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Abstract 

In this study, we merged methods from machine learning and human neuroimaging to causally 

test the role of self-induced affect states in biasing the affective perception of subsequent image 

stimuli. To test this causal relationship, we developed a novel paradigm in which (n=40) healthy 

adult participants observed multivariate neural decodings of their real-time functional magnetic 

resonance image (rtfMRI) responses as feedback to guide explicit regulation of their brain (and 

corollary affect processing) state towards a positive valence goal state. By this method, individual 

differences in affect regulation ability were controlled. Attaining this brain-affect goal state 

triggered the presentation of pseudo-randomly selected affectively congruent (positive valence) 

or incongruent (negative valence) image stimuli drawn from the International Affective Picture Set. 

Separately, subjects passively viewed randomly triggered positively and negatively valenced 

image stimuli during fMRI acquisition. Multivariate neural decodings of the affect processing 

induced by these stimuli were modeled using the task trial type (state- versus randomly-triggered) 

as the fixed-effect of a general linear mixed effects model. Random effects were modeled subject-

wise. We found that self-induction of a positive affective valence state significantly positively 

biased the perceived valence of subsequent stimuli. As a manipulation check, we validated 

affective state induction achieved by the image stimuli using independent psychophysiological 

response measures of hedonic valence and autonomic arousal.  We also validated the predictive 

fidelity of the trained neural decoding models for brain states induced by an out-of-sample set of 

image stimuli. Beyond its contribution to our understanding of the neural mechanisms that bias 

affect processing, this work demonstrated the viability of novel experimental paradigms triggered 

by pre-defined affective cognitive states. This line of individual differences experimentation 

potentially provides scientists with a valuable tool for causal exploration of the roles and identities 

of intrinsic cognitive processing mechanisms that shape our perceptual processing of sensory 

stimuli. 
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Introduction 

Our capacity to process and regulate emotions is central to our ability to optimize psychosocial 

functioning and quality of life1. As a corollary, disruptions in emotion processing regulation are 

broadly ascribed to psychiatric illnesses including borderline personality disorder, depression, 

anxiety disorders, PTSD, and substance-use disorders2 which negatively impact quality of life and 

functioning3,4. In light of this, a primary focus of cognitive behavioral therapy (CBT),  an effective 

treatment for disorders involving emotion dysregulation5, is the development of mental strategies 

for identifying and volitionally reducing negatively biased emotional states that are the product of 

maladaptive emotion processing and regulation. Neuroimaging has provided great insight into the 

functional neurocircuits involved in CBT-based emotion regulation strategies6; however, the 

causal neurobiological mechanisms by which these strategies induce adaptive emotion 

processing over time remain elusive. 

Research into the effects of temporal context on affect and emotion processing may have 

implications for increasing our understanding of the neural bases of emotion regulation. Prior work 

has demonstrated that changing affective context prior to an emotional target shapes the 

processing of that target. Such priming effects both accelerate and weaken the emotional 

response to affectively congruent target stimuli7. Manipulations of affect state impact the temporal 

structure of the neural responses to subsequent affective image stimuli8 as well as the corollary 

psychophysiological responses to those stimuli9,10. Further, stimulus-cued emotional states bias 

the self-reported perception of successive emotional stimuli11. 

These findings are consistent with effects that would be predicted by the deployment of 

situational and attentional modification strategies according to the process model of emotion 

regulation12 and point to potential underlying mechanisms driving CBT-related changes to 

emotion processing. However, the ability of affective cognitions related to these strategies to bias 

subsequent emotional responses has not yet been causally tested. Thus, the primary aim of this 

work was to contribute to our knowledge of the mechanisms underlying emotion regulation by 

experimentally demonstrating that self-induced and verified emotional states causally bias the 

affective perception of image stimuli. 

Real-time functional magnetic resonance imaging (rtfMRI), when used to generate brain 

activation feedback13 (i.e., rtfMRI-guided neuromodulation or neurofeedback), reflects a 

promising methodology that has not to our knowledge been applied for mechanistic testing of how 

the specific context related to such feedback-induced affect states causally bias affective 

perceptions. Here, the applied advantage of rtfMRI is that self-induced neurocognitive states 

(achieved with the aid of rtfMRI guidance) can be verified and used as independent experimental 

variables to trigger subsequent emotional stimulus-response characterizations. Yet, a challenge 

to rtfMRI-guided neuromodulation studies, and brain computer interface (BCI) research in 

general, is the large individual variation observed in subjects’ ability to volitionally modulate their 

cognitive states – the well-known “BCI-illiteracy phenomenon”14. 

Within BCI studies, neurophysiological and psychological variables (e.g., self-confidence 

and concentration) were shown to significantly predict performance variation15–17. However, very 

little is known about individual differences in the ability to volitionally regulate emotional states. 

Therefore, the secondary aim of this project was to characterize individual variation in the ability 

to self-induce emotional states using neurofeedback according to the subjects’ unguided self-

induction ability. This research has direct clinical relevance to informing our understanding of the 
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neuroregulation capabilities of psychiatric patients to identify those most or least capable of 

emotion regulation. 

To explore our aims, we developed a novel task in which healthy adult participants utilized 

rtfMRI feedback to explicitly regulate their brain and corollary affect processing states towards a 

goal of extreme pleasantness (positive valence). Reaching this brain-affect state triggered the 

presentation of an affectively congruent (positive valence) or incongruent (negative valence) 

image stimulus drawn from the International Affective Picture Set18 (IAPS). Between regulation 

trials, participants passively viewed (without regulation) IAPS stimuli associated with either 

positive or negative valence. We then compared image stimulus-cued brain and emotional 

responses arising from explicitly feedback-facilitated and self-induced positively valent emotional 

states versus random emotional states (passive viewing) and causally tested the ability of self-

induced positive affective states to bias the affective perception of image stimuli. 

Our results reveal that self-induction of positive affect causally biases affect processing 

responses to image stimuli in a manner similar to viewing affectively laden image stimuli11 

suggesting a potential mechanism by which CBT-based mental strategies may work to reduce 

negatively biased emotional processing states. However, we also found that individual differences 

in the intrinsic ability to precisely self-induce affect processing states without guidance did not 

generalize to the achievement of self-induced positive affect in the presence of rtfMRI-feedback, 

potentially suggesting inherent affect regulation ability separate from that of concentration, e.g., 

the ability to accurately perceive temporally proximal affect processing states or temporally distal 

goal states. Additional research will be necessary to characterize the latent neurobiological and 

psychological factors driving these individual differences. 

 

Methods 

Ethics Statement 

All participants provided written informed consent after receiving written and verbal descriptions 

of the study procedures, risks, and benefits. We performed all study procedures and analysis with 

approval and oversight of the Institutional Review Board at the University of Arkansas for Medical 

Sciences (UAMS) in accordance with the Declaration of Helsinki and relevant institutional 

guidelines and policies. 

 

Participants 

We enrolled subjects (n=40)  having the following demographic characteristics: age [mean(s.d.)]: 

38.8(13.3), range 20‒65; sex: 22 (55%) female; race/ethnicity: 28 (70.%) self-reporting as White 

or Caucasian, 9 (22.5%) as Black or African-American, 1 (2.5%) as Asian, and 2 (5%) self-

reporting as other; education [mean(s.d.)]: 16.8(2.2) years, range 12‒23; WAIS-IV IQ 

[mean(s.d.)]: 102.5(15.3), range 73‒129.  All of the study’s participants were right-handed 

(assessed via Edinburgh Handedness Inventory19) native-born United States citizens who were 

medically healthy and exhibited no current Axis I psychopathology, including mood disorders, as 

assessed by the SCID-IV clinical interview4. All participants reported no current use of 

psychotropic medications and produced a negative urine screen for drugs of abuse (cocaine, 

amphetamines, methamphetamines, marijuana, opiates, and benzodiazepines) immediately prior 

to both the clinical interview and MRI scan. When necessary, we corrected participants’ vision to 

20/20 using an MRI compatible lens system (MediGoggles™, Oxforshire, United Kingdom), and 
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we excluded all participants endorsing color blindness.  

 

Experiment Design.  

Following the provision of informed consent, subjects visited the Brain Imaging Research Center 

of the University of Arkansas for Medical Sciences on two separate days. On Study Day 1 a 

trained research assistant assessed all subjects for major medical and psychiatric disorders as 

well as administered instruments to collect the following data to be used as either secondary 

variables hypothesized to explain individual variance in emotion regulation-related neural activity, 

covariates of no interest, or to assess inclusion/exclusion criteria: demographics (BIRC 

demographic collection form), verbal IQ (Receptive and Expressive One-Word Picture Vocabulary 

Test20), working memory (Wechsler Adult Intelligence Scale, Digit Span task21), current and past 

psychiatric disorders and drug use history (Structure Clinical Interview for DSM-IV4, depression 

symptom severity (Beck Depression Inventory22), history of childhood abuse and neglect 

(Childhood Trauma Questionnaire23), emotion dysregulation (Difficulties in Emotion Regulation 

Scale24), handedness (Edinburgh Handedness Inventory19), personality (NEO Five-Factor 

Inventory25), anxiety (State-Trait Anxiety Inventory26 – trait assessed on Study Day 1 and state 

assessed on Study Day 2), and emotional invalidation (Perceived Invalidation of Emotion Scale27, 

PIES). The participant returned to the BIRC for Study Day 2 within 30 days after Study Day 1 to 

complete the MRI acquisition. During this day, the participant received training and completed the 

full MRI acquisition protocol, depicted in Figure 1. 

 

 

Figure 1: Study Day 2 Experimental tasks: order, number of repetitions, duration, and stimuli. 

Tasks are colored by role. Gray depicts task training and application of psychophysiology 

recording apparatus. Blue depicts brain structural image acquisition. Orange depicts functional 

image acquisition. Identification and Modulation blocks of the fMRI acquisition summarize the 

relevant trial types used within that task (see Neuroimaging section for abbreviations). *Training 

of real-time multivariate pattern analysis predictive models was performed concurrently with the 

Resting State task of the fMRI acquisition. 

 

Training: Each participant received a video-based overview of the experiment to be 

performed on that day as well as training on the study’s task variations and trial types. The 

participant was offered the opportunity to use the restroom and then was moved to the MRI 

scanner room and fully outfitted with psychophysiological recording equipment. 

Neuroimaging: For each subject we captured a registration scan and detailed T1-weighted 

structural image. We then acquired functional MRI data for three task variations: identification, 

resting state, and modulation. Identification (Id) task acquisition consisted of 2 x 9.4 min fMRI 

scans during which the participant was presented with 120 images drawn from the International 

Affective Picture System18 (IAPS) to support one of two trial types (see Figure 2): 90 passive 

stimulus (PS) trials and 30 cued-recall (CR) trials. Identification task PS trials (abbreviated Id-PS) 
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presented an image for 2 s (cue) succeeded by a fixation cross for a random inter-trial interval 

(ITI) sampled uniformly from the range 2–6 s. Identification task cued-recall (Id-CR) trials were 

multi-part: a cue image was presented for 2 s followed by an active cue response step for 2 s (the 

word “FEEL” overlaying the image) followed by the word FEEL alone for 8 s, which signaled the 

participant to actively recall and re-experience the affective content of the cue image, followed by 

a 2–6 s ITI. During pre-scan training on the Id-CR task’s recall condition, subjects were instructed 

to “Imagine the last picture you saw as best you can. Try to make yourself feel exactly how you 

felt when you saw this picture the first time. Hold that feeling the whole time you see the word 

FEEL.”  Within each scan, Id-PS and Id-CR trials were pseudo-randomly sequentially ordered to 

minimize correlations between the hemodynamic response function (HRF)-derived regressors of 

the tasks.  The order was fixed for all subjects. 

During resting state acquisition, we acquired 7.5 min of fMRI data in which the subject 

performed mind-wandering with eyes open while observing a fixation cross. During training, 

subjects were instructed to “Keep your eyes open, look at the cross in front of you, and let your 

brain think whatever it wants to.”  Concurrently with the resting state task, the real-time variant of 

the MVPA prediction model (see below) was fit using data drawn from the Identification task fMRI 

data to define individual brain state representations of the affect goal. 

Modulation (Mod) task acquisition consisted of 2 x 10.5 min fMRI scans during which the 

participant was presented with 60 IAPS images according to two trial types (see Fig 2): 40 passive 

stimulus (Mod-PS) trials, which were identically formatted to the Id-PS trials, and 20 feedback-

triggered stimulus (Mod-FS) trials. Mod-FS trials used real-time fMRI feedback of the subject’s 

affective state to guide them in self-inducing affective brain states associated with their 

representations of extreme positive valence. The computer system monitored the subject’s neural 

representation of their valence levels within each acquisition volume of fMRI data and if that 

representation met pre-defined criteria (i.e., the goal state, which we defined as hyperplane 

distance ≥ 0.8 for 4 consecutive EPI volumes) then a positively (congruent) or negatively 

(incongruent) valent image stimulus was triggered. The brain state criteria representing the affect 

goal state were determined by the results of an initial pilot of the experiment to identify parameters 

that were challenging but consistently reachable. Within each scan, Mod-PS and Mod-FS trials 

were pseudo-randomly sequentially ordered to minimize correlations between the hemodynamic 

response function (HRF)-derived regressors of the tasks. The order was fixed for all subjects. 

We provided real-time visual feedback during Mod-FS trials by manipulating the 

transparency of the word FEEL, which was the cue to volitionally regulate affect to an extreme 

positive valence. The transparency of the text was scaled to reflect real-time estimates of subject’s 

represented affective valence with respect to the desired hyperplane distance threshold. This was 

achieved by mapping MVPA prediction model hyperplane distances (see below) from their base 

range [-1.25,1.25] to the range of possible transparencies, α ϵ [0,1]. Fully transparent text (α=0) 

appeared as a black screen and denoted poor affect regulation performance, i.e., highly negative 

valence. Fully opaque text (α=1) appeared bright yellow and denoted good performance. The 

transparency of the text was reset every 2 s (reflecting the momentary hyperplane distance 

prediction based upon the current EPI volume). The transparency was adjusted (approximately 

20 frames-per-second) to present smooth transitions towards that brain-affect goal. The initial 

hyperplane distance threshold was fixed for 20 seconds.  If the subject had not attained the 

threshold (i.e. triggered the test stimulus) by this time then the threshold was linearly and 
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continuously lowered to 0 over the subsequent 18 s at which point the stimulus was automatically 

triggered even if the threshold had not been attained (Fig. 2). 

 

 

Figure 2: Summary of experimental task trial designs. (Id-PS): Identification task passive stimulus 

trials, which were identical to Modulation task passive stimulus (Mod-PS) trials. (Id-CR): 

Identification task cued-recall trials.  (Mod-FS): Modulation task feedback-triggered stimulus trials. 

(Bottom): depiction of a hypothetical Mod-FS trial for the experimental design.  

 

Stimulus Selection: We sampled 180 IAPS images to use as emotion processing induction 

stimuli. Identification task stimuli were sampled computationally using a previously published 

algorithm28 that selects images such that the subspace of the valence-arousal plane for normative 

scores within the IAPS dataset is maximized (see Fig 3).  We performed this sampling process 

first for the 90 images used in Id-PS trials. The IAPS identifiers of these images were previously 

reported29. We then separately (but similarly) sampled an additional 30 images used in Id-CR 

trials. The IAPS identifiers of these images were also previously reported30. Next we constructed 

extreme polar subsets of positively and negatively valenced image stimuli by constructing 

thresholds of permissible valence and arousal scores. Valence (v) was constrained such that: v≥7 

or v≤2.6. We then iteratively constrained the permissible arousal scores until we identified 

positively and negatively valenced subsets that did not exhibit a group mean difference in arousal 

scores (found to be 4.6 < A < 6.8) thereby controlling for arousal response as a stimulus subset 

variable. We then sampled 30 images each from these subsets and uniformly randomly assigned 

these images to Mod-PS trials (n=40) and Mod-FS trials (n=20), respectively. The outcome of this 

sampling and assignment process is presented in Figure 3. The specific IAPS identities of these 
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images are reported in the Appendix. 

 

 

Figure 3: Normative valence and arousal scores for stimuli selected for each of the four 

experimental trial types.  Summary statistics for Identification task stimuli are as follows: Id-PS 

valence [mean (std. dev)] 5.04 (1.95); Id-PS arousal [mean (std. dev)] 4.95 (1.40); Id-CR valence 

[mean (std. dev)] 5.30 (1.95); Id-CR arousal [mean (std. dev)] 4.99 (1.51).  There were no 

significant differences in affect properties between the Id-PS and Id-CR cue stimuli for either 

valence (p=.49; signrank, h0: μ1= μ2) or arousal (p=.86; ranksum, h0: μ1= μ2).  Summary statistics 

for the Modulation task stimuli are as follows. Mod-PS (pos. valence cluster) valence [mean (std. 

dev)] 7.41 (.30); Mod-PS (neg. valence cluster) valence [mean (std. dev)] 2.08 (.36); Mod-FS 

(pos. valence cluster) valence [mean (std. dev)] 7.35 (0.32); Mod-FS (neg. valence cluster) 

valence [mean (std. dev)] 2.03 (0.41).  Between the Mod-PS and Mod-FS stimuli in the positive 

valence cluster, there were no significant difference in valence (p=.60; ranksum; h0: μ1= μ2) nor 

arousal (p=.25; ranksum; h0: μ1= μ2).  There were also no significant group differences in affect 

properties between the Mod-PS and Mod-FS stimuli in the negative valence cluster, either for 

valence (p=.74; ranksum; h0: μ1= μ2) or arousal (p=.54 ranksum; h0: μ1= μ2).   

 

MR Image Acquisition 

We acquired all imaging data using a Philips 3T Achieva X-series MRI scanner (Philips 

Healthcare, Eindhoven, The Netherlands) with a 32-channel head coil. We acquired anatomic 

images using an MPRAGE sequence (matrix = 256 x 256, 220 sagittal slices, TR/TE/FA = 

8.0844/3.7010/8°, final resolution =0.94 x 0.94 x 1 mm3. We acquired functional images using the 

following EPI sequence parameters: TR/TE/FA = 2000 ms/30 ms/90°, FOV = 240 x 240 mm, 

matrix = 80 x 80, 37 oblique slices, ascending sequential slice acquisition, slice thickness = 2.5 

mm with 0.5 mm gap, final resolution 3.0 x 3.0 x 3.0 mm3.   

 

Real-time MRI Preprocessing and Multivariate Pattern Classification 

We implemented custom code that acquired each raw fMRI volume as it was written to disk by 

the MRI’s computer system (post-reconstruction). Each volume underwent a preprocessing 
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sequence using AFNI31 in the following order: motion correction using rigid body alignment 

(corrected to the first volume of Identification task Run 1), detrending (re-meaned), spatial 

smoothing using a 8 mm FWHM Gaussian filter, and segmentation. To construct a multivariate 

pattern classifier to apply to the real-time data we partitioned the Id-PS stimuli into groups of 

positive and negative valence (according to the middle Likert normative score) and formed time-

series by convolving the hemodynamic response function with the respective stimuli’s onset times 

(scaling the HRF amplitude according to the absolute difference between the stimuli’s normative 

scores and the middle Likert score). We then thresholded these time-series to construct class 

labels {-1,+1} (as well as unlabeled) for each volume of the Identification task scans. We then 

trained a linear support vector machine32 (SVM) to classify the valence property of each fMRI 

volume. Note, during the Modulation task the classification hyperplane output of the SVM was 

linearly detrended in real-time as follows. A hyperplane distance, h, was computed for each 

volume, i.  For hi, i ≥ 40, the sequence of hyperplane distances h1,...,hi-1 was used to compute a 

linear trend (via the Matlab detrend function) which was subtracted from the hyperplane distance, 

hi. In summary, the described system achieved real-time preprocessing and generated affect 

state predictions for each EPI volume acquired in the Modulation task of the experiment. Total 

processing time of each volume was less than the TR=2.0s parameter of the EPI sequence, 

allowing the real-time processing to maintain a consistent (reconstruction speed determined) 

latency throughout real-time acquisition. 

 

Post-hoc MRI Preprocessing, Multivariate Pattern Classification, and Platt-Scaling 

We used fmriprep33 (version 20.0.0) software to conduct skull stripping, spatial normalization to 

the MNI152 atlas, and (fMRI only) despiking, slice-time correction, deobliquing, and alignment to 

normalized anatomical images. We then used fmriprep’s motion parameter outputs to complete 

the preprocessing using AFNI, including regression of the mean time courses and temporal 

derivatives of the white matter (WM) and cerebrospinal fluid (CSF) masks as well as a 24-

parameter motion model34,35, spatial smoothing (8 mm FWHM), detrending, temporal filtering 

(.0078 Hz high-pass), and scaling to percent signal change. For resting state functional images 

we took the additional step of global mean signal subtraction prior to smoothing. 

We then conducted high-accuracy post-hoc multivoxel pattern analysis (MVPA) of affect 

processing. We first extracted beta-series36 neural activation maps associated with Id-PS trials 

from fully preprocessed fMRI data recorded during Identification task runs 1 and 2 according to 

well-documented methods28. We indexed these maps according to their corresponding stimulus, 

x. Therefore, the maps, β(x), were paired with their respective normative scores {β(x), v(x), a(x)} 

to form training data for multivoxel pattern classification implemented via linear SVM. For 

classification training, valence and arousal scores were each converted into positive (+1) or 

negative (-1) class labels according to their relation to the middle Likert score. Classification 

hyperplane distances were then converted to probabilities (i.e., the probability of the positive class 

label) via Platt-scaling37. These probabilities served as the affective decodings of the subjects’ 

brain states for further analysis. 

 

Cued-Recall, Passive Stimulus, and Feedback-Triggered Stimulus Modeling 

We extracted beta-series for the cue and recall steps of the Id-CR trials, the cue step of the Mod-

PS trials, and the cue step of the Mod-FS trials. We then used our fit SVM models to decode the 
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valence and arousal properties of the experiment at these steps. For the Mod-PS trials, we also 

constructed beta-series for the moment of trial onset as well as 2 s prior to the cue step of the 

Mod-FS trials – these allowed us to validate the triggers for affective stimulus presentations as 

well as to measure (post-hoc) the relative change of affect processing induced by the real-time 

fMRI feedback. 

 

Surrogate Cued-Recall Task Modeling 

Using previously reported methodology38, we decoded the valence and arousal properties of each 

volume of Resting State fMRI data. We then uniformly randomly sampled 30 onset times for 

surrogate Id-CR trials and extracted the affect properties of the respective cue and recall steps of 

these surrogate trials to be used as within-subject controls during analysis of the actual Id-CR 

trials. 

 

Psychophysiology Data Acquisition and Preprocessing 

All MRI acquisitions included concurrent psychophysiological recordings conducted using the 

BIOPAC MP150 Data Acquisition System and AcqKnowledge software combined with the 

EDA100C-MRI module (skin conductance), TSD200-MRI pulse plethysmogram (heart rate), 

TSD221-MRI belt (respiration), and EMG100C-MRI module (facial electromyography). In line with 

prior work39,40, we measured arousal independently based on skin conductance response (SCR) 

and valence based on facial electromyography (fEMG) response, specifically activity in the 

corrugator supercilli muscle, which was shown in prior work to capture the full affective valence 

range of our affect processing induction design30.  We have extensively reported on our SCR 

electrode placement and preprocessing methods29, and we recently reported our fEMG 

placement and preprocessing methods30. 

 

Results 

Psychophysiological Response Validation of Affect Processing Induction via Image Stimuli. 

We first verified the ability of the Identification task passive stimulus (Id-PS) trials to induce 

corollary psychophysiological responses41 associated with affect processing that our machine 

learning approach would then be independently trained to detect within temporally concurrent 

affect processing brain states. We modeled normative scores of the cue stimuli of Id-PS trials 

using psychophysiological response measures within a GLMM framework, respectively, for 

valence and arousal properties. Normative hedonic valence scores of the stimuli were modeled 

according to facial electromyographic responses in the corrugator supercilli (cEMG) as the fixed 

effects.  Normative autonomic arousal scores to the cue stimuli were modeled according to skin 

conductance responses as the fixed effects. In both models, we controlled for age and sex effects. 

Slope and intercept random-effects were modeled subject-wise.  Both validation models detected 

significant stimulus-related induction of the desired physiological responses. Moreover, our 

cEMG-derived model of hedonic valence (β=.11; p=0.001; F-test; h0: β=0) was selective for the 

valence property of affect – a cEMG-derived model of autonomic arousal was not significant 

(p=0.75; F-test; h0: β=0). Similarly, our SCR-derived model was selective for the autonomic 

arousal property of affect (β=.07; p=.004; F-test; h0: β=0) – applied to hedonic valence the SCR 

response associations were not significant (β=0.02; p=0.61; F-test; h0: β=0). 
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Affect Processing Measurement 

We then demonstrated that our prediction models accurately decoded affect processing within 

neural activation patterns associated with Id-PS trials, reproducing earlier work using similar 

modeling methodology28. Our tabulated prediction accuracy (averaged over 39 subjects 

completing the experiment) over the full stimulus set was highly significant for both valence 

(p<0.001; signrank; h0: μ=.5) and arousal (p<0.001; signrank; h0: μ = .5). We observed prediction 

performance comparable to the best known examples of classification of affect processing across 

the valence and arousal dimensions28,42 when our measurements were restricted to those image 

stimuli exhibiting reliable brain state activations , i.e., the reliable stimulus set (Table 1), which 

were determined according to previously published methods28. 

 

Table 1: Multivariate Neural Decoding Performance 

 Valence 

Grp. Avg. Acc. (95% CI) 

Arousal 

Grp. Avg. Acc. (95% CI) 

Full Stimulus Set .55 (.53,.57) .61 (.59,.63) 

Reliable Stimulus Set  .79 (.76,.82) .75 (.72,.79) 

 

Validation of Affect Decoding of Novel Stimuli 

Prior to applying our decoding models to novel task domains, we first tested that these models 

(originally fit to Id-PS features and labels) well-generalized to novel image stimuli. To perform this 

test we modeled, via GLMM, the normative affect scores of cue stimuli in Id-CR and Mod-PS 

trials. However, each test was unique. First, we modeled Id-PS stimuli’s normative scores as a 

function of decoded affect (separately for valence and arousal) controlling for the age and sex of 

the subjects and modeling random effects of affect decoding subject-wise. In Id-CR trials we found 

that decoded valence was significantly positively associated with the valence normative score 

(β=.30; p<.001; F-test; h0: β=0). Similarly, we found that decoded arousal was significantly 

associated with the arousal normative score (β=.17; p=.001; F-test; h0: β=0). Age and sex effects 

in both cases were not significant and random effects did not significantly improve the model’s 

explained variance, which was very small for both valence (R2
adj=.02) and arousal (R2

adj=.01), 

respectively.   

Next, we modeled Mod-PS stimuli’s normative scores as a function of decoded affect 

(separately for valence and arousal normative scores). However, in this case we controlled for 

age and sex effects as well as the decoding of the complementary affective decoding in order to 

control for the bias of the sampling of the stimuli in this task (see Fig 3). In Mod-PS trials we found 

that Mod-PS decoded valence was significantly positively associated with the stimuli’s normative 

valence scores (β=.58; p<0.001; F-test; h0: β=0). However, decoded arousal was significantly 

negatively associated with normative valence scores (β=-.20; p=0.02; F-test; h0: β=0).  Age and 

sex effects were not significant but random effects did significantly improve the model’s explained 

variance (R2
adj=.04).  In contrast, we found no significant associations between decoded arousal 

and the stimuli’s normative arousal scores, which confirmed that the restriction of our sampling of 

the Mod-PS and Mod-FS stimuli to a narrow range of normative arousal was essential as a control 

for this confounding variable. 
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Real-time Stimulus Triggering 

We next validated that our real-time feedback and brain-affect state triggering process functioned 

as designed. To test this we extracted the feedback signal calculated at the moment of stimulus 

trigger (including emergency triggering). The median feedback at the moment of trigger was μ = 

.93 (p<.001; signrank; h0: μ=0). Nearly three-quarters (see Figure 4) of all trials triggered at or 

above the design threshold. 

 

 
Figure 4: Distribution of average feedback scores at the moment of FT-PO trial stimulus trigger. 

 

Real-time fMRI-Guided Self-Induction of Positive Valence States 

We next demonstrated that our experimental condition, volitionally-induced positive valence, was 

truly achieved at the moment of stimulus triggering.  As a reminder, the Mod-FS trials were 

triggered using low-quality real-time affect decoding models. Here we applied post-hoc high-

accuracy models to decode affect processing within the fMRI volume immediately prior to the 

stimulus trigger as a best possible measure of the experimental condition. To test this measure, 

we bootstrapped random variants of the trigger predictions (randomly sampling within each 

subject before pooling predictions to incorporate random effects).  We found that the mean 

predicted valence was significantly elevated (μ=.515; p=.02; 1-sided bootstrap [n=10000]; h0: 

μ<.5). 

 

Causal Effect of Positive Valence Self-Induction on Perceived Affect of Visual Stimuli 

Building upon our confidence in the decoding measurement and our experimental condition, we 

next tested the study’s primary hypothesis – that self-induced valence states bias the affective 

perception of image stimuli. Here, using a GLMM, we tested decoded perceived affect as a 

function of trial type, Mod-PS or Mod-FS, while controlling for the image stimuli’s associated 

normative valence and arousal properties as well as the subject’s age and sex. We modeled 

random slope and intercept effects of the trial type, subject-wise. Indeed, we found that volitional 

self-induction of positive valence prior to a stimulus significantly increased its perceived valence 

(β=.024; p=.007; F-test; h0: β=0). Normative valence was also a significant positive predictor 

(β=.06; p<.001; F-test; h0: β=0). Sex effects were not significant but age effects were found to 
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have a small but significant negative impact on perceived valence (β=-.001; p=.03; F-test; h0: 

β=0). Finally, the stimuli’s normative arousal scores were found not to be a significant predictor 

of valence (β=-.06; p=.09; F-test; h0: β=0). Overall model performance was R2
adj=.065 and random 

effects significantly impacted the model’s explained variance.   

 

Measurement of Explicit Affect Regulation 

We next tested our ability to confirm affect self-induction using explicit affect regulation within the 

Id-CR trials.  We first decoded the valence and arousal properties for both the cue and recall steps 

of the Id-CR trials. We then tested for group effects of affect regulation toward a known goal, using 

a GLMM by modeling, separately for valence and arousal, the decoded affect of the four recall 

steps of the Id-CR trials (4 volumes, 2 seconds each) as a function of the decoded affect of the 

cue stimuli (i.e. the affect regulation goal) as well as the control duration and the age and sex of 

the subject (see Figure 5). We found that the subjects significantly regulated affective valence 

(β=.33; p<.001; F-test; h0: β=0). Random effects significantly improved the model’s effect-size 

(p<.05; likelihood ratio test; h0: observed responses generated by fixed-effects only) and cued-

recall affect regulation effects were significantly greater than that of surrogate effects (p=.001; 

signrank; h0: βIN-βRST=0). The fixed-effect of control duration was also significant (β=.01; p<.001; 

F-test; h0: β=0) and overall model prediction performance was good (R2
adj=.10).  Further, we found 

that subjects significantly regulated affective arousal and that random effects significantly 

improved effect-size (β=.33; p<0.05; likelihood ratio test; h0: observed responses generated by 

fixed-effects only); however, these cued-recall affect regulation effects were not significantly 

greater than that of surrogate effects (p=.10; signrank; h0: βIN- βRST=0). 

 

 

Figure 5: Estimation and validation of explicit intrinsic affect regulation effects within the cued-

recall task. The figure depicts the effect size of cue affect processing in explaining affect 

processing occurring during recall (controlling for time lag in the 4 repeated measures of recall 

per each measure of cue). Here affect processing measurements are Platt-scaled hyperplane 

distance predictions of our fitted support vector machine models. Valence and arousal dimensions 

of affect are predicted by separate models. The figure’s scatterplots depict the group-level effects 

computed using linear mixed-effects models which model random effects subject-wise. Bold red 

lines depict group-level fixed-effects of the cue affect. Bold gray lines depict significant subject-

level effects whereas light gray lines depict subject-level effects that were not significant. The 

figure’s boxplots depict the group-level difference between each subject’s affect regulation 
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measured during the cued-recall trials in comparison to surrogate affect regulation constructed 

from the resting state task. The bold red line depicts the group median difference in effect size 

between task and surrogate. The red box depicts the 25-75th percentiles of effect size difference. 

 

Explicit Affect Regulation Performance as a Predictor of Real-time fMRI-Guided Self-Induction 

Finally, we tested whether unguided explicit affect regulation performance explained the level of 

rtfMRI-guided self-induced valence (measured immediately prior to presentation of the Mod-FS 

cue image).  We modeled the decoded valence of the final volume of the self-induce step of Mod-

FS trials as a function of the individual subjects’ explicit affect regulation performance parameters 

(slope and intercept, respectively, for the valence and arousal properties of affect processing) 

controlling for the subjects’ age and sex. We found no significant group-level effects, however, all 

four measures of interest affected the measure of interest in the proposed direction: self-induced 

valence slope (β=.085, p=.46); self-induced arousal slope (β=.083; p=.43); self-induced valence 

intercept (β=.161; p=.41); and self-induced arousal intercept (β=.25; p=.17). 

 

Discussion 

This work made two important contributions to our current and future understanding of emotion 

processing and regulation. First, we found significant support for the utility of volitional positively 

valent affect processing as a mechanism for positively biasing the perceived affective valence of 

environmental stimuli. This finding causally and mechanistically supports the common notion of 

“positive thinking” and may provide deeper understanding of how and why attentional re-

deployment strategies used in CBT benefit those suffering from deficits of emotion regulation and 

negatively biased affect. Second, we demonstrated a novel application of real-time brain state 

decoding in which we guided subjects’ explicit emotion regulation toward a pre-defined affective 

goal state (positive valence) and then triggered experimental stimuli when the subjects’ affective 

states fell within designed criteria representing that goal state. This new technology, while still in 

its infancy, may provide scientists with a much needed tool for causal exploration of intrinsic 

emotion processing mechanisms and their relationships with other cognitive processes and 

environmental factors.  

 A secondary consideration of this work was an attempt to explain individual differences 

observed in real-time fMRI guided explicit emotion regulation toward a known goal. Explicit affect 

regulation can be achieved volitionally, without the use of neurofeedback technology. Therefore, 

our use of real-time fMRI-based predictions of affect to guide (or focus) this innate process 

enabled us to test (using unguided explicit affect regulation ability as a baseline) the association 

between innate affect regulation performance and the performance achievable using our real-

time fMRI feedback approach. Our null finding for this association suggests that existing 

explanations of performance15–17 may apply to explicit affect regulation as well, as innate 

regulation ability, which varied widely over our sample, was not a contributing factor. 

The application of neural decodings derived from IAPS image stimulus induction of affect 

processing as markers of perceived affect has well-known limitations, which we have noted in 

earlier reports 28,29,43. Indeed, our validation process detected a significant negative effect of 

decoded arousal associated with decoded valence, suggesting that our cohort of subjects 

perceived the affective content of Mod-PS image stimuli differently than that which was captured 
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by the IAPS normative scores. However, the nature of our investigation – real-time moment-to-

moment affect processing, regulation, and stimulus-triggering – does not, unfortunately, permit 

the use of subject self-reported measures of affect, thereby preventing us from achieving full 

concordance of our findings across cognitive, physiological, and behavioral domains. We also 

acknowledge technical limitations in our real-time fMRI approach. Despite significant findings of 

an overall effect, we believe that our implementation was suboptimal due both to latency as well 

as insufficient optimization of parameters within our real-time pipeline. A limitation of real-time 

approaches is that parametric choices in the processing pipeline (e.g., trigger threshold) interact 

with experimental outcomes; therefore, it is difficult to use batch-wise optimization to inform the 

design criteria a priori. Our small study sample did not permit sufficient piloting of parameters prior 

to fixing the processing design and testing. Further, our analysis included all rtfMRI-guided self-

induction trials, even those that required emergency triggering due to a failure to meet the design 

criteria of the goal state. This was intentional in order to put forth the most conservative, and 

therefore reproducible, estimate of the valence self-induction effect sizes possible using this new 

technology. Therefore, we believe the performance of the system, and its effect sizes, are 

underreported, which suggests the potential to refine this technology for larger-scaled deployment 

of brain-state driven experiment designs to causally test interactions between internal cognitions 

and external stimuli. 

 

Conclusion  

We combined established neural decoding methods with real-time fMRI to construct a dynamic 

experiment in which the subject’s self-induced positive affect state triggered the randomized 

presentation of affectively congruent or incongruent image stimuli. We first validated the 

experiment’s ability to induce affect processing with independent measures of psychophysiology 

as well as the decoding models’ ability to predict affect processing in novel task domains.  We 

then demonstrated that self-induced positive affect states positively bias the perceived affect of 

subsequent image stimuli. 
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Appendix 

 
Table 2: International Affective Picture Set Image Identification Numbers 
 
Trial Type Identification Numbers 

Mod-PS 8510, 9421, 3350, 7502, 9908, 3266, 3061, 6821, 9910, 3140, 2799, 2717, 
8420, 7230, 3168, 2800, 8503, 4520, 9253, 5460, 9250, 5830, 4608, 8380, 
9901, 2208, 2160, 9400, 7260, 5825, 8300, 4660, 4640, 8210, 9500, 9040, 
7405, 9412, 2075, 3131 

Mod-FS 8034, 9419, 2071, 8490, 9570, 9300, 5480, 3301, 9830, 8170, 4680, 3215, 
9183, 8370, 3225, 9921, 3064, 4599, 7350, 5450 
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