
Anderson and Wheeler

SOFTWARE ARTICLE

An optimized FM-index library for nucleotide and
amino acid search
Tim Anderson and Travis J Wheeler*

*Correspondence:

travis.wheeler@umontana.edu

Department of Computer Science,

University of Montana, Missoula,

MT, USA

Full list of author information is

available at the end of the article

Abstract

Pattern matching is a key step in a variety of biological sequence analysis pipelines.
The FM-index is a compressed data structure for pattern matching, with search
run time that is independent of the length of the database text. We present
AvxWindowedFMindex (AWFM-index), an open-source, thread-parallel FM-index
library written in C that is optimized for indexing nucleotide and amino acid
sequences. AWFM-index is easy to incorporate into bioinformatics software and is
able to perform exact match count and locate queries ∼2-4x faster than SeqAn3’s
FM-index implementation for nucleotide search, and ∼2-6x faster for amino acid
search in a single-threaded context. This performance is due to (i) a new approach
to storing FM-index data in a strided bit-vector format that enables extremely
efficient computation of the FM-index occurrence function via AVX2 bitwise
instructions, and (ii) inclusion of a cache-efficient lookup table for partial k-mer
searches. AWFM-index also trivially parallelizes to multiple threads with good
scaling, and enables efficient on-disk storage of the memory-intensive suffix array.
The open-source library is available for download at
https://github.com/TravisWheelerLab/AvxWindowFmIndex.

Keywords: FM-index; string matching; SIMD vectorization

Background
String pattern matching is the problem of counting or locating occurrences of a

query text pattern P within a large database text T. While not limited to the

analysis of biological sequences, string pattern matching is integral to many tasks

in bioinformatics, including mapping sequence reads to a reference genome [1, 2],

taxonomic classification [3, 4], sequencing error correction [5], and seeding for

sequence alignments [6, 7, 8].

The need for high-throughput pattern matching in bioinformatics has motivated

myriad approaches including hashing, lookup tables, suffix arrays [9], and com-

pressed suffix array data structures such as the FM-index [10]. Use of the FM-index

across bioinformatic applications is due to its fast performance and low memory

footprint. Unfortunately, its adoption is likely limited by the lack of an optimized

and lightweight FM-index library; the only robust, currently maintained FM-index

implementation we are aware of is found in the SeqAn3 library [11]. Here, we present

a lightweight, open-source library called AvxWindowedFMindex (hereafter shortened

to AWFM-index), which enables optimized string pattern matching over nucleotide

or amino acid sequence datasets with significantly faster performance than SeqAn3’s

library.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

mailto:travis.wheeler@umontana.edu
https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 2 of 20

AWFM-index achieves significant performance gains through multiple algorithmic

and data structure changes over a traditional FM-index implementation. Rather

than storing the database text T in ascii symbols or as a range of integral values

representing the symbols in T, AWFM-index stores bit-compressed symbols strided

over 256-bit (AVX2) vectors that can be efficiently reduced with a low number

of bitwise SIMD instructions. A table of k-mer seed ranges makes it possible to

skip an early portion of the search computation for every query. Collections of

multiple k-mers are queried in a thread-parallel manner, with good parallel scaling

performance. AWFM-index is an open-source library written in C, with a simple

API to facilitate easy integration into bioinformatics tools.

Data Structure Background:

Suffix Array

The suffix array [9] is a classic data structure that supports efficient determination

of the count and locations of all occurrences of a query pattern P within a database

sequence T. Given a text T that ends with a special sentinel symbol ‘$’ (defined as

a symbol in the text’s alphabet Σ that otherwise does not occur in T, and is the

smallest symbol in Σ), a suffix array SA is a permutation of integers [0..|T|-1], such

that the suffix of T beginning at position SA[i] is lexicographically smaller than the

suffix denoted by SA[j] if and only if i < j.

Because a suffix array lexicographically orders the suffixes of T, all indices of a

given substring of T can be found in a contiguous range of elements in the suffix

array. This fact is the key to the suffix array’s fast search, as it enables counting

in O(|P| log|T|) time through binary search across the suffix array, and locating in

O(|P| log|T| + k) time for k instances of the pattern. Without any data compression

techniques, suffix arrays generally require 4 bytes of per symbol for sequences < 4GB

long, or 8 bytes per symbol for sequences ≥ 4GB.

Numerous efficient algorithms have been devised to quickly construct a suffix

array from text T. The optimal asymptotic performance for suffix array construction

is O(|T|) [12], but the O(|T| log |T|) complexity divsufsort [13] is commonly used

because of its excellent speed as an in-memory suffix sorter for genome-scale inputs;

AWFM-index utilizes libdivsufsort [14] for suffix array construction.

Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) is a reversible text transform that was

originally proposed for lossless data compression [15]. Given a text T and a associated

suffix array SA, a BWT is defined as the transformation:

BWT(i) =

T[SA[i]− 1] if SA[i] 6= 0

$ otherwise
(1)

In other words, each element in the BWT holds the symbol directly preceding the

suffix denoted at that element’s index in the suffix array. This is effectively the last

column in a table of sorted rotations of T (see Fig 1), and is easily computed from a

suffix array on T.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 3 of 20

Fig 1. Example of generating a Burrows-Wheeler Transform for a

given text. (A) All rotations of the input text ‘banana’, with appended sentinel

‘$’ symbol. The position of each rotation is given in the left column. (B) After

sorting the rotations, the left column retains the original position of each

rotation, and is thus the suffix array of the text. The final column of this sorted

rotation matrix is the BWT. Note: the actual rotation matrix need not be stored,

or even computed; it is represented here as a visual aid.

In order to reduce the memory footprint of a BWT, it is often losslessly com-

pressed in some way. Strided bit vectors are commonly used as compressed BWT

implementations, especially as a wavelet tree [16]. Wavelet trees are an attractive

implementation, as they allow for lossless data compression approaching the empiri-

cal entropy of the text. For our implementation, we opted instead to use a new (and

simpler) strided bit vector format that, along with precise symbol representations,

enables efficient vector-parallel computation of the occurrence function.

FM-index

While the BWT can be viewed as a data-product of a suffix array, it can also be used

as an alternative method for identifying pattern matches when used in conjunction

with a suffix array. Using both data structures, Ferragina and Manzini introduced

the FM-index [10]. An FM-index constructed from a given text T of alphabet Σ is

comprised of the following: a suffix array SA, a Burrows-Wheeler Transform B, a

milestone table described below, and a counts array C where C[s] is the count of all

symbols in T that are lexicographically less than or equal to symbol s. Using these

data structures, an FM-index can perform two key query functions called Count()

and Locate(). The Count() function returns the number of occurrences of the query

pattern P in O(|P |) time. The Locate() function returns the position in T of all k

instances of P, in expected time O(|P |+ k).

Exact pattern matching with FM-index

Search for a pattern P in text T is performed one character at a time, beginning

with the final character of the pattern and moving backwards. To begin, the search

process establishes a start-pointer and end-pointer [SP..EP] that correspond to the

range in SA pointing to all occurrences of the final letter of P in T (Alg 1). In each

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 4 of 20

successive step, the preceding character in P is prepended to the searched string P’,

and the range [SP..EP] is updated (via Alg 2) to correspond to all positions in the

text T that match the growing suffix, P’. This continues until each symbol in P has

been processed. SP and EP are updated each time a new prefix symbol is added to

the query using a function called occ() (short for occurrence). The occ(s, p) function

takes as parameters a symbol s ∈ Σ− {$} and a position p where 0 ≤ p < |T |, and

returns the number of occurrences of s in B before position p. To avoid unnecessary

counting over large ranges of B, a milestone table is used to store the count S[s, p’]

of symbol s preceding regularly sampled positions p’. When computing occ(s, p),

the closest milestone position p’ < p is identified, and the value S[s, p’] is added to

the count of symbol s between p’ and p. If the interval between milestones is r, the

milestones table will require (Σ · b|B|/rc · 8) bytes, assuming 64-bit integers are used

to store the symbol counts. After the conclusion of Alg 3, the range [SP..EP] of the

query is the range of positions in the suffix array that represent suffixes that begin

with pattern P (i.e., the locations of P). If at any point of the process SP > EP, P

is not a substring of T, and the backward search is halted.

Algorithm 1: Constructing the initial [SP..EP] range for pattern P.

createInitialRange(P, C):
last = P[|P | -1]

SP ← C[last]

EP ← C[last+ 1] -1

return [SP, EP]

Algorithm 2: FM-Index backward search extending a BWT range [SP, EP]

with prefix symbol s.

backwardsExtendQuery(C, s, SP, EP):
SP ← C[s] + occ(s, SP-1) + 1

EP ← C[s] + occ(s, EP)

return [SP, EP]

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 5 of 20

Algorithm 3: FM-index backwards search.

backwardSearch(P, C):
[SP, EP] ← createInitialRange(P, C)

k ← |P | − 2

while k ≥ 0 and SP ≤ EP:

s ← P[k]

[SP, EP] ← backwardsExtendQuery(C, s, SP, EP)

k ← k - 1

return [SP, EP]

Reducing space requirements by sampling the suffix array.

While locating query sequences using an FM-index has better complexity scaling

than using only a suffix array for the same task (O(|P|) for FM-index as opposed to

O(|P| log |T|) for suffix arrays), a naive FM-index requires more memory than suffix

array alone, since it includes the BWT and milestone counts. By down-sampling the

suffix array [17], the memory footprint of the suffix array inside an FM-index can

be dramatically reduced at the cost of a modest performance hit. A common SA

sampling strategy is called subscript sampling [18], in which a sampling ratio r is

chosen, and the sampled SA’ is generated from all SA values at positions p where

p ≡ 0 (mod r).

At the conclusion of the backwardSearch algorithm, each position in the [SP..EP]

range corresponds to a position in the full SA, which itself indicates the location

of an instance of P in T. Under SA down-sampling, only 1/r of the positions in

[SP..EP] are present in SA’ (i.e., only positions p ≡ 0 (mod r) for p in [SP..EP]). For

positions that are not sampled, the backtracePosition() function steps backwards

through positions in the original text until a position sampled in SA’ is reached,

then returns the correct position by adding the number of steps that were taken to

this SA’ value.

A position p in B references some position B[p] in T. The backtrace step seeks to

walk back in T until finding a position sampled by SA’; by construction, this is the

character found at B[p]. Thus, to take one step back in T from a current position p,

the symbol at p in B is found and the symbol is used in the occurrence function to

find the BWT position of the previous symbol in the original text T (Alg 4).

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 6 of 20

Algorithm 4: Backtracing a position p to the nearest previous position

sampled in SA’; this supports identification of the position in T corresponding

to position p in SA.

backtracePosition(B, SA’, p, s):
offset ← 0

while not p ≡ 0 (mod s):

c ← B[p]

p ← C[c] + occ(c, p)

offset ← offset + 1

return SA’[p / s] + offset

Implementation
This manuscript describes an optimized FM-index library that is lightweight, easy-

to-incorporate, and provides clients with FM-index functionality at both a high-level

(count or locate all instances of a query string) and low-level (step-wise control of

the FM-index backward-search process). Here, we present the various strategies that

contribute to the library’s fast text indexing performance. The key innovation is the

development of a representation of BWT sequence data with a strided bit-compressed

vector format; this is interleaved with milestone data in a manner similar to [19].

This format supports efficient computation of the most expensive aspect of FM-index

calculations: the occurrence function.

We begin by describing a specialized bit representation for symbols in both

nucleotide and amino acid alphabets, along with an efficient method testing symbol

equality with such a representation. We then show how this symbol representation can

be used to compactly store an FM index in memory blocks representing 256 symbols

at a time, and that these blocks can be efficiently processed using AVX2 vector

instructions. This is followed by description of other aspects of the implementation,

including a partial k-mer query lookup table that allows AWFM-index to skip the

first few [SP..EP] update steps for each query.

Bitwise Symbol Matching

Consider an alphabet Σ, with each symbol in the alphabet encoded using n bits.

In order to count the occurrences of a query symbol s in a range of symbols in the

BWT, each symbol in the range must be checked for equality to s. While nearly all

CPU architectures contain instructions to directly compare two numbers, we explore

solutions that exploit bitwise operations for comparing symbols. Given two symbols

s1, s2 ∈ Σ, one simple method for comparing s1 against s2 is to use a straightforward

combination of bitwise operations: (i) for all set bits in s1, the corresponding bits

in s2 are ANDed together; (ii) for all clear bits in s1, the corresponding bits in s2

are ORed together, and then bitwise NOTed. The boolean values that result from

these actions are then ANDed together. The resulting value is true iff s1 = s2, and

can be computed in n bitwise operations, or n-1 operations for the case where all

bits in s2 are set. By performing bitwise operations in this way, symbol equality

can be checked even in situations where a direct symbol comparison operation is

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 7 of 20

not possible (as is the case when performing vectorized computations, as described

shortly). For the purposes of this implementation we consider the following bitwise

operations on a and b: AND(a,b) = a&b, OR(a,b) = a|b, and ANDNOT(a,b) =

(!a)&b to each be single bitwise operations, as they are each a single CPU instruction

within our target instruction set.

In AWFM-index, two alphabets are supported, one for nucleotide data, one for

amino acid data. Each alphabet contains symbols for each of the possible residues

(4 for nucleotides, 20 for amino acids), a sentinel symbol, and an ambiguity symbol,

denoted here as X, defined to be lexicographically greater than all other symbols in

Σ. The resulting alphabets are length 6 and 22 respectively, and symbols in each

alphabet are represented with dlog2(6)e=3 and dlog2(22)e=5 bits. Note that each

of these alphabets have fewer symbols than the number of possible values for each

of their corresponding bit lengths. A naive approach to assigning encodings to the

|Σ| symbols in each alphabet would be to assign them to the integers [0 .. |Σ| − 1].

Instead, AWFM-index assigns alphabet symbol encodings using a strategy that aims

to reduce the number of bitwise operations needed to compare symbols for equality.

These encodings are presented in Table 1, and explained in the next two sections.

Table 1. Bit encodings for all nucleotide and amino acid symbols, and the

number of bitwise operations required to check for equality when used as a query

symbol.

Nucleotide
IUPAC Code

Bit Encoding Symbol Group
Bitwise Ops
for Comparison

A 110
G 101 1 1
C 011
T 001
X 010 2 2
$ 100

Amino Acid
IUPAC Code

Bit Encoding Symbol Group
Bitwise Ops
for Comparison

A 01100
D 00011
E 00110
G 11010
I 11001
K 11001

1 2
L 11100
P 01001
R 10011
S 01010
T 00101
V 10110
C 10111
F 11110
H 11011
M 11101

2 3
N 01000
Q 00100
W 00001
Y 00010
X 11111

3 3$ 00000

Nucleotide alphabet symbol encodings

Nucleotide symbols are represented by two groups of unique 3-bit encodings. Group-1

encodings have 2 of the 3 bits set, while group-2 encodings have only a single set bit.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 8 of 20

With a group-1 nucleotide query symbol, equality to another symbol is determined

by ANDing the 2 bits corresponding to the set bits of the query. This produces a

true boolean result if the symbol matches, and precludes a true result for any other

symbol: (i) any other group 1 encoding would have a different pair of set bits, so

that one of the compared bits would not be set, yielding a false result from the

AND operation; (ii) any group-2 symbol contains only one set bit, so again the AND

operation would return false, and (iii) since no encodings have more than 2 bits set,

we can be sure that no other symbol could match to our query. Group-2 encodings

can be checked for equality in 2 bitwise operations by taking the ANDNOT of the

set bit and one of the clear bits, then ANDNOTing the result with the last clear bit.

This strictly forces each of the 3 bits to match the query symbol.

Amino acid alphabet symbol encodings

Amino acid symbol encodings are split between 3 groups of unique 5-bit encodings.

Group-1 encodings are represented by all 12 possible encodings in which exactly 2

of the lower 4 bits (bits [0..3]) differ from the most significant bit (bit 4). Group-2

encodings are represented by all 8 possible encodings in which exactly 1 of the bits in

[0..3] differs from bit 4. Group-3 encodings are represented by all 5 bits being either

set or cleared, and denote the ambiguity symbol and the sentinel respectively. For a

group-1 amino acid query symbol, equality can be tested in 2 bitwise operations,

with the required operations depending on the state of bit 4 in the query symbol. If a

query symbol is in group-1 and its bit 4 is set, one of the two bits corresponding to the

query’s clear bits is ANDNOTed with bit 4, then the other clear bit is ANDNOTed

with the result. If bit 4 is clear for a group-1 symbol, the two bits corresponding to

the query set bits are ANDed together, and the result is ANDNOTed with bit 4.

Both of these options return true if and only if bit 4 matches the query, and the 2

bits that are supposed to differ from bit 4 in fact do so. Further, if the result is true,

it shows that the symbol cannot be a group-2 encoding, since more than 1 bit differs

from bit 4. In the same way, it shows that the symbol cannot encode for group-3. If

the result is true, therefore, it cannot encode for any symbols other than our query.

For a group-2 amino acid query symbol, equality can be tested in 3 bitwise

operations. If bit 4 is set, the bit corresponding to the query’s single clear bit is

ANDNOTed with one of the 3 set bits in [0..3]. The other 2 set bits in [0..3] are

ANDed together, and the result is ANDed with the result of the first operation. If

bit 4 is clear, one of the 3 clear bits in [0..3] is ANDNOTed with the single set bit.

The remaining 2 clear bits are ORed together, and the result is ANDNOTed with

the result of the first operation. Note that we did not check bit 4 in any way; if

the result is true we can infer the state of bit 4 because no encodings exist with

3 bits that differ from bit 4. Therefore the state of bit 4 must be the opposite of

the bit with the unique state. We also know that the symbol cannot encode for a

group-1 or group-3 symbol, because we have shown that exactly 1 bit differs from

bit 4. Therefore, the result is true if and only if the symbol matches the query.

Group-3 comparisons are straightforward. The ambiguity symbol is encoded with 5

set bits, and can be compared by ANDing together bits 0 and 1, ANDing bits 2 and

3, and ANDing the two results. Again, bit 4 does not need to be checked because no

symbols are represented by all bits in [0..3] differing from bit 4. Comparison against

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 9 of 20

the sentinel symbol is similar, however this is never necessary in practice since query

strings cannot contain the sentinel.

As group-1 encodings require 1 less instruction to reduce, this group is used

to encode for the 12 most frequent amino acids in the UniProtKB/Swiss-Prot

database [20] and group-2 encodings represent the 8 least frequent amino acids. The

reason for this choice is that the more-common amino acids will likely be queried

more often, and therefore should be represented by encodings that require the fewest

instructions.

Strided Bit Vector Data Format

The previous section described a bitwise method for comparing a single symbol

encoding against a query symbol. AWFM-index employs this bitwise comparison

strategy in the context of Single Instruction, Multiple Data (SIMD) parallelization.

Specifically, AWFM-index uses AVX2 instructions to perform the bitwise operations

on vectors of 256 symbols in parallel, effectively comparing up to 256 symbols from

the BWT to a single query symbol in the same number of bitwise instructions

as comparing a single symbol. The AVX2 instruction set is an extension of the

x86 instruction set that performs operations on vectors of 256 bits with a single

instruction. AWFM-index uses 3 AVX2 intrinsic instructions (mm256 and si256,

mm256 or si256, and mm256 andnot si256) to implement the bitwise operations

for comparing symbol encodings, as described earlier. Through precise, interleaved

layout of the BWT and milestone data, AWFM-index finds all matches to a query

symbol in ≤4 instructions, and computes the occurrence function with a few extra

steps.

In the AWFM-index, the BWT sequence is broken up into windows of 256 symbols;

each window represents a range [i..j] (with j=i+255), and is comprised of 3 sections:

(i) multiple contiguous 256-bit AVX2 vectors that store the 256 symbols in a strided

bit-vector format (see Fig 2, and text below), (ii) an array of 8-byte milestone

occurrence counts containing the count of symbol s in B[0..i-1], for each symbol in

the alphabet except the sentinel, and (iii) a padding section to ensure that all strided

bit vectors align to 32-byte boundaries necessary for AVX2 SIMD instructions. By

interleaving the milestone counts with the BWT data, both the milestone count and

the symbol bit vectors can be brought into cache in the same memory request. The

milestone section of the window contains five (5) 8-byte values for nucleotide windows,

or twenty-one (21) 8-byte values for amino acid windows. Since the milestone sections

are aligned to a 32 byte (256 bit) memory boundary, a 24 byte padding (for both

nucleotide and amino acid alphabets) ensures that the strided bit-vector section also

aligns to a 32 byte boundary.

As a BWT window denotes a contiguous range of 256 symbols from the BWT,

a straightforward approach to storing symbols would be to represent each symbol

with one byte as raw ASCII character values. For small alphabets, modern FM-

index implementations prefer to use some form of bit-compressed representation,

such as representing nucleotide symbols with 2 bits [1] (though this approach does

not support ambiguity symbols, and special handling is required for the sentinel

symbol). AWFM-index adjusts this bit-compression strategy to better leverage SIMD

parallelization in computing the occurrence function. The symbols in the BWT are

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 10 of 20

Fig 2. The 5 AVX2 vectors that comprise a nucleotide BWT window.

The milestone counts for A, C, G, and T are stored in vector 0. Vector 1 contains

the milestone for the ambiguity symbol ‘X’ and a 24 byte padding section to

align the bit vectors to the 32 byte alignment necessary for AVX2 instructions.

Vectors 2-4 contain the bits representing the symbols in the window.

strided over the window’s bit-vectors, with one vector for bit-0 of all 256 symbols,

another vector for bit-1, and so on (generally: bit n of bit-vector m of a given window

represents the m-th bit of the n-th symbol in the window). Including the milestone

values and the padding, nucleotide data takes up 5 AVX2 vectors for each 256 symbol

window, and thus requires 5 bits per symbol in the original text. Similarly, amino

acid windows take up 11 AVX2 vectors, and so require 11 bits per symbol.

SIMD Occurrence Calculation

To compute the occurrence function occ(s, p) for symbol s and position p, the

milestone occurrence count is taken from the appropriate section in the BWT

window. Then, positions in the BWT window matching symbol s are identified

and captured into a 256-bit vector such that bit n is set if and only if the n-th

position in the window represents symbol s, here called an occurrence vector. This

occurrence vector is generated by using AVX2 SIMD instructions to implement a

bitwise comparison across all 256 symbols in the window, with bitwise instructions

described in the previous section (see Fig 3). Once the occurrence vector has been

generated, a bitmask is applied to clear all bits after position p; this ensures that

no positions after p are counted in the final occurrence count. The set bits in each

of the 4 quad-words in the occurrence vector are then counted with popcnt64()

intrinsic instructions, and the results are summed with the corresponding milestone

count to compute the final occurrence count. Multiple strategies of generating a

population count of the occurrence vector were tested, and summing the results of the

4 popcnt64() instructions was found to outperform other SIMD vector popcounting

techniques (e.g. [21]).

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 11 of 20

Fig 3. Examples of creating an occurrence bit vector from the

strided BWT bit vectors. (a) An example of the bit vectors in a BWT

window. Each bit vector is 256 bits wide representing 256 symbols, but only the

first 8 positions are shown for brevity. By performing bitwise operations on these

bit vectors an occurrence vector can be generated where a set bit indicates the

presence of the queried symbol at the bit’s position in the window. (b) Creating

an occurrence bit vector for Group 1 amino acid ‘A’ in 2 SIMD operations. (c)

Creating an occurrence bit vector for Group 2 amino acid ‘H’ in 3 SIMD

operations.

Manual Prefetching

While the computation to update the BWT range is minimal, the unpredictable

nature of each subsequent position p given to the occurrence function creates a

performance bottleneck in reading data from memory. Given a sufficiently large

BWT, every occurrence call will result in a memory read request for cache lines

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 12 of 20

that will almost certainly not be in cache, except for pathological case queries

like ‘AAAAAAA’, or if SP and EP land in the same BWT window. To ease the

performance hit caused by this random access, AWFM-index employs manual data

prefetching using the mm prefetch() SSE instruction as soon as the location of

the memory address for the next occurrence function is known. The updates to

SP and EP are also staggered such that after SP is updated, a prefetch request

is generated for the following SP, and the update to EP begins while the new SP

memory prefetch request is being serviced.

Accelerated Search with a K-mer Lookup Table

Traditionally, searching an FM-index involves updating the [SP,EP] pair for every

symbol in the given query. AWFM-index uses a pre-computed lookup table with a

modest memory footprint to skip a sizable portion these [SP,EP] updates. When the

AWFM-index is built, a parameter k is selected, and a table is allocated to store the

[SP,EP] pair for every length-k string over alphabet Σ (except the ambiguity and

sentinel symbols, which are excluded because neither are found in query strings).

This table of k-mer ranges consumes 16 · (|Σ| − 2)k bytes in memory, and memoizing

prefix ranges enables O((|Σ|− 2)k) construction time. If a query pattern P is at least

length k, the [SP,EP] range for the length-k suffix of P is found in the k-mer lookup

table, effectively skipping the first k updates to the [SP,EP] range. Then, the query

proceeds as normal, querying for symbols until the entire query has been completed,

or the range is invalid. If the query string length is less than k, the range is resolved

without using the k-mer table. The recommended values of k are 12 for nucleotide

indices (268MB table size) and 5 for amino indices (51MB table size) as they strike

a balance between memory footprint and performance benefit. Other values may be

selected by the library client depending on expected factors such as expected query

lengths and available system memory.

API and Thread-Parallel Search

The core API for AWFM-index includes the locate() and count() functions, which

each accept as arguments (i) the AWFM-index data structure, (ii) a collection of query

sequences, and (iii) a number of threads used to parallelize search. Parallelization

is achieved using simple OpenMP 1.0 pragmas, as each query in the collection

is data-independent with respect to the other queries in the collection. Given a

collection Q of query sequences, the collection is implicitly divided into batches of

4 queries, resulting in a total of d|Q| / 4e batches. The user-specified number of

threads are then used to parallelize the search across the collection of batches. When

a thread begins to compute the results for a batch of queries, it begins by finding

[SP,EP] range in the k-mer lookup table that represents the final k symbol suffix

for each of the 4 queries. Then, each query in the batch is extended until either the

SA range of the query has been fully resolved, or has failed due to SP > EP. If the

parallel locate() function is used, the location of each instance of each query string

is found via the SA backtracking method described earlier. We chose 4 for the batch

size so that each thread can work on a group of contiguous queries and to hide the

cost of thread management, but not such a large batch that cache eviction becomes

a performance concern. We tried multiple values for the batch size, but since most

small batch sizes performed similarly, 4 was an essentially arbitrary choice.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 13 of 20

The AWFM-index API also includes non-parallelized functions for initializing a

SA range, extending queries with additional prefix symbols, backtracing to the most

recently sampled SA position, and looking up the original position using the suffix

array. These functions allow a client to implement custom FM-index applications

based on the internal components of AWFM-index, for example for inexact pattern

matching.

Suffix Array Sampling, In-Memory or On-Disk

The suffix array component of the FM-index is often down-sampled to reduce

memory requirements. Suffix arrays that are sparsely sampled have a smaller memory

footprint, but require more backtrace steps to deduce the actual sequence position

during the locate() function. The AWFM-index library currently supports suffix

array sampling ratios r that are 1 ≤ r < 256 and utilizes a subscript sampling

strategy such that every rth entry is sampled. AWFM-index provides the option to

either load the suffix array into memory with the rest of the index (default) or leave

the suffix array on disk and read directly from disk the values necessary to resolve

the final sequence positions after all SA range elements have been backtraced to a

sampled SA position. While disk access is significantly slower than memory access,

on-disk suffix array storage allows for denser sampling, even on systems with limited

memory. For example, in the context of the locate() function, using an AWFM-index

with a suffix array sampling ratio of 1 where the suffix array is left on disk results

in a single random disk read for each found substring, which may be preferable to

the large number of sequential cache misses necessary to backtrace to the nearest

sampled suffix array position for each found substring in a heavily downsampled

suffix array. This functionality aims to make high performance indexing accessible

to a wider range of users on personal computers or laptops with limited memory.

Suffix Array Minimum Bit-Width Compression

To reduce memory requirements, AWFM-index stores SA values as variable bit-width

integers similar to the int vector class of SDSL[22], rather than as simple 64-bit

integers. Given a suffix array S of length n, all values within S are non-negative and

less than n. Therefore, each value can be represented with dlog2(n− 1)e bits. Each

sample in the suffix array is compressed to this many bits, and repacked into a byte

array. An individual value can then be extracted in constant time back into a 64-bit

integer. Storing the suffix array in this minimum bit-width integer array results in a

reduction in suffix array space requirement of dlog2(|T|+ 1)e·b(|T|+1)/rc bits for

compression ratio r.

Results
We performed numerous tests to assess the performance of AWFM-index relative

to the FM-index implementation inside SeqAn 3.0.3 [11], and to demonstrate the

impact of AWFM-index parameterization. Unless stated otherwise, All tests were

run on a system with a 32-core Intel Xeon E5-2630 v3 @ 2.40GHz, and 64 Gb RAM.

Speed Comparison Between AWFM-index and SeqAn3

A 1 billion base pair nucleotide sequence and a 200 million amino acid sequence

were generated with the easel sequence analysis library [23]. FM-index files were

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 14 of 20

generated from these sequences for both SeqAn3 and AWFM-index using the native

construction method for each tool. The index build times were similar for the two

libraries. A partial lookup table was pre-computed for all length-12 (nucleotide) and

length-5 (amino acid) k-mers. A collection of 1 million queries of varying lengths

were sampled from the original text, and run times for locate() and count() functions

were captured in Tables 2 and 3. Count() calls were typically 2-6x faster with

AWFM-index, while Locate() calls were typically 2-4x faster.

Table 2. Run time for nucleotide locate() and count() function. Target

consists of 1 billion nucleotide-long simulated sequence with a suffix array sampling

ratio of 4. Query consists of 1 million nucleotide query sequences sampled from the

target at each of several query lengths.
Nucleotide Count() Locate()

search Time (seconds) Time (seconds)
Query
Length

Hits/
Query

SeqAn3 AWFM Speed-up SeqAn3 AWFM Speed-up

20 1.00 4.51 1.15 3.12 6.14 2.37 2.60
18 1.01 3.96 .97 4.07 6.93 1.72 4.04
16 1.23 3.50 1.06 3.29 5.21 2.57 2.02
14 4.73 2.90 .76 3.80 8.61 3.67 2.34
12 60.60 2.85 .18 15.85 42.46 29.65 1.43
11 239.40 1.87 .99 1.90 147.54 106.51 1.39

Table 3. Run time for amino acid locate() and count() functions. Target

consists of 200 million character-long simulated amino acid sequence with a suffix

array sampling ratio of 4. Query consists of 1 million amino acid query sequences

sampled from the target at each of several query lengths.
Amino acid Count() Locate()

search Time (seconds) Time (seconds)
Query
Length

Hits/
Query

SeqAn3 AWFM Speed-up SeqAn3 AWFM Speed-up

10 1.00 4.58 .81 5.66 6.40 1.63 3.92
9 1.00 3.91 .83 4.71 5.97 1.38 4.33
8 1.02 3.39 .60 5.69 5.29 1.46 3.61
7 1.47 2.89 .43 6.77 5.41 1.61 3.36
6 9.00 2.38 .38 6.27 15.35 5.52 2.78
5 137.70 1.81 .08 21.95 167.56 73.42 2.28

Effect of K-mer Lookup Table on Speed

To gauge the performance gains due to the partial k-mer lookup table, the previous

nucleotide benchmark was used to compare AWFM-index locate() performance with

a minimum size lookup table (k=1) versus the default recommended size partial

k-mer look table (k=12). Fig 4 shows that count() performance is significantly

boosted by avoiding the first 12 steps of Alg 3. Meanwhile the impact on locate() is

modest, as large numbers of backtrace operations cause runtime to be dominated by

occurrence calculations during backtrace.

Memory Footprint and Suffix Array Sampling

To determine the performance characteristics of working with the suffix array on-

disk, benchmarks were performed with SA kept either in-memory, on a hard-disk

drive (HDD), or on a solid-state drive (SSD). These benchmarks were performed

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 15 of 20

Fig 4. Timings of 1 million nucleotide queries using a partial k-mer

table of length 1 (blue), and of length 12 (orange). A suffix array

compression ratio of 4 was used for each index. The performance benefits of the

partial k-mer table are most obvious in the count() function, whereas the

performance benefit in the locate() function is most notable for longer queries

that generate fewer hits (i.e. when the number of backtrace steps is relatively

small).

on a system with a Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz processor. Not

surprisingly, the performance loss by storing the suffix array on-disk varies depending

on whether disk storage uses hard disk drives or solid state drives. When stored on

solid state drives, fully-sampled on-disk suffix arrays outperform in-memory suffix

arrays at suffix array compression ratios of approximately 4, while generating a

smaller memory footprint (Table 4). At higher compression ratios, the difference in

performance between in-memory and on-SSD indices becomes negligible, since the

time spent backtracing largely exceeds suffix array lookups. When an on-disk SA is

stored on a HDD, the fully-sampled SA performs about as well as an in-memory SA

with a compression ratio of 16; similarly to the SSD tests, the difference between on-

disk and in-memory shrinks as the suffix array compression ratio increases. Since no

memory is used for an on-disk SA, this provides an efficient mechanism for decreasing

memory load while retaining speed, particularly if SSD storage is available.

Tables 5 and 6 compare the performance and memory usage of AWFM (in-

memory) and SeqAn3 indices over a range of SA compression ratios. The SeqAn3

BWT implementation uses wavelet trees to store the BWT, resulting in a reduced

memory footprint compared to AWFM. At more densely-sampled suffix arrays,

the memory footprint differences are negligible compared to the performance gains

over SeqAn3. With sparsely sampled suffix arrays, the BWT makes up a large

fraction of the stored data structure, so that AWFM’s speed gains are offset by

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 16 of 20

Table 4. Impact of suffix array compression. Suffix array memory

requirements for various suffix array compression ratios (target length = 1 billion),

and the time taken to locate() 1 million length-14 nucleotide queries for in-memory

and on-disk suffix arrays. The average number of hits per query was 4.73.
Suffix Array Locate() time (seconds)

Compression ratio Suffix Array size In-memory SA SSD SA HDD SA
1 3750 MB 0.67 2.18 8.71
2 1875 MB 1.28 3.44 6.18
4 938 MB 2.41 4.75 6.64
8 469 MB 4.72 6.98 8.40

16 234 MB 9.42 12.34 11.98
32 117 MB 19.00 20.66 21.10
64 59 MB 37.07 39.42 39.58

128 29 MB 75.25 77.14 79.25

an increased memory requirement. Though SeqAn’s memory usage is lower than

AWFM’s in-memory variant for any fixed SA compression ratio, AWFM is generally

faster for any given memory footprint. Leaving the SA on SSD disk will improve

this speed-vs-memory trade-off in AWFM’s favor.

Table 5. Comparing AWFM and SeqAn3 Locate() performance for

nucleotide search, across various suffix array compression ratios. The

target sequence is a 1 billion-character long nucleotide sequence generated by the

easel tool ‘esl-shuffle’. Query consists of 1 million nucleotide queries of length 14

taken from the target sequence. Default k-mer lookup table size of 12 was used.

Time and memory were captured with /usr/bin/time.
Nucleotide Locate() - 1Gb

Time (seconds) Memory (Mb)
Compression

Ratio
SeqAn3 AWFM Speed-up SeqAn3 AWFM

1 4.30 1.07 4.03 4007 4535
2 5.20 4.17 1.24 2176 2704
4 8.62 4.60 1.87 1261 1789
8 13.78 6.26 2.20 803 1331

16 24.48 11.90 2.06 574 1102

Table 6. Comparing AWFM and SeqAn3 Locate() performance for

nucleotide search, across various suffix array compression ratios. The

target sequence is a 200 million-character long amino acid sequence generated by

the easel tool ‘esl-shuffle’. Query consists of 1 million amino acid queries of length 6

taken from the target sequence. Default k-mer lookup table size of 5 was used.

Time and memory were captured with /usr/bin/time.
Amino Acid Locate() - 200Mb

Time (seconds) Memory (Mb)
Compression

Ratio
SeqAn3 AWFM Speed-up SeqAn3 AWFM

1 3.30 0.83 3.96 822 1003
2 7.05 2.60 2.71 481 661
4 15.37 6.21 2.47 310 490
8 34.33 12.95 2.65 224 405

16 79.01 27.49 2.87 182 362

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 17 of 20

Thread-Parallel Performance

We evaluated the speed gains achieved with multi-threading using the nucleotide

benchmark described above (1 billion simulated nucleotides), with 1 million length-

14 query strings. As seen in Fig 5, AWFM-index presents ∼35-50% strong scaling

efficiency up to 20 threads, with diminished returns thereafter.

Fig 5. Parallel scaling. AWFM-index nucleotide Locate() search times for 1

million length 14 queries, parallelized with varying numbers of threads, from

single-threaded search up to search using 42 threads against a target of 1 billion

nucleotide-long target with a suffix array compression ratio of 4. (a) Increase in

speed for the count() command, relative to single-threaded search. (b) Increase

in speed for the locate() command, relative to single-threaded search.

Prefetch Directives

The efficacy of data prefetch directives was analyzed by timing nucleotide locate()

functions with each prefetch hint, and with prefetching directives disabled. Prefetch

hint directives are used to tell the CPU which levels of cache to store the data in. All

prefetching hints were shown to improve overall performance by a small amount, but

non-temporal prefetching (MM HINT NTA) was shown to be fastest over multiple

trials at a performance gain of 1.4%. Since the performance difference is minimal,

we consider manual prefetching to not be a major contributor to AWFM-index’s

overall performance.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 18 of 20

Discussion
We developed AWFM-index to be a lightweight, performant, easy-to-use library

that simplifies the inclusion of fast pattern matching into bioinformatics software.

Our implementation leverages a custom data layout and SIMD vectorized character

comparison instructions to produce highly efficient symbol counting for nucleotide

and amino acid alphabets. Combined with a pre-computed k-mer lookup table and

out-of-the-box parallelism, the result is a library that provides very fast locate()

and count() queries with very little development effort in the client. In addition to

single-command search for full query sequences, the AWFM-index API also exposes

stepwise iterative search functionality, so that clients can exert fine-grained control

over FM index search steps, for example in support of back-tracking for inexact

search as used in [2, 1].

AWFM-index offers good runtime performance relative to the mature SeqAn3

implementation, at the cost of an elevated memory footprint. Considering the now-

ubiquitous availability of large memory systems, we expect that the runtime-memory

tradeoff of the AWFM-index will be attractive to many developers. Even in low-

memory systems, AWFM-index is still able to perform well using fully-sampled suffix

arrays, particularly if the index resides on a low-latency solid-state drive.

While we expect AWFM-index to be immediately applicable in its current form,

we note two potential improvements that will improve the future value of the library.

The first of these is support for bi-directional FM-index search [24]. The bi-directional

FM-index supports updates to the range of matching substrings by extending an

existing substring [SP..EP] range with either a suffix or prefix symbol, and achieves

this by supplementing the data structure with a single additional BWT over the

reversed sequence T. Adding bi-directional search functionality to the library will

improve it’s applicability to some special-case pattern matching applications such

as [25].

The second improvement will extend the performance benefit of the k-mer lookup

table. As described above, the BWT range of a query with the same length as the

k-mer lookup table (e.g. nucleotide search for a length-12 query) is identified with a

single memory access. Conversely, search for a slightly shorter k-mer (e.g. length 11

nucleotide query) does not use the k-mer lookup table, and thus receives no search

shortcut (see Table 2, Fig 4). Future work on AWFM-index will enable application of

the k-mer lookup table for queries shorter than k. For instance, consider the length-5

nucleotide query “CGTAG”, and a lookup table storing all length-7 nucleotide

suffixes. Since all suffixes in the BWT are sorted, suffixes that begin with “CGTAG”

will be found between (i) the start of the range for the k-mer extended with lowest

rank non-sentinel symbol (here, “CGTAGAA”), inclusively, and (ii) the start of the

range for the k-mer lexicographically one higher, extended with the lowest rank

non-sentinel symbol (here, “CGTATAA”), exclusively. However, use of these longer

strings as proxies during the identification of the BWT range fails to account for the

possibility of a sentinel symbol, which may introduce a non-matching string into the

proxy range. Since a BWT is guaranteed to only contain a single sentinel symbol

at the end of the sequence, the last few symbols of the original text T can be kept

along with the k-mer lookup table, and used to remove this matches from a range

list. A more thorny problem arises when the short query k-mer ends with a symbol

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 19 of 20

of the highest rank, non-ambiguity symbol (nucleotide T or amino acid Y), as the

lookup table does not have a higher-rank symbol to use in selecting the top end of

the range. One way to resolve this is to store all ranges in the k-mer table, including

those that contain ambiguity symbols; however, including the ambiguity symbol X

increases the table size appreciably, e.g. a table of all length-12 nucleotide k-mers

takes 16 · 412 = 268MB, while the same table that also stores ambiguity characters

takes 16 ·512 = 3.9GB. Other possible solutions to this issue include using the partial

k-mer lookup table for all queries that don’t end with a nucleotide T or amino

acid Y as described above, and querying using the traditional backwards search

for those queries that do. Perhaps the simplest solution to this problem involves

keeping multiple k-mer lookup tables of varying k-mer lengths. Since the memory

footprint of the table grows exponentially with the length of the k-mer, a table

made from shorter k-mers will use much less memory: while an index containing a

length-12 k-mer table takes 268MB, adding a length-10 and a length-6 table would

cumulatively add only (16 · 410) + (16 · 46) = 16.8MB of memory, but would improve

runtime for any queries length 6 to 11. We plan to update AWFM-index to support

bi-directional indexes and using k-mer lookup tables for small queries in a future

library release.

Availability and requirements
Project name: AWFM-index library

Project home page: https://github.com/TravisWheelerLab/AvxWindowFmIndex

Operating system(s): Unix/Linux

Programming language: C

Other requirements: None

License: BSD-3-Clause

Any restrictions to use by non-academics: None

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and materials

Data used to produce figures for this manuscript can be found at

http://wheelerlab.org/publications/2021-AWFM-Anderson/Anderson_suppl.tar.gz.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by NIH grant P20 GM103546 (NIGMS) and DOE grant DE-SC0021216.

Author’s contributions

TA devised all algorithms and code optimizations, implemented all code, performed all benchmarking experiments,

and led development of the manuscript. TJW introduced the problem to TA, provided guidance on use cases and

experimental design, and assisted with writing the manuscript.

Acknowledgements

We thank Robert Hubley for beta testing AWFM-index and suggesting improvements to the library’s build process,

as well as George Lesica for his help in improving the library API and implementing Cmake support. We also

gratefully acknowledge the computational resources provided by the University of Montana’s Griz Shared Computing

Cluster (GSCC), and thank the reviewers for helpful suggestions that have improved the quality of this manuscript.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://github.com/TravisWheelerLab/AvxWindowFmIndex
http://wheelerlab.org/publications/2021-AWFM-Anderson/Anderson_suppl.tar.gz
https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

Anderson and Wheeler Page 20 of 20

References
1. Li, H., Durbin, R.: Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics

25(14), 1754–1760 (2009)

2. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient alignment of short dna

sequences to the human genome. Genome Biology 10(3), 25 (2009)

3. Kim, D., Song, L., Breitwieser, F.P., Salzberg, S.L.: Centrifuge: rapid and sensitive classification of

metagenomic sequences. Genome Research 26(12), 1721–1729 (2016)

4. Menzel, P., Ng, K.L., Krogh, A.: Fast and sensitive taxonomic classification for metagenomics with kaiju.

Nature Communications 7(1), 1–9 (2016)

5. Huang, Y.-T., Huang, Y.-W.: An efficient error correction algorithm using fm-index. BMC Bioinformatics 18(1),

524 (2017)

6. Buchfink, B., Xie, C., Huson, D.H.: Fast and sensitive protein alignment using diamond. Nature Methods 12(1),

59–60 (2015)

7. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. Journal of

Molecular Biology 215(3), 403–410 (1990)

8. Steinegger, M., Söding, J.: Mmseqs2 enables sensitive protein sequence searching for the analysis of massive

data sets. Nature Biotechnology 35(11), 1026–1028 (2017)

9. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. SIAM Journal on Computing

22(5), 935–948 (1993)

10. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In: Proceedings 41st Annual

Symposium on Foundations of Computer Science, pp. 390–398 (2000). IEEE

11. Reinert, K., Dadi, T.H., Ehrhardt, M., Hauswedell, H., Mehringer, S., Rahn, R., Kim, J., Pockrandt, C.,

Winkler, J., Siragusa, E., et al.: The seqan c++ template library for efficient sequence analysis: A resource for

programmers. Journal of Biotechnology 261, 157–168 (2017)

12. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: Annual Symposium on

Combinatorial Pattern Matching, pp. 200–210 (2003). Springer

13. Fischer, J., Kurpicz, F.: Dismantling divsufsort. arXiv preprint arXiv:1710.01896 (2017)

14. Mori, Y.: libdivsufsort. https://github.com/y-256/libdivsufsort

15. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Technical report 124, Digital

Equipment Corporation (1994)

16. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. Proceedings of the Annual

ACM-SIAM Symposium on Discrete Algorithms (2002). doi:10.1145/644108.644250

17. Ferragina, P., González, R., Navarro, G., Venturini, R.: Compressed text indexes: From theory to practice.

Journal of Experimental Algorithmics 13, 1–12 (2009)

18. Cheng, H., Wu, M., Xu, Y.: Fmtree: A fast locating algorithm of fm-indexes for genomic data. Bioinformatics

34(3), 416–424 (2018)

19. Vigna, S.: Broadword implementation of rank/select queries. In the Proceedings of the 7th International

Workshop on Experimental Algorithms, 154–168 (2008). doi:10.1007/978-3-540-68552-4 12

20. Consortium, U., et al.: Uniprot: the universal protein knowledgebase in 2021. Nucleic Acids Research, 1100

21. Mu la, W., Kurz, N., Lemire, D.: Faster population counts using avx2 instructions. The Computer Journal 61(1),

111–120 (2017)

22. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and play with succinct data structures.

In: 13th International Symposium on Experimental Algorithms, (SEA 2014), pp. 326–337 (2014)

23. Eddy, S.: Easel - a C library for biological sequence analysis. http://bioeasel.org

24. Lam, T.W., Li, R., Tam, A., Wong, S., Wu, E., Yiu, S.-M.: High throughput short read alignment via

bi-directional bwt. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 31–36 (2009).

IEEE

25. Simpson, J.T., Durbin, R.: Efficient construction of an assembly string graph using the fm-index.

Bioinformatics 26(12), 367–373 (2010)

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.01.12.426474doi: bioRxiv preprint

https://github.com/y-256/libdivsufsort
http://dx.doi.org/10.1145/644108.644250
http://dx.doi.org/10.1007/978-3-540-68552-4_12
http://bioeasel.org
https://doi.org/10.1101/2021.01.12.426474
http://creativecommons.org/licenses/by-nd/4.0/

	Abstract

