ABSTRACT
Translating genome-wide association studies (GWAS) of complex disease into mechanistic insight requires a comprehensive understanding of risk variant effects on disease-relevant cell types. To uncover cell type-specific mechanisms of type 1 diabetes (T1D) risk, we combined genetic association mapping and single cell epigenomics. We performed the largest to-date GWAS of T1D in 489,679 samples imputed into 59.2M variants, which identified 74 novel association signals including several large-effect rare variants. Fine-mapping of 141 total signals substantially improved resolution of causal variant credible sets, which primarily mapped to non-coding sequence. To annotate cell type-specific regulatory mechanisms of T1D risk variants, we mapped 448,142 candidate cis-regulatory elements (cCREs) in pancreas and peripheral blood mononuclear cell types using snATAC-seq of 131,554 nuclei. T1D risk variants were enriched in cCREs active in CD4+ T cells as well as several additional cell types including pancreatic exocrine acinar and ductal cells. High-probability T1D risk variants at multiple signals mapped to exocrine-specific cCREs including novel loci near CEL, GP2 and CFTR. At the CFTR locus, the likely causal variant rs7795896 mapped in a ductal-specific distal cCRE which regulated CFTR and the risk allele reduced transcription factor binding, enhancer activity and CFTR expression in ductal cells. These findings support a role for the exocrine pancreas in T1D pathogenesis and highlight the power of combining large-scale GWAS and single cell epigenomics to provide insight into the cellular origins of complex disease.
Competing Interest Statement
KJG does consulting for Genentech and holds stock in Vertex Pharmaceuticals