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Abstract

Accurate estimate of relatedness is important for genetic data analyses, such as association
mapping and heritability estimation based on data collected from genome-wide association
studies. Inaccurate relatedness estimates may lead to spurious associations and biased
heritability estimations. Individual-level genotype data are often used to estimate kinship
coefficient between individuals. The commonly used sample correlation-based genomic
relationship matrix (scGRM) method estimates kinship coefficient by calculating the average
sample correlation coefficient among all single nucleotide polymorphisms (SNPs), where the
observed allele frequencies are used to calculate both the expectations and variances of
genotypes. Although this method is widely used, a substantial proportion of estimated kinship
coefficients are negative, which are difficult to interpret. In this paper, through mathematical
derivation, we show that there indeed exists bias in the estimated kinship coefficient using the
scGRM method when the observed allele frequencies are regarded as true frequencies. This
leads to negative bias for the average estimate of kinship among all individuals, which explains
the estimated negative kinship coefficients. Based on this observation, we propose an unbiased
estimation method, UKin, which can reduce the bias. We justify our improved method with
rigorous mathematical proof. We have conducted simulations as well as two real data analyses
to demonstrate that both bias and root mean square error in kinship coefficient estimation can be
reduced by using UKin. Further simulations indicate that the power in association mapping can
also be improved by using our unbiased kinship estimates to adjust for cryptic relatedness.

Author summary

Inference of relatedness plays an important role in genetic data analysis. Many methods have
been proposed to estimate kinship coefficients, including the commonly used genomic
relationship matrix method. However, a substantial proportion of the kinship coefficients
estimated by this method are negative, which is difficult to interpret. In this paper, through
mathematical derivation, we show that there indeed exists a negative bias in this approach. To
correct for this bias, we propose a new kinship coefficient estimation method, UKin, which is
unbiased without requiring extra genetic information nor added computational complexity. The
better performance of UKin in reducing bias and root mean squared error is demonstrated
through theory, simulations and analysis of data from the young-onset breast cancer and familial
intracranial aneurysm studies.

Introduction 1

Accurate estimation of relatedness among individuals is important in genetic data analysis. For 2

example, in both population-based and family-based genome-wide association studies (GWAS) 3

with uncertain relationships among study subjects, it is critical to appropriately account for 4

cryptic relatedness because incorrect estimates can decrease power and inflate false positive 5

rates of association tests [1–3]. Several methods have been proposed to adjust for relatedness in 6

GWAS, such as introducing a genomic relationship matrix (GRM) as an augment into 7
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well-developed linear mixed model (LMM) [4–7]. It has been demonstrated that proper 8

consideration of genetic relatedness can also benefit heritability estimation based on GWAS data 9

in the presence of pedigree structures [8, 9]. 10

In order to adjust for cryptic relatedness in genetic studies like association mapping and 11

heritability estimation, individual-level genotype data are often used to estimate pairwise kinship 12

coefficients. The sample correlation-based genomic relationship matrix (scGRM) method 13

estimates kinship coefficient by calculating the average sample correlation coefficient among all 14

genetic variants, in which the observed allele frequencies are used for the calculation of both 15

expectation and variance of genotypes [10–12]. We note that most association mapping and 16

heritability estimation packages use this method as their default setting for calculating GRM, 17

such as GCTA, GEMMA and FaSTLMM [6, 8, 13]. Although this method is widely used, 18

researchers have noted that a substantial proportion of the estimated kinship coefficients are 19

negative. As kinship coefficient is defined to be a positive number (see in Materials and 20

Methods), it is difficult to interpret these negative estimates [14–16]. 21

In this paper, through mathematical derivation, we first show that there indeed exists bias in 22

the estimated kinship coefficients using the scGRM method. The bias exists because the 23

observed allele frequencies are regarded as true frequencies. We also prove analytically that the 24

bias essentially results in a negative average for all estimates, which explains the large 25

proportion of negative values. Based on this observation, we propose an improved kinship 26

estimation method, UKin, which can remove bias. We provide a mathematical proof for the 27

unbiasedness of the UKin estimator. Simulations and real data analyses also demonstrate that 28

both bias and root mean square error (RMSE) can be reduced by replacing the scGRM method 29

with our UKin method. For real data analyses, we apply our method to two studies, young-onset 30

breast cancer (BC) and familial intracranial aneurysm (FIA), which have pedigree information to 31

evaluate our results. Finally, as an application of our method in association mapping, we conduct 32

a simulation study to show the power of detecting genetic associations can be improved by 33

correcting cryptic relatedness using our unbiased kinship estimates. 34

The paper is organized as follows. In the Results section, we evaluate the performance of 35

UKin through two simulations and two real data sets in BC and FIA to validate our theoretical 36

derivation and demonstrate the effectiveness of UKin estimator in reducing bias and RMSE. In 37

the Materials and Methods section, we present the theoretical details which show the scGRM 38

method is biased, propose our UKin estimation method and give the correctness proof, as well as 39

its connection with the scGRM estimator. Lastly, we conclude with a simulation study in the 40

Discussion section to demonstrate that UKin method can further improve the power of 41

association mapping. Technical details such as mathematical derivations are provided in S1 42

Appendix. 43

Results 44

1. Simulation experiments 45

An illustrative example 46

We start our discussion with a simple but extreme example. In this experiment, we assumed
that there were 500 full siblings from the same family. Although unlikely to exist in reality, this
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example serves as a good illustration of our theoretical derivation. As every two individuals
selected from the same family were full siblings, the true value of their kinship coefficient
should be 0.25 (see in Table 5). However, following Property 3 in the Materials and Methods
section, their average kinship coefficient estimated by scGRM, denoted by ¯̂

φ , should have the
expectation:

E ¯̂
φ =

n−1
4

(ρ̄−1)/(
n(n−1)

2
) =

ρ̄−1
2n

=
0.5−1
2×500

=−5×10−4,

where n is the sample size and ρ̄ is the average of their true genetic correlation coefficients. 47

Property 1 together with Table 5 in the Materials and Methods section suggest that ρ̄ = 0.5 for 48

full siblings. 49

This result shows the unexpected phenomenon that although all individuals in our simulated 50

samples are full siblings to each other, the average of the estimated kinship coefficients has a 51

negative value. To illustrate Property 3 in practice, we simulated 200 unrelated families each 52

consisting of 500 full siblings with the method provided by the package CorBin [17]. Each 53

individual was genotyped at 10,000 single nucleotide polymorphisms (SNPs). Following the 54

scGRM method and the UKin method proposed in Materials and Methods, we estimated 55

pairwise kinship coefficients and calculated their mean values, respectively. The histograms of 56

these estimated average kinship coefficients are shown in Fig 1. From this plot, we could see the 57

distribution of average kinship estimated by the scGRM method centered around −5×10−4, 58

which is consistent with our expectation from the analytical results. By contrast, the UKin 59

approach performed better in dealing with this extreme situation, with the average estimates 60

centered at 0.25, the true value of pairwise kinship coefficient for full-sibling pairs. Besides, 61

from Fig 1 we could observe that the two distributions have similar shapes, which could be 62

explained by Equation 5 in Materials and Methods which suggests that unbiased estimator of 63

correlation coefficient ρ̃ii′ could be expressed as a linear combination of the scGRM estimators 64

ρ̂ii′ . Considering there were 500 full siblings from the same family, we calculated the average on 65

both sides of Equation 5 among all the simulated individual pairs, which is ¯̃ρ = 500 ¯̂ρ +1, where 66

¯̃ρ and ¯̂ρ represent the average of correlation coefficients between full siblings from the same 67

family, estimated by the UKin method and the scGRM method respectively, i.e. 68

¯̃ρ =

n
∑

i=1

n
∑

i′=i+1
ρ̃ii′

n(n−1)/2
¯̂ρ =

n
∑

i=1

n
∑

i′=i+1
ρ̂ii′

n(n−1)/2
.

As there was a linear relationship between kinship coefficient and correlation coefficient (see 69

Property 1 in Materials and Methods), the distributions of the average kinship coefficients 70

estimated by the two methods should have the same shape. 71

A more general simulation 72

To evaluate the performance of the UKin method in kinship coefficient estimation and to 73

compare it with the scGRM estimate in a more general situation, we performed the following 74

simulations in which population homogeneity was assumed. To include different kinds of 75

relationships in our experiment, we simulated 6,000 people including 1,000 pairs with kinship 76

coefficient 0.125, 1,000 pairs with coefficient 0.25, and 500 pairs with coefficient 0.5. For 77

4/24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2021.01.13.426515doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426515
http://creativecommons.org/licenses/by/4.0/


Fig 1. Distribution of average kinship coefficients estimated by the scGRM (left) and
UKin (right) methods in this extreme example. Two hundred unrelated families each
consisting of 500 full siblings were simulated, with each sibling genotyped at 10,000 SNPs. The
averages of kinship coefficients among all individual pairs from the same family were calculated
and the distribution of these averages is displayed. The true value of kinship coefficient between
full siblings is 0.25. The vertical dashed line in each plot corresponds to the mean value of these
averages estimated by the corresponding method.

simplicity, different relative pairs were set to be unrelated. In addition, we also included 1,000 78

people who had no relationship with other individuals. For each subject, genotype data were 79

generated for 10,000 random and independent SNPs. The minor allele frequencies (MAFs) of 80

genotyped variants were drawn uniformly from [0.05,0.5]. 81

With the UKin and scGRM estimators, we estimated kinship coefficients between all 82

simulated individual pairs and divided those coefficients into four groups according to their true 83

relationships. Fig 2 shows the distribution of the estimated kinship coefficients in each group 84

respectively. As shown in this plot and summarized in Table 1, for groups with true kinship 85

coefficient 0.25 and 0.5, our UKin method achieved lower RMSE than the scGRM method in 86

estimating kinship coefficients, while the opposite was true for the independent pairs. For the 87

group consisting of pairs having kinship coefficients 0.125, the two methods had similar 88

performance. 89

Although Fig 2 clearly demonstrates the RMSE for the two methods, it is difficult to 90

compare their biases from the plots. More detailed comparisons are shown in Table 1. As shown 91

in the second column of this table, UKin always performed better than scGRM when we 92

compared the mean values of estimated kinship coefficients, as the results of the UKin method 93

were closer to true values for all four groups. Besides, results in the third column of Table 1 94

show that UKin could reduce RMSE for close relatives, which is consistent with the conclusion 95

we get from Fig 2. Furthermore, UKin shows a downward trend of RMSE with increasing true 96

kinship coefficients, while scGRM is completely on the opposite. It is also notable that when we 97

consider individual pairs with kinship coefficient 0.5, i.e. Monozygotic twins (M-Z twins), both 98

bias and RMSE are extremely close to zero if we utilize UKin to estimate. 99

2. Real data analyses 100
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Fig 2. Distributions of kinship coefficients estimated by the UKin method and the
scGRM method in our simulation study including 6,000 individuals with different
relationships. The four plots correspond to the four groups divided by the true value of
estimated kinship coefficients.

Table 1. Comparison of UKin and scGRM in biases and RMSEs

True Value Bias from True Value(×10−5)
(UKin) (scGRM)

Root Mean Square Error(×10−3)
(UKin) (scGRM)

0.000 3.943 −11.81 6.915 5.000

0.125 1.543 −7.486 5.724 5.668

0.250 3.414 −13.80 4.537 6.329

0.500 0.000 −22.82 0.000 7.431

The Young-Onset Breast Cancer Study 101

To demonstrate our unbiased method could get more accurate results in estimating kinship 102

coefficients, we applied the UKin method to real data from a family-based study of genes and 103

environment in young-onset BC (dbGaP Study Accession: phs000678.v1.p1). This study 104

recruited families from the US and Puerto Rico with a daughter who was recently diagnosed 105

with breast cancer and another unaffected daughter. For each family, only the diseased daughter 106

and her unaffected full sister were genotyped for analysis. As for data quality control, we 107

removed individuals with more than 10% missing genotypes as well as SNPs with a missing 108

genotype rate greater than 5% or a minor allele frequency less than 5%. After further removing 109

individuals with missing phenotypes, we got 1,983 subjects (1,458 cases and 525 controls) with 110

614,310 variants in total. The processed data included 511 pairs of full sisters, with one affected 111

by breast cancer. We assumed individuals from different families were unrelated, then the true 112
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values of all estimated kinship coefficients should be either 0.25 (511 full sister pairs) or 0 (all 113

the other individual pairs). 114

We first applied the scGRM method to estimate the kinship coefficients, which had poor 115

performance. For the 511 within-family pairs (full sister pairs), only 473 pairs were estimated to 116

have kinship coefficients between 2−5/2 and 2−3/2, which means 7.4% of full sisters were 117

incorrectly inferred to be other kinds of relative pairs. Estimation of 1,964,642 =
(1,983

2

)
−511 118

between-family pairs with the scGRM method also performed poorly, as 0.45% unrelated pairs 119

between families were misspecified as 1st-degree relative pairs (such as sibling pairs), 120

2nd-degree relative pairs (such as half-sibs, avuncular pairs and grandparent-grandchild pairs) or 121

3rd-degree relative pairs (such as first cousins). In contrast, our UKin method had more accurate 122

estimates with 501 out of 511 (98.0%) full sisters pairs correctly estimated and only 177 123

unrelated pairs (less than 0.01%) were misspecified as 3rd-degree relative pairs (Table 2 and 124

Table 3). 125

Table 2. Distribution of estimated kinship coefficients of 511 full siblings in the two sister data
studying young-onset breast cancer

Relationship unrelated 3rd-degree
relative pairs

2nd-degree
relative pairs

1st-degree
relative pairs M-Z twins

Inference criteria < 1
29/2 ( 1

29/2 ,
1

27/2 ) ( 1
27/2 ,

1
25/2 ) ( 1

25/2 ,
1

23/2 ) > 1
23/2

scGRM 0 0 6 473 32

UKin 0 0 10 501 0

True 0 0 0 511 0

Table 3. Distribution of estimated kinship coefficients of 1,964,642 unrelated individual pairs in
the two sister data studying young-onset breast cancer

Relationship unrelated 3rd-degree
relative pairs

2nd-degree
relative pairs

1st-degree
relative pairs M-Z twins

Inference criteria < 1
29/2 ( 1

29/2 ,
1

27/2 ) ( 1
27/2 ,

1
25/2 ) ( 1

25/2 ,
1

23/2 ) > 1
23/2

scGRM 1,955,711 2,129 2,081 4,721 0

UKin 1,964,465 177 0 0 0

True 1,964,642 0 0 0 0

The histograms of kinship coefficients estimated by scGRM and UKin for all pairs 126

(including both full sister pairs and unrelated pairs) in the BC study are given in Fig 3. To make 127

the comparison more clearly, we only took individual pairs with estimated kinship coefficients 128

between 2−5 and 2−1.5 into consideration. It is obvious that the histogram corresponding to 129

scGRM contains more pairs with estimated kinship coefficients larger than 2−7/2. From 130

previous analysis, we know most of them are misspecified unrelated pairs. In contrast, our 131

approach is much less likely to make such mistakes. Besides, the UKin histogram shows a peak 132

centered close to 0.25 and has a distinct separation from estimated kinship coefficients near zero. 133

However, scGRM does not work well in this aspect because the distribution of non-zero kinship 134

coefficients is centered around 0.23 and has an obvious distribution overlap with unrelated pairs, 135
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which suggests that UKin performs better in separating relatives from unrelated pairs. 136

Furthermore, if we only consider the 511 full sister pairs, the true kinship coefficient should be 137

0.25. However, the average and mean square error (MSE) of the kinship coefficients estimated 138

by scGRM were 0.263 and 4.03×10−3, respectively. In contrast, the corresponding UKin 139

results were 0.248 and 6.72×10−4, respectively. To visualize the difference between UKin and 140

scGRM, we also draw the scatter plot of the estimated kinship coefficients for the 511 full sister 141

pairs between the two methods (Fig 4). The scatter plot demonstrates that while the distribution 142

of UKin estimates is more concentrated at its true value, scGRM tends to overestimate the 143

kinship coefficients for many full sister pairs. These results clearly show the better performance 144

of UKin than scGRM. 145

Fig 3. Comparison of distributions of kinship coefficients estimated by scGRM (left) and
UKin (right) in breast cancer study. This study genotyped 1,983 individuals at 614,310
variants. Pairwise relationships in this dataset included 511 full sister pairs from irrelevant
families and unrelated pairs. In this figure, we only considered estimated kinship coefficients
between 2−5 and 2−1.5. Class interval of the histogram for each method is set to be 0.005.

The Familial Intracranial Aneurysm Linkage Study 146

To further investigate the effectiveness of the UKin method in kinship coefficient estimation, 147

we applied UKin to infer pedigree structure using genotype data from the FIA linkage study 148

(dbGaP Study Accession: phs000293.v1.p1). This study recruited 400 families with multiple 149

individuals who have an intracranial aneurysm (IA) through 23 (25) referral centers throughout 150

North America, Australia, and New Zealand that represent 35 (40) recruitment sites. After a 151

standardized procedure of quality control and discarding subjects with missing phenotype, we 152

obtained 990 individuals from 371 families and each of them was genotyped at 5,505 SNPs. In 153

this FIA dataset, the confirmed relationships include 137 1st-degree relative pairs (including 19 154

full siblings and 118 parent-child pairs). 155

We compared the performance of UKin and scGRM in identifying these 1st-degree relative 156

pairs and estimating their kinship coefficients. UKin was able to correctly recognize all the 137 157

1st-degree pairs (with estimated kinship coefficients between 2−2.5 and 2−1.5), while scGRM 158

misspecified one parent-child pair as monozygotic twins, with an estimated kinship coefficient 159
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Fig 4. The scatter plot of the estimated kinship coefficients between the UKin and
scGRM methods. For this plot we only consider the 511 full sister pairs in the BC data set. The
oblique solid line stands for the equation y = x, while the vertical and horizontal dashed lines
correspond to the mean values of scGRM and UKin estimates, respectively.

of 0.442. The histograms of the kinship coefficients of these 137 individual pairs estimated by 160

the two methods (Fig 5) indicate that unbiased estimations are more concentrated, taking values 161

between 0.21 and 0.3. However, the distribution of scGRM estimations is more dispersed, 162

including a distinct outlier. This fact is more clearly shown in the scatter plot including all the 163

137 1st-degree pairs in the IA data set (Fig 6). We further calculated the bias from the true value 164

(0.25) and RMSE of the estimated coefficients for each estimator. As summarized in Table 4, the 165

estimation bias of UKin was 1/6 of the bias estimated by scGRM, while the RMSE of UKin was 166

half of scGRM. We also note that scGRM misspecified 15 parent-child pairs or unrelated pairs 167

as MZ twins, while UKin only made five such mistakes which were all included in the 168

misspecified pairs of scGRM. These results demonstrate that our UKin method achieves more 169

accurate outcomes in relationship inference and kinship estimation, even when the number of 170

genotyped SNPs is small. 171

Table 4. Bias and RMSE of estimated kinship coefficients for the 137 pairs of 1st-degree
relatives in the FIA study

Estimation Method Bias(×10−3) RMSE(×10−2)

UKin 0.667 1.175

scGRM 4.045 2.244
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Fig 5. Distributions of estimated kinship coefficients of 1st-degree relatives in the FIA
study with scGRM (left) and UKin (right). Among all the 137 1st-degree relative pairs in this
dataset, there are 19 full siblings and 118 parent-child pairs. Class interval of the histogram for
each method is set to be 0.005.

Discussion 172

Among the many kinship coefficient estimation methods, the most commonly applied estimator 173

uses dense SNP genotypes and allele frequencies in the samples to calculate average pairwise 174

correlation coefficients among SNPs. Although this method is intuitive and easy to calculate, we 175

prove that it is actually biased because it treats the observed allele frequencies as true 176

frequencies. Through rigorous derivation, we showed that pairwise kinship coefficients 177

estimated by scGRM add up to be a negative value, which explains the phenomenon that a 178

substantial proportion of kinship coefficient estimates are negative. 179

When conducting large scale estimates of kinship coefficients, the existing bias in scGRM 180

can lead to incorrect inference of relationships, and this problem can be extremely severe if the 181

subjects in the dataset are highly related. Our method, UKin, solved this issue by incorporating 182

genetic information from the whole population to adjust for the bias in the estimated kinship 183

coefficient between every single pair. This unbiased estimator can be expressed as a polynomial 184

of scGRM estimators, and leveraging only information of dense genotypes from the population. 185

As demonstrated by our simulations and applications to the BC and FIA family data, UKin 186

performed better in reducing both estimation bias and RMSEs. For the two sister study, the 187

results suggest that while scGRM could lead to severe spurious inference of relative pairs, UKin 188

rarely made such mistakes. Even when the number of genotyped SNPs was limited for the FIA 189

study, UKin could reduce statistical bias and RMSE while avoiding spurious relationship 190

inference. 191

In our theoretical derivations and simulation studies, we made assumptions like linkage
equilibrium (LE) and absence of inbreeding, that is, genotypes at different markers are
independent. During our derivation, we used the same weights for all SNPs, and our simulated
datasets were also generated under this assumption. Although there is linkage disequilibrium
(LD) in reality, empirical results from the analyses of the BC and FIA family data show that the
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Fig 6. The scatter plot of the estimated kinship coefficients between the UKin and
scGRM methods in the FIA study. Only the 137 1st-degree pairs are shown. The oblique
solid line stands for the equation y = x, while the vertical and horizontal dashed lines correspond
to the mean values of scGRM and UKin estimates, respectively.

bias and RMSEs can also be reduced greatly with the application of UKin to real data. To
consider the problem of LD in practice, we can give different weights based on LD to these
SNPs. Following the approach of Wang (2017) [15], these LD weights w = (w1,w2, ...,wm)

T

can be calculated by solving the following minimization problem:

min
w

[wT Rw−wT 1] : wl ≥ 0,∀l.

where R = [ρ2
lk] is the matrix of squared LD correlations. Theoretically, this result can be 192

directly applied to UKin by assigning the correlation coefficient at each SNP marker its 193

corresponding weight, which might make our approach adapt to LD situation. 194

Another assumption throughout our study is a homogeneous population so that the allele 195

frequencies can be calculated once and applied to all subjects. Some methods have been 196

proposed to estimate kinship coefficients in admixed populations, where the assumption of 197

population homogeneity is untenable [11, 18, 19]. However, as most of these methods are based 198

on the scGRM method, they are also likely to be biased estimators, too. How to extend our UKin 199

method to deal with admixed populations is a topic for future studies. 200

More accurate kinship estimation will improve the performance of different genetic analyses 201

such as association mapping. In recent years, GWAS have seen great success in identifying 202

genetic loci contributing to complex human traits [20, 21]. By studying a genome-wide data set 203

of genetic variants in different individuals, GWAS looks for SNPs correlated with traits in the 204

samples. Accurate specification of familial relationships is expected to bring more powerful 205
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association results in GWAS with unknown (or unrecognized) family structure. We have 206

investigated whether association mapping can be improved by applying UKin to account for 207

cryptic relatedness. 208

We conducted a simulation study to compare the performance of UKin with scGRM in 209

GWAS. In our experiments, we simulated 4,000 samples including 2,000 cases and 2,000 210

controls. We included subjects with various pairwise kinship coefficients in both cases and 211

controls. More specifically, we simulated 250 1st-degree relative pairs, 250 2nd-degree relative 212

pairs, 250 3rd-degree relative pairs, and 500 unrelated subjects. The total number of SNPs 213

genotyped for each individual was set to be 10,000 and the MAFs of non-risk SNPs were drawn 214

uniformly from [0.05, 0.5]. The proportion of risk SNPs was set at 0.05 or 0.1. For these risk 215

SNPs, a variable following the Gaussian distribution N (0, 0.052) was added to the previous 216

uniform distribution to obtain their MAFs in cases. We set those MAFs below 0.05 or greater 217

than 0.95 to be 0.05 and 0.95, respectively. 218

We applied GEMMA [13], which was developed to implement the genome-wide mixed 219

model association algorithm for a standard linear mixed model for association analysis. In our 220

simulations, we performed likelihood ratio tests in a univariate LMM for marker association 221

mappings with a single phenotype. PLINK binary file format was [22] adopted as input files 222

containing phenotypes and genetic information. A standardized relatedness matrix file estimated 223

by either scGRM or UKin was included to appropriately account for relatedness among subjects. 224

We applied GEMMA to analyze the simulated GWAS dataset and selected all SNPs with 225

P-value below the threshold 5×10−4. Statistical power and type I error rate were calculated to 226

evaluate the performance of marker association tests when the relatedness matrix used in LMMs 227

was estimated by scGRM and UKin, respectively. The results suggest that the type I error rate 228

was appropriately controlled at a low level (less that 5×10−4) for both methods. We compared 229

the power of association mapping which suggests that for the two risk SNP proportions 230

considered (i.e. 0.05 and 0.1), the power of identifying risk variants was always improved after 231

we replaced scGRM with UKin in estimating pairwise kinship coefficients. For example, when 232

the proportion of risk SNPs was set at 0.05, the power was improved from 0.154 to 0.167 by 233

adopting the UKin method. This simulation demonstrates that the application of UKin can 234

improve statistical power while controlling the type I error rate in GWAS. However, further 235

simulations and real data experiments are required to evaluate the advantages of UKin over the 236

scGRM comprehensively, which is the subject of future research. 237

Materials and Methods 238

Alleles are said to be identical by descent (IBD) if they are inherited from a common ancestor. 239

To describe the average amount of IBD sharing at the genome level, we often adopt the concept 240

of kinship coefficient [12]. For two individuals indexed by a and b, their kinship coefficient, φab, 241

is defined as the probability that two alleles sampled at random from two individuals at the same 242

autosomal locus are IBD. Let k0ab, k1ab, k2ab denote the probability that individuals a and b 243

share zero, one and two alleles IBD, respectively. The definition of kinship coefficient indicates 244

that φab can be expressed as a function of those IBD-sharing probabilities, to be more explicit, 245

φab = k1ab/4+ k2ab/2. Table 5 lists values of kinship coefficients, their corresponding 246
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IBD-sharing probabilities and the inference criteria of φab derived using powers of 2 [18] for 247

various relative pairs under the assumption of no inbreeding. 248

Table 5. Kinship coefficients for different relative pairs

Relationship φab (k0ab,k1ab,k2ab) Inference criteria

Monozygotic twins 0.5 (0,0,1) > 1
23/2

Parent-offspring 0.25 (0,1,0) ( 1
25/2 ,

1
23/2 )

Full sibs 0.25 (0.25,0.5,0.25) ( 1
25/2 ,

1
23/2 )

Half sibs 0.125 (0.5,0.5,0) ( 1
27/2 ,

1
25/2 )

Uncle-niece 0.125 (0.5,0.5,0) ( 1
27/2 ,

1
25/2 )

First cousin 0.0625 (0.75,0.25,0) ( 1
29/2 ,

1
27/2 )

Unrelated 0 (1,0,0) < 1
29/2

Suppose we have genotype data of n individuals, for each person we consider his/her 249

genotypes at m SNP markers respectively. For 1≤ i≤ n,1≤ j ≤ m, let Xi j be the number of 250

reference alleles (with label A) for individual i at SNP marker j. Thus Xi j takes values 0, 1, or 2 251

according to whether individual i has, respectively, 0,1, or 2 copies of allele A at marker j. 252

To simplify the illustration, we denote µ j and σ2
j as the expectation and variance of Xi j, 253

respectively. In other words, E(Xi j) = µ j,Var(Xi j) = σ2
j . We assume the population variance 254

for each marker is already known throughout our derivation. In practice, we can use sample 255

variance, an unbiased estimator of population variance, as a substitute. Now we consider a pair 256

of individuals i and i
′
. We use ρii′ , j to denote the correlation coefficient between Xi j and Xi′ j. 257

Besides, we let ρ̄ j be the average of ρii′ , j among all the individual pairs, i.e. 258

ρ̄ j =

n
∑

i=1

n
∑

i′=i+1
ρii′ , j

n(n−1)/2
.

If we further assume all individuals are sampled from a homogeneous population, we can 259

derive the following relationship among those correlations: 260

Property 1. Assume all individuals are sampled from a homogeneous population, then for
1≤ i, i

′ ≤ n,1≤ j ≤ m, we have

i.ρii′ , j = ρii′ , ρ̄ j = ρ̄.

ii.ρii′ = 2φii′ .

This property has also been mentioned in other articles, for example, see [11]. A proof of 261

this property is given in S1 Appendix. Now we summarize the conclusions of this property as 262

follows: 263

Result i. implies that the correlation between Xi j and Xi′ j is irrelevant to which SNP we 264

choose and depends only on the pair of individuals we select. Result ii. provides the quantitative 265

relation between the kinship coefficient and the correlation of genotypes, which indicates that 266

the estimation of kinship coefficient φii′ is equivalent to estimating the correlation coefficient of 267
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genotypes between individual i and i
′

(ρii′ ). 268

Estimating kinship coefficient by calculating the average sample pairwise correlation among 269

all genetic variants has been taken by many methods. Following this principle, a natural 270

estimator of ρii′ is 271

ρ̂ii′ =
1
m

m

∑
j=1

(Xi j− X̄ j)(Xi′ j− X̄ j)

σ2
j

. (1)

where X̄ j =
1
n

n
∑

i=1
Xi j is the average counts of reference alleles (with label A) at SNP j in the 272

whole population. We call φ̂ii′ =
1
2 ρ̂ii′ the scGRM estimator. 273

However, as we are going to demonstrate, ρ̂ii′ is actually a biased estimator of ρii′ . To 274

illustrate this, we need the following property: 275

Property 2. For 1≤ i, i
′ ≤ n,1≤ j ≤ m, the estimated correlation coefficient between Xi j 276

and Xi′ j has a systematic bias from ρii′ . More specifically, we have 277

E
[ (Xi j− X̄ j)(Xi′ j− X̄ j)

σ2
j

]
= ρii′ −

1
n

n

∑
a = 1
a 6= i

ρia−
1
n

n

∑
a = 1
a 6= i

′

ρai′ −
1
n
+

n−1
n

ρ̄. (2)

The proof is given in S1 Appendix. 278

Equation (2) also reveals that the expected value of 1
σ2

j
(Xi j− X̄ j)(Xi′ j− X̄ j) is not related to

which SNP we select. Now we consider the expectation of estimator (1), it comes to the
conclusion that

Eρ̂ii′ =E
[

1
m

m

∑
j=1

(Xi j− X̄ j)(Xi′ j− X̄ j)

σ2
j

]

=
1
m

m

∑
j=1

E
[ (Xi j− X̄ j)(Xi′ j− X̄ j)

σ2
j

]
=ρii′ −

1
n

n

∑
a = 1
a 6= i

ρia−
1
n

n

∑
a = 1
a 6= i

′

ρai′ −
1
n
+

n−1
n

ρ̄.

If ρ̂ii′ is an unbiased estimator of ρii′ , then we should have Eρ̂ii′ = ρii′ . However, the result 279

we derive is obviously contradictory to it. The existence of bias means a systematic error when 280

we estimate kinship coefficient via the scGRM method mentioned above. To make this fact 281

clearer, we sum the expectation of 1
σ2

j
(Xi j− X̄ j)(Xi′ j− X̄ j) up over all the individual pairs in the 282

population, which leads to the following property: 283

Property 3. For every SNP marker j, where 1≤ j ≤ m, we have

E
[ n

∑
i=1

n

∑
i′=i+1

(Xi j− X̄ j)(Xi′ j− X̄ j)

σ2
j

]
=

n−1
2

(ρ̄−1).

The proof is given in S1 Appendix. 284
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Recall that Eρ̂ii′ = E 1
σ2

j
(Xi j− X̄ j)(Xi′ j− X̄ j), thus Property 3 also suggests

n

∑
i=1

n

∑
i′=i+1

Eρ̂ii′ =
n−1

2
(ρ̄−1).

From Property 1 we know ρ̄ is the theoretical mean value of correlations between pair-wise 285

individuals, therefore it must take the value between 0 and 1. This fact together with Property 3 286

reveals that the mean value of estimator ρ̂ii′ is negative on average, which explains the empirical 287

observation that a substantial proportion of estimated kinship coefficients are negative. 288

This bias problem makes φ̂ii′ less desirable as an estimator of kinship between individuals i 289

and i
′
. We can design an improved kinship estimation method which can eliminate the bias for 290

each pair of individuals based on the scGRM estimator φ̂ii′ . The improved estimation method, 291

UKin, which stands for the unbiased kinship estimator, solves the bias problem without adding 292

much computational complexity. To understand how this method guarantees the unbiasedness, 293

we need the following property: 294

Property 4. For every SNP marker j,1≤ j ≤ m, and every pair of individuals i and i
′
, 1≤ i,

i
′ ≤ n, we have

E
[ (Xi j− X̄ j)(Xi′ j− X̄ j)

σ2
j

+
1
2

n

∑
k=1
k 6=i

(Xi j− X̄ j)(Xk j− X̄ j)

σ2
j

+
1
2

n

∑
l=1
l 6=i
′

(Xl j− X̄ j)(Xi′ j− X̄ j)

σ2
j

+1
]
= ρii′ . (3)

The proof is given in S1 Appendix. 295

For ease of presentation, we set

u j
ii′
= 1+

1
2

n

∑
k=1
k 6=i

(Xi j− X̄ j)(Xk j− X̄ j)

σ2
j

+
1
2

n

∑
l=1
l 6=i
′

(Xl j− X̄ j)(Xi′ j− X̄ j)

σ2
j

+
(Xi j− X̄ j)(Xi′ j− X̄ j)

σ2
j

.

Using (3), we also conclude that the expectation of u j
ii′

does not depend on which SNP we 296

select. Based on this fact, a reasonable estimator of ρii′ is 297

ρ̃ii′ =
1
m

m

∑
j=1

u j
ii′
. (4)

As Property 4 shows Eu j
ii′
= ρii′ holds for every 1≤ j ≤ m, the expectation of ρ̃ii′ is still ρii′ . 298

In other words, ρ̃ii′ is an unbiased estimator of ρii′ , thus φ̃ii′ =
1
2 ρ̃ii′ is an unbiased kinship 299

estimator. Besides, as we can observe from the expression of Eu j
ii′

, ρ̃ii′ is the sum of a group of 300

scGRM estimators ρ̂ii′ and a few correction terms, which means the UKin estimator relies on the 301

same information we need for calculating the scGRM estimator φ̂ii′ . Thus the implementation of 302

the UKin method doesn’t require extra data. 303

It is worth noting that there exists some relationship between the scGRM and UKin estimator. 304
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Substituting the expression of u j
ii′

into (4), we get 305

ρ̃ii′ = ρ̂ii′ +
1
2

n

∑
k=1
k 6=i

ρ̂ik +
1
2

n

∑
l=1
l 6=i
′

ρ̂li′ +1. (5)

Equation (5) indicates that the UKin estimator φ̃ii′ is a linear combination of some scGRM 306

estimators φ̂ii′ and constants. Thus φ̃ii′ and φ̂ii′ are based on the same genetic information. 307

Besides, this conclusion also shows that the UKin method won’t bring a significant increase in 308

computational complexity than the scGRM method. 309

Throughout our above analysis, we make assumptions of no inbreeding, LE and population 310

homogeneity. In the Discussion we have analyzed these assumptions in detail. 311

Supporting information 312

S1 Appendix. Mathematical derivations of the properties in the Materials and Methods 313

section. 314
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S1 Appendix

Proof of Property 1.
For the j-th single nucleotide polymorphism (SNP) (1≤ j ≤ m), let f j be the frequency of

the reference allele (with label A) at that SNP. Consider a pair of individuals i and i
′

whose
kinship coefficient is denoted by φii′ , we derive the covariance of Xi j and Xi′ j from two different
aspects. Recall that we denote ρii′ , j to be the correlation between Xi j and Xi′ j, thus we have

Cov(Xi j,Xi′ j) = ρii′ , jσ
2
j . (S.1)

On the other hand, Xi j can be treated as the sum of two independent Bernoulli random
variables. That is, Xi j = Bi j(1)+Bi j(2). For k = 1,2,

Bi j(k) =
{

0 if the k th allele for i at SNP j is a
1 if the k th allele for i at SNP j is A .

With this expression of Xi j , we have

Cov(Xi j,Xi′ j)

= Cov(Bi j(1)+Bi j(2),Bi′ j(1)+Bi′ j(2))

=
2

∑
k=1

2

∑
k′=1

Cov(Bi j(k),Bi′ j(k′ ))

=
2

∑
k=1

2

∑
k′=1

{E[Bi j(k)Bi′ j(k′ )]−E[Bi j(k)]E[Bi′ j(k′ )]}. (S.2)

As we denote f j to be the probability that a random allele chosen from the j-th SNP is A.
Notice that Bi j(k)Bi′ j(k′ ) = 1 only when the two alleles selected from i and i

′
at this marker are

both with label A, under this circumstance, these two reference alleles are either identical by
descent (IBD) or not. For simplicity, let Ai j(k) represent the k-th alleles from individual i at SNP
j, if we assume IBD genes have the same allelic types and non-IBD genes have independent
allelic types, we obtain

2

∑
k=1

2

∑
k′=1

E[Bi j(k)Bi′ j(k′ )]

=
2

∑
k=1

2

∑
k′=1

[P(Ai j(k) and Ai′ j(k
′
) are IBD) f j +(1−P(Ai j(k) and Ai′ j(k

′
) are IBD)) f 2

j ].

Consider the definitions of f j and φii′ , we obtain

E[Bi j(k)]E[Bi′ j(k′ )] = f 2
j .

φii′ =
1
4

2

∑
k=1

2

∑
k′=1

P(Ai j(k) and Ai′ j(k
′
) are IBD).
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Substituting them into (S.2), we get

Cov(Xi j,Xi′ j) = 4φii′ f j(1− f j). (S.3)

As Xi j is the sum of two i.i.d. Bernoulli random variables whose probability of success is f j,
we can derive that σ2

j = 2 f j(1− f j). Together with (S.1) and (S.3), we have

ρii′ , j = 2φii′ . (S.4)

Equation (S.4) also reveals that the value of correlation ρii′ , j doesn’t depend on which SNP
is selected, thus we get

ρii′ ,1 = ρii′ ,2 = · · ·= ρii′ ,m = ρii′ .

ρ̄1 = ρ̄2 = · · ·= ρ̄m = ρ̄.

Proof of Property 2.
To demonstrate this property, we need a few preparations:
i. Consider the result Cov(Xi j,Xi′ j) = ρii′σ

2
j , we have

EXi jXi′ j

= Cov(Xi j,Xi′ j)+EXi jEXi′ j

= ρii′σ
2
j +µ

2
j . (S.5)

Directly applying this result yields

(1)EX2
i j = σ

2
j +µ

2
j .

(2)E(
n

∑
i=1

X2
i j) = n(σ2

j +µ
2
j ).

(3)E(
n

∑
i=1

∑
i′<i

Xi jXi′ j) =
n

∑
i=1

∑
i′<i

(ρii′σ
2
j +µ

2
j )

=
n(n−1)

2
(ρ̄σ

2
j +µ

2
j ).

ii. Based on (1)-(3) stated above, we have

EX̄2
j = E(

1
n

n

∑
i=1

Xi j)
2

=
1
n2 E(

n

∑
i=1

X2
i j +2

n

∑
i=1

∑
i′<i

Xi jXi′ j)

=
n(σ2

j +µ2
j )+n(n−1)(ρ̄σ2

j +µ2
j )

n2

=
(n−1)ρ̄ +1

n
σ

2
j +µ

2
j . (S.6)

With these preparations, we now work on the demonstration of Property 2.

20/24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2021.01.13.426515doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426515
http://creativecommons.org/licenses/by/4.0/


Directly expand the expression on the left side of (S.2), we have

E
[ (Xi j− X̄ j)(Xi′ j− X̄ j)

σ2
j

]
=

1
σ2

j
[EXi jXi′ j−EXi jX̄ j−EXi′ jX̄ j +E(X̄2

j )].

Substituting (S.5) and (S.6) into this expansion, we have

E
[ (Xi j− X̄ j)(Xi′ j− X̄ j)

σ2
j

]
=

1
σ2

j
[ρii′σ

2
j +µ

2
j −

1
n
(

n

∑
a = 1
a 6= i

EXi jXa j +EX2
i j)

− 1
n
(

n

∑
a = 1
a 6= i

′

EXi′ jXa j +EX2
i′ j
)+

(n−1)ρ̄ +1
n

σ
2
j +µ

2
j ]

=
1

σ2
j
[ρii′σ

2
j +µ

2
j −

1
n
(

n

∑
a = 1
a 6= i

ρiaσ
2
j +σ

2
j +nµ

2
j )

− 1
n
(

n

∑
a = 1
a 6= i

′

ρai′σ
2
j +σ

2
j +nµ

2
j )+

(n−1)ρ̄ +1
n

σ
2
j +µ

2
j ]

=
1

σ2
j
[ρii′σ

2
j −

1
n

n

∑
a = 1
a 6= i

ρiaσ
2
j −

1
n

σ
2
j −

1
n

n

∑
a = 1
a 6= i

′

ρai′σ
2
j −

1
n

σ
2
j +

(n−1)ρ̄ +1
n

σ
2
j ]

= ρii′ −
1
n

n

∑
a = 1
a 6= i

ρia−
1
n

n

∑
a = 1
a 6= i

′

ρai′ +
(n−1)

n
ρ̄− 1

n
. (S.7)

Thus we derive the conclusion in Property 2.
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Proof of Property 3.
For ease of calculation, we make a complement to the value range of index i

′
:

E
[ n

∑
i=1

n

∑
i′=i+1

(Xi j− X̄ j)(Xi′ j− X̄ j)

σ2
j

]

=
1
2

E
[ n

∑
i=1

∑
i′ 6=i

(Xi j− X̄ j)(Xi′ j− X̄ j)

σ2
j

]

=
1
2

n

∑
i=1

∑
i′ 6=i

E
[ (Xi j− X̄ j)(Xi′ j− X̄ j)

σ2
j

]
. (S.8)

Equation(S.8) together with the conclusion (S.7) in the proof of Property 2 yields

E
[ n

∑
i=1

n

∑
i′=i+1

(Xi j− X̄ j)(Xi′ j− X̄ j)

σ2
j

]

=
1
2

n

∑
i=1

∑
i′ 6=i

[ρii′ −
1
n

n

∑
a = 1
a 6= i

ρia−
1
n

n

∑
a = 1
a 6= i

′

ρai′ +
(n−1)ρ̄

n
− 1

n
]

=
n(n−1)

2
ρ̄− 1

2n

n

∑
i=1

∑
i′ 6=i

n

∑
a = 1
a 6= i

ρia−
1

2n

n

∑
i=1

∑
i′ 6=i

n

∑
a = 1
a 6= i

′

ρai′ +
n(n−1)2

2n
ρ̄− n(n−1)

2n

=
(2n−1)(n−1)

2
ρ̄− 1

2n

n

∑
i=1

∑
i′ 6=i

n

∑
a = 1
a 6= i

ρia−
1
2n

n

∑
i=1

∑
i′ 6=i

n

∑
a = 1
a 6= i

′

ρai′ −
n(n−1)

2n
.

We observe that
n
∑

a = 1
a 6= i

ρia is irrelevant to i
′
, therefore

1
2n

n

∑
i=1

∑
i′ 6=i

n

∑
a = 1
a 6= i

ρia

=
n−1

2n

n

∑
i=1

n

∑
a = 1
a 6= i

ρia

=
n−1

2n
n(n−1)ρ̄ =

(n−1)2

2
ρ̄.
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Besides, if we change the sequence of summation, we have

1
2n

n

∑
i=1

∑
i′ 6=i

n

∑
a = 1
a 6= i

′

ρai′

=
1

2n

n

∑
i′=1

∑
i 6=i′

n

∑
a = 1
a 6= i

′

ρai′

=
n−1

2n
n(n−1)ρ̄

=
(n−1)2

2
ρ̄.

Substituting them into the expansion, we get

E
[ n

∑
i=1

n

∑
i′=i+1

(Xi j− X̄ j)(Xi′ j− X̄ j)

σ2
j

]

=
(2n−1)(n−1)

2
ρ̄− (n−1)2

2
ρ̄− (n−1)2

2
ρ̄− n(n−1)

2n

= (
(2n−1)(n−1)

2
− (n−1)2)ρ̄− n−1

2

=
n−1

2
ρ̄− n−1

2

=
n−1

2
(ρ̄−1).

Thus we finish the proof of Property 3.
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Proof of Property 4.
At the start, we focus on a part of the expression on the left side of (3):

E
[ n

∑
i
′
= 1

i
′ 6= i

(Xi j− X̄ j)(Xi′ j− X̄ j)

σ2
j

]

=
n

∑
i
′
= 1

i
′ 6= i

[ρii′ −
1
n

n

∑
a = 1
a 6= i

ρia−
1
n

n

∑
a = 1
a 6= i

′

ρai′ +
(n−1)

n
ρ̄− 1

n
]

=
n

∑
i
′
= 1

i
′ 6= i

ρii′ −
n−1

n

n

∑
i
′
= 1

i
′ 6= i

ρii′ −
1
n

n

∑
i
′
= 1

i
′ 6= i

n

∑
a = 1
a 6= i

′

ρai′ +
(n−1)2

n
ρ̄− n−1

n

=
1
n

n

∑
i
′
= 1

i
′ 6= i

ρii′ −
1
n
(

n

∑
i′=1

n

∑
a = 1
a 6= i

′

ρai′ −
n

∑
a = 1
a 6= i

ρai)+
(n−1)2

n
ρ̄− n−1

n

=
2
n

n

∑
i
′
= 1

i
′ 6= i

ρii′ −
1
n

n(n−1)ρ̄ +
(n−1)2

n
ρ̄− n−1

n

=
2
n

n

∑
i
′
= 1

i
′ 6= i

ρii′ −
n−1

n
ρ̄− n−1

n
. (S.9)

Substituting (S.7), together with (S.9), into the whole expansion, we get

E
[ (Xi j− X̄ j)(Xi′ j− X̄ j)

σ2
j

+
1
2

n

∑
k = 1
k 6= i

(Xi j− X̄ j)(Xk j− X̄ j)

σ2
j

+
1
2

n

∑
l = 1
l 6= i

′

(Xl j− X̄ j)(Xi′ j− X̄ j)

σ2
j

+1
]

= ρii′ −
1
n

n

∑
a = 1
a 6= i

ρia−
1
n

n

∑
a = 1
a 6= i

′

ρai′ +
(n−1)

n
ρ̄− 1

n

+
1
2
(

2
n

n

∑
k = 1
k 6= i

ρik−
n−1

n
ρ̄− n−1

n
)

+
1
2
(

2
n

n

∑
l = 1
l 6= i

′

ρli′ −
n−1

n
ρ̄− n−1

n
)+1

= ρii′ −
1
n
− n−1

n
+1

= ρii′ .

Here we have proved the conclusion in Property 4.
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