 4 is set, the bit corresponding to the query’s singular clear bit is 199
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ANDNOTed with one of the 3 set bits in [0..3]. The other 2 set bits in [0..3] are ANDed 200

together, and the result is ANDed with the result of the first operation. If bit 4 is clear, 201

one of the 3 clear bits in [0..3] is ANDNOTed with the singular set bit. The remaining 2 202

clear bits are ORed together, and the result is ANDNOTed with the result of the first 203

operation. Note that we did not check bit 4 in any way; if the result is true we can infer 204

the state of bit 4 because no encodings exist with 3 bits that differ from bit 4. 205

Therefore the state of bit 4 must be the opposite of the bit with the unique state. We 206

also know that the symbol cannot encode for a group-1 or group-3 symbol, because we 207

have shown that exactly 1 bit differs from bit 4. Therefore, the result is true if and only 208

if the symbol matches the query. 209

Group-3 comparisons are straightforward. The ambiguity symbol is encoded with 5 210

set bits, and can be compared by ANDing together bits 0 and 1, ANDing bits 2 and 3, 211

and ANDing the two results. Again, bit 4 does not need to be checked because no 212

symbols are represented by all bits in [0..3] differing from bit 4. Comparison against the 213

sentinel symbol is similar, however this is never necessary in practice since query strings 214

cannot contain the sentinel. 215

As group-1 encodings require 1 less instruction to reduce, this group is used to 216

encode for the 12 most frequent amino acids in the UniProtKB/Swiss-Prot database [18] 217

and group-2 encodings represent the 8 least frequent amino acids. The reason for this 218

choice is that the more-common amino acids will likely be queried more often, and 219

therefore should be represented by encodings that require the fewest instructions. 220

Strided Bit Vector Data Format 221

Counting the number of occurrences of a symbol s in the BWT prefix, B[0..p], can be 222

achieved in two stages: (i) identify the largest milestone position p’ ≤ p, and retrieve the 223

corresponding count of symbol s in B[0..p’], then (ii) count the number of occurrences of 224

s in B[p’+1..p] (assuming p’6=p). Naively, the second stage can be performed by 225

iterating over every symbol in B[p’+1..p], and comparing to the query symbol, 226

incrementing a counter for each match. The previous section described a bitwise method 227

for comparing a single symbol encoding against a query symbol. AWFM-index employs 228

this bitwise comparison strategy in the context of Single Instruction, Multiple Data 229

(SIMD) parallelization. Specifically, AWFM-index uses AVX2 instructions to perform 230

the bitwise operations on vectors of 256 symbols in parallel, effectively comparing up to 231

256 symbols from the BWT to a single query symbol in the same number of bitwise 232

instructions as comparing a single symbol. The AVX2 instruction set is an extension of 233

the x86 instruction set that performs operations on vectors of 256 bits with a single 234

instruction. AWFM-index uses 3 AVX2 intrinsic instructions ( mm256 and si256, 235

mm256 or si256, and mm256 andnot si256) to implement the bitwise operations for 236

comparing symbol encodings, as described earlier. Through precise, interleaved layout 237

of the BWT and milestone data, AWFM-index finds all matches to a query symbol in 238

≤4 instructions, and computes the occurrence function with a few extra steps. 239

In the AWFM-index, the BWT sequence is broken up into windows of 256 symbols; 240

each window represents a range [i..j] (with j=i+255), and is comprised of 3 sections: (i) 241

an array of 8-byte milestone occurrence counts containing the count of symbol s in 242

B[0..i-1], for each symbol in the alphabet except the sentinel, (ii) a padding section to 243

ensure that all other sections align to 32-byte boundaries necessary for AVX2 SIMD 244

instructions, and (iii) multiple contiguous 256-bit AVX2 vectors that store the 256 245

symbols in a strided bit-vector format (see Fig 2, and text below). By including the 246

milestone counts adjacent to the BWT windows, both the milestone count and the 247

symbol bit vectors can be brought into cache in the same memory request. The 248

milestone section of the window contains five (5) 8-byte values for nucleotide windows, 249

or twenty-one (21) 8-byte values for amino acid windows. Since the milestone sections 250
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are aligned to a 32 byte (256 bit) memory boundary, a 24 byte padding (for both 251

nucleotide and amino acid alphabets) ensures that the strided bit-vector section also 252

aligns to a 32 byte boundary. 253

Fig 2. The 5 AVX2 vectors that comprise a nucleotide BWT window. The
milestone counts for A, C, G, and T are stored in vector 0. Vector 1 contains the
milestone for the ambiguity symbol ‘X’ and a 24 byte padding section to align the bit
vectors to the 32 byte alignment necessary for AVX2 instructions Vectors 2-4 contain
the bits representing the symbols in the window.

As a BWT window denotes a contiguous range of 256 symbols from the BWT, a 254

straightforward approach to storing symbols would be to represent each symbol with 255

one byte as raw ASCII character values. For small alphabets, modern FM-index 256

implementations prefer to use some form of bit-compressed representation, such as 257

representing nucleotide symbols with 2 bits [1] (though this approach does not support 258

ambiguity symbols, and special handling is required for the sentinel symbol). 259

AWFM-index adjusts this bit-compression strategy to better leverage SIMD 260

parallelization in computing the occurrence function. The symbols in the BWT are 261

strided over the window’s bit-vectors, with one vector for bit-0 of all 256 symbols, 262

another vector for bit-1, and so on (generally: bit n of bit-vector m of a given window 263

represents bit the m-th bit of the n-th symbol in the window). Including the milestone 264

values and the padding, nucleotide data takes up 5 AVX2 vectors for each 256 symbol 265

window, and thus requires 5 bits per symbol in the original text. Similarly, amino acid 266

windows take up 11 AVX2 vectors, and so require 11 bits per symbol. 267

SIMD Occurrence Calculation 268

To compute the occurrence function occ(s, p) for symbol s and position p, the milestone 269

occurrence count is taken from the appropriate section in the BWT window. Then, 270

positions in the BWT window matching symbol s are identified and captured into a 271

256-bit vector such that bit n is set if and only if the n-th position in the window 272

represents symbol s, here called an occurrence vector. This occurrence vector is 273

generated by using AVX2 SIMD instructions to implement a bitwise comparison across 274

all 256 symbols in the window, with bitwise instructions described in the previous 275

section (see Fig 3). Once the occurrence vector has been generated, a bitmask is applied 276

to clear all bits after position p; this ensures that no positions after p are counted in the 277

final occurrence count. The set bits in each of the 4 quad-words in the occurrence 278

vector are then counted with popcnt64() intrinsic instructions, and the results are 279
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summed with the corresponding milestone count to compute the final occurrence count. 280

Multiple strategies of generating a population count of the occurrence vector were 281

tested, and summing the results of the 4 popcnt64() instructions was found to 282

outperform other SIMD vector popcounting techniques (e.g. [19]). 283

Fig 3. Examples of creating an occurrence bit vector from the strided
BWT bit vectors. (a) An example of the bit vectors in a BWT window. Each bit
vector is 256 bits wide representing 256 symbols, but only the first 8 positions are
shown for brevity. By performing bitwise operations on these bit vectors an occurrence
vector can be generated where a set bit indicates the presence of the queried symbol at
the bit’s position in the window. (b) Creating an occurrence bit vector for Group 1
amino acid ”A” in 2 SIMD operations. (c) Creating an occurrence bit vector for Group
2 amino acid ”H” in 3 SIMD operations.

Manual Prefetching 284

While the computation to update the BWT range is minimal, the unpredictable nature 285

of each subsequent position p given to the occurrence function creates a performance 286
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bottleneck in reading data from memory. Given a sufficiently large BWT, every 287

occurrence call will result in a memory read request for cache lines that will almost 288

certainly not be in cache, except for pathological case queries like ‘AAAAAAA’, or if SP 289

and EP land in the same BWT window. To ease the performance hit caused by this 290

random access, AWFM-index employs manual data prefetching using the 291

mm prefetch() SSE instruction as soon as the location of the memory address for the 292

next occurrence function is known. The updates to SP and EP are also staggered such 293

that after SP is updated, a prefetch request is generated for the following SP, and the 294

update to EP begins while the new SP memory prefetch request is being serviced. 295

Accelerated Search with a K-mer Lookup Table 296

Traditionally, searching an FM-index involves updating the [SP,EP] pair for every 297

symbol in the given query. AWFM-index uses a pre-computed lookup table with a 298

modest memory footprint to skip a sizable portion these [SP,EP] updates. When the 299

AWFM-index is built, a parameter k is selected, and a table is allocated to store the 300

[SP,EP] pair for every length-k string over alphabet Σ (except the ambiguity and 301

sentinel symbols, which are excluded because neither are found in query strings). This 302

table of k-mer ranges consumes 16 · (|Σ| − 2)k bytes in memory, and memoizing prefix 303

ranges enables O((|Σ| − 2)k) construction time. If a query pattern P is at least length k, 304

the [SP,EP] range for the length k suffix of P is found in the k-mer lookup table, 305

effectively skipping the first k updates to the [SP,EP] range. Then, the query proceeds 306

as normal, querying for symbols until the entire query has been completed, or the range 307

is invalid. If the query string length is less than k, the range is resolved without using 308

the k-mer table. The recommended values of k are 12 for nucleotide indices (268MB 309

table size) and 5 for amino indices (51MB table size) as they strike a balance between 310

memory footprint and performance benefit. Other values may be selected by the library 311

client depending on expected factors such as expected query lengths and available 312

system memory. 313

API and Thread-Parallel Search 314

The core API for AWFM-index includes the locate() and count() functions, which each 315

accept as arguments (i) the AWFM-index data structure, (ii) a collection of query 316

sequences, and (iii) a number of threads used to parallelize search. Parallelization is 317

achieved using simple OpenMP pragmas, as each query in the collection is 318

data-independent with respect to the other queries in the collection. Given a collection 319

Q of query sequences, the collection is implicitly divided into bins of 4 queries, resulting 320

in a total of d|Q| / 4e bins. The user-specified number of threads are then used to 321

parallelize the search across the collection of bins. When a thread begins to compute the 322

results for a bin of queries, it begins by finding [SP,EP] range in the k-mer lookup table 323

that represents the final k symbol suffix for each of the 4 queries. Then, each query in 324

the bin is extended until either the SA range of the query has been fully resolved, or has 325

failed due to SP > EP. If the parallel locate() function is used, the location of each 326

instance of each query string is found via the SA backtracking method described earlier. 327

The AWFM-index API also includes non-parallelized functions for initializing a SA 328

range, extending queries with additional prefix symbols, backtracing to the most 329

recently sampled SA position, and looking up the original position using the suffix array. 330

These functions allow a user to implement custom FM-index applications such as 331

inexact pattern matching. 332
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Suffix Array Sampling, on-memory or on-disk 333

The suffix array component of the FM-index is often down-sampled to reduce memory 334

requirements. Suffix arrays that are sparsely sampled have a smaller memory footprint, 335

but require more backtrace steps to deduce the actual sequence position during the 336

locate() function. The AWFM-index library currently supports suffix array sampling 337

ratios r that are 1 ≤ r < 256 and utilizes a subscript sampling strategy such that every 338

rth entry is sampled. Since each suffix array value is stored as an 8 byte integer, a suffix 339

array from text T under sampling ratio r will be 8·b(|T|+1)/rc bytes in size. 340

AWFM-index provides the option to either load the suffix array into memory with the 341

rest of the index (default) or leave the suffix array on disk and read directly from disk 342

the values necessary to resolve the final sequence positions after all SA range elements 343

have been backtraced to a sampled SA position. While disk access is significantly slower 344

than memory access, on-disk suffix array storage allows for denser sampling, even on 345

systems with limited memory. For example, in the context of the locate() function, 346

using an AWFM-index with a suffix array sampling ratio of 1 where the suffix array is 347

left on disk results in a single random disk read for each found substring, which may be 348

preferable to the large number of sequential cache misses necessary to backtrace to the 349

nearest sampled suffix array position for each found substring in a heavily downsampled 350

suffix array. This functionality aims to make high performance indexing accessible to a 351

wider range of users on personal computers or laptops with limited memory. 352

Results 353

We performed numerous tests to assess the performance of AWFM-index relative to the 354

FM-index implementation inside SeqAn 3.0.3, and to demonstrate the impact of 355

AWFM-index parameterization. All tests were run on a dedicated system with two Intel 356

Xeon Gold 6240 processors (18-core Cascade Lake, 2.60 GHz). 357

Speed Comparison Between AWFM-index and Seqan3 358

We created a simple benchmark dataset to evaluate the performance of AWFM-index 359

relative to the FM-index implementation in the Seqan3 library [11]. A 1 billion base 360

pair nucleotide sequence and a 200 million amino acid sequence were generated with the 361

easel sequence analysis library [20]. FM-index files were generated from these sequences 362

for both Seqan3 and AWFM-index using the native construction method for each tool. 363

The index build times were similar for the two libraries. A partial lookup table was 364

pre-computed for all length-12 (nucleotide) and length-5 (amino acid) k-mers. The 365

suffix array for the AWFM-index was compressed by a ratio of 8, and kept in memory. 366

A collection of 10 million queries of varying lengths were sampled from the original text, 367

and run times for locate() and count() functions were captured in Tables 2 and 3. 368

Effect of K-mer Lookup Table on Speed 369

To gauge the performance gains due to the partial k-mer lookup table, the previous 370

nucleotide benchmark was used to compare AWFM-index locate() performance with a 371

minimum size lookup table (k=1) with the default recommended size partial k-mer look 372

table (k=12). Figure 4 shows that count() performance is significantly boosted by 373

avoiding the first 12 steps of Alg 3. Meanwhile the impact on locate() is modest, as 374

large numbers of backtrace operations cause runtime to be dominated by occurrence 375

calculations. 376
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Table 2. Run time for nucleotide locate() and count() functions. Target
consists of 1 billion nucleotide-long simulated sequence. Query consists of 10 million
nucleotide query sequences sampled from the target, at each of several query lengths.

Nucleotide Count() Locate()
search Time (seconds) Time (seconds)

Query
Length

Hits/
Query

Seqan3 AWFM
Speed-

up
Seqan3 AWFM

Speed-
up

20 1.3 36.6 8.2 4.5 80.7 19.1 4.2
18 1.5 29.0 6.7 4.3 82.6 21.9 3.8
16 2.0 24.2 5.1 4.8 89.5 20.0 4.5
14 5.9 19.9 3.5 5.7 215.0 59.2 3.6
12 62.0 13.8 1.5 9.0 2040.4 472.8 4.3
11 240.9 11.7 6.2 1.9 7509.1 1774.7 4.2

Table 3. Run time for amino acid locate() and count() functions. Target
consists of 200 million character-long simulated amino acid sequence. Query consists of
10 million amino acid query sequences sampled from the target at each of several query
lengths.

Amino acid Count() Locate()
search Time (seconds) Time (seconds)

Query
Length

Hits/
Query

Seqan3 AWFM
Speed-

up
Seqan3 AWFM

Speed-
up

10 6.8 33.8 5.6 6.1 346.1 38.4 9.0
9 7.3 32.8 3.9 8.4 349.5 38.6 9.0
8 7.9 24.3 3.3 7.5 363.1 39.9 9.1
7 8.8 19.7 2.6 7.6 419.7 45.1 9.3
6 16.9 14.7 1.9 7.6 964.1 132.8 7.3
5 145.9 11.7 0.5 23.3 9078.5 1453.2 6.2

Suffix Array Sampling 377

We find that densely sampled in-memory suffix arrays are faster than densely sampled 378

on-disk suffix arrays by up to a factor of 10 (Table 4). On-disk suffix arrays only 379

outperform in-memory suffix arrays when the on-disk SA is uncompressed or densely 380

sampled and the in-memory SA is very sparsely sampled. On-disk suffix arrays should 381

only be considered in extremely memory-constrained systems, as even a SA with 382

sampling ratio of 64 (125MB/billion positions) outperform all on-disk suffix arrays. 383

Thread-Parallel Performance 384

We evaluated the speed gains achieved with multi-threading using the nucleotide 385

benchmark described above (1 billion simulated nucleotides), with 10 million length-14 386

query strings. As seen in Fig 5, performance scales effectively up to approximately 20 387

threads. 388

Prefetch Directives 389

The efficacy of data prefetch directives was analyzed by timing nucleotide locate() 390

functions with each prefetch hint, and with prefetching directives disabled. Prefetch 391

hint directives are used to tell the CPU which levels of cache to store the data in. All 392

prefetching hints were shown to improve overall performance by a small amount, but 393

non-temporal prefetching ( MM HINT NTA) was shown to be fastest over multiple 394
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Fig 4. Timings of 10 million nucleotide queries using a partial k-mer table
of length 1 (blue), and of length 12 (orange). The performance benefits of the
partial k-mer table are most obvious in the count() function, whereas the performance
benefit in the locate() function is most notable for longer queries that generate fewer
hits.

Table 4. Impact of suffix array compression. Suffix array memory requirements
for various suffix array compression ratios, and the time taken to locate() 10 million
length 14 nucleotide queries for in-memory and on-disk suffix arrays. While unsampled
on-disk suffix arrays can outperform sparsely sampled in-memory suffix arrays,
moderately sampled in-memory suffix arrays consume relatively little memory and
outperform unsampled suffix arrays left on-disk. On-disk suffix arrays should be
considered only for extremely memory-constrained systems with ample disk storage.

Suffix Array Locate() time (seconds)
Compression ratio in-memory size On-disk SA In-memory SA

1 8 GB 20.7 2.4
4 2 GB 22.1 3.3
8 1 GB 18.5 4.7

16 500 MB 21.1 6.5
32 250 MB 23.1 9.5
64 125 MB 20.9 15.3

128 75.5 MB 29.7 26.1
200 40 MB 42.4 40.7

trials at a performance gain of 1.4%. Since the performance difference is minimal, we 395

consider manual prefetching to not be a major contributor to AWFM-index’s overall 396

performance. 397
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Fig 5. AWFM-index nucleotide Locate() search times for 10 million length
14 queries, parallelized with varying numbers of threads, from
single-threaded search up to search using 32 threads. (a) Increase in speed for
the count() command, relative to single-threaded search. (b) Increase in speed for the
locate() command, relative to single-threaded search.

Discussion 398

We developed AWFM-index to be a lightweight, easy-to-incorporate library that 399

simplifies the inclusion of fast pattern matching into bioinformatics software. Our 400

implementation leverages a custom data layout and SIMD vectorized character 401

comparison instructions to produce highly efficient symbol counting for nucleotide and 402

amino acid alphabets. Combined with a pre-computed k-mer lookup table and 403

out-of-the-box parallelism, the result is a library that provides very fast locate() and 404

count() queries with very little development effort in the client. In addition to 405

single-command search for full query sequences, the AWFM-index API also exposes 406

stepwise iterative search functionality, so that clients can exert fine-grained control over 407

FM index search steps, for example in support of back-tracking for inexact search as 408

used in [1, 2]. 409

While we expect AWFM-index to be immediately applicable in its current form, we 410

note two potential improvements that will improve the future value of the library. The 411

first of these is support for bi-directional FM-index search [21]. The bi-directional 412

FM-index supports updates to the range of matching substrings by extending an 413

existing substring [SP..EP] range with either a suffix or prefix symbol, and achieves this 414

by supplementing the data structure with a single additional BWT over the reversed 415

sequence T. Adding bi-directional search functionality to the library will improve it’s 416
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applicability to some special-case pattern matching applications such as [22]. 417

The second improvement will extend the performance benefit of the k-mer lookup 418

table. As described above, the BWT range of a query with the same length as the 419

k-mer lookup table (e.g. nucleotide search for a length-12 query) is identified with a 420

single memory access. Conversely, search for a slightly shorter k-mer (e.g. length 11 421

nucleotide query) does not use the k-mer lookup table, and thus receives no search 422

shortcut (see Table 2, Fig 4). Future work on AWFM-index will aim to leverage the 423

k-mer lookup table for queries shorter than k. For instance, consider the length-5 424

nucleotide query “CGTAG”, and a lookup table storing all length-7 nucleotide suffixes. 425

Since all suffixes in the BWT are sorted, suffixes that begin with “CGTAG” will be 426

found between (i) the start of the range for the k-mer extended with lowest rank 427

non-sentinel symbol (here, “CGTAGAA”), inclusively, and (ii) the start of the range for 428

the k-mer lexicographically one higher, extended with the lowest rank non-sentinel 429

symbol (here, “CGTATAA”), exclusively. However, use of these longer strings as 430

proxies during the identification of the BWT range fails to account for the possibility of 431

a sentinel symbol, which may introduce a non-matching string into the proxy range. 432

Since a BWT is guaranteed to only contain a single sentinel symbol at the end of the 433

sequence, the last few symbols of the original text T can be kept along with the k-mer 434

lookup table, and used to remove this matches from a range list. A more thorny 435

problem arises when the short query k-mer ends with a symbol of the highest rank, 436

non-ambiguity symbol (nucleotide T or amino acid Y), as the lookup table does not 437

have a higher-rank symbol to use in selecting the top end of the range. One way to 438

resolve this is to store all ranges in the k-mer table, including those that contain 439

ambiguity symbols; however, including the ambiguity symbol X increases the table size 440

appreciably, e.g. a table of all length-12 nucleotide k-mers takes 16 · 412 = 268MB, while 441

the same table that also stores ambiguity characters takes 16 · 512 = 3.9GB. Other 442

possible solutions to this issue include using the partial k-mer lookup table for all 443

queries that don’t end with a nucleotide T or amino acid Y as described above, and 444

querying using the traditional backwards search for those queries that do. We plan to 445

update AWFM-index to support bi-directional indexes and using the k-mer lookup table 446

for small queries in a future library release. 447

Availability of Data and Materials 448

The AWFM-index library, along with developer documentation, can be found at 449

https://github.com/TravisWheelerLab/AvxWindowFmIndex. The scripts used to 450

generate tables and figures in this study are available at http: 451

//wheelerlab.org/publications/2021-AWFM-Anderson/Anderson_suppl.tar.gz. 452
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