
1 

Systematic identification of cis-interacting lncRNAs and their targets  

Saumya Agrawal1, Ivan V. Kulakovskiy19,20,#, Jessica Severin1,#, Masaru Koido1,2,#, Tanvir Alam3,#, Imad 
Abugessaisa1, Andrey Buyan19,20, Howard Y. Chang4, Josee Dostie5, Masayoshi Itoh1,6, Juha Kere7,8, 
Naoto Kondo9, Yunjing Li10, Vsevolod J. Makeev20, Mickaël Mendez11, Yasushi Okazaki1, Jordan A. 
Ramilowski1,12, Andrey I. Sigorskikh20, Lisa J. Strug10,11,13,14, Ken Yagi1, Kayoko Yasuzawa1, Chi Wai 
Yip1, Chung Chau Hon1, Michael M. Hoffman11,15,16,17, Chikashi Terao1, Takeya Kasukawa1, Jay W. Shin1, 
Piero Carninci1,18, Michiel JL de Hoon1,* 

1RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. 2Institute of Medical Science, The University 
of Tokyo, Tokyo, Japan. 3College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar. 4Center 
for Personal Dynamic Regulome, Stanford University, Stanford, California, USA. 5Department of Biochemistry, 
Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada. 6RIKEN 
Preventive Medicine and Diagnosis Innovation Program, Wako, Japan.7Department of Biosciences and Nutrition, 
Karolinska Institutet, Huddinge, Sweden.8Stem Cells and Metabolism Research Program, University of Helsinki and 
Folkhälsan Research Center, Helsinki, Finland. 9RIKEN Center for Life Science Technologies, Yokohama, Japan. 
10Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada. 
11Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.12Advanced Medical Research 
Center, Yokohama City University, Yokohama, Japan. 13Division of Biostatistics, University of Toronto, Ontario, 
Canada.14The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for 
Sick Children, Toronto, Ontario, Canada. 15Princess Margaret Cancer Centre, Toronto, Ontario, 
Canada.16Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. 17Vector Institute, 
Toronto, Ontario, Canada, 18Human Technopole, Milan, Italy. 19autosome.org. 20FANTOM Consortium.  

#These authors contributed equally to this work.  

*Corresponding author (michiel.dehoon@riken.jp). 

Abstract 

The human genome is pervasively transcribed and produces a wide variety of long non-coding 
RNAs (lncRNAs), constituting the majority of transcripts across human cell types. Studying 
lncRNAs is challenging due to their low expression level, cell type-specific occurrence, poor 
sequence conservation between orthologs, and lack of information about RNA domains. 
LncRNAs direct the regulatory factors in the locations that are in cis to their transcription sites. 
We designed a model to predict if an lncRNA acts in cis based on its features and trained it using 
RNA-chromatin interaction data. The trained model is cell type-independent and does not require 
RNA-chromatin data. Combining RNA-chromatin and Hi-C data, we showed that lncRNA-
chromatin binding sites are determined by chromosome conformation. For each lncRNA, the 
spatially proximal genes were identified as their potential targets by combining Hi-C and Cap 
Analysis Gene Expression (CAGE) data in 18 human cell types. RNA-protein and RNA-
chromatin interaction data suggested that lncRNAs act as scaffolds to recruit regulatory proteins 
to target promoters and enhancers. We provide the data through an interactive visualization web 
portal at https://fantom.gsc.riken.jp/zenbu/reports/#F6_3D_lncRNA. 
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Background 

Human cells express tens of thousands of long non-coding RNAs (lncRNAs)[1], defined as RNA 
transcripts of at least 200 nt with no or limited protein-coding potential. Although this class of 
RNAs has been known for almost 50 years [2–4], ~95% of lncRNAs still lack functional 
annotation [5], though some lncRNAs have been shown to have important roles in transcriptional 
regulation [6, 7], chromatin maintenance [8, 9], translation [10], and other biological processes. 
Exploring the role of the lncRNAs systematically is challenging due to their low expression [11], 
rapid degradation compared to mRNAs [12, 13], high cell type-specificity [11], and lack of 
conservation across organisms [14]. In contrast to protein-coding genes, the absence of families 
of lncRNAs with related sequences further hinders the systematic inference of lncRNA target 
regions.  

Even in low copy numbers, lncRNAs can initiate the formation of nuclear compartments by 
interacting with RBPs to regulate transcription [15]. LncRNAs are reported to form scaffolds 
with RBPs and other mediator proteins that regulate the process of transcription and chromatin 
remodeling [16–18]. Studies using microscopy and RNA-chromatin interaction sequencing 
techniques have shown that the majority of lncRNAs are located in the nucleus and are likely 
constrained to regions close to their transcription site in three-dimensional space [19, 20]. In the 
majority, lncRNAs are more stable than nascent mRNA transcripts hence these signals are 
unlikely to be due to the act of transcription of lncRNAs but to stable interactions [12]. The 
lncRNA’s regulatory role may be associated with the transcript itself or the act of transcription of 
its promoter [21]. Regardless of the mode of action, lncRNAs can regulate the expression of 
genes several megabases away in linear genomic distance [22–24], [25, 26] as distal regions are 
brought into spatial proximity by chromatin folding. 
 
LncRNA retention in nucleus is directed by the presence of different RNA features [27, 28] 
including repeat sequences [29], inverted Alu elements [30, 31], motifs like SIRLOIN [32] and 
U1-recognition motif [33]. These features were combined with nuclear/cytoplasmic fraction and 
RNA-chromatin interaction data to predict the likelihood of each lncRNA (which we termed as 
cis-score) in different cell types to interact with chromatin in cis (with regions that are on the 
same chromosome as the lncRNA promoter). As a proof of principle, using RNA-chromatin 
interaction data we show that by combining the chromatin interaction data (Hi-C) with the cis-
score we can identify potential interacting partners of a lncRNA. High-resolution genomic 
interaction maps were generated using newly generated Hi-C data for induced pluripotent stem 
cells (iPSCs) and previously published data from 17 other human cell types and tissues. These 
interaction maps were employed to systematically identify candidate targets of lncRNAs. Cap 
Analysis Gene Expression (CAGE) [34] data was used to determined expressed genes and their 
precise transcription start sites (TSSs), and bi-directionally transcribed enhancers. With these 
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data, we identified lncRNA interacting partners (including mRNAs, enhancers, and other 
lncRNAs) genes as candidate targets of lncRNAs across the 18 cell types and tissues. A 
visualization platform is provided that allows users to browse and compare the biological 
features for each lncRNA in individual cell types 
(https://fantom.gsc.riken.jp/zenbu/reports/#F6_3D_lncRNA). 
 

Results 

Candidate cis-acting lncRNAs 

To construct the model to determine the putative cis-acting lncRNAs, we integrated information 
regarding the fraction of lncRNAs in the nucleus compared to the cytoplasm, expression level, 
frequency of repeat sequences [29], presence of inverted Alu elements in exons [30, 31], 
SIRLOIN motif [32] and U1-recognition motif [33] together with RNA-chromatin interactions in 
seven different human cell types (embryonic cell type: iPSC, primary cell type: HFFc6, and 
HUVEC, cell line: HEK293T, MDA231, K562, and MM1S [35–37]; [38]; [39, 40]). LncRNAs 
with ≥ 75% of raw RNA-chromatin interactions in cis are significantly more likely to have these 
sequence elements compared to remaining lncRNAs (Figure 1; Table-1). We predict the 
probability of a lncRNA to act in cis by combining all six factors. The contribution of each 
element towards the cis score increases in the order: inverted Alu repeat < SIRLOIN < repeat 
elements < U-repeat motif ≤ abs[log10(expression level)] < nuclear percentage (Table-2). Since 
iPSC has the deepest sequenced RNA-chromatin interaction data therefore the model calculated 
using its data was used to estimate the score for all the selected cell types (Table-3). To 
benchmark, if the iPSC model is optimum, we compare the scores predicted using iPSC cells and 
models generated using the RNA-chromatin data from the same cell type. The sensitivity to 
predict if lncRNA potentially acts in cis increased while specificity decreased when using the 
iPSC model compared to the same cell model (Supplementary Figure 1). This was expected, as 
compared to iPSC the sequencing depth for all the other cell types is shallow therefore, is likely 
to miss several real RNA-chromatin interactions. Next, to verify that the cis-score does represent 
lncRNA localization, we compared the cis-scores for lncRNAs to the localization patterns 
determined using single-molecule microscopy [19]. For the lncRNAs where the signal was 
punctate, the scores are higher regardless of cell types while lncRNAs with dispersed signals 
show variation in cis-score (Table-4). Overall, this supports that the calculated scores can predict 
the localization of lncRNA in the nucleus. 
 
The target regions of lncRNAs are in close proximity 
Raw RNA-chromatin interaction data show that lncRNAs with higher cis-scores tend to interact 
with more genomic regions (rho = 0.3-0.5; Supplementary Figure 2). Comparison of RNA-
chromatin and Hi-C interactions data from the same cell type (Table 5-7) shows that the 
captured raw RNA-chromatin interactions formed in the regions that are linearly several 
megabases away from the promoter window of the lncRNA but are in close proximity in 
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physical space as shown by the Hi-C data (Figure 2a). Further, this linear distance for captured 
RNA-chromatin interaction increases with an increase in the half-life of the lncRNAs 
(Supplementary Figure 3). Overall, the majority of lncRNA interactions are directed by the 
chromatin conformation of the region and lncRNA stability. The cis-score of the lncRNAs with 
atleast one significant RNA-chromatin interaction (FDR ≤ 0.01) is significantly higher compared 
to ones that have none (Figure 2b; Supplementary Figure 4; Supplement data 1). Further, 
based on Hi-C interactions, on average 87.5% of the genomic regions to which an RNA binds are 
within 2 degrees of separation from its promoter (Figure 2c) and are in the same A/B 
compartment as the gene encoding the RNA (Table 8). All together, this shows that for the 
majority of lncRNAs, combining cis-score with Hi-C can identify the target regions detected by 
RNA-chromatin capture technologies.  

Defining candidate target genes for each lncRNA and their biological features in a different 
cell type 

To increase the scope of the study we have further processed previously published Hi-C data for 
one embryonic cell line, four primary cell types, eight cell lines, and one tissue (Table 5-7) were 
uniformly processed. As outlined in Figure 3, for every expressed lncRNA in each cell type, the 
genomic regions were selected with up to 2 degrees of separation (cutoff decided based on RNA-
chromatin and Hi-C interaction comparison) from the region containing the reference lncRNA 
gene. Next, promoters and enhancers expressed in the cell type were mapped to the genomic 
regions to identify the candidate targets for every lncRNA in each cell type. Gene Ontology 
(GO) enrichment analysis for the candidate target genes of every lncRNA independently in each 
cell type showed that the predicted target genes of several lncRNAs had at least one significantly 
enriched “biological processes” GO term (Table 9; Table 10) suggesting that certain lncRNAs 
can coordinate multiple related genes. The lncRNAs facilitate the formation of condensates 
which are thought to assist in the recruitment of the transcription factors [41, 42]. The 
transcription factor binding sites (TFBSs) enrichment analysis for the candidate target genes and 
enhancers of each lncRNA showed that multiple lncRNA’s candidate targets were significantly 
enriched for at least one motif (Table 11-12). Further, lncRNA candidate target genes showed a 
significant enrichment in genes with promoters with either a high or a low GC content 
(Supplementary Figure 5, Table 13), which has a decisive role in determining transcription 
factor binding [43–46] and may contribute to the TFBS enrichment observed for the candidate 
target genes of each lncRNA. 

Next, the correlation in expression between each lncRNA and its candidate mRNA target genes 
was calculated. Whereas 26.37 - 48.12% of intergenic lncRNAs and 28.59-54.88% of non-
intergenic lncRNAs had a statistically significant either positive or negative average expression 
correlation, the majority showed no significant average expression correlation (Figure 4), 
indicating that expression correlation analysis alone cannot reveal the clusters of associated 
genes found by chromatin conformation analysis. This shows that Hi-C interactions provide a 
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unique set of candidate target genes of each lncRNA which is not completely captured by 
analyzing co-expression analysis.  

LncRNAs as potential recruiters of RBPs at candidate target genes 

There are strong evidence that lncRNAs acting in cis are known to bind to RBPs to facilitate the 
formation of RBP condensates to recruit the RBP to chromatin [16–18]. Based on eCLIP 
(enhanced CLIP) data for K562 and HepG2 cells, we found 1,754 and 1,577 lncRNA transcripts, 
respectively, bound by at least one RBP. The cis-score for lncRNAs to which at least one RBP 
bound is significantly higher than for lncRNAs without RBP indicating that lncRNA that can 
form RNA-chromatin interaction are likely to bind to an RBP (Figure 5). In K562 (cell type with 
RNA-chromatin, and RBP eCLIP and ChIP-seq data available), 92 reference lncRNAs have Red-
C RNA-chromatin interactions with the genomic regions containing promoters with ChIP-Seq 
signal for at least one DNA-binding RBP. Further, eCLIP data showed that transcripts of 63 out 
of the 92 lncRNAs are also bound by these RBPs. Overall, this shows that lncRNAs with higher 
cis-score are candidate lncRNAs that are likely to facilitate recruitment of RBPs in cis to the 
promoter and enhancer of its candidate target genes.  

As an example, the currently unannotated broadly expressed lncRNA U91328.19 
(ENSG00000272462) (Supplementary Figure 6a) with cis-score 0.52 - 0.85 has multiple 
histone genes as candidate target genes (Supplementary Figure 6b; Figure 6a). This lncRNA 
has been reported to be associated with GWAS SNPs related to hay fever and eczema [47]. This 
is supported by the GO analysis of its candidate targets which show enrichment for terms like 
‘interleukin-7-mediated signaling pathway’, ‘innate immune response in mucosa’ and 
‘antibacterial humoral response’ (Supplementary Figure 6b), and also GWAS heritability 
analysis of the A/B compartments showing enrichment for the 
‘disease_ALLERGY_ECZEMA_DIAGNOSED’ trait (Supplementary Figure 6c). RBPs 
HNRNPL, SRF1, and ILF3 which are involved in different immune response pathways [48], [49–
51], are enriched at the promoters of the respective lncRNA’s candidate target genes in K562 and 
HepG2. eCLIP data show that RBP HNRNPL that also interacts with ILF3 binds to this lncRNA 
in K562. Further, RNA-chromatin data for K562 show that the lncRNA binds to the window 
containing the candidate target gene's promoters (Figure 6b) to which these RBPs bind. The 
chromatin binding of lncRNA to these loci is not restricted to K562 but also seen in HUVEC, 
iPSC, MM1S, and HEK293T cells (Figure 6b) where the lncRNA is expressed, suggesting that 
similarly, RBPs may bind to these promoters. Overall, this indicates that the lncRNA U91328.19 
may guide the recruitment of RBPs to the promoters of its candidate target genes and potentially 
involve in the cellular immune response. 

Interactive querying and visualization of lncRNA functional annotations across cell types 

We created an interactive system, accessible at 
https://fantom.gsc.riken.jp/zenbu/reports/#F6_3D_lncRNA, to query and visualize the lncRNA 
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properties, their candidate targets and properties derived from our analysis and to compare them 
across the 18 cell types. The visualization platform provides six tiers to explore the data viz. 1) 
Genome browser view, 2) Differential genomic interaction frequency table for each cell type 
pair, 3) Interactions associated with individual genes, 4) For each lncRNA: a. Hi-C candidate 
gene targets, b. associated GO terms, TFBSs, and RBPs, and c. genomic interactions are shown. 
and, 4) Biological features comparison among cell types for candidate targets of each lncRNA. 
The interactive system also allows comparing lncRNA expression, GO terms, GO genes-
reference lncRNA expression correlation, genome-wide association study (GWAS) traits, and 
TFBS motif enrichment across the cell types.  

As an example of generated data supports the previously published studies, the non-intergenic 
lncRNA HOTAIRM1 (ENSG00000233429) is expressed in multiple human cell types 
(Supplementary Figure 7a) with the cis-score range of 0.45-0.69. It is known to regulate the 
local spatial arrangement of the HOXA gene clusters [52, 53] and hence regulates the 
proliferation and differentiation of cells[53–55]. The candidate targets are enriched for GO terms 
related to differentiation (Supplementary Figure 7b, Supplementary Figure 8a). Similar to 
previously reported study[52], the expression of the lncRNA and HOXA cluster genes in this GO 
category are positively correlated (Supplementary Figure 7b) as reported in a previous study 
[52]. Chromosome Conformation Capture studies have shown that knocking down HOTAIRM1 
results in stronger interaction with HOX1/2 and HOX9/7 genes depending on the cell type [53]. 
Differential genomic interaction frequency analysis between MEC and H1hESC shows that the 
interactions [log2(FC)=-1.17] between HOXA2 and HOXA9 are weaker in MEC (HOTAIRM1 
expression: 63.47 Tag Per Million [TPM]) compared to H1hESC (HOTAIRM1 expression: 2.48 
TPM) and stronger interactions [log2(FC) =1.55] when compared to SkMC (HOTAIRM1 
expression: 21.03 TPM) supporting the findings of Wang et. al. [53]. HOTAIRM1 binds to the 
HOXA2 genomic window in HUVEC (HOTAIRM1 expression: 33.31 TPM), HFFc6 
(HOTAIRM1 expression: 3.74 TPM; HOXA2 not expressed in HFFc6), and HEK293T 
(HOTAIRM1 expression: 50.21 TPM). No significant RNA-chromatin interactions were present 
for HOTAIRM1 around HOXA clusters in MM1S cells (HOTAIRM1 expression: 29.66 TPM) 
(Supplementary Figure 8b) suggesting the lncRNA may directly interact with chromatin in 
some but not all cell types. Further, TFBSs for SREBF1,2, and SPZ1 transcription factors 
associated with proliferation and differentiation [56–58], are enriched at the promoters of 
candidate targets (Supplementary Figure 7c). Overall, Hi-C and expression data concur with 
the previous findings [52], [53] regarding HOTAIRM1 demonstrating the strength of our 
analysis.  

Discussion 

In this study, we have calauclated the cis-score as a parameter to identify the potential cis- acting 
lncRNAs and their putative target regions across 18 cell types. Our analysis provides a 
framework where using Hi-C one can identify the putative targets of a lncRNA. While several 
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techniques have been developed in recent years that probe RNA-chromatin interactions [36–38, 
59, 60], lncRNAs are underrepresented in these data due to their rapid degradation by the 
exosome compared to mRNAs. In contrast, Hi-C is not affected by RNA stability and is, 
therefore, more powerful for identifying lncRNA targets. Our Hi-C clustering strategy includes 
regions that are directly interacting with the lncRNA promoter as well as regions that are 
spatially proximal to the lncRNA but not directly interacting, and thereby takes the mobility of 
lncRNA transcripts in the nucleus into account. A recent microscopy study has shown that, 
during differentiation of mouse embryonic cells to neural progenitor cells, promoters were found 
to be in close proximity but not in direct contact with the enhancers regulating their activity [61]. 
LncRNAs can facilitate such spatial colocalization of enhancers and promoters several 
megabases apart by promoting chromatin reorganization, as for example demonstrated for 
lncRNA-CSR and Platr22 in mice [23, 24].  

This systematic identification of candidate target genes is important especially for intergenic 
lncRNAs as their linear genomic environment lacks genes that could otherwise be used to 
suggest a functional role. Several lncRNAs with a biological role are known to be exosome-
sensitive [23, 62]; their rapid degradation and therefore low prevalence necessitates a strategy 
independent of gene expression level. Our analysis does not depend on co-expression, an 
alternative method to predict gene function, which is strongly affected by tissue composition, 
technical variation, and normalization issues that negatively affect the comparability of measured 
gene expression levels, provides only a single annotation of lncRNAs for all cell types, and 
therefore cannot identify cell type-specific functions of lncRNAs [63–68]. In contrast, the Hi-C-
based candidate target gene list avoids many of these pitfalls and provides target genes for each 
lncRNA in each cell type separately. 

Our results show that many potential cis-acting lncRNAs interact with RBPs that are enriched at 
their target promoters. This is in agreement with a recently reported study where hundreds of 
lncRNA are reported to be locally enriched in mouse embryonic stem cells [20]. LncRNAs are 
reported to regulate the recruitments of regulatory proteins that also act as RBPs by forming 
condensate-like structures [16, 69, 70]. The condensate is thought to regulate the concentration 
of transcription factors and thereby assist the selection of promoters to be transcribed among the 
ones that share the same transcription factor binding sites [41, 42]. Our analysis not only 
provides the list of such potential lncRNAs but also provides a framework that can be employed 
to identify them. 

Altogether, we have identified potential cis-acting lncRNAs and summarized their potential 
target genes and associated features in 18 human cell types into a comprehensive resource 
(https://fantom.gsc.riken.jp/zenbu/reports/#F6_3D_lncRNA). This includes a web application to 
visualize the target genes of a lncRNA in individual cell types. We anticipate that this resource 
will assist in narrowing the target regions of lncRNAs for further illustration of their functions. 
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Conclusion 

Collectively, our study provides a list of cis-acting lncRNAs and their potential targets. Our 
study provides a workflow that employs lncRNA sequence features together with chromatin 
conformation and CAGE data to identify the lncRNA potential targets. The patterns we observed 
by combining different data sets highlight the role of lncRNAs in cis-regulation and will assist in 
designing the mechanistic studies to explore the function of lncRNAs in human cells. 

Material and Methods 

RNA-chromatin interactions 
We collected and reprocessed published data from the following experiments: Red-C [35], 
GRID-seq [38], and iMARGI [39, 40] (Table 14). First, we applied FastUniq [71] for filtering 
out possible PCR duplicates in paired-end mode. Next, we used Trimmomatic [72] to detect and 
remove low-quality bases in paired-end mode with default parameters except for window size (5) 
and base quality threshold (26). Next, we excluded the read pairs lacking the presence of 
experiment-specific technical sequences to consider only proper RNA-DNA chimeric reads. 
Next, the RNA and DNA parts of contacts were collected in two separate files in fastq format. 
The RNA (longer than 13bp) and DNA (longer than 17bp) parts were independently mapped to 
the reference human genome (GRCh38.p13) with hisat2 [73]. 
The final list of RNA-DNA contacts included only the contacts with both DNA and RNA parts 
uniquely mapped to the reference genome with less than three mismatches, the contacts with 
RNA-parts mapped to splice junctions were discarded. 
For all datasets, the resulting RNA parts of the contacts corresponded to the reverse 
complementary strand of the respective RNA genes. 
Technology-specific details: Red-C raw paired-end reads were processed as described in the 
original article [35]. The read pairs were pre-filtered based on the inclusion of the bridge 
segment in the 1st (forward) reads; for each contact, we obtained DNA, RNA-3` (neighboring 
the bridge sequence), and RNA-5`. We checked that RNA-3` and RNA-5` parts are mapped to 
the opposite strands of the same chromosomes within 10 Kb from each other and considered 
only the RNA-3` part in the final list of contacts. For all iMARGI datasets, the reads were pre-
filtered requiring 5' CT for the 2nd (reverse) reads; 5' NT were allowed for HUVEC iMARGI 
data due to lower quality scores at 5' ends of the reads. Additionally, the first two bases of the 
forward reads were removed according to the original iMARGI protocol. The GRID-seq data 
was already preprocessed by the authors (PCR duplicates were removed and technical bridge 
sequences were trimmed), thus the respective stages of our pipeline were skipped. 
 
All genes (mRNA, intergenic, and non-intergenic lncRNA) that have at least one promoter with 
expression ≥ 0.5 TPM based on CAGE were used for the overlap analysis. The genome was 
divided into 10kb bins and the annotated RNA reads were aggregated. To reduce the effect of 
genomic windows with very high interaction counts (typically found near the gene where the 
RNA is produced), skewing the distribution, we used an iterative approach in which significant 
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interactions are removed from the data set in each iteration. The background probability for a bin 
was calculated by dividing the count of trans mRNA binding in that bin by the total number of 
trans mRNA reads. To estimate the significance of the RNA binding in each bin, we performed a 
one-sided binomial test using binom_test (x,n,p) from scipy where x = the number of reads for 
the gene in the bin; n= total number of remaining reads for the gene, p=background probability 
calculated using trans-binding mRNA in the bin. The binomial test was performed iteratively 
until no additional interactions (FDR ≤ 0.01) were found. For each iterative step, interactions 
with FDR ≤ 0.01 from the previous step were removed and the number of gene reads from those 
bins were subtracted from n (the total number of reads for the gene). The bins where gene 
interaction was supported by at least 3 reads and FDR ≤ 0.01 were defined as bins where RNA 
from that gene binds to the chromatin significantly, and were defined as significant RNA-
chromatin interactions. The genomic bins of significant RNA-chromatin interactions were 
annotated by mapping the strongest promoter for mRNAs, intergenic lncRNAs, and non-
intergenic lncRNAs to identify RNA-chromatin gene pairs.  
 
Cis-score calculation 

For each lncRNA, genomic bins with at least 2 RNA reads mapping to the corresponding 
lncRNA were used to count cis and trans bins. LncRNA with ≥75% of total bins as cis were 
marked as cis-binding lncRNAs. The CAGE fractionation data for cell types A549, H1hESC, 
HUVEC, HeLa, HepG2, IMR90, K562, KER, MCF7 (MEC), SK-N-SH, and iPSC was used to 
calculate the expression of each in gene in the nuclear and cytoplasmic fractions (TPM). The 
formula was used to define the fraction of lncRNA in the nucleus compared to the cytoplasm 
𝑙𝑜𝑔2((𝑛𝑢𝑐𝑙𝑒𝑎𝑟 + 𝑐𝑦𝑡𝑜𝑝𝑙𝑎𝑠𝑚𝑖𝑐	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)). For the cell types where fractionation data was 
not available, the mean fractionation values were assigned. All the exons from the transcripts 
associated with the expressed promoters were selected to search for the sequence features. For 
the SIRLOIN motif representative motif 
[CT][GA]CCTCCC[GA][GA]GTTCAAG[CT]GAT[TC]CTCCT[GA]CCTCAGCCTCCCGA, 
derived from [32] and for the U1 motif representative sequence, CAGGTGAGT was searched in 
the selected exons using function fuzznuc of EMBOSS package. The repeatmasker track from 
UCSC was used to determine repeat frequency and invert Alu repeats. The cis-score (probability 
of lncRNA to be cis) was predicted by using binary logistic regression and using nuclear 
fraction, log value of expression level, frequency of SIRLOIN motif, U1 motif, repeat sequences, 
and inverted Alus as parameters. 

Hi-C data generation and processing 
iPSC Hi-C data was generated as described in Ramilowski et al. [74] while data for the 
remaining cell types were obtained from previously published studies (Table 5). Data for each 
replicate was processed using HICUP ver. 0.5.10 [75] which involved read truncation, mapping, 
filtering experimental artifacts, and de-duplication. The alignment files for all replicates for each 
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cell type were merged to perform downstream analysis. GRCh38 primary human genome 
assembly (hg38) was used for the analysis. 

Gene and enhancer models and primary annotations 

FANTOM CAT gene models [1] and hg38 FANTOM 5 bidirectional enhancers [76] (FANTOM-
5 enhancers) (https://zenodo.org/record/556775) were used as the primary genome annotation. 
The FANTOM CAT gene classes used in this study are mRNAs (protein-coding), intergenic 
lncRNAs, antisense lncRNAs, divergent lncRNAs, and sense intronic lncRNAs, with the latter 
three classes collectively referred to as non-intergenic lncRNAs. 
 

The expression level of promoters and bi-directional enhancers  
Expression levels of promoters and enhancers were determined using CAGE data. iPSC CAGE 
data was generated for this study using the nAnT-iCAGE protocol [34], while publicly available 
matched CAGE libraries were used for the remaining cell types (Table 15). Promoter CAGE tag 
counts were estimated by intersecting CTSS files for individual libraries with the promoter bed 
file using bedtools (ver. 2.26.0) and were normalized to calculate promoter expression in tags per 
million (tpm). The expression for a promoter in a cell type was determined by calculating the 
mean expression across all CAGE libraries for that cell type. For each gene, the promoter with 
the highest expression level, requiring a minimum expression of 0.5 tpm, and minimum 3 tag 
counts in at least one CAGE library was used for the downstream analysis. Next, the CAGE 
expression of enhancers was calculated by summing the CAGE tag counts across the libraries for 
each cell type, ignoring the tag directionality. All enhancers with an aggregate tag count of at 
least 5 were used for the downstream analysis. 
In the absence of matched CAGE libraries, FANTOM5 data for pancreatic tissues was 
repurposed for Islets and BetaH1 cells. First, expressed transcripts in Islets and BetaH1 cells 
were determined using RNA-seq data from published studies [77, 78] (Table 15) using Kallisto 
ver. 0.45.0 [79]. Next, the strongest promoter for each gene was determined based on expressed 
transcripts in each cell type and pancreatic tissue CAGE data. Expressed enhancers in pancreatic 
tissues were assigned to both Islets and BetaH1 cell types. 

Promoter types 

The precalculated chromatin state ChromHMM models for the selected cell types were 
downloaded from the previous studies listed in Table 15. The strongest promoters were 
intersected with corresponding cell type chromatin state models and were assigned a promoter 
type: H3K4me3 enriched (canonical promoters), H3K4me1 enriched (enhancer-like promoters), 
or Neither (undetermined) depending on the overlapping state (Table 15). As chromatin state 
data were not available for THP1, THP1-PMA, and RPE-1, promoter types provided by 
FANTOM-CAT [1] were used to annotate promoters in these cell types (Table 15).  
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A/B compartments, TADs, and loops 

Hi-C alignment .bam files for individual replicates and merged data were converted into .hic 
format using an in-house awk script and the Pre command from the Juicer package [80]. A/B 
compartments were identified at 1 Mbp resolution using the function eigenvector from Juicer 
package with options: -p VC <hic file> <chromosome name> BP 1000000. The positive value 
represents compartment A (transcriptionally active compartment) and the negative value 
represents compartment B (a compartment with lower transcriptional activity compared to 
compartment-A). The compartments were redefined by reassigning the signs (+/-) to eigenvalues 
in cases where average expression values (determined using CAGE peaks) of compartment B 
(negative value) was higher than compartment A (positive value). Further, TADs and chromatin 
loops were calculated as a resource for the research community using functions from the Juicer 
package.  

Determining significant genomic interactions  

The intra-chromosomal genomic interactions were identified using the Bioconductor package 
GOTHiC [81]. The Hi-C data across biological replicates for each cell type was merged and 
statistically significant cis-genomic interactions were identified at 10 kbp resolution. The 
alignment .bam files were converted into .gothic files using the format conversion script 
hicup2gothic from the HiCUP package. The interactions were calculated using .gothic together 
with corresponding restriction enzyme files (Table 5) for each cell type. All the interactions 
supported by at least 5 read pairs and q-value ≤ 0.05 were defined as significant genomic 
interactions. The number of genomic interactions per cell type varied from 2,540,361 to 
46,975,256 with Hi-C sequencing depth (Table 7) and included interactions in both A and B 
compartments (compartment-A are genomic regions with higher transcription activity compared 
to compartment-B genomic regions) (Table 7). The interactions were annotated by overlaying 
the expressed promoters and enhancers in the selected cell types to identify the promoters 
interacting with each other. In cases where promoters for more than one gene overlapped the 
same 10 kbp region, the interactions were counted multiple times, with one interaction for each 
gene. Interactions with annotations on both sides were used for the downstream pairwise 
analysis. The number of annotated cis-interactions varied from 50,170 to 604,677 (Table 7) 
among the cell types. 
 
Differential Hi-C interactions analysis 
An interaction read count table (10 kb resolution) for individual Hi-C replicates was generated 
using straw (ver. 0.0.8). Islets and BetaH1 data were excluded from the analysis as they had only 
one Hi-C library. The pairwise differential Hi-C analysis was performed using the Bioconductor 
package multiHiCcompare (ver. 1.8.0). All genomic interactions with 5 read counts in at least 
two Hi-C libraries were tested for the differential interactions. Interactions with |log2(Fold 
change)| ≥ 1 and FDR-corrected P-value ≤ 0.1 were defined as differential Hi-C interactions.  
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Enrichment of H3K4me1 promoters with differential interactions compared to H3K4me3 + 
Neither promoters was tested using one-tailed Fisher’s exact test for individual gene classes 
separately. The promoters that had different promoter types between two cell types were 
excluded from the analysis. All promoters that overlapped with interactions tested for differential 
Hi-C were used for the analysis. The relation between Hi-C interaction, mRNA, and intergenic 
lncRNA expression change was determined using the Chi-squared test. For H3K4me1 and 
H3K4me3 enriched promoters of each gene class and enhancers, Spearman correlation was 
calculated between change in the differential Hi-C interactions and log2 (fold change) in the 
expression of interacting mRNA gene in query cell type compared to reference cell type. 
Enrichment of transcription factors in differential Hi-C interactions was performed for each cell-
type pair using one-tailed Fisher’s exact test. The list of human transcription factors by Ravasi et 
al. [82] was used for the analysis.  

Hi-C clusters  

Hi-C genomic clusters for each lncRNA were defined using significant genomic interactions. 
The genomic window overlapping with the reference lncRNA promoter was selected as the 
reference genomic region. To define the Hi-C genomic clusters, all the genomic regions 
connected to the reference genomic region by Hi-C interaction up to 2 degrees separation 
[reference lncRNA genomic region → genomic region that have Hi-C interaction connecting to 
the reference lncRNA genomic region (Genomic region with 1o degree of separation from 
reference genomic region) → genomic regions that are connected to Genomic region with 1o 
degree of separation by Hi-C interactions (Genomic region with 2o degree of separation from 
reference window)] within the A or B compartment (extended by +/- 100 kbp) in which the 
reference lncRNA regions is situated were used to define the Hi-C genomic region clusters 
(Figure 3). In the case of DMFB, Ery, and HUVEC where the Hi-C sequencing depth was 
relatively low, we also included genomic windows connected within 3 degrees of separation. The 
expressed promoters and enhancers were mapped to the Hi-C genomic region clusters to identify 
the potential target genes (Figure 3).  

Gene ontology (GO) enrichment analysis 

The GO term database from NCBI was downloaded on Nov 28th, 2019 (file: gene2go from 
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/). All mRNA genes with an entrezID that are expressed in 
a given cell type and belong to at least one Hi-C cluster were used for the analysis. The GO term 
enrichment analysis for each Hi-C cluster was performed using a one-sided Fisher’s exact test 
(details are given in Table 16). The background consisted of all genes in all clusters other than 
the genes in the reference lncRNA cluster. The analysis was performed for the GO terms that 
have at least one mRNA gene in their geneset in common with the cluster. The P-value was 
corrected for multiple testing using the Benjamini–Hochberg false discovery rate (FDR) multiple 
testing correction method. All GO terms with FDR-adjusted P-value ≤ 0.1 and at least 3 mRNA 
genes in their geneset in common with the cluster were defined as significant GO terms. GO 
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term enrichment analysis was performed for the linear clusters for the “biological process” GO 
term category in the same way as for the Hi-C gene clusters. Further, GO enrichment analysis 
was also performed for gene sets provided by the Broad Institute [83–85] as a resource for 
annotating the lncRNA Hi-C gene clusters. Analysis was performed for all the Hi-C gene 
clusters with at least three mRNA genes with an entrezID. Similar to NCBI GO gene sets, 
enrichment analysis was also performed using EnrichR gene sets (downloaded on March 4th, 
2021 from https://maayanlab.cloud/Enrichr/#stats) for Hi-C gene clusters. 
The gene family member list from HGNC was downloaded on February 10, 2021 
(https://www.genenames.org/). Gene family members were mapped to GO genes based on their 
Ensemble geneID and for every lncRNA, the number of genes in each GO term that overlap with 
each gene family was counted. LncRNAs with at least one GO term that have three or more GO 
genes overlapping with a single gene family were classified as associated with a gene family. 

Hi-C gene cluster expression correlation analysis 

For each cluster, the Spearman correlation was calculated for gene expression between the 
reference lncRNA and mRNA genes in the cluster across the 18 cell types. To determine if the 
clusters have a preference for genes that have positive or negative expression correlation with the 
reference lncRNA, a one-sample Student’s t-test was performed. The Hi-C gene cluster with P-
value ≤ 0.05, and t-statistic value positive or negative were categorized as clusters with positive 
expression correlation or negative expression correlation respectively, or otherwise with no 
preference. The analysis was performed in the same manner including only GO-annotated 
mRNA genes.  

TFBSs enrichment analysis and motif correlation 

Genome-wide TFBS predictions for SwissRegulon motifs [86–88] were downloaded for the 
hg38 human genome assembly. For each cell type, the predicted TFBSs were intersected with 
promoter and enhancer regions extended by +/- 250 bp. In cases where multiple TFBSs for the 
same motif overlapped with a promoter or enhancer, the posterior probability scores of the 
predicted TFBSs were summed. The TFBSs with aggregate scores of at least 0.1 were assigned 
to the promoters and enhancers. Motifs with predicted TFBSs overlapping with less than 200 
promoters and enhancers were excluded from the analysis. The significance of motif enrichment 
in the Hi-C gene cluster was calculated using a one-sided Fisher's exact test. The contingency 
table used for analysis is described in Table 17. The P-values were corrected for multiple testing 
using the Benjamini–Hochberg multiple testing correction method. All clusters where the 
number of promoters + enhancers was at least 5 were tested for enrichment. All motifs with FDR 
adjusted P-value ≤ 0.1 and at least 3 promoters and enhancers in the cluster with a TFBS for the 
motif were defined as significantly enriched. 
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GC content analysis 

For each cell type, the GC content of promoters extended by +/- 250 bp was determined using 
the function GC from the Bio.SeqUtils module in Biopython (ver. 1.76) [89]. The Spearman 
correlation between the GC content of each promoter and the number of annotated interactions 
was calculated for every gene class in each cell type. For the cluster analysis, the median GC 
content for each cluster with 5 or more promoters was calculated. To calculate the Z-score for 
each cluster, we randomly selected 100 sets of promoters from the set of all expressed promoters 
in the cell type, with the same number of promoters as in the cluster, and calculated the median 
GC content for each randomized set. The mean and standard deviation of these 100 GC content 
values was used to calculate the Z-score for the GC content of the cluster.  

RBP enrichment analysis 

Overview and analysis of ENCODE eCLIP data: ENCODE eCLIP data for cell lines HepG2 and 
K562 was used for the analysis. In total, there were 234 <RBP, cell type> pairs. The data were 
analyzed as follows: (1) reads were preprocessed as in the original eCLIP pipeline [90], (2) 
trimmed reads were mapped to the hg38 genome assembly with F6 CAT genome annotation using 
hisat2 [73], (3) the aligned reads were deduplicated [90], (4) the uniquely mapped and correctly 
paired reads were filtered with samtools [91], (5) gene-level read counts in exons were obtained 
with plastid [92], (6) differential expression analysis against matched controls was performed 
using edgeR [93]. Based on (6) reliable RNA targets of each RBP were defined as those passing 
5% FDR and log2FC > 0.5. RBPs with fewer than 15 targets in Hi-C clusters were excluded from 
the downstream analysis resulting in the final set of 207 <RBP, cell type> pairs.  
Overview and analysis of ENCODE ChIP-Seq data: Optimally thresholded ChIP-Seq peaks of 
18 and 26 RBPs for HepG2 and K562, respectively were downloaded from ENCODE and 
merged across replicates. U2AF1 (in K562) was excluded from analysis as having less than 15 
RNA targets in eCLIP data. To annotate promoters and enhancers with ChIP-Seq peaks we 
required non-zero overlap between the respective genomic regions and peaks. 
Analysis of Hi-C gene cluster enrichment with RBP targets: Right-tailed Fisher's exact test (on 
promoters and FANTOM5 enhancers) was used to identify Hi-C gene clusters enriched with RBP 
targets. Benjamini-Hochberg (FDR) correction for multiple tested RBPs was applied and cases 
passing FDR adjusted P-value ≤ 0.1 and with at least 3 RBP targets were considered statistically 
significant.  
 
Heritability enrichment analysis 

We used stratified linkage disequilibrium (LD) score regression (ldsc software ver. 1.0.0, 
https://github.com/bulik/ldsc) [94] to partition the common (minor allele frequency (MAF) > 5% 
in European 1000 Genomes Project Phase 3 data) SNP heritability for 47 UK Biobank traits and 
diseases (https://data.broadinstitute.org/alkesgroup/UKBB) and four diseases which were used 
by O'Connor et al. [95–99]. We tested partitioned heritability of each Hi-C annotation (converted 
to hg19 genome build using UCSC liftOver tool) conditioning on the baselineLD model ver. 2.2 
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(https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_baselineLD_v2.2_ldscore
s.tgz). We calculated the significance of the regression coefficient for the Hi-C annotation using 
the Z-score. 
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Figure 1: Comparison of cis-score parameters between lncRNAs with ⩾75% of raw 
RNA-chromatin interaction in cis and less.  a) Fraction of lncRNA in the nucleus 
compared to the cytoplasm. The significance of the difference in values between two 
classes of lncRNAs was determined using the one-tailed Mann-Whitney U test. b)
Statistical significance of enrichment of lncRNAs with RNA features: U1 repeat motif count, 
frequency of repeat sequences, SIRLION motif count, and inverted Alu elements, in the 
lncRNAs with ⩾75% RNA-chromatin interaction are cis. Significance was calculated using a 
one-tailed Fisher’s exact test.
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Figure 2: The comparison between RNA-chromatin interactions and Hi-C interactions. a. 
Hi-C degree of separation vs Linear distance for lncRNA raw RNA-chromatin interaction in 
iPSC using local regression. The horizontal axis and vertical axis show the degree of 
separation (calculated using Hi-C interactions) and linear distance between the windows with 
the promoter of the lncRNA and the region containing RNA-chromatin interaction. Each line 
represents one lncRNA. b. Comparison of cis-score between lncRNAs with and without atleast 
one RNA-chromatin interaction. Each panel shows one cell type for which RNA-chromatin data 
is available. The significance of difference in cis-score between two classes of lncRNAs was 
determined using a one-tailed Mann-Whitney U test. c. Cumulative distribution plot showing 
degree of separation between chromatin regions where RNAs bind based on Hi-C interactions.
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Figure 3: LncRNAs candidate target genes. Schematic diagram showing the workflow of 
lncRNA Hi-C candidate target genes identification.
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Figure 4: Expression correlation between LncRNAs and it’s candidate target genes. 
Intergenic and non-intergenic lncRNAs with significantly more candidate target genes with a 
positive average expression correlation, with a negative average expression correlation, or neither, 
in each cell type. On the right of each row, the number of intergenic lncRNAs with significant 
positive or negative average expression correlation with candidate mRNA target genes is shown, 
followed by the number of intergenic lncRNAs tested for correlation/ the number of intergenic 
lncRNAs expressed in that cell type in parentheses. The clusters were classified into three 
categories by comparing the set of expression correlation values of cluster genes to 0 using one 
sample Student’s t-test (P-value ≤ 0.05). 
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Figure 5: Comparison of cis-score between lncRNAs with and without RBPs binding. 
Each panel shows one cell type for which RBP eCLIP data is available. The significance of 
difference in cis-score between two classes of lncRNAs was determined using a one-tailed 
Mann-Whitney U test.
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Figure 6: Hi-C and RNA-chromatin interactions for lncRNA ENSG00000272462. a. The top 
track shows the genomic location of the interaction followed by tracks showing the Hi-C annotated 
interactions between lncRNA ENSG00000272462 and its candidate target genes in different cell 
types. b. RNA-chromatin interactions for lncRNAs in different cell types. The colors of interaction 
tracks for K562, HUVEC, and iPSC cells show the level of support of RNA-chromatin interactions 
by Hi-C interaction.
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Supplementary Figure 1: Comparison of sensitivity and specificity of cis-score predicted by 
model generated using data from same cell type and iPSC. Each panel shows the cell type for 
which RNA-chromatin data is available.
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Supplementary Figure 2: Correlation between cis-score and number of genomic 
bins with raw RNA-chromatin interactions. The horizontal and vertical axis shows the 
cis-score and number of 10kb genomic bins with cis-RNA-chromatin interaction 
respectively. Each panel shows one cell type, with a dot representing one lncRNA. The 
spearmann correlation (rho) between the cis-score and the number RNA-chromatin 
interaction bin is shown in the title.
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Supplementary Figure 3: Half life of lncRNA vs median linear distance between 
RNA-chromatin interaction window and RNA promoter containing window. a) The 
comparison of median linear distance among different ranges of lncRNA half-life.  b) 
Significance of difference of median distance values between two half-life ranges of 
lncRNAs was determined using the two-tailed Mann-Whitney U test.
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Supplementary Figure 4: Comparison of cis-score between lncRNAs with and without 
atleast one RNA-chromatin interaction. Each panel shows one cell type for which RNA-
chromatin data is available. The significance of difference in cis-score between two 
classes of lncRNAs was determined using a one-tailed Mann-Whitney U test. . 
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a.

b.

Supplementary Figure 5: Variation in the average GC content of the HiC candidate target 
genes of a. intergenic lncRNAs and b. non-intergenic lncRNAs. Each plot shows the 
cumulative distribution for Z-scored median GC content of all lncRNAs candidate target genes in 
a cell type. Dashed lines indicate Z = -2 and Z = +2, corresponding to p = 0.023 and p = 0.97, 
respectively, for a normal distribution.
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Supplementary Figure 6: Annotation results for lncRNA ENSG00000233429. a. Expression of 
lncRNA in all 17 cell types (CAGE data from pancreas were used for both BetaH1 and islet cells). b. 
GO annotation results. The topmost heatmap shows the expression correlation between the lncRNA 
and GO-annotated genes in the candidate target genes. For readability, the gene names are shown 
on the top of the heatmap in the same order as in the heatmap. The middle heatmap shows whether 
the candidate target genes in each cell contains each of the GO-annotated genes . The bottom 
heatmap shows the membership of each GO gene in each GO category, and the heatmap on the 
right shows whether each GO term is enriched in each cell type. c. Motifs enriched (FDR adjusted 
P-value ≤ 0.1) in the lncRNA’s candidate target genes. d. GWAS trait enriched (FDR adjusted P-
value ≤ 0.1) in the A/B compartment overlaps with the lncRNA’s candidate target genes.

c. TFBS enriched in the candidate target genes
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Supplementary Figure 7: Annotation results for lncRNA ENSG00000272462. a. Expression of lncRNA in 
all 17 cell types (CAGE data from pancreas were used for both BetaH1 and islet cells). b. GO annotation 
results. The topmost heatmap shows the expression correlation between the lncRNA and GO-annotated 
genes in the candidate target genes. For readability, the gene names are shown on the top of the heatmap in 
the same order as in the heatmap. The middle heatmap shows whether the candidate target genes in each 
cell contains each of the GO-annotated genes . The bottom heatmap shows the membership of each GO 
gene in each GO category, and the heatmap on the right shows whether each GO term is enriched in each 
cell type. c. GWAS trait enriched (FDR adjusted P-value ≤ 0.1) in the A/B compartment overlaps with the 
lncRNA’s candidate target genes. d. Motifs enriched (FDR adjusted P-value ≤ 0.1) in the lncRNA’s candidate 
target genes.
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Supplementary Figure 8: Hi-C and RNA-chromatin interactions for lncRNA 
ENSG00000233429. a. The top track shows the genomic location of the interaction, followed by 
tracks showing the Hi-C annotated interactions between lncRNA ENSG00000233429 and its 
candidate target genes in different cell types. b. RNA-chromatin interactions for lncRNA in 
different cell types. The colors of interactions in cell types HUVEC and HFFc6 tracks show the 
level of support of RNA-chromatin interactions by Hi-C interactions.
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