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 ABSTRACT 

The folding of the human cerebral cortex is a highly genetically 
regulated process that allows for a much larger surface area to fit into 
the cranial vault and optimizes functional organization. Sulcal depth is 
a robust, yet understudied measure of localized folding, previously 
associated with a range of neurodevelopmental disorders. Here, we 
report the first genome-wide association study of sulcal depth. Through 
the Multivariate Omnibus Statistical Test (MOSTest) applied to vertex-
wise measures from 33,748 participants of the UK Biobank (mean age 
64.3 years, 52.0% female) we identified 856 genetic loci associated with 
sulcal depth at genome-wide significance (a=5×10-8). Comparison with 
two other measures of cortical morphology, cortical thickness and 
surface area, indicated that sulcal depth has higher yield in terms of loci 
discovered, higher heritability and higher effective sample size. There 
was a large amount of genetic overlap between the three traits, with 
gene-based analyses indicating strong associations with 
neurodevelopmental processes. Our findings demonstrate sulcal depth 
is a promising MRI phenotype that may enhance our understanding of 
human cortical morphology. 

 
 

 

During early brain development, the cerebral 
cortical sheet folds into gyri and sulci in a highly 
regulated manner, due to multiple intrinsic and 
extrinsic mechanical forces.1–3 This cortical 
folding not only allows for a much larger surface 

area to fit into the cranial vault, but also reduces 
distance between neurons, leading to faster 
signal transmission.2 Accordingly, measures of 
sulcal morphology are associated with cognitive 
performance4 and lack of cortical folding 
(lissencephaly) is accompanied  by severe 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 14, 2021. ; https://doi.org/10.1101/2021.01.13.426555doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426555
http://creativecommons.org/licenses/by-nc-nd/4.0/


VAN DER MEER ET AL.                                                                                                                   2 
 

 
 
 
 
 
 
 
 
 

mental retardation.5 Atypical folding can result 
from defects in neuronal proliferation, 
migration, and differentiation, and has been 
associated with major neurodevelopmental6–8 and 
neurodegenerative disorders.9  

Sulcal depth is a rather understudied measure of 
sulcal morphology, reflecting the convexity or 
concavity of any given point on the cortical 
surface. This measure is very robust, and 
captures complex localized folding patterns of 
the cerebral surface.10  
Several studies have indicated there is a strong 
genetic component to sulcal depth, which is 
mostly prenatally determined.11,12 Sulci are more 
similar in monozygotic than dizygotic twins,13 
and an estimated 56% of between-subject 
variance in average depth of the central sulcus is 
under genetic control.14 Further, Williams 
syndrome, caused by deletion of a section of 
chromosome 7, is associated with widespread 
reductions in sulcal depth,15 which mediate its 
behavioral symptoms.16,17 Yet, there has been no 
large-scale molecular genetics study of this 
measure. 

Here, we provide the first genome-wide 
association study (GWAS) of sulcal depth, 
comparing its genetic architecture to the more 
commonly studied brain morphological 
measures of cortical thickness and surface area. 
Given that gene variants are likely to have 
distributed effects across MRI phenotypes, we 
targeted a multivariate analysis of a vertex-wise 
representation of the  cortical surface. To that 
end, we performed the Multivariate Omnibus 
Statistical Test (MOSTest)18 on data from 1153 
vertices, using a common template (fsaverage3), 
with the medial wall vertices excluded. Our 
sample consisted of 33,748 unrelated White 
European participants of the UK Biobank 
(UKB), with a mean age of 64.3 years (standard 
deviation (SD) 7.5 years), 52.0% female.  
Following surface reconstruction, we pre-
residualized all vertices for age, sex, scanner 
site, a proxy of image quality (FreeSurfer’s 
Euler number),19 and the first twenty genetic 
principal components to control for population 
stratification. After applying  a rank-based 

inverse normal transformation, MOSTest was 
performed on the resulting residualized 
measures, yielding a multivariate association 
with 9.1 million included SNPs (see online 
methods for more details). We additionally 
repeated the main GWAS analyses while 
covarying for the mean across all vertices in 
order to remove global effects; the findings from 
these analyses were highly similar to the main 
analyses, as reported in the supplements. 

Discovery 
MOSTest revealed 856 independent loci 
reaching the genome-wide significance 
threshold of a=5×10-8 for sulcal depth, see 
Figure 1a. In comparison, for surface area and 
thickness we found 661 and 591 loci, 
respectively, see Supplementary Figure 1.  The 
effects of discovered top variants followed gyral 
and sulcal patterns, as shown in Figure 1b for the 
most significant SNP at chromosome 15. Data 
S1-S3 contains information on all discovered 
loci per trait, including mapped genes, and lists 
the significance of each lead SNP for the other 
two traits as well. 
Next, using the MiXeR tool,20,21 we fitted a 
Gaussian mixture model of the null and non-null 
effects to the three GWAS summary statistics, 
estimating the polygenicity and effect size 
variance (‘discoverability’). The results are 
summarized in Figure 1c, depicting the 
estimated proportion of genetic variance 
explained by discovered SNPs for each trait as a 
function of sample size. The horizontal shift of 
the curve across the different traits indicates that 
the effective sample size is the highest for sulcal 
depth and lowest for cortical thickness. Further, 
the mean heritability of sulcal depth, over all the 
vertices, was significantly higher than for the 
two other traits, see Figure 1d, i.e. the higher 
genetic signal in sulcal depth is also captured by 
univariate measures. 
 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 14, 2021. ; https://doi.org/10.1101/2021.01.13.426555doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426555
http://creativecommons.org/licenses/by-nc-nd/4.0/


VAN DER MEER ET AL.                                                                                                                   3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 1. Locus discovery. a) Manhattan plot of the multivariate GWAS on sulcal depth, with the observed -
log10(p-value) of each SNP shown on the y-axis. The x-axis shows the relative genomic location, grouped by 
chromosome, and the red dashed line indicate the whole-genome significance threshold of 5x10-8. The y-axis 
is clipped at -log10(p-value)=150. b) Brain map depicting the vertex-wise z-values for the top hit rs16968876 
at chromosome 15. c) Power plot, showing the relation between variance explained by genome-wide 
significant hits (y-axis) and sample size (x-axis). The number of hits discovered per modality and the percent 
explained genetic variance is indicated between brackets in the legend. d) Bar plot of the mean SNP-based 
heritability (with 95% confidence interval) across vertices (on the y-axis) per modality (x-axis). In c) and d), 
sulcal depth is represented in green, surface area in orange and cortical thickness in purple.  
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Genetic overlap 
Next, we analyzed the genetic overlap between 
the three traits at the locus level, gene level and 
pathway level. At the locus level, we found that 
625 loci had overlapping start and end positions 
between sulcal depth and surface area (Dice 
coefficient of .82), 509 loci overlapped between 
sulcal depth and cortical thickness (Dice=.70), 
and 450 loci overlapped between surface area 
and thickness (Dice=.72).  447 loci overlapped 
across all three traits, see Figure 2a.  
The large genetic overlap between the traits was 
also evident at the gene level, as illustrated in 
Figure 2b. The top gene STH, thought to play a 
role in phosphorylation of tau,22 was highly 
significantly associated with all three traits. 
ROBO2, NAV2 and SEMA3A, key players in 
neuronal outgrowth guidance,23–25 were also 
associated with all three traits. The two histone 
genes HIST1H4L and HIST1H2BL were 
relatively specifically associated with sulcal 
depth; histone is central in regulating brain 
development through its role in gene 
expression.26 
Figure 2c shows the top ten most significant 
Gene Ontology pathways for sulcal depth, 
together with its p-values for the two other traits. 
We found strong associations with neurogenesis 
and neuron differentiation pathways, 
overlapping between all three traits. 
Associations with neuronal tangential migration 
were shared by sulcal depth and surface area but 
much less by cortical thickness, in line with the 
role of tangential migration of neurons in 
determining cortical folding.27 Notably, 
pathways related to chondrocyte differentiation 
and skeletal system development appeared more 
specific to sulcal depth, possibly pointing 
towards early life interactions between cortical 
folding and the shaping of the cranium.2 
We further coupled the findings of our gene-
based analyses to cortical gene expression 
patterns, derived from post-mortem brain tissue 
of clinically unremarkable donors across the 
lifespan.28 As shown in Figure 2d, the probes 
tagging genes associated with the three traits 

showed a distinct profile over the lifespan, 
characterized by high prenatal expression and 
low postnatal expression. 

 
Discussion 
Here, we reported the results from the first large-
scale molecular genetics study of sulcal depth. 
With 856 loci discovered, explaining an 
estimated 32% of its genetic variance, this study 
has found the highest number of loci for any 
brain trait considered so far.  
The direct comparison with surface area and 
thickness indicated that sulcal depth is more 
heritable and its genetic determinants are more 
discoverable. This may reflect the evolutionary 
significance of cortical folding, the development 
of which enabled the advent of a larger brain and 
optimization of its functional organization.29 A 
synthesis of the literature suggests that human-
specific folding follows from an interplay 
between mechanical forces and cellular 
mechanisms that have come about over the 
course of evolution through mutations of genes 
primarily coupled to cell cycling and 
neurogenesis.30 Our findings suggest that the 
sulcal depth metric is closely aligned with these 
genetic processes that shape highly important 
brain morphological characteristics.  
As indicated by the brain maps, genetic effects 
may have opposing directions of effects on 
neighbouring points in the brain and are not 
likely to be captured by ROIs as defined in 
common parcellation schemes. This is in line 
with strong differences in the morphology and 
arrangement of neurons and fibres along cortical 
folds, varying widely from the gyral crown 
along the lateral wall down to the sulcal 
fundus.30,31 This speaks to the use of vertex-wise 
data to maximally capture such patterns. The 
presence of widespread, complex genetic effects 
also attests to the application of multivariate 
tools to boost discovery of genetic determinants 
by leveraging shared signal between measures. 
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Figure 2. Genetic overlap. a) Venn diagram of the amount of discovered loci overlapping between the three 
different traits. b) Scatterplot of gene-based p-values, with y-axis indicating p-values for sulcal depth, x-axis 
those for surface area and the coloring indicating p-values for cortical thickness. Note, -log10(p-values) are 
clipped at 40. c) Ten most significant gene pathways for sulcal depth, as listed on the y-axis, with the -log10(p-
values) indicated on the x-axis for each of the three traits. d) Mean, normalized expression (y-axis) of genes 
over time (x-axis, log10 scale) per trait and over all available genes, as indicated by colors. Grey shading 
indicates 95% confidence bands.   
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We further found large genetic overlap between 
all three morphological brain traits, extending 
our previous findings that surface area and 
thickness share the majority of their genetic 
determinants.18,32 This is in contrast to other 
studies which suggested that surface area and 
thickness are genetically independent of each 
other.33,34 Those studies made use of genetic 
correlation estimates, while the approach used 
here does not rely on consistent directions of 
effects across the genome, which is unlikely to 
be the case for pairs of complex traits.21,35 We 
found that sulcal depth overlaps more with 
surface area than with cortical thickness, 
indicating a closer relation between the degree 
of cortical folding and surface area. However, 
these metrics do partly capture distinct genetic 
processes, i.e. sulcal depth is likely to provide 
additional information on the genetics of brain 
morphology to complement what is found 
through studies of surface area and cortical 
thickness.   
In addition to the reported locus overlap, the 
specific identified genetic variants, genes and 
pathways further inform our understanding of 
cortical morphology and associated disorders. 
The most significant pathways were particularly 
relevant for early brain development, with 
neurogenesis and differentiation ranking 
highest. This fits very well with a large body of 
literature on the genetic regulation of the 
mechanical forces that drive cortical folding.30 It 
is also in accordance with our findings that the 
sets of identified genes showed highest 
expression in fetal cortical tissue. Further, 
cortical folding has been shown to take place 
almost entirely prenatally,12 with sulcal patterns 
at birth being predictive of neurobehavioral 
outcomes.11 Follow-ups on our work with 
neuroimaging data across the lifespan, including 
infants, is needed to replicate these findings and 
to further determine spatiotemporal patterns of 
genetic effects on sulcal depth. Given reported 
associations of sulcal morphology with a range 
of neurodevelopmental and neurodegenerative 
disorders, 6–9 it will also be of interest to 
investigate how sulcal depth genetics relates to 
the development of brain disorders.  

To conclude, despite the evolutionary and 
ontogenetic importance of cortical folding, 
sulcal depth is an underexplored trait that is 
genetically more discoverable than cortical 
thickness and surface area. Further investigation 
of this trait may significantly enhance our 
understanding of the human brain and 
associated disorders. 
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Online Methods 
Participants 
We made use of data from participants of the UKB population cohort, obtained from the data repository under accession 
number 27412. The composition, set-up, and data gathering protocols of the UKB have been extensively described 
elsewhere36. For this study, we selected White Europeans that had undergone the neuroimaging protocol. For the primary 
analysis, making use of T1 MRI scan data released up to March 2020, we excluded 771 individuals with bad structural scan 
quality as indicated by an age and sex-adjusted Euler number19 more than three standard deviations lower than the scanner 
site mean. We further excluded one of each pair of related individuals, as determined through genome wide complex trait 
analysis (GCTA), using a threshold of 0.0625 (n=1,138). Our sample size for this analysis was n=33,748, with a mean age 
of 64.3 years (SD=7.5). 52.0 % of the sample was female. 

Data preprocessing 
T1-weighted scans were collected from three scanning sites throughout the United Kingdom, all on identically configured 
Siemens Skyra 3T scanners, with 32-channel receive head coils. The UKB core neuroimaging team has published extensive 
information on the applied scanning protocols and procedures, which we refer to for more details37. The T1 scans were 
obtained from the UKB data repositories and stored locally at the secure computing cluster of the University of Oslo. We 
applied the standard “recon-all -all” processing pipeline of Freesurfer v5.3., followed by extracting vertex-wise data for sulcal 
depth, surface area and thickness, at ico3 (1,284 vertices) and ico4 (5,124) resolution, without applying smoothing. We 
included both the left and right hemisphere measures and excluded non-cortical vertices, belonging to the medial wall.  
Note that we have chosen sulcal depth as a metric of cortical folding, as this captures -vertex-wise- localized  folding, 
providing the signed distance from the inflated surface.  
We subsequently regressed out age, sex, scanner site, Euler number, and the first twenty genetic principal components from 
each vertex measure. Following this, we applied rank-based inverse normal transformation38 to the residuals of each measure, 
leading to normally distributed measures as input for the GWAS.  
We reran the MOSTest analyses as described above, additionally regressing out the mean across all vertices for each of the 
three traits. The resulting number of loci are shown in Supplementary Table 1.  

 
MOSTest procedure  
The MOSTest software is freely available at https://github.com/precimed/mostest, and details about the procedure and its 
extensive validation have been described previously.18 In brief, consider N variants and M (pre-residualized) phenotypes. Let 
z%& be a z-score from the univariate association test between ith variant and jth (residualized) phenotype and z% = (z%), … , z%,) 
be the vector of z-scores of the ith variant across M phenotypes. Let Z = /z%&0 be the matrix of z-scores with variants in rows 
and phenotypes in columns. For each variant consider a random permutation of its genotypes and let Z1 = /z2%&0 be the matrix 
of z-scores from the univariate association testing between variants with permuted genotypes and phenotypes. A random 
permutation of genotypes is done once for each variant and the resulting permuted genotype is tested for association with all 
phenotypes, therefore preserving correlation structure between phenotypes. 
Let R4 be the correlation matrix of Z1, and R4 = USV8 is its singular valued decomposition (U and V – orthogonal matrixes, S– 
diagonal matrix with singular values of R4 on the diagonal). Consider the regularized version of the correlation matrix R49 =
US9V8, where S9 is obtained from S by keeping r largest singular values and replacing the remaining with rth largest. The 
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MOSTest statistics for ith variant (scalar) is then estimated as x% = z%R49<)z%8, where regularization parameter r is selected 
separately for cortical area and thickness to maximize the yield of genome-wide significant loci. In this study we observed 
the largest yield for cortical surface area with r=10; the optimal choice for cortical thickness was r=20 (Supplementary Figure 
5). The distribution of the test statistics under null (CDF@ABBCDEF) is approximated from the observed distribution of the test 
statistics with permuted genotypes, using the empirical distribution in the 99.99 percentile and Gamma distribution in the 
upper tail, where shape and scale parameters of Gamma distribution are fitted to the observed data. The p-value of the 
MOSTest test statistic for the ith variant is then obtained as p,HI8 = CDF@ABBCDEF(x%).  

 
Univariate GWAS procedure  
We made use of the UKB v3 imputed data, which has undergone extensive quality control procedures as described by the 
UKB genetics team39. After converting the BGEN format to PLINK binary format, we additionally carried out standard 
quality check procedures, including filtering out individuals with more than 10% missingness, SNPs with more than 5% 
missingness, and SNPs failing the Hardy-Weinberg equilibrium test at p=1*10-9. We further set a minor allele frequency 
threshold of 0.005, leaving 9,061,022 SNPs. 
We have previously calculated that the number of features provided by fsaverage3, 1153 vertices following exclusion of the 
medial wall, leads to the maximum number of loci identified through MOSTest, compared to other resolutions.40 We followed 
up on the most significant findings from MOSTest through univariate GWAS on the 5124 vertices that make up fsaverage4, 
i.e. one level of resolution above fsaverage3. This was done to improve the resolution of the visualisations. The univariate 
GWAS on each of the pre-residualised and normalized measures were carried out using the standard additive model of linear 
association between genotype vector, g&, and phenotype vector, y. Independent significant SNPs and genomic loci were 
identified in accordance with the PGC locus definition, as also used in FUMA SNP2GENE.41 First, we select a subset of 
SNPs that pass genome-wide significance threshold 5x10-8, and use PLINK to perform a clumping procedure at LD r2=0.6, 
to identify the list of independent significant SNPs. Second, we clump the list of independent significant SNPs at LD r2=0.1 
threshold to identify lead SNPs.  Third, we query the reference panel for all candidate SNPs in LD r2 of 0.1 or higher with 
any lead SNPs. Further, for each lead SNP, it's corresponding genomic loci is defined as a contiguous region of the lead 
SNPs' chromosome, containing all candidate SNPs in r2=0.1 or higher LD with the lead SNP. Finally, adjacent genomic loci 
are merged together if they are separated by less than 250 KB. Allele LD correlations are computed from EUR population of 
the 1000 genomes Phase 3 data. We made use of the Functional Mapping and Annotation of GWAS (FUMA) online platform 
(https://fuma.ctglab.nl/) to map significant SNPs from the MOSTest analyses to genes.  
We additionally performed clumping according to the definition used by the Enhancing NeuroImaging Genetics through 
Meta-Analysis (ENIGMA) consortium, to allow for comparison with previous imaging GWAS studies. According to this 
definition, loci were formed through PLINK using a p-value threshold of 5x10-8 (--clump-p1) and LD cutoffs of 1 Mb (--
clump-kb) and r2< 0.2 (--clump-r2). Please see Supplementary Table 1 for the number of lead SNPs and loci according to 
both definitions. 
Loci were defined to be overlapping between two traits if their start and end position overlapped. The Dice coefficient for 
each pair of traits was calculated as the number of overlapping loci divided by the sum of the total number of discovered loci 
for both traits. 

 
MiXeR analysis 
We applied a causal mixture model20,21 to estimate the percentage of variance explained by genome-wide significant SNPs 
as a function of sample size. For each SNP, i, MiXeR models its additive genetic effect of allele substitution,	β%, as a point-
normal mixture, β% = (1 − π))N(0,0) + π)N(0, σUV), where π) represents the proportion of non-null SNPs (`polygenicity`) 
and σUV  represents variance of effect sizes of non-null SNPs (`discoverability`). Then, for each SNP, j, MiXeR incorporates 
LD information and allele frequencies for 9,997,231 SNPs extracted from 1000 Genomes Phase3 data to estimate the 
expected probability distribution of the signed test statistic, z& = δ& + ϵ& = N∑ [H%r%&β% + ϵ&% , where N is sample size, H% 
indicates heterozygosity of i-th SNP,  r%& indicates allelic correlation between i-th and j-th SNPs, and ϵ& ∼ N(0, σ^V) is the 
residual variance. Further, the three parameters, π), σUV, σ^V, are fitted by direct maximization of the likelihood function. Fitting 
the univariate MiXeR model does not depend on the sign of z&, allowing us to calculate |z&| from MOSTest p-values. Finally, 
given the estimated parameters of the model, the power curve	S(N)  is then calculated from the posterior distribution 
p`δ&az&, N). 

 
Gene-set analyses 
We carried out gene-based analyses using MAGMA v1.08 with default settings, which entails the application of a SNP-wide 
mean model and use of the 1000 Genomes Phase 3 EUR reference panel. Gene-set analyses were done in a similar manner, 
restricting the sets under investigation to those that are part of the Gene Ontology biological processes subset (n=7522), as 
listed in the Molecular Signatures Database (MsigdB; c5.bp.v7.1). 
Regarding the results from the gene-based analyses, in Figure 2, we note that there is a horizontal line visible at -p=5e-10, 
caused by many genes having this exact p-value. This is due to MAGMA switching to permutation when its numerical 
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integration approach fails. MAGNA uses 1e-9 permutations, so when the observed is more extreme than this, this is the 
resulting p-value. 

 
Gene expression analyses 
We made use of gene expression data derived from brain tissue from 56 clinically unremarkable donors ranging in age from 
5 weeks post conception to 82 years.28 We took the data as preprocessed by Kang et al., selecting for each gene the probe 
with the highest differential stability, n=16,660. We subsequently averaged over 13 cortical regions, within donor, and 
normalized the expression values, within probe, across donors, to a range between 0 (lowest observed value) and 100 (highest 
observed value). Plotting of the mean expression over time per gene set was done with ggplot2 in R v4.0.3., with 
geom_smooth(method=”gam”) using default settings.  
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Extended Data 
List of discovered loci and genes 
Sup Please see Data S1-S3 for the full tables of discovered loci for each trait. This includes information on lead SNP, 
genomic location, significance, and mapped genes, as outputted by FUMA.  
Data S4-S6 lists the genes found to be significant, following multiple-comparisons correction (a=.05/18,203), through 
MAGMA, per trait. 

 

 
Supplementary Figure 1. Manhattan plots for surface area (top, in orange) and cortical thickness (bottom, in purple). The 
observed -log10(p-value) of each SNP is shown on the y-axis. The x-axis shows the relative genomic location, grouped by 
chromosome, and the red dashed line indicate the whole-genome significance threshold of 5x10-8. The y-axis is clipped at -
log10(p-value)=150. 
 
Supplementary Table 1. Number of significant loci per trait for both PGC and ENIGMA locus definitions. Left: results from 
main analyses, right: results after additionally regressing out the mean across vertices (‘global’).  
 

 Main analyses Regressing out global 
Trait PGC ENIGMA PGC ENIGMA 
Sulcal depth 856 2242 880 2349 
Surface area 661 1409 647 1369 
Thickness 591 1173 580 1127 
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