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Abstract 27 

In this study we merged methods from machine learning and human neuroimaging to causally 28 

test the role of self-induced affect processing states in biasing the affect processing of subsequent 29 

image stimuli. To test this causal relationship we developed a novel paradigm in which (n=40) 30 

healthy adult participants observed affective neural decodings of their real-time functional 31 

magnetic resonance image (rtfMRI) responses as feedback to guide explicit regulation of their 32 

brain (and corollary affect processing) state towards a positive valence goal state. By this method 33 

individual differences in affect regulation ability were controlled. Attaining this brain-affect goal 34 

state triggered the presentation of pseudo-randomly selected affectively congruent (positive 35 

valence) or incongruent (negative valence) image stimuli drawn from the International Affective 36 

Picture Set. Separately, subjects passively viewed randomly triggered positively and negatively 37 

valent image stimuli during fMRI acquisition. Multivariate neural decodings of the affect 38 

processing induced by these stimuli were modeled using the task trial type (state- versus 39 

randomly-triggered) as the fixed-effect of a general linear mixed-effects model. Random effects 40 

were modeled subject-wise. We found that self-induction of a positive valence brain state 41 

significantly positively biased valence processing of subsequent stimuli. As a manipulation check, 42 

we validated affect processing state induction achieved by the image stimuli using independent 43 

psychophysiological response measures of hedonic valence and autonomic arousal. We also 44 

validated the predictive fidelity of the trained neural decoding models using brain states induced 45 

by an out-of-sample set of image stimuli. Beyond its contribution to our understanding of the 46 

neural mechanisms that bias affect processing this work demonstrated the viability of novel 47 

experimental paradigms triggered by pre-defined cognitive states. This line of individual 48 

differences research potentially provides neuroimaging scientists with a valuable tool for causal 49 

exploration of the roles and identities of intrinsic cognitive processing mechanisms that shape our 50 

perceptual processing of sensory stimuli. 51 

52 
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Introduction 53 

Our capacity to process and regulate emotions is central to our ability to optimize psychosocial 54 

functioning and quality of life[1]. As a corollary, disruptions in emotion processing and regulation 55 

are broadly ascribed to psychiatric illnesses including borderline personality disorder, depression, 56 

anxiety disorders, PTSD, and substance-use disorders[2] which negatively impact quality of life 57 

and functioning[3,4]. In light of this, a primary focus of cognitive behavioral therapy (CBT),  an 58 

efficacious treatment for disorders involving emotion dysregulation[5], is the development of 59 

mental strategies for identifying and volitionally reducing negatively biased emotional states that 60 

are the product of maladaptive emotion processing and regulation. Neuroimaging has provided  61 

insight into the functional neurocircuits involved in CBT-based emotion regulation strategies[6]; 62 

however, the causal neurobiological mechanisms by which these strategies induce adaptive 63 

emotion processing over time remain elusive. 64 

Research into the effects of temporal context on affect and emotion processing may have 65 

implications for increasing our understanding of the neural bases of emotion regulation. Prior work 66 

has demonstrated that changing affective context prior to an emotional target shapes the 67 

processing of that target. Such priming effects both accelerate and weaken the emotional 68 

response to affectively congruent target stimuli[7]. Manipulations of affect processing state impact 69 

the temporal structure of the neural responses to subsequent affective image stimuli[8] as well as 70 

the corollary psychophysiological responses to those stimuli[9,10]. Further, stimulus-cued 71 

emotion processing states bias the self-reported perception of successive emotional stimuli[11]. 72 

These findings are consistent with effects that would be predicted by the deployment of 73 

situational and attentional modification strategies according to the process model of emotion 74 

regulation[12] and point to potential underlying mechanisms driving CBT-related changes to 75 

emotion processing and thus its therapeutic efficacy. However, the neural representation of the 76 

observed ability of affective cognitions related to these strategies to bias subsequent emotional 77 

responses has not yet been causally tested. Thus, the primary aim of this work was to contribute 78 
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to our knowledge of the mechanisms underlying emotion regulation (operationalized as affect 79 

regulation) by experimentally demonstrating that self-induced and verified affect processing 80 

states causally bias the affect processing of subsequent image stimuli. 81 

Real-time functional magnetic resonance imaging (rtfMRI), when used to generate brain 82 

activation feedback[13] (i.e., rtfMRI-guided neuromodulation or neurofeedback), reflects a 83 

promising methodology that has not to our knowledge been applied for mechanistic testing of how 84 

the neural correlates of such feedback-induced affect processing states causally bias subsequent 85 

affect processing. Here, the applied advantage of rtfMRI is that self-induced neurocognitive states 86 

(achieved via rtfMRI guidance) can be verified and used as independent experimental variables 87 

to trigger subsequent affective stimulus-response characterizations. Yet, a challenge to rtfMRI-88 

guided neuromodulation studies, and brain computer interface (BCI) research in general, is the 89 

large individual variation observed in subjects’ ability to volitionally modulate their cognitive states 90 

– the well-known “BCI-illiteracy phenomenon”[14]. 91 

Within BCI studies, neurophysiological and psychological variables (e.g., self-confidence 92 

and concentration) were shown to significantly predict performance variation[15–17]. However, 93 

very little is known about the source of individual differences in the ability to volitionally regulate 94 

affective states. Therefore, the secondary aim of this project was to characterize individual 95 

variation in the ability to self-induce affective states using neurofeedback according to the 96 

subjects’ unguided self-induction ability. This research has direct clinical relevance to informing 97 

our understanding of the neuroregulation capabilities of psychiatric patients to identify those most 98 

or least capable of guided affect regulation. 99 

To explore our aims, we developed a novel task in which healthy adult participants utilized 100 

rtfMRI feedback to explicitly regulate their brain response and corollary affect processing states 101 

toward a goal of extreme pleasantness (i.e., positive valence). Attaining this brain-affect state 102 

triggered the presentation of an affectively congruent (positive valence) or incongruent (negative 103 

valence) image stimulus drawn from the International Affective Picture Set[18] (IAPS). Between 104 
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regulation trials participants passively viewed (without regulation) IAPS stimuli associated with 105 

either positive or negative valence. We then compared image stimulus-cued brain and affective 106 

responses arising from explicitly self-induced feedback-facilitated positive valence states versus 107 

random affective states (passive viewing) and causally tested the ability of self-induced positive 108 

valence states to bias the affect processing of subsequent image stimuli. 109 

Our results reveal that self-induction of a positive affective state causally biases 110 

subsequent affect processing responses to image stimuli, suggesting a potential mechanism by 111 

which CBT-based treatment strategies work to reduce negatively biased affect processing states. 112 

We also found that individual differences in the intrinsic ability to self-induce affective arousal 113 

without guidance informed the attainment of self-induced positive valence in the presence rtfMRI 114 

guidance, further supporting the established role of attentional deployment in explaining BCI 115 

performance.  116 

 117 

Methods 118 

Ethics Statement 119 

All participants provided written informed consent after receiving written and verbal descriptions 120 

of the study procedures, risks, and benefits. We performed all study procedures and analysis with 121 

approval and oversight of the Institutional Review Board at the University of Arkansas for Medical 122 

Sciences (UAMS) in accordance with the Declaration of Helsinki and relevant institutional 123 

guidelines and policies. 124 

 125 

Participants 126 

We enrolled healthy adult participants (n=40) having the following demographic characteristics: 127 

age [mean(s.d.)]: 38.8(13.3), range 20‒65; sex: 22 (55%) female; race/ethnicity: 28 (70.%) self-128 

reporting as White or Caucasian, 9 (22.5%) as Black or African-American, 1 (2.5%) as Asian, and 129 

2 (5%) self-reporting as other; education [mean(s.d.)]: 16.8(2.2) years, range 12‒23; WAIS-IV IQ 130 
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[mean(s.d.)]: 102.5(15.3), range 73‒129. All of the study’s participants were right-handed 131 

(assessed via Edinburgh Handedness Inventory[19]) native-born United States citizens who were 132 

medically healthy and exhibited no current Axis I psychopathology, including mood disorders, as 133 

assessed by the SCID-IV clinical interview[4]. All participants reported no current use of 134 

psychotropic medications and produced a negative urine screen for drugs of abuse (cocaine, 135 

amphetamines, methamphetamines, marijuana, opiates, and benzodiazepines) immediately prior 136 

to both the clinical interview and MRI scan. When indicated, we corrected participants’ vision to 137 

20/20 using an MRI compatible lens system (MediGoggles™, Oxforshire, United Kingdom), and 138 

we excluded all participants endorsing color blindness.  139 

 140 

Experiment Design.  141 

Following the provision of informed consent, subjects visited the Brain Imaging Research Center 142 

of the University of Arkansas for Medical Sciences on two separate days. On Study Day 1 a 143 

trained research assistant assessed all subjects for major medical and psychiatric disorders as 144 

well as administered instruments to collect the following data to be used as either secondary 145 

variables hypothesized to explain individual variance in affect regulation-related neural activity, 146 

covariates of no interest, or to assess inclusion/exclusion criteria. The participant returned to the 147 

BIRC for Study Day 2 within 30 days after Study Day 1 to complete the MRI acquisition. During 148 

this day, the participant received task training and completed the full MRI acquisition protocol, 149 

depicted in Figure 1. 150 

 151 

 152 

Figure 1: Study Day 2 Experimental tasks: order, number of repetitions, duration, and stimuli. 153 
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Tasks are colored by role. Gray depicts task training and application of psychophysiology 154 

recording apparatus. Blue depicts brain structural image acquisition. Orange depicts functional 155 

image acquisition. Identification and Modulation blocks of the fMRI acquisition summarize the 156 

relevant trial types used within that task (see Neuroimaging section for abbreviations). *Training 157 

of real-time multivariate pattern analysis predictive models was performed concurrently with the 158 

Resting State task of the fMRI acquisition. 159 

 160 

Training: Each participant received a video-based overview of the experiment to be 161 

performed on that day as well as training on the study’s task variations and trial types. The 162 

participant was offered the opportunity to use the restroom and then was moved to the MRI 163 

scanner room and fully outfitted with psychophysiological recording equipment. 164 

Neuroimaging: For each subject we captured a registration scan and detailed T1-weighted 165 

structural image. We then acquired functional MRI data for three task variations: identification, 166 

resting state, and modulation. Identification (Id) task acquisition consisted of 2 x 9.4 min fMRI 167 

scans during which the participant was presented with 120 images drawn from the International 168 

Affective Picture System[18] (IAPS) to support one of two trial types (see Figure 2): 90 passive 169 

stimulus (PS) trials and 30 cued-recall (CR) trials. Identification task PS trials (abbreviated Id-PS) 170 

presented an image for 2 s (cue) succeeded by a fixation cross for a random inter-trial interval 171 

(ITI) sampled uniformly from the range 2–6 s. Identification task cued-recall (Id-CR) trials were 172 

multi-part: a cue image was presented for 2 s followed by an active cue response step for 2 s (the 173 

word “FEEL” overlaying the image) followed by the word FEEL alone for 8 s, which signaled the 174 

participant to actively recall and re-experience the affective content of the cue image, followed by 175 

a 2–6 s ITI. During pre-scan training on the Id-CR task’s recall condition, subjects were instructed 176 

to “Imagine the last picture you saw as best you can. Try to make yourself feel exactly how you 177 

felt when you saw this picture the first time. Hold that feeling the whole time you see the word 178 

FEEL.”  Within each scan, Id-PS and Id-CR trials were pseudo-randomly sequentially ordered to 179 
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minimize correlations between the hemodynamic response function (HRF)-derived regressors of 180 

the tasks. This order was fixed for all subjects. 181 

 182 

 183 

Figure 2: Summary of experimental task trial designs. (Id-PS): Identification task passive stimulus 184 

trials, which were identical to Modulation task passive stimulus (Mod-PS) trials. (Id-CR): 185 

Identification task cued-recall trials.  (Mod-FS): Modulation task feedback-triggered stimulus trials. 186 

(Bottom): depiction of a hypothetical Mod-FS trial for the experimental design.  187 

 188 

During resting state acquisition, we acquired 7.5 min of fMRI data in which the subject 189 

performed mind-wandering with eyes open while observing a fixation cross. During training, 190 

subjects were instructed to “Keep your eyes open, look at the cross in front of you, and let your 191 

brain think whatever it wants to.”  Concurrently with the resting state task, the real-time variant of 192 
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the multivoxel pattern analysis (MVPA) prediction model (see below) was fit using data drawn 193 

from the Identification task fMRI data to define individual brain state representations of the affect 194 

processing goal. 195 

Modulation (Mod) task acquisition consisted of 2 x 10.5 min fMRI scans during which the 196 

participant was presented with 60 IAPS images according to two trial types (see Fig 2): 40 passive 197 

stimulus (Mod-PS) trials, which were identically formatted to the Id-PS trials, and 20 feedback-198 

triggered stimulus (Mod-FS) trials. Mod-FS trials used real-time fMRI feedback of the subject’s 199 

decoded affective state to guide them in self-inducing affective brain states associated with their 200 

individualized representation of extreme positive valence. The computer system monitored the 201 

subject’s decoded valence processing level at each acquisition volume of fMRI data and if that 202 

decoding met pre-defined criteria (i.e., the goal state, which we defined as hyperplane distance ≥ 203 

0.8 for 4 consecutive EPI volumes) then a positively (congruent) or negatively (incongruent) valent 204 

image stimulus was triggered as the test stimulus. The brain state criteria representing the affect 205 

processing goal state were determined by the results of an initial pilot of the experiment to identify 206 

acquisition  parameters that were challenging but consistently reachable. Within each scan, Mod-207 

PS and Mod-FS trials were pseudo-randomly sequentially ordered to minimize correlations 208 

between the hemodynamic response function (HRF)-derived regressors of the tasks. This order 209 

was fixed for all subjects. 210 

We provided real-time visual feedback during Mod-FS trials by manipulating the level of 211 

transparency of the word FEEL, which was the cue to volitionally regulate affect to an extreme 212 

positive valence. The transparency of the text was scaled to reflect real-time estimates of subject’s 213 

represented valence processing with respect to the desired hyperplane distance threshold. This 214 

was achieved by mapping MVPA prediction model hyperplane distances (see below) from their 215 

base range [-1.25,1.25] to the range of possible transparencies, α ϵ [0,1]. Fully transparent text 216 

(α=0) appeared as a black screen and denoted poor affect regulation performance, i.e., highly 217 

negative valence. Fully opaque text (α=1) appeared bright yellow and denoted good performance. 218 
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The transparency of the text was reset every 2 s (reflecting the momentary hyperplane distance 219 

prediction based upon each EPI volume, TR=2000 ms). The transparency was adjusted 220 

(approximately 20 frames-per-second) to present smooth transitions toward the brain-affect goal 221 

state. The initial hyperplane distance threshold was fixed for 20 seconds. If the subject had not 222 

attained the threshold (i.e. triggered the test stimulus) by this time then the threshold was linearly 223 

and continuously lowered to 0 over the subsequent 18 s at which point the stimulus was 224 

automatically triggered even if the threshold had not been attained (Fig. 2). 225 

Stimulus Selection: We sampled 180 IAPS images to use as affect processing induction 226 

stimuli. Identification task stimuli were sampled computationally using a previously published 227 

algorithm[20] that selects images such that the subspace of the valence-arousal plane for 228 

normative scores within the IAPS dataset is maximally spanned (see Fig 3). We performed this 229 

full-range sampling process first for the 90 images used in Id-PS trials. The IAPS identifiers of 230 

these images were previously reported[21]. We then separately (but similarly) sampled an 231 

additional 30 images for use in Id-CR trials. The IAPS identifiers of these images were also 232 

previously reported[22]. Next, we constructed extreme polar subsets of positively and negatively 233 

valenced image stimuli by constructing thresholds of permissible valence and arousal scores. 234 

Valence (v) was constrained such that: v≥7 or v≤2.6. We then iteratively constrained the 235 

permissible arousal scores until we identified positively and negatively valent image subsets that 236 

did not exhibit a group mean difference in arousal, a, scores (found to be 4.6 < a < 6.8) thereby 237 

controlling for arousal response as a stimulus subset variable. We then sampled 30 images each 238 

from these subsets and uniformly randomly assigned these images to Mod-PS trials (n=40) and 239 

Mod-FS trials (n=20), respectively. The outcome of this sampling and assignment process is 240 

presented in Figure 3. The specific IAPS identities of these images are reported in Supplemental 241 

Table 1. 242 

 243 
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 244 

Figure 3: Normative valence and arousal scores for stimuli selected for each of the four 245 

experimental trial types. Summary statistics for Identification task stimuli are as follows: Id-PS 246 

valence [mean (std. dev)] 5.04 (1.95); Id-PS arousal [mean (std. dev)] 4.95 (1.40); Id-CR valence 247 

[mean (std. dev)] 5.30 (1.95); Id-CR arousal [mean (std. dev)] 4.99 (1.51).  There were no 248 

significant differences in affect properties between the Id-PS and Id-CR cue stimuli for either 249 

valence (p=.49; signed rank; α=.05; h0: μ1= μ2) or arousal (p=.86; rank-sum; α=.05; h0: μ1= μ2).  250 

Summary statistics for the Modulation task stimuli are as follows. Mod-PS (pos. valence cluster) 251 

valence [mean (std. dev)] 7.41 (.30); Mod-PS (neg. valence cluster) valence [mean (std. dev)] 252 

2.08 (.36); Mod-FS (pos. valence cluster) valence [mean (std. dev)] 7.35 (0.32); Mod-FS (neg. 253 

valence cluster) valence [mean (std. dev)] 2.03 (0.41).  Between the Mod-PS and Mod-FS stimuli 254 

in the positive valence cluster, there were no significant differences in valence (p=.60; rank-sum; 255 

α=.05;  h0: μ1= μ2) nor arousal (p=.25; rank-sum; α=.05; h0: μ1= μ2).  There were also no significant 256 

group differences in affect properties between the Mod-PS and Mod-FS stimuli in the negative 257 

valence cluster, either for valence (p=.74; rank-sum; α=.05; h0: μ1= μ2) or arousal (p=.54; rank-258 

sum; α=.05; h0: μ1= μ2).   259 

 260 

MR Image Acquisition 261 
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We acquired all imaging data using a Philips 3T Achieva X-series MRI scanner (Philips 262 

Healthcare, Eindhoven, The Netherlands) with a 32-channel head coil. We acquired anatomic 263 

images using an MPRAGE sequence (matrix = 256 x 256, 220 sagittal slices, TR/TE/FA = 264 

8.0844/3.7010/8°, final resolution =0.94 x 0.94 x 1 mm3). We acquired functional images using 265 

the following EPI sequence parameters: TR/TE/FA = 2000 ms/30 ms/90°, FOV = 240 x 240 mm, 266 

matrix = 80 x 80, 37 oblique slices, ascending sequential slice acquisition, slice thickness = 2.5 267 

mm with 0.5 mm gap, final resolution 3.0 x 3.0 x 3.0 mm3.   268 

 269 

Real-time MRI Preprocessing and Multivariate Pattern Classification 270 

We implemented custom code that acquired each raw fMRI volume as it was written to disk by 271 

the MRI’s computer system (post-reconstruction). Each volume underwent a preprocessing 272 

sequence using AFNI[23] in the following order: motion correction using rigid body alignment 273 

(corrected to the first volume of Identification task Run 1), detrending (re-meaned), spatial 274 

smoothing using a 8 mm FWHM Gaussian filter, and segmentation. To construct a multivariate 275 

pattern classifier to apply to the real-time data we partitioned the Id-PS stimuli into groups of 276 

positive and negative valence (according to the middle Likert normative score) and formed time-277 

series by convolving the hemodynamic response function with the respective stimuli’s onset times 278 

(scaling the HRF amplitude according to the absolute difference between the stimuli’s normative 279 

scores and the middle Likert score). We then thresholded these time-series to construct class 280 

labels {-1,+1} (as well as unlabeled) for each volume of the Identification task scans. We then 281 

trained a linear support vector machine[24] (SVM) to classify the valence property of each fMRI 282 

volume. Note, during the Modulation task the classification hyperplane output of the SVM was 283 

linearly detrended in real-time as follows. A hyperplane distance, h, was computed for each 284 

volume, i.  For hi, i ≥ 40, the sequence of hyperplane distances h1,...,hi-1 was used to compute a 285 

linear trend (via the Matlab detrend function) which was subtracted from the hyperplane distance, 286 
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hi. In summary, the described system achieved real-time preprocessing and generated affect 287 

state predictions for each EPI volume acquired in the Modulation task of the experiment. Total 288 

processing time of each volume was less than the TR=2 s parameter of the EPI sequence, 289 

allowing the real-time processing to maintain a consistent (reconstruction speed determined) 290 

latency throughout real-time acquisition. 291 

 292 

Post-hoc MRI Preprocessing, Multivariate Pattern Classification, and Platt-Scaling 293 

We used fmriprep[25] (version 20.0.0) software to conduct skull stripping, spatial normalization to 294 

the MNI152 atlas, and (fMRI only) despiking, slice-time correction, deobliquing, and alignment to 295 

normalized anatomical images. We then used fmriprep’s motion parameter outputs to complete 296 

the preprocessing using AFNI, including regression of the mean time courses and temporal 297 

derivatives of the white matter (WM) and cerebrospinal fluid (CSF) masks as well as a 24-298 

parameter motion model[26,27], spatial smoothing (8 mm FWHM), detrending, temporal filtering 299 

(.0078 Hz high-pass), and scaling to percent signal change. For resting state functional images 300 

we took the additional step of global mean signal subtraction prior to smoothing. 301 

We then conducted high-accuracy post-hoc multivoxel pattern analysis (MVPA), i.e., 302 

neural decoding, of affect processing. We first extracted beta-series[28] neural activation maps 303 

associated with Id-PS trials from fully preprocessed fMRI data recorded during Identification task 304 

runs 1 and 2 according to well-documented methods[20]. We indexed these maps according to 305 

their corresponding stimulus, x. Therefore, the maps, β(x), were paired with their respective 306 

normative scores {β(x), v(x), a(x)} to form training data for multivoxel pattern classification 307 

implemented via linear SVM. For classification training, valence and arousal scores were each 308 

converted into positive (+1) or negative (-1) class labels according to their relation to the middle 309 

Likert score. Classification hyperplane distances were then converted to probabilities (i.e., the 310 

probability of the positive class label) via Platt-scaling[29]. These probabilities served as the 311 

affective decodings of the subjects’ brain states for further analysis. 312 
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 313 

Affect Processing State Encodings 314 

In order to visualize affect processing brain states in neuroanatomical space, we performed a 315 

previously reported encoding transformation of our decoding models[21]. In short, we applied the 316 

Haufe-transform[30] to each subject’s classification hyperplane and formed a map of group-level 317 

mean encoding values for each gray matter voxel. Separately, we generated 1,000 mean 318 

encoding permutations by applying the Haufe-transform to the classification hyperplanes fit to 319 

each subject’s true beta-series and randomly permuted sets of the true affective labels. Those 320 

voxels exhibiting extreme group-level mean encoding values in comparison to the observed 321 

group-level mean permutation encoding values (2-sided test, p<0.05) were kept for visualization 322 

of the brain state. We performed this encoding process separately for each dimension of affect 323 

processing (valence and arousal). 324 

 325 

Cued-Recall, Passive Stimulus, and Feedback-Triggered Stimulus Modeling 326 

We also extracted beta-series for the cue and recall steps of the Id-CR trials, the cue step of the 327 

Mod-PS trials, and the cue step of the Mod-FS trials. We then used our fit SVM models to decode 328 

the valence and arousal properties of the experiment at these steps. For the Mod-PS trials, we 329 

also constructed beta-series for the moment of trial onset as well as 2 s prior to the cue step of 330 

the Mod-FS trials – these allowed us to validate the triggers for affective stimulus test 331 

presentations as well as to measure (post-hoc) the relative change of affect processing achieved 332 

by feedback-facilitated self-induction of positive valence processing. 333 

 334 

Surrogate Cued-Recall Task Modeling 335 

Using previously reported methodology[31], we decoded the valence and arousal properties of 336 

each volume of Resting State fMRI data. We then uniformly randomly sampled 30 onset times for 337 
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surrogate Id-CR trials and extracted the affect properties of the respective cue and recall steps of 338 

these surrogate trials to be used as within-subject controls during analysis of the actual Id-CR 339 

trials. 340 

 341 

Psychophysiology Data Acquisition and Preprocessing 342 

All MRI acquisitions included concurrent psychophysiological recordings conducted using the 343 

BIOPAC MP150 Data Acquisition System and AcqKnowledge software combined with the 344 

EDA100C-MRI module (skin conductance), TSD200-MRI pulse plethysmogram (heart rate), 345 

TSD221-MRI belt (respiration), and EMG100C-MRI module (facial electromyography). In line with 346 

prior work[32,33], we measured arousal independently based on skin conductance response 347 

(SCR) and valence based on facial electromyography (fEMG) response, specifically activity in the 348 

corrugator supercilli muscle (cEMG), which was shown in prior work to capture the full affective 349 

valence range of our affect processing induction design[22]. This work did not model the heart 350 

and respiratory rate data. We have extensively reported on our SCR electrode placement and 351 

preprocessing methods[21], and we recently reported our cEMG placement and preprocessing 352 

methods[22]. 353 

 354 

Results 355 

Psychophysiological Response Validation of Affect Processing Induction via Image Stimuli. 356 

We first verified the ability of the Identification task passive stimulus (Id-PS) trials to induce 357 

corollary psychophysiological responses[34] associated with affect processing in order to validate 358 

the inputs used to train our neural decoding models. We modeled the normative scores of the cue 359 

stimuli of Id-PS trials using psychophysiological response measures within a GLMM framework, 360 

respectively, for valence and arousal properties. Normative hedonic valence scores of the stimuli 361 

were modeled according to facial electromyographic responses in the corrugator supercilli as the 362 
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fixed effects. Normative autonomic arousal scores to the cue stimuli were modeled according to 363 

skin conductance responses as the fixed effects. In both models, we controlled for age and sex 364 

effects. Slope and intercept random-effects were modeled subject-wise. Both validation models 365 

detected significant stimulus-related induction of the anticipated physiological responses. 366 

Moreover, our cEMG-derived model of hedonic valence (β=.11; p=0.001; F-test; α=.05; h0: β=0) 367 

was selective for the valence property of affect – a cEMG-derived model of autonomic arousal 368 

was not significant (p=0.75; F-test; α=.05; h0: β=0). Similarly, our SCR-derived model was 369 

selective for the autonomic arousal property of affect (β=.07; p=.004; F-test; α=.05; h0: β=0) – 370 

applied to hedonic valence the SCR response associations were not significant (β=0.02; p=0.61; 371 

F-test; α=.05; h0: β=0). These results are consistent with the prior association of cEMG and SCR 372 

with the processing of the specific affect properties of valence and arousal, respectively, and 373 

support the induction of affect processing during the Id-PS trials. 374 

 375 

Affect Processing Measurement 376 

We next demonstrated that our prediction models accurately decoded affect processing within 377 

neural activation patterns associated with Id-PS trials, reproducing the results of earlier work using 378 

similar modeling methodology[20]. Our tabulated prediction accuracy (averaged over 39 subjects 379 

completing the experiment) over the full stimulus set was highly significant for both valence 380 

(p<0.001; signed rank; α=.05; h0: μ=.5) and arousal (p<0.001; signed rank; α=.05; h0: μ = .5). We 381 

observed prediction performance comparable to the best known demonstrations of neural 382 

decoding of affect processing across the valence and arousal dimensions[20,35] when our 383 

measurements were restricted to those image stimuli exhibiting reliable brain state activations, 384 

i.e., the reliable stimulus set (Table 1), which were determined according to previously published 385 

methods[20]. These results support the validity of our neural decoding models as brain 386 

representations of affective valence and arousal. 387 

 388 
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Table 1: Multivariate Neural Decoding Performance 

 Valence 

Grp. Avg. Acc. (95% CI) 

Arousal 

Grp. Avg. Acc. (95% CI) 

Full Stimulus Set .55 (.53,.57) .61 (.59,.63) 

Reliable Stimulus Set  .79 (.76,.82) .75 (.72,.79) 

 389 

Validation of Affect Decoding using Novel Stimuli 390 

Prior to applying our decoding models to novel task domains, we first tested whether these models 391 

(originally fit to Id-PS features and labels) generalized to novel image stimuli. To perform this 392 

independent test we modeled, via GLMM, the normative affect scores of cue stimuli in Id-CR and 393 

Mod-PS trials. However, each test was unique. First, we modeled Id-PS task stimuli’s normative 394 

scores as a function of decoded affect (separately for valence and arousal) controlling for the age 395 

and sex of the subjects and modeling random effects of affect decoding subject-wise. In Id-CR 396 

trials we found that neurally decoded valence was significantly positively associated with the 397 

valence normative score (β=.30; p<.001; F-test; α=.05; h0: β=0). Similarly, we found for Id-CR 398 

trials that neurally decoded arousal was significantly associated with the arousal normative score 399 

(β=.17; p=.001; F-test; α=.05; h0: β=0). Age and sex effects in both cases were not significant and 400 

random effects did not significantly improve the model’s explained variance, which was very small 401 

for both valence (R2
adj=.02) and arousal (R2

adj=.01), respectively.   402 

Next, we modeled the Mod-PS task stimuli’s normative scores as a function of decoded 403 

affect (separately for valence and arousal normative scores). However, in this case we controlled 404 

for age and sex effects as well as the decoding of the complementary affective property in order 405 

to control for the bias of the sampling of the stimuli in this task (see Fig 3). In Mod-PS trials we 406 

found that decoded valence was significantly positively associated with the stimuli’s normative 407 

valence scores (β=.58; p<0.001; F-test; α=.05; h0: β=0). However, decoded arousal was 408 
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significantly negatively associated with normative valence scores (β=-.20; p=0.02; F-test; α=.05; 409 

h0: β=0).  Age and sex effects were not significant but random effects did significantly improve the 410 

model’s explained variance (R2
adj=.04).  In contrast, we found no significant associations between 411 

decoded arousal and the stimuli’s normative arousal scores, which confirmed that the restriction 412 

of our sampling of the Mod-PS and Mod-FS stimuli to a narrow range of normative arousal was 413 

essential as a control for this confounding variable. 414 

 415 

Validating the Rigor and Reproducibility of Affective Brain States 416 

In a final validation step, we sought to provide additional qualitative and quantitative evidence for 417 

the rigor and reproducibility of the affective brain states that we experimentally manipulated in this 418 

study. We computed the group-level encodings of both the arousal and valence brain states that 419 

survive permutation testing, which we present in Figure 4. Encodings of affect processing largely 420 

overlap with earlier multivariate[21] and univariate meta-analyses[36,37] of the neural encoding 421 

of core affect processing. We took the additional step of directly comparing these encodings to 422 

affect processing encodings that were computed for past studies that incorporated similar affect 423 

induction stimuli and used similar fMRI analysis pipelines but that were derived from separate 424 

sets of research subjects. Notably, these past studies found that affect processing predictions 425 

using the machine learning models underlying these encodings were significantly more correlated 426 

to the normative scores of the induction stimuli than predictive measures derived from 427 

psychophysiological responses across the independent dimensions of affective valence 428 

(measured via heart-rate deceleration[38]) and arousal (measured via skin conductance 429 

response[21]). Indeed, we found that the neural encodings computed for this study shared 36.5% 430 

of the variance across prior whole-brain gray-matter voxel-wise encodings of valence as well as 431 

31.1% of the variance across prior whole-brain voxel-wise encodings of arousal (see 432 

Supplemental Figure S1). Of note, the variance shared between these encodings rose to 87.0% 433 

and 85.6%, respectively for valence and arousal, when we restricted the comparison to only those 434 
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voxels that survived global permutation testing (i.e., the voxels presented in Figure 4). 435 

 436 

 437 

Figure 4: Group-level encodings of affective state processing. Color gradations indicate the 438 

group-level t-scores of the encoding parameters (red indicating positive valence or high arousal, 439 

blue indicating negative valence or low arousal). T-scores are presented only for those voxels in 440 

which encoding parameters survived global permutation testing (p<0.05). Image slices are 441 

presented in Talairach coordinate space and neurological convention. Maximum voxel intensity 442 

is |t|=6.0, i.e., color saturates for t-scores with absolute values falling above this value. 443 

 444 

Real-time Stimulus Triggering 445 

We next validated that our real-time feedback and brain-affect state triggering process functioned 446 

as designed. To test this we extracted the feedback signal calculated at the moment of stimulus 447 

trigger (including emergency triggering). The median feedback at the moment of trigger was μ = 448 

.93 (p<.001; signed rank; α=.05;  h0: μ=0). Nearly three-quarters (see Figure 5) of all trials 449 

triggered at or above the design threshold. 450 

 451 
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 452 

Figure 5: Distribution of average feedback scores at the moment of FT-PO trial stimulus trigger. 453 

 454 

Real-time fMRI-Guided Self-Induction of Positive Valence States 455 

We next demonstrated that our primary experimental manipulation, volitionally-induced positive 456 

valence, was truly achieved at the moment of stimulus triggering. As a reminder, the Mod-FS trials 457 

were triggered using lower quality real-time affect decoding models. Here we applied post-hoc 458 

high-accuracy models to decode affect processing within the fMRI volume immediately prior to 459 

the stimulus trigger as a best possible measure of the experimental condition. To test this 460 

measure, we bootstrapped random variants of the trigger predictions (randomly sampling within 461 

each subject before pooling predictions to incorporate random effects). From these neural 462 

decodings, we found that the mean predicted valence was significantly elevated (μ=.515; p=.02; 463 

1-sided bootstrap [n=10000]; h0: μ<.5) at the time of triggering of the test stimuli. 464 

 465 

Causal Effect of Positive Valence Self-Induction on Affect Processing of Subsequent Stimuli 466 

We next tested the study’s primary hypothesis – that self-induced valence states bias the affect 467 

processing of subsequent image stimuli. Using a GLMM, we tested decoded affect processing as 468 
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a function of trial type, Mod-PS or Mod-FS, while controlling for image stimuli associated 469 

normative valence and arousal properties as well as the subject’s age and sex. We modeled 470 

random slope and intercept effects of the trial type subject-wise. Indeed, we found that successful 471 

volitional self-induction of positive valence prior to an affective stimulus significantly positively 472 

biased its induced valence processing (β=.024; p=.007; F-test; α=.05; h0: β=0). Normative valence 473 

score was also a significant positive predictor (β=.06; p<.001; F-test; α=.05;  h0: β=0). Sex effects 474 

were not significant but age effects were found to have a small but significant negative bias effect 475 

on perceived affective valence (β=-.001; p=.03; F-test; α=.05; h0: β=0). Finally, the stimuli’s 476 

normative arousal scores were found not to be a significant predictor of valence (β=-.06; p=.09; 477 

F-test; α=.05; h0: β=0). Overall model performance was R2
adj=.065 and random effects 478 

significantly impacted the model’s explained variance.   479 

 480 

Measurement of Unguided Explicit Affect Regulation 481 

We next sought to confirm affect self-induction via unguided explicit (i.e. effortful) affect regulation 482 

within the Id-CR trials.  We first decoded the valence and arousal responses from acquired fMRI 483 

data for both the cue and recall steps of the Id-CR trials. We then tested for group effects of 484 

explicit affect regulation toward a known goal by modeling via GLMM, separately for valence and 485 

arousal, the neurally decoded affect processing of the four recall steps of the Id-CR trials (4 486 

volumes, 2 seconds each) as a function of the neurally decoded affect processing associated with 487 

the cue stimuli (i.e. the affect regulation goal) as well as the control duration and the age and sex 488 

of the subject (see Figure 6). We found that the subjects significantly regulated brain 489 

representations of valence processing (β=.33; p<.001; F-test; α=.05; h0: β=0). Random effects 490 

significantly improved the model’s effect-size (p<.05; likelihood ratio test; h0: observed responses 491 

generated by fixed-effects only) and cued-recall affect regulation effects were significantly greater 492 

than that of surrogate (control) effects (p=.001; signed rank; α=.05; h0: βIN-βRST=0). The fixed-493 

effect of control duration was also significant (β=.01; p<.001; F-test; α=.05; h0: β=0) and the overall 494 
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model prediction performance was good (R2
adj=.10).  Further, we found that subjects significantly 495 

regulated the neural correlates of arousal responses and that random effects significantly 496 

improved effect-size (β=.33; p<0.05; likelihood ratio test; h0: observed responses generated by 497 

fixed-effects only); however, these cued-recall affect regulation effects were not significantly 498 

greater than that of surrogate effects (p=.10; signed rank; α=.05; h0: βIN- βRST=0). 499 

 500 

 501 

Figure 6: Estimation and validation of explicit intrinsic affect regulation effects within the cued-502 

recall task. The figure depicts the effect size of cue affect processing in explaining affect 503 

processing occurring during recall (controlling for time lag in the 4 repeated measures of recall 504 

per each measure of cue). Here affect processing measurements are Platt-scaled hyperplane 505 

distance predictions, Pr(∙), of our fitted support vector machine models. Valence and arousal 506 

dimensions of affect are predicted by separate models. The figure’s scatterplots depict the group-507 

level effects computed using linear mixed-effects models which model random effects subject-508 

wise. Bold red lines depict group-level fixed-effects of the cue affect. Bold gray lines depict 509 

significant subject-level effects whereas light gray lines depict subject-level effects that were not 510 

significant. The figure’s boxplots depict the group-level difference between each subject’s affect 511 

regulation measured during the cued-recall trials in comparison to surrogate affect regulation 512 

constructed from the resting state task. The bold red line depicts the group median difference in 513 
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effect size between task and surrogate. The red box depicts the 25-75th percentiles of effect size 514 

difference. 515 

 516 

Unguided Explicit Affect Regulation Performance as a Predictor of rtfMRI-Guided Self-Induction 517 

Finally, we tested whether unguided explicit affect regulation performance explained the level of 518 

rtfMRI-guided self-induced valence responses (measured immediately prior to presentation of the 519 

Mod-FS cue image).  We modeled the neurally decoded valence of the final volume of the self-520 

induce step of Mod-FS trials (see Fig 2) as a function of the individual subjects’ explicit affect 521 

regulation performance parameters (slope and intercept, respectively, for the valence and arousal 522 

properties of affect processing – see Fig 6) controlling for the subjects’ age and sex.  We included 523 

all 2-way interactions in this model to control for potential trade-offs that the subjects may be 524 

making during explicit regulation, e.g., focusing on only one affective property. We found that self-525 

induced arousal properties, both slope (β=.828; p=.003; F-test; α=.05; h0: β=0) and intercept 526 

(β=1.14; p=.006; F-test; α=.05; h0: β=0), were significantly associated with rtfMRI-guided self-527 

induced valence responses. However, the total explained variance by this model was very low 528 

(R2
adj=.006).  529 

 530 

Discussion 531 

This work made two novel contributions to our current and future understanding of the 532 

mechanisms of emotion processing and regulation. First, we found significant support for the utility 533 

of self-induced positively valent affect processing as a mechanism for positively biasing the 534 

subsequent valence processing of environmental stimuli. This finding causally and 535 

mechanistically supports the common notion of “positive thinking” and provides insight into how 536 

and why attentional re-deployment strategies used in CBT benefit those suffering from deficits of 537 

emotion regulation and dispositional negatively biased affect. Second, we demonstrated a novel 538 
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application of real-time brain state decoding in which we guided subjects’ explicit emotion 539 

regulation toward a pre-defined affective goal state (positive valence) and then triggered 540 

experimental stimuli when the subjects’ affective states fell within designed criteria representing 541 

that goal state. This new technology, while still in its infancy, may provide scientists with a much 542 

needed tool for causal exploration of intrinsic emotion processing mechanisms and their 543 

relationships with other cognitive processes and environmental factors.  544 

 A secondary goal of this work was to explain individual differences observed in real-time 545 

fMRI guided explicit emotion regulation toward a defined goal. Explicit affect regulation can be 546 

achieved volitionally, without the use of neurofeedback technology. Therefore, our use of real-547 

time fMRI-based affective decodings to guide (or focus) this innate process enabled us to test 548 

(using unguided explicit affect regulation ability as a baseline) the association between innate 549 

affect regulation performance and the performance achievable using our real-time fMRI feedback 550 

approach. We observed a small but significant relationship between both the overall ability to self-551 

induce states of arousal as well as the ability to match one’s arousal to a pre-defined target level 552 

with the ability to self-induce positive valence via rtfMRI-guidance. These findings suggest that 553 

subjects with greater control over their state of arousal exhibit improved ability to incorporate real-554 

time feedback. Given the well-established link between arousal and attention[39,40], these 555 

findings may in turn reflect improved deployment of attention, either self-directed or with respect 556 

to the feedback signal, in subjects exhibiting superior rtfMRI-guided self-induced valence, which 557 

agrees with earlier work in identifying psychological predictors of BCI performance [16,41]. 558 

Our application of neural decodings (derived from normative affective scores of IAPS 559 

image stimuli) as markers of affect processing has well-known limitations, which we have noted 560 

in earlier reports[20,21,38]. Indeed, our validation process detected a significant negative effect 561 

of decoded arousal associated with decoded valence, suggesting that our cohort of subjects 562 

perceived the affective content of Mod-PS image stimuli differently than that which was captured 563 

by the IAPS normative scores. However, the nature of our investigation – real-time moment-to-564 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.01.13.426569doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426569
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

moment affect processing, regulation, and stimulus-triggering – did not, unfortunately, permit the 565 

use of subject self-report measures of affect, thereby precluding a full concordance of our findings 566 

across cognitive, physiological, and behavioral domains. We also acknowledge technical 567 

limitations in our real-time fMRI approach. Despite significant findings of an overall effect, we 568 

believe that our implementation was suboptimal due both to response-measurement latency as 569 

well as perhaps insufficient optimization of parameters within our real-time pipeline. A limitation 570 

of real-time approaches is that parametric choices in the processing pipeline (e.g., trigger 571 

threshold) interact with experimental outcomes; therefore, it is difficult to use batch-wise 572 

optimization to inform the design criteria a priori. Moreover, our small study sample did not permit 573 

sufficient piloting of parameters prior to selecting the processing design and testing. Further, our 574 

analysis included all rtfMRI-guided self-induction trials, even those that required emergency 575 

triggering due to a failure to meet the design criteria of the goal state. This was intentional in order 576 

to put forth the most conservative, and therefore reproducible, estimate of the valence self-577 

induction effect sizes possible using this new technological approach. Therefore, we believe the 578 

performance of the system, and its effect sizes, are understated, which suggests the potential to 579 

further refine this technology for larger-scaled deployment of brain-state driven experiment 580 

designs to causally test interactions between internal cognitions and external stimuli. 581 

 582 

Conclusion  583 

We combined established neural decoding methods with real-time fMRI to construct a dynamic 584 

experimental design in which the brain representation of a subject’s self-induced positive affect 585 

state triggered the randomized presentation of affectively congruent or incongruent image stimuli. 586 

We first validated the experiment’s ability to induce affect processing with independent measures 587 

of psychophysiology as well as the decoding models’ ability to predict affect processing in novel 588 

task domains.  We then demonstrated that self-induced positive affective states positively bias 589 

the affect processing of subsequent image stimuli and thereby furnish a causal mechanism by 590 
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which positive thinking influences how we perceive our environment. 591 
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Source Code and Data Availability 617 

The authors have made the full source code used in this analysis publicly available: 618 

https://github.com/kabush/CTER. The authors have also made a Brain Imaging Data 619 

Structure[42] (BIDS) formatted variant of the full study dataset publicly available (as well as raw 620 

real-time log files and training materials) via the Open Science Framework: https://osf.io/yn4vq/. 621 

The source code used to convert raw data files to BIDS format has also been made publicly 622 

available: https://github.com/kabush/CTER2bids. 623 

 624 

References 625 

1.  Boden MT, Thompson RJ, Dizén M, Berenbaum H, Baker JP. Are emotional clarity and 626 

emotion differentiation related? Cognition & Emotion. 2013 Sep;27(6):961–78.  627 

2.  Berking M, Wupperman P. Emotion regulation and mental health: recent findings, current 628 

challenges, and future directions. Current Opinion in Psychiatry. 2012 Mar;25(2):128–34.  629 

3.  Kessler RC, Chiu WT, Demler O, Walters EE. Prevalence, Severity, and Comorbidity of 630 

12-Month DSM-IV Disorders in the National Comorbidity Survey Replication. Archives of 631 

General Psychiatry. 2005 Jun 1;62(6):617.  632 

4.  American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 633 

Fourth Edition (DSM-IV). 1994.  634 

5.  Butler A, Chapman J, Forman E, Beck A. The empirical status of cognitive-behavioral 635 

therapy: A review of meta-analyses. Clinical Psychology Review. 2006 Jan;26(1):17–31.  636 

6.  McRae K, Hughes B, Chopra S, Gabrieli JDE, Gross JJ, Ochsner KN. The Neural Bases of 637 

Distraction and Reappraisal. Journal of Cognitive Neuroscience. 2010 Feb;22(2):248–62.  638 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.01.13.426569doi: bioRxiv preprint 

https://github.com/kabush/CTER
https://osf.io/yn4vq/
https://github.com/kabush/CTER2bids
https://doi.org/10.1101/2021.01.13.426569
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

7.  Flaisch T, Junghöfer M, Bradley MM, Schupp HT, Lang PJ. Rapid picture processing: 639 

Affective primes and targets. Psychophysiology. 2007 Oct 2;0(0):071003012229006-???  640 

8.  MacNamara A, Foti D, Hajcak G. Tell me about it: Neural activity elicited by emotional 641 

pictures and preceding descriptions. Emotion. 2009;9(4):531–43.  642 

9.  Wu L, Winkler MH, Andreatta M, Hajcak G, Pauli P. Appraisal frames of pleasant and 643 

unpleasant pictures alter emotional responses as reflected in self-report and facial 644 

electromyographic activity. International Journal of Psychophysiology. 2012 645 

Aug;85(2):224–9.  646 

10.  Fujimura T, Katahira K, Okanoya K. Contextual Modulation of Physiological and 647 

Psychological Responses Triggered by Emotional Stimuli. Front Psychol [Internet]. 2013 648 

[cited 2020 Dec 17];4. Available from: 649 

http://journal.frontiersin.org/article/10.3389/fpsyg.2013.00212/abstract 650 

11.  Czekóová K, Shaw DJ, Janoušová E, Urbánek T. It’s all in the past: temporal-context 651 

effects modulate subjective evaluations of emotional visual stimuli, regardless of 652 

presentation sequence. Frontiers in Psychology [Internet]. 2015 Apr 7 [cited 2017 Feb 653 

16];6. Available from: 654 

http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00367/abstract 655 

12.  Gross JJ. The Emerging Field of Emotion Regulation: An Integrative Review. Review of 656 

General Psychology. 1998;2(3):271–99.  657 

13.  Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, et al. Physiological self-658 

regulation of regional brain activity using real-time functional magnetic resonance imaging 659 

(fMRI): methodology and exemplary data. NeuroImage. 2003 Jul;19(3):577–86.  660 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.01.13.426569doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426569
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

14.  Blankertz B, Sannelli C, Halder S, Hammer EM, Kübler A, Müller K-R, et al. 661 

Neurophysiological predictor of SMR-based BCI performance. NeuroImage. 2010 662 

Jul;51(4):1303–9.  663 

15.  Kober SE, Witte M, Ninaus M, Neuper C, Wood G. Learning to modulate one’s own brain 664 

activity: the effect of spontaneous mental strategies. Frontiers in Human Neuroscience 665 

[Internet]. 2013 [cited 2017 Jan 16];7. Available from: 666 

http://journal.frontiersin.org/article/10.3389/fnhum.2013.00695/abstract 667 

16.  Halder S, Hammer EM, Kleih SC, Bogdan M, Rosenstiel W, Birbaumer N, et al. Prediction 668 

of Auditory and Visual P300 Brain-Computer Interface Aptitude. Kano MR, editor. PLoS 669 

ONE. 2013 Feb 14;8(2):e53513.  670 

17.  Witte M, Kober SE, Ninaus M, Neuper C, Wood G. Control beliefs can predict the ability to 671 

up-regulate sensorimotor rhythm during neurofeedback training. Frontiers in Human 672 

Neuroscience [Internet]. 2013 [cited 2017 Feb 16];7. Available from: 673 

http://journal.frontiersin.org/article/10.3389/fnhum.2013.00478/abstract 674 

18.  Lang PJ, Bradley MM, Cuthbert BN. International affective picture system (IAPS): Affective 675 

ratings of pictures and instruction manual. Gainesville, FL: University of Florida; 2008. 676 

Report No.: Technical Report A-8.  677 

19.  Oldfield R. The Assessment and Analysis of Handedness: The Edinburgh Inventory. 678 

Neuropsychologia. 1971;9:97–113.  679 

20.  Bush KA, Gardner J, Privratsky A, Chung M-H, James GA, Kilts CD. Brain States That 680 

Encode Perceived Emotion Are Reproducible but Their Classification Accuracy Is 681 

Stimulus-Dependent. Frontiers in Human Neuroscience [Internet]. 2018 Jul 2 [cited 2018 682 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.01.13.426569doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426569
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

Jul 25];12. Available from: 683 

https://www.frontiersin.org/article/10.3389/fnhum.2018.00262/full 684 

21.  Bush KA, Privratsky A, Gardner J, Zielinski MJ, Kilts CD. Common Functional Brain States 685 

Encode both Perceived Emotion and the Psychophysiological Response to Affective 686 

Stimuli. Scientific Reports [Internet]. 2018 Dec [cited 2018 Oct 18];8(1). Available from: 687 

http://www.nature.com/articles/s41598-018-33621-6 688 

22.  Bush KA, James GA, Privratsky AA, Fialkowski KP, Kilts CD. An action-value model 689 

explains the role of the dorsal anterior cingulate cortex in performance monitoring during 690 

affect regulation. bioRxiv. 2020;23.  691 

23.  Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance 692 

neuroimages. Computers and Biomedical research. 1996;29(3):162–73.  693 

24.  Bernhard E. Boser, Isabelle M. Guyon, Vladamir N. Vapnik. A Training Algorithm for 694 

Optimal Margin Classifiers. In: Proceedings of the fifth annual workshop on Computational 695 

Learning. 1992. p. 144–52.  696 

25.  Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, et al. fMRIPrep: a 697 

robust preprocessing pipeline for functional MRI. Nat Methods. 2019 Jan;16(1):111–6.  698 

26.  Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic 699 

correlations in functional connectivity MRI networks arise from subject motion. 700 

NeuroImage. 2012 Feb;59(3):2142–54.  701 

27.  Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to 702 

detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage. 2014 703 

Jan;84:320–41.  704 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.01.13.426569doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426569
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

28.  Rissman J, Gazzaley A, D’Esposito M. Measuring functional connectivity during distinct 705 

stages of a cognitive task. NeuroImage. 2004 Oct;23(2):752–63.  706 

29.  Platt JC. Probabilistic Outputs for Support Vector Machines and Comparisons to 707 

Regularized Likelihood Methods. In: Advances in Large Margin Classifiers. MIT Press; 708 

1999.  709 

30.  Haufe S, Meinecke F, Görgen K, Dähne S, Haynes J-D, Blankertz B, et al. On the 710 

interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage. 711 

2014 Feb;87:96–110.  712 

31.  Bush KA, Privratsky AA, Kilts CD. Predicting Affective Cognitions in the Resting Adult 713 

Brain. In: Proceedings of the Conference on Cognitive Computational Neuroscience. 714 

Philadelphia, PA; 2018.  715 

32.  Bradley MM, Codispoti M, Cuthbert BN, Lang PJ. Emotion and motivation I: Defensive and 716 

appetitive reactions in picture processing. Emotion. 2001;1(3):276–98.  717 

33.  Lang PJ, Greenwald MK, Bradley MM, Hamm AO. Looking at pictures: Affective, facial, 718 

visceral, and behavioral reactions. Psychophysiology. 1993 May;30(3):261–73.  719 

34.  Heller AS, Greischar LL, Honor A, Anderle MJ, Davidson RJ. Simultaneous acquisition of 720 

corrugator electromyography and functional magnetic resonance imaging: A new method 721 

for objectively measuring affect and neural activity concurrently. NeuroImage. 2011 722 

Oct;58(3):930–4.  723 

35.  Baucom LB, Wedell DH, Wang J, Blitzer DN, Shinkareva SV. Decoding the neural 724 

representation of affective states. NeuroImage. 2012 Jan;59(1):718–27.  725 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.01.13.426569doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426569
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

36.  Vytal K, Hamann S. Neuroimaging support for discrete neural correlates of basic emotions: 726 

a voxel-based meta-analysis. Journal of Cognitive Neuroscience. 2010;22(12):2864–85.  727 

37.  Lindquist KA, Wager TD, Kober H, Bliss-Moreau E, Barrett LF. The brain basis of emotion: 728 

A meta-analytic review. Behavioral and Brain Sciences. 2012 Jun;35(03):121–43.  729 

38.  Wilson KA, James GA, Kilts CD, Bush KA. Combining Physiological and Neuroimaging 730 

Measures to Predict Affect Processing Induced by Affectively Valent Image Stimuli. Sci 731 

Rep. 2020 Dec;10(1):9298.  732 

39.  Wegner DM, Giuliano T. Arousal-Induced Attention to Self. :8.  733 

40.  Coull JT. Neural correlates of attention and arousal: insights from electrophysiology, 734 

functional neuroimaging and psychopharmacology. Progress in Neurobiology. 1998 Jul 735 

1;55(4):343–61.  736 

41.  Hammer EM, Halder S, Blankertz B, Sannelli C, Dickhaus T, Kleih S, et al. Psychological 737 

predictors of SMR-BCI performance. Biological Psychology. 2012 Jan;89(1):80–6.  738 

42.  Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, et al. The brain 739 

imaging data structure, a format for organizing and describing outputs of neuroimaging 740 

experiments. Scientific Data. 2016 Jun 21;3:160044.  741 

 742 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.01.13.426569doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426569
http://creativecommons.org/licenses/by-nc-nd/4.0/

