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 21 
Abstract 22 
Large-scale recordings of neural activity are providing new opportunities to study network-level dynamics. However, the 23 
sheer volume of data and its dynamical complexity are critical barriers to uncovering and interpreting these dynamics. 24 
Deep learning methods are a promising approach due to their ability to uncover meaningful relationships from large, 25 
complex, and noisy datasets. When applied to high-D spiking data from motor cortex (M1) during stereotyped behaviors, 26 
they offer improvements in the ability to uncover dynamics and their relation to subjects’ behaviors on a millisecond 27 
timescale. However, applying such methods to less-structured behaviors, or in brain areas that are not well-modeled by 28 
autonomous dynamics, is far more challenging, because deep learning methods often require careful hand-tuning of 29 
complex model hyperparameters (HPs). Here we demonstrate AutoLFADS, a large-scale, automated model-tuning 30 
framework that can characterize dynamics in diverse brain areas without regard to behavior. AutoLFADS uses distributed 31 
computing to train dozens of models simultaneously while using evolutionary algorithms to tune HPs in a completely 32 
unsupervised way. This enables accurate inference of dynamics out-of-the-box on a variety of datasets, including data 33 
from M1 during stereotyped and free-paced reaching, somatosensory cortex during reaching with perturbations, and 34 
frontal cortex during cognitive timing tasks. We present a cloud software package and comprehensive tutorials that 35 
enable new users to apply the method without needing dedicated computing resources. 36 
 37 
Introduction 38 
Ongoing advances in neural interfacing technologies are enabling simultaneous monitoring of the activity of large neural 39 
populations across a wide array of brain areas and behaviors (1–5). Such technologies may fundamentally change the 40 
questions we can address about computations within a neural population, allowing neuroscientists to shift focus from 41 
understanding how individual neurons’ activity relates to externally-measurable or controllable parameters, toward 42 
understanding how neurons within a network coordinate their activity to perform computations underlying those 43 
behaviors. A natural method for interpreting these complex, high-dimensional datasets is that of neural population 44 
dynamics (6–8). The dynamical systems framework centers on uncovering coordinated patterns of activation across a 45 
neural population and characterizing how these patterns change over time. Knowledge of these hidden dynamics has 46 
provided new insights into how neural populations implement the computations necessary for motor, sensory, and 47 
cognitive processes (9–15). 48 
 49 
A focus on population dynamics could also facilitate a shift away from reliance on stereotyped behaviors and trial-50 
averaged neural responses. Standard approaches must typically average activity across trials, sacrificing single trial 51 
interpretability for robustness against what is perceived as noise in single trials. However, as articulated by Cunningham 52 
and Yu (16): “If the neural activity is not a direct function of externally measurable or controllable variables (for example, 53 
if activity is more a reflection of internal processing than stimulus drive or measurable behavior), the time course of 54 
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neural responses may differ substantially on nominally identical trials.” This may be especially true of non-primary cortical 55 
areas, and cognitively demanding tasks that involve decision-making, allocation of attention, or varying levels of 56 
motivation. 57 
 58 
To move beyond this bottleneck, high-time resolution single-trial analyses are essential. These can be enabled by a 59 
combination of neural population recordings and novel analytical tools like those proposed here. Single-trial, population-60 
level analyses benefit from two principles of the dynamical systems view: first, that simultaneously recorded neurons are 61 
not independent, but rather exhibit coordinated patterns of activation that reflect the state of the overall network rather 62 
than individual neurons. Second, the coordinated patterns evolve over time in ways that are largely predictable based 63 
on the population’s internal dynamics. Thus, while it may be challenging to accurately estimate the network’s state based 64 
solely on activity observed at a single time point, knowledge of how the state evolves can constrain an estimate at any 65 
given time point. 66 
 67 
Several approaches have been developed to infer latent dynamical structure from neural population activity on individual 68 
trials, including a growing number that leverage artificial neural networks (17–22). One such method, latent factor 69 
analysis via dynamical systems (LFADS) (22,20) achieved precise inference of motor cortical firing rates on single trials 70 
of stereotyped behaviors, enabling accurate prediction of subjects’ behaviors on a moment-by-moment, millisecond 71 
timescale (20). Further, in tasks with unpredictable events, a modified network architecture enabled inference of 72 
dynamical perturbations that corresponded to how subjects ultimately responded to the unpredictable events.  73 
 74 
Though highly effective, artificial neural networks, including LFADS, typically have many thousands of parameters, and 75 
potentially dozens of non-trainable hyperparameters (HPs) that need to be tuned to achieve good performance. HPs 76 
include architecture parameters like the type, dimensionality, and number of various layers, as well as regularization and 77 
optimization parameters. Until recently, the HP optimization problem was typically addressed by an iterative manual 78 
process, a random search, or some combination of the two. In the past several years, a host of more advanced 79 
approaches promises to eliminate the tedious work and domain knowledge required for manual tuning while performing 80 
better and more efficiently than random search (23–25). The form and variety of possible neuroscientific datasets present 81 
unique challenges that make HP optimization a particularly impactful problem (26). Thus, bringing efficient HP search 82 
algorithms to neuroscience could allow more effective experimentation with models based on artificial neural networks, 83 
like LFADS. 84 
 85 
Here we present AutoLFADS, a framework for large-scale, automated model tuning that enables accurate single-trial 86 
inference of neural population dynamics across a range of brain areas and behaviors. We evaluate AutoLFADS using 87 
data from three cortical regions: primary motor and dorsal premotor cortex (M1/PMd), somatosensory cortex area 2, and 88 
dorsomedial frontal cortex (DMFC). The tasks span a mix of functions where population activity can be well-modeled by 89 
autonomous dynamics (e.g., pre-planned reaching movements, estimation of elapsed time) and those for which 90 
population activity is responsive to external inputs (e.g., mechanical perturbations, unexpected appearance of reaching 91 
targets, variable timing cues). 92 
 93 
Using this broad range of datasets, we show that AutoLFADS achieves high-time resolution, single-trial inference of 94 
neural population dynamics, surpassing LFADS in all scenarios tested. Remarkably, AutoLFADS does this in a 95 
completely unsupervised manner that does not depend on the knowledge of the tasks, subjects’ behaviors, or brain 96 
areas. In all applications, the method is applied “out of the box” without careful adjustment for each dataset. We believe 97 
these capabilities greatly extend the range of neuroscientific applications for which accurate inference of single-trial 98 
population dynamics should be achievable, and substantially lower the barrier to entry for applying these methods. 99 
Finally, we present a cloud software package and comprehensive tutorials to enable new users without machine learning 100 
expertise or dedicated computing resources  to apply AutoLFADS successfully. 101 
 102 
  103 
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Results 104 

 105 
Fig1 | AutoLFADS combines a novel neural network regularization method with a large-scale framework for automated 106 
hyperparameter optimization. (a) Schematic of the LFADS architecture, showing how the generative model infers the firing rates 107 
that underlie the observed spikes. (b) Examples of LFADS-inferred rates (colored) and the corresponding synthetic input data (spikes, 108 
shown as black triangles) and data-generating distribution (ground truth rates, shown as gray traces) for three fitting modes. (c) Left: 109 
performance of 200 LFADS models with random HPs in matching the spikes and the known rates of a synthetic dataset, measured 110 
by negative log-likelihood (NLL) and variance accounted for (VAF) respectively. Colored points indicate the models that produced the 111 
rates in the previous panel. Right: same as previous, but for models trained with CD. (d) Schematic of the PBT approach to HP 112 
optimization. Each colored circle represents an LFADS model with a certain HP configuration and partially filled bars represent model 113 
performance. Models are trained for fixed intervals (generations), between which poorly-performing models are replaced by copies of 114 
better-performing models with perturbed HPs. 115 
 116 
LFADS architecture  117 
The LFADS architecture (Fig. 1a) has been detailed previously (20,22,26). Briefly, LFADS is based on the idea that the 118 
evolution of a neural population’s activity in time can be modeled as a non-autonomous dynamical system, i.e., a 119 
dynamical system whose state evolution is influenced by both internal dynamics and external inputs. This dynamical 120 
system is approximated by a recurrent neural network (RNN) known as the generator. Observed spiking activity from 121 
each neuron is assumed to reflect an underlying firing rate that is linked to the state of the generator at each timestep. 122 
Separately, to enable modeling of input-driven dynamical systems, time-varying inputs are inferred by a controller RNN, 123 
which receives as input an encoding of the spike count data as well as the generator’s output at the previous time step. 124 
This architecture is a modification of a sequential variational autoencoder (VAE) (22,27,28). When training the model, 125 
the objective is to maximize a lower bound on the Poisson likelihood of the observed spiking activity given the inferred 126 
rates (see Methods for details).  127 
 128 
It is imperative to regularize the model properly in order to extract useful spike rates (Fig. 1b) (26). This can be achieved 129 
through HP optimization. The two main classes of LFADS HPs are those that set the network architecture (e.g., number 130 
of units in each RNN, dimensionality of initial conditions, inputs, and factors), and those that control regularization and 131 
training (e.g., L2 penalties, scaling factors for KL penalties, dropout probability, and learning rate; described in Methods). 132 
The optimal values of these HPs could depend on various factors such as dataset size, dynamical structure underlying 133 
the activity of the brain region being modeled, and the behavioral task.  134 
 135 
A critical challenge for autoencoders is that automatic HP searches face a type of overfitting that is particularly hard to 136 
address (26). Given enough capacity, the model can find a trivial solution where it simply passes individual spikes from 137 
the input to the output firing rates, akin to an identity transformation of the input without modeling any meaningful structure 138 
underlying the data (Fig. 1b). Importantly, such pathological overfitting is not detectable by standard validation likelihood, 139 
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as the failure mode also results in high likelihood and poor modeling of validation data. We performed a 200-model 140 
random search over a space of KL, L2, and dropout regularization HPs that was empirically determined to yield both 141 
underfitting and overfitting models on a synthetic dataset (see Methods for a description of the dataset). Models that 142 
appear to have the best likelihoods actually exhibit poor inference of underlying firing rates, indicating a type of 143 
pathological overfitting (Fig. 1c, left). This phenomenon is also consistently observed on real data throughout this paper: 144 
better validation loss did not indicate better performance for any of our decoding or PSTH-based metrics. 145 
 146 
The lack of a reliable validation metric has prevented automated HP searches because it is unclear how one should 147 
select between models when underlying firing rates are unavailable or non-existent. To address this issue, we developed 148 
a novel regularization technique called coordinated dropout (CD) that forces the network to model only structure that is 149 
shared across neurons (26). After applying CD, we repeated the previous test on synthetic data using 200 LFADS models 150 
from the same HP search space, and found that they no longer overfit spikes (Fig. 1c, right). CD restored the 151 
correspondence between model quality assessed from matching spikes (validation likelihood) and matching rates, 152 
allowing the former to be used as a surrogate when the latter is not available. 153 
 154 
The premise of this paper is that this reliable validation metric should enable large-scale HP searches and fully-155 
automated selection of high-performing neuroscientific models despite having no access to ground truth firing rates. To 156 
test this, we needed an efficient HP search strategy. We chose a recent method based on parallel search called 157 
Population Based Training (PBT; Fig. 1d) (25,29). PBT distributes training across dozens of models simultaneously, and 158 
uses evolutionary algorithms to tune HPs over many generations. Because PBT distributes model training over many 159 
workers, it matches the scalability of parallel search methods such as random or grid search, while achieving higher 160 
performance with the same amount of computational resources (25,29).  161 
 162 
These two key modifications - a novel regularization strategy (CD) that results in a reliable validation metric, and an 163 
efficient approach to HP optimization (PBT) - yield a large-scale, automated framework for model tuning, which we refer 164 
to as AutoLFADS. In the following sections, we test the performance of AutoLFADS on previously characterized datasets, 165 
as well as novel ones. We start by evaluating AutoLFADS using data from M1/PMd in a structured reaching task to 166 
investigate the model’s performance on a well-characterized dataset that had been previously used to benchmark the 167 
performance of LFADS (20,26). On this data, we demonstrate that proper HP tuning leads to models that consistently 168 
outperform LFADS and that this gap grows substantially when data are limited. Next, we move to assessing the ability 169 
of AutoLFADS to approximate input-driven dynamics, using data from M1 in a random target task, data from area 2 in a 170 
reaching task with mechanical perturbations, and data from DMFC in a cognitive timing task. In each case, by several 171 
metrics, AutoLFADS consistently achieves better results than random searches that used three times the computational 172 
resources, despite performing model selection in a completely unsupervised fashion. 173 
 174 
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 175 
Fig2 | Application of AutoLFADS to data from motor cortex. (a) Schematic of the maze task (top), and representative reach 176 
trajectories across 108 total conditions, colored by target location (bottom). (b) Average reach trajectories (top), PSTHs (second row) 177 
and single-trial firing rates (bottom) obtained by smoothing (Gaussian kernel, 30 ms s.d.) or AutoLFADS for a single neuron across 4 178 
reach conditions. All data is modeled at 2 ms bins. Dashed lines indicate movement onset and vertical scale bars denote rates 179 
(spikes/s). (c) PSTHs produced by smoothing spikes (top) or by applying AutoLFADS (bottom), for 5 example neurons. Shaded 180 
regions are standard errors. Movement onset and rate scales are denoted as in the previous panel. (d) Performance in decoding 181 
reaching kinematics (arm velocities) as a function of training dataset size. Trial counts exclude the 20% of trials for each dataset size 182 
that were held-out for model evaluation. We decoded X and Y arm velocities from smoothed spikes, rates inferred by LFADS with 183 
manually-tuned hyperparameters (HPs), and rates inferred by AutoLFADS. Accuracy was quantified by VAF. Lines and shading 184 
denote mean +/- standard error across 7 models trained on randomly-drawn subsets of the full dataset. (e) Performance in replicating 185 
the empirical PSTHs computed on all trials using rates inferred from a 184-trial training set using AutoLFADS and LFADS with random 186 
HPs (100 models). (f) Hand velocity decoding performance for firing rates from a 184-trial training set (same models as in (e)). 187 
 188 
AutoLFADS outperforms original LFADS when applied on benchmark data from M1/PMd 189 
We first evaluated AutoLFADS on data from motor cortex during a highly stereotyped behavior, which was used to 190 
assess the original LFADS method (20). We used 202 neurons simultaneously recorded from M1 and PMd during a 191 
maze reaching task (see Methods) in which a monkey made a variety of straight and curved reaches after a delay period 192 
following target presentation (Fig. 2a; dataset consisted of 2296 individual reach trials spanning 108 reach types). 193 
Previous analyses of the delayed reaching paradigm demonstrated that activity during the movement period is well 194 
modeled as an autonomous dynamical system (10,20). In this abstract model, the temporal evolution of the neural 195 
population’s activity is predictable based on the state it reaches during the delay period. Therefore, previous work 196 
modeled these data with a simplified LFADS configuration which could only approximate autonomous dynamics (20). 197 
However, this simplified model is not applicable more broadly to situations in which both autonomous dynamics and 198 
external inputs might be needed to describe neural activity. Therefore, in this paper we do not constrain the network 199 
architecture to only model autonomous dynamics for any applications tested, to determine whether AutoLFADS can 200 
automatically adjust the degree to which autonomous dynamics and inputs are needed to model the data. 201 
 202 
AutoLFADS operates on unlabeled segments of binned spiking data and infers firing rates for each neuron in an 203 
unsupervised manner. Consistent with previous applications of LFADS on this dataset (20,26), the firing rates inferred 204 
by AutoLFADS for 2 ms bins exhibited clear and consistent structure on individual trials (Fig. 2b, bottom). We also 205 
verified that these firing rates captured features of the neural responses revealed by averaging across trials, a common 206 
method of de-noising neural activity (Fig. 2b, second row, and Fig. 2c).  207 
 208 
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A generalizable method should be able to perform well across the broad range of dataset sizes typical of neuroscience 209 
experiments. To test this, we compared AutoLFADS and manually-tuned LFADS models that were trained using either 210 
the full dataset (2296 trials), or randomly sampled subsets containing 5, 10, and 20% of the trials. We first tested the 211 
degree to which the representations produced by the models were informative about observable behavior, which we 212 
quantified by decoding the monkey’s hand velocity from the inferred rates using optimal linear estimation (Fig 2d). At 213 
the largest dataset size, decoding performance for AutoLFADS and manually-tuned LFADS was comparable. This result 214 
fits with standard intuition that performance is less sensitive to HPs when sufficient data are available. However, for all 215 
three reduced dataset sizes, the AutoLFADS outperformed the manually-tuned model (p<0.05 for all three sizes, paired, 216 
one-tailed Student’s t-test). 217 
 218 
While this result is promising, the difference in robustness to dataset size between AutoLFADS and LFADS could have 219 
resulted from a particularly poor selection of HPs during manual tuning. To control for this possibility, we chose one of 220 
the smaller data subsets (184 trials) and trained 100 additional LFADS models with randomly-selected HPs. We 221 
evaluated the models’ performance in two ways: how accurately the models replicated the empirical trial-averaged firing 222 
rates (PSTHs; Fig. 2e), and how accurately arm velocity could be decoded from inferred rates (Fig. 2f). While the LFADS 223 
models achieved a broad range of performance, models with better validation likelihoods did not achieve better inference 224 
of firing rates, mirroring our earlier findings with synthetic data (Fig. 1c). Thus it is unclear how one could select amongst 225 
the LFADS models with random HPs without some supervised intervention. In contrast, the single AutoLFADS model, 226 
chosen in a completely unsupervised fashion, outperformed all LFADS models for both performance metrics. 227 
 228 
Taken together, these results show that even if one performed a random search and then selected a model using a 229 
supervised approach (e.g., based on reconstruction of empirical PSTHs or decoding accuracy), its performance would 230 
still be substantially lower than that of AutoLFADS. Additionally, this validation - i.e., that the unsupervised approach 231 
produces high-performing models - provides evidence that even in cases where such supervision is unavailable (e.g., 232 
settings that lack clear task structure or measurement of behavioral variables), AutoLFADS models will still be high 233 
performing. 234 
 235 
AutoLFADS uncovers population dynamics without structured trials 236 
To-date, most efforts to tie dynamics to neural computations have used experiments where subjects perform constrained 237 
tasks with repeated, highly structured trials. For example, motor cortical dynamics are often framed as a computational 238 
engine to link the processes of motor preparation and execution (6–8). To interrogate these dynamics, most studies use 239 
a delayed-reaching paradigm that creates explicit pre-movement and movement periods. However, constrained 240 
behaviors may have multiple drawbacks in studying dynamics. First, it is unclear whether such artificial paradigms are 241 
good proxies for everyday behaviors. Second, highly constrained, repeated behaviors might impose artificial limits on 242 
the properties of the uncovered dynamics, such as the measured dimensionality of the neural population activity (30). 243 
Even outside of movement neuroscience, the requirement that we conduct many repetitions of constrained tasks 244 
significantly hinders our ability to study a rich sample of the dynamics of a given neural population. Accurate inference 245 
of neural dynamics without these constraints could facilitate dynamics-based analyses of richer datasets that are more 246 
reflective of the brain’s natural behavior. 247 
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 248 
Fig3 | Modeling neural activity in M1 without knowledge of trial or task information. (a) Top: Schematic of the random target 249 
task, which lacks stereotyped trial structure and delay periods. Bottom: Continuous neural activity (spiking data) recorded during back-250 
to-back reaching trials was divided into 600 ms segments with 200 ms of overlap between adjacent segments. After modeling by 251 
AutoLFADS, the inferred firing rates from different segments were merged together to create a continuous segment, using a weighted 252 
average of data at overlapping timepoints. (b) Distributions of trial lengths (time between onsets of successive targets) for 313 total 253 
trials. (c) Subspaces of neural activity extracted using PCA and colored by angle to the target. Left: 3D subspace that captures the 254 
most variance in smoothed spiking activity. Center: Subspace that captures the most variance in AutoLFADS rates. (d) Accuracy in 255 
decoding hand velocity from firing rates inferred by smoothing, 100 LFADS models with random HPs, and AutoLFADS. 256 
 257 
In order to provide access to a much broader range of experimental data, we tested whether AutoLFADS could model 258 
data without regard to trial structure. We applied AutoLFADS to neural activity from a monkey performing a continuous, 259 
self-paced random target reaching task (Fig. 3a, top) (31), in which each movement started and ended at a random 260 
position, and movements were highly variable in duration (Fig. 3b). Analysis of data without consistent temporal structure 261 
repeated across trials is challenging, as trial-averaging is not feasible. Even the available single-trial analytical methods 262 
have typically relied on strong simplifying assumptions that are not applicable to less-structured tasks. For example, 263 
previous efforts to uncover motor cortical dynamics during single reaches have been able to consider only brief data 264 
segments that begin with the arm at a consistent starting point, and relied on behavioral events such as target or 265 
movement onset to align trials before analysis (17,20,26,32–36). 266 
 267 
Like most machine learning algorithms, AutoLFADS operates on discrete, fixed-length segments of neural data. To 268 
create these segments from a task with highly variable timing, we chopped an approximately 9 minute window of 269 
continuous neural data into 600 ms segments with 200 ms of overlap (Fig. 3a, bottom) without regard to trial boundaries. 270 
After modeling with AutoLFADS, we merged inferred firing rates from individual segments, which yielded inferred rates 271 
for the original continuous window. We then analyzed the inferred rates by aligning the data to movement onset for each 272 
trial (see Methods). Even though the dataset was modeled without the use of trial information, inferred firing rates during 273 
the reconstructed trials exhibited consistent progression in an underlying state space, with clear structure that 274 
corresponded with the monkey’s reach direction on each trial (Fig. 3c, right). Further, the inferred firing rates were highly 275 
informative about moment-by-moment details of the measured reaching movements: AutoLFADS enabled decoding of 276 
continuous hand velocities with substantially higher accuracy than did smoothing (R2 of 0.76 for AutoLFADS v. 0.52 for 277 
smoothing), and it also outperformed all LFADS models with random HPs (Fig. 3d). 278 
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 279 
Fig4 | Inferred firing rates contain neural subspaces that are informative about movement kinematics and reach targets. (a) 280 
Kinematic and relative target variables and their corresponding neural representations, uncovered via linear regression. The quality 281 
of each projection is quantified by accuracy in decoding kinematic and target variables (R2). Plots are colored by x and y distance to 282 
target, except for speed which is colored by peak speed. Bottom row represents the normalized activation of movement (green) and 283 
relative target (red) subspaces, illustrating the more transient activation in the target subspace. (b) Movement and relative target 284 
subspaces plotted as 3D trajectories and colored by angle to target. 285 
 286 
In support of the hypothesis that AutoLFADS is picking up on meaningful dynamics that occurred throughout the session, 287 
we found that the firing rates inferred by AutoLFADS were informative of the previously-hypothesized computational role 288 
of motor cortical dynamics - i.e., linking the process of movement preparation and execution - despite the model being 289 
trained without information about the monkey’s behavior (Fig. 4). In particular, firing rates contained subspaces that 290 
were highly informative about hand position, hand velocity, and reach target on individual trials (Fig. 4a) and showed 291 
clear structure relative to the task (Fig. 4b). To find the subspaces, we used linear regression to project neural activity 292 
onto variables related to movement goals (reach target) and movement details (position, velocity and speed). Notably, 293 
the subspace reflecting reach target was transiently active around the time of movement execution, consistent with 294 
previous studies that have demonstrated the presence of preparatory activity in motor cortex, yet revealed without an 295 
explicit preparatory period. It is likely that the rates inferred by AutoLFADS also contain yet undiscovered subspaces 296 
and representations that can be explored in this same dataset without experiments explicitly designed to reveal them. 297 
Thus, AutoLFADS has the potential to greatly improve the utility and versatility of rich behavioral datasets via a unique 298 
unsupervised modeling process. 299 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.13.426570doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426570


 

9 

 300 
Fig5 | Application of AutoLFADS to data from somatosensory cortex area 2. (a) Schematic of the center-out, bump task showing 301 
passive and active conditions. (b) PSTHs and single-trial firing rates for a single neuron across 4 passive perturbation directions. 302 
Smoothing was performed using a Gaussian kernel with 10 ms s.d.. Dashed lines indicate movement onset. (c) Comparison of 303 
AutoLFADS vs. random search in matching empirical PSTHs. (d) PSTHs produced by smoothing spikes (top), AutoLFADS (middle), 304 
or GLM predictions (bottom) for 3 example neurons. (e) Comparison of spike count predictive performance for AutoLFADS and GLMs. 305 
Filled circles correspond to neurons for which AutoLFADS pR2 was significantly higher than GLM pR2, and open circles correspond 306 
to neurons for which there was no significant difference. Arrows (left) indicate neurons for which GLM pR2 was outside of the plot 307 
bounds. (f) Subspace representations of hand x-velocity during active and passive movements extracted from smoothed spikes and 308 
rates inferred by AutoLFADS. (g) Comparison of AutoLFADS vs. random search in decoding hand velocity during active trials. (h) 309 
Joint angular velocity decoding performance from firing rates inferred using smoothing, Gaussian process factor analysis (GPFA), 310 
and AutoLFADS. Error bars denote standard error of the mean. Joint abbreviations: shoulder adduction (SA), shoulder rotation (SR), 311 
shoulder flexion (SF), elbow flexion (EF), wrist radial pronation (RP), wrist flexion (WF), and wrist adduction (WA). 312 
 313 
  314 
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AutoLFADS accurately captures single-trial population dynamics in somatosensory cortex 315 
Results from the motor cortical datasets demonstrated that AutoLFADS could produce accurate dynamical models that 316 
were robust to training dataset size and generalized well across task conditions, without requiring highly constrained 317 
tasks or repeated trials. We next investigated whether AutoLFADS, without manual adjustment, could accurately model 318 
dynamics associated with sensory processes. Specifically, we modeled activity in somatosensory area 2 during a 319 
reaching task with mechanical perturbation. 320 
 321 
Area 2 provides a valuable test case for AutoLFADS generalization. As a sensory area, area 2 receives strong afferent 322 
input from cutaneous receptors and muscles and is robustly driven by mechanical perturbations to the arm (37–39). 323 
Functionally, area 2 is thought to serve a role in mediating reach-related proprioception (38–41), was recently shown to 324 
contain information about whole-arm kinematics (39), and may also receive efferent input from motor areas 325 
(38,39,42,43). 326 
 327 
In the area 2 experiment (Fig. 5a), a monkey used a manipulandum to control a cursor. The task began with a center-328 
hold period where the monkey held the cursor in the center of the screen. During half of the center-hold attempts, the 329 
manipulandum randomly perturbed the monkey’s arm in one of the eight directions, and the monkey had to re-acquire 330 
the central target (passive movement trials). Following the center-hold, the monkey moved to acquire one of eight 331 
peripheral targets (active movement trials). The single-trial rates inferred by AutoLFADS for passive trials exhibited clear 332 
and structured responses to the unpredictable perturbations (Fig. 5b), highlighting the model’s ability to approximate 333 
input-driven dynamics. 334 
 335 
As for M1/PMd, we verified that the rates inferred by AutoLFADS accurately reproduced empirical PSTHs and were 336 
informative of task variables. The inferred rates captured the distinct features of PSTHs during active and passive trials, 337 
even though no behavioral or task information was provided to the model (Fig. 5b; top, and Fig. 5c). The rates inferred 338 
by AutoLFADS also had a much closer correspondence to the empirical PSTHs during passive trials than LFADS models 339 
trained with random HPs (Fig. 5c). However, sensory brain regions like area 2 are typically characterized in terms of 340 
how neural activity encodes sensory stimuli (37–39). Thus, we examine whether rates inferred by AutoLFADS explain 341 
observed spikes better than a typical area 2 neural encoding model, in which neural activity is fit to some function of the 342 
state of the arm. We fit a generalized linear model (GLM) for each neuron over both active and passive movements, 343 
where the firing rate was solely a function of the position and velocity of the hand, as well as the contact forces with the 344 
manipulandum handle (39) (GLM predictions shown in Fig. 5d). We then compared the ability of the GLM and 345 
AutoLFADS to capture  each neuron’s observed response using pseudo-R2 (pR2), a metric similar to R2 but adapted for 346 
the Poisson statistics of neural firing (44). For the vast majority of neurons across two datasets, AutoLFADS predicted 347 
the observed activity significantly better than GLMs (p<0.05 for 110/121 neurons, bootstrap; see Methods), and there 348 
were no neurons for which the GLM produced better predictions than AutoLFADS (Fig. 5e). 349 
 350 
We used linear decoding to extract subspaces of neural activity that corresponded to x and y hand velocities for both 351 
smoothed spikes and rates inferred by AutoLFADS (Fig. 5f). The AutoLFADS rates contained subspaces that more 352 
clearly separated hand velocities for all active conditions and all passive conditions than smoothing, showing that they 353 
are better represented in the modeled dynamics of area 2. Further, single-trial hand velocity decoding from rates inferred 354 
by AutoLFADS for active trials was substantially more accurate than that of smoothing, and also more accurate than 355 
decoding from the output of any random search model (Fig. 5g). On a second dataset that included whole-arm motion 356 
tracking, the velocity of all joint angles was decoded from AutoLFADS rates with higher accuracy than from smoothing 357 
or GPFA (Fig. 5h, right; p<0.05 for all joints, paired, one-sided Student’s t-Test). 358 

 359 
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 360 

Fig6 | AutoLFADS-inferred inputs for area 2 neural activity. (a) Time-courses of the four inferred generator input dimensions for 361 
passive (top) and active (bottom) conditions. Thick line indicates average input trace for each direction, indicated by color, while thin 362 
colored lines show input traces for ten randomly chosen trials. Vertical scale bar is A.U. (b) Projection of four-dimensional inputs, from 363 
-100 ms to 200 ms around movement onset, into the top three principal components, with separate plots for each movement direction. 364 
Darker lines indicate active trials while lighter lines denote passive trials. Large dots indicate average initial input in PC space. Thick 365 
and thin lines follow conventions in (a). 366 

Since area 2 plays a significant role in processing sensory inputs, it stands to reason that the inputs inferred by 367 
AutoLFADS are important for successfully modeling the area’s activity as a dynamical system. If AutoLFADS is 368 
successfully modeling area 2 as an input-driven dynamical system, we should expect the inferred inputs to be consistent 369 
across trials with the same behavioral conditions. In these experiments, AutoLFADS models the data as fixed-length 370 
segments without regard to trial boundaries, so there is no guarantee of the consistency of the meaning of a given input 371 
between different trials of the same condition or even within a single trial. 372 

Despite the unsupervised modeling process, AutoLFADS inferred input trajectories that were consistent with the 373 
supervised notions of trials, directions, and perturbation types (Fig. 6a). Inputs were continuous over the course of a 374 
trial, implying that the model was able to pick up on statistical similarities between adjacent segments. The model also 375 
produced similar input patterns within a given condition, showing that it was able to detect the statistical patterns of a 376 
given condition from arbitrary segments of time during arbitrary trials. Finally, AutoLFADS produced distinct and logically 377 
consistent output patterns for active and passive trials. Inputs for abrupt passive movements generally had a much 378 
shorter time course that unfolded post-perturbation, while inputs for active trials began before movement and evolved 379 
more slowly. Visualization of these inputs highlights AutoLFADS’s ability to infer distinct inputs for distinct subsets of the 380 
data (Fig. 6b). 381 
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 382 

Fig7 | Application of AutoLFADS to data from dorsomedial frontal cortex (DMFC). (a) Top left: the time interval reproduction 383 
task. Bottom left: timing conditions used. Right: schematic illustrating the inverse correlation between neural speed and monkey’s 384 
produced time (tp). (b) PSTHs and single-trial firing rates for an example neuron during the Set-Go period of leftward saccade trials 385 
across 4 different values of ts (vertical scale bar: spikes/sec). Smoothing was performed using a Gaussian kernel with 25 ms s.d.. (c) 386 
PSTHs for 5 example neurons during the Set-Go period of rightward trials for two response modalities and two values of ts. (d) 387 
Performance in replicating the empirical PSTHs. (e) Visualization of low-dimensional trial-averaged and single-trial neural trajectories 388 
for the Ready-Set period for left and right joystick trials with ts of 1000 ms. 30 trials are shown for each condition. dPC: demixed 389 
principal component, CI: condition-independent, CD: condition-dependent. (f) Example plots showing correlations between neural 390 
speed and behavior (i.e., production time, tp) for individual trials across two timing intervals (red: 640 ms blue: 1000 ms). Neural speed 391 
was obtained based on the firing rates inferred from smoothing, GPFA, the LFADS model with best median speed-tp correlation across 392 
the 40 different task conditions (Best LFADS), and AutoLFADS. (g) Distributions of correlation coefficients across 40 different task 393 
conditions. Horizontal lines denote medians. For LFADS, the distribution includes correlation values for all 96 models with random 394 
HPs (40x96 values). 395 
 396 
  397 
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AutoLFADS accurately captures single-trial dynamics during cognition 398 
While activity in M1 and area 2 are largely driven by internal dynamics and inputs, respectively, many brain areas depend 399 
critically on the confluence of internal dynamics and inputs. To further test the generality of AutoLFADS to these 400 
situations, we applied it to data collected from dorsomedial frontal cortex (DMFC) during a cognitive time estimation task. 401 
DMFC comprises the supplementary eye field, dorsal supplementary motor area, and presupplementary motor area. It 402 
is often considered an intermediate region in the sensorimotor hierarchy (45), interfacing with both low-level sensory and 403 
motor (PMd/M1) areas. DMFC activity is less closely tied to the moment-by-moment details of movements than activity 404 
in M1 or area 2 - instead, its activity seems to relate to higher-level aspects of motor control, including motor timing 405 
(46,47), planning movement sequences (48), learning sensorimotor associations (49) and context-dependent reward 406 
modulation (50). However, population dynamics in DMFC are tied to behavioral correlates such as movement production 407 
time (15,47,51). This makes DMFC another excellent test case for unsupervised modeling with AutoLFADS. 408 
 409 
For this task, the monkey was presented with two visual stimuli (“Ready” and “Set”, respectively), separated by sample 410 
timing interval ts. After “Set”, the monkey attempted to reproduce the interval by waiting for the same amount of time (tp) 411 
before initiating a movement (“Go”) (Fig. 7a, left). The movement was either a saccade or joystick manipulation to the 412 
left or right depending on the location of a peripheral target. The two response modalities, combined with 10 timing 413 
conditions (ts) and two target locations, led to a total of 40 task conditions. 414 
 415 
Consistent with our observations on M1/PMd and area 2 data, AutoLFADS-inferred rates for this dataset showed 416 
consistent, denoised structure at the single-trial level (Fig. 7b, bottom) and recapitulated the features of neural responses 417 
uncovered by trial averaging (Fig. 7b, top; Fig. 7c). Quantitative comparison of the PSTHs shows that AutoLFADS-418 
inferred rates again achieved a better match to the empirical PSTHs than all of the random search models (Fig. 7d), 419 
providing further evidence that AutoLFADS can achieve superior models without expert tuning of regularization HPs or 420 
supervised model selection criteria. Additionally, when visualized in a low-dimensional space using demixed principal 421 
components analysis (dPCA), the AutoLFADS-inferred firing rates showed much greater consistency across trials of a 422 
given condition than firing rates computed by smoothing spikes (Fig. 7e). 423 
 424 
To evaluate the AutoLFADS model beyond its ability to capture trial-averaged responses, we sought to evaluate whether 425 
its predicted firing rates were more informative of trial-by-trial timing behaviors than other methods. Previous studies 426 
have shown that the monkey's produced time interval (tp) is negatively correlated to the speed at which the neural 427 
trajectories evolve during the Set-Go period (Fig. 7a, right) (15,51). To evaluate the correspondence between neural 428 
activity and behavior, we estimated neural speeds using representations produced by smoothing spikes, GPFA, principal 429 
component analysis (PCA), the best random search model (‘Best LFADS’, see Methods for details), and an AutoLFADS 430 
model, and measured the trial-by-trial correlation between the estimated speeds and tp. Note that selecting the best 431 
random search model again required a supervised calculation (tp correlation) for each model. If a given representation 432 
of neural activity is more informative about behavior, we expect a stronger (more negative) correlation between predicted 433 
and observed tp. 434 
 435 
We show correlation values for individual trials across two different values of ts (Fig. 7f), and summarize across all 40 436 
task conditions (Fig. 7g). We observed consistent negative correlations between tp and the estimated neural speed from 437 
rates obtained by different methods. Correlations from rates inferred by AutoLFADS were significantly better than all 438 
unsupervised approaches (p<0.001, Wilcoxon signed rank test), and comparable with the supervised selection approach 439 
(‘Best LFADS’, p=0.758, Wilcoxon signed rank test), despite using no task information. 440 
 441 
Taken together, the area 2 and DMFC results demonstrate that the out-of-the-box, automated inference of neural 442 
population dynamics provided by AutoLFADS allows modeling of diverse brain areas, with dynamics that span the 443 
continuum from autonomous to input-driven. AutoLFADS provides a powerful framework for generalized inference of 444 
input-driven dynamics and enables decoding of simultaneously monitored behavioral variables with unprecedented 445 
accuracy. Importantly, the unsupervised approach of AutoLFADS avoids the use of any behavioral data and optimizes 446 
only for neural modeling. This allows for modeling when behavioral data is not available and also prevents any behavioral 447 
biases from being introduced to the firing rates, resulting in better inference of the brain’s inherently generalized 448 
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representations. This is evident in the high performance of AutoLFADS rates in both PSTH reconstruction and various 449 
decoding tasks. 450 
 451 
Running AutoLFADS in the Cloud 452 
A key challenge with emerging, computationally-intensive data analysis methods is that the computational infrastructure 453 
and expertise necessary to make effective use of these tools is a significant barrier to widespread adoption (52). For 454 
example, many labs do not have the resources necessary to train dozens of models in parallel across many GPUs. To 455 
address this hurdle, we provide an open-source implementation of AutoLFADS designed to operate on Google Cloud 456 
Platform (GCP). Additionally, we provide a comprehensive tutorial to help novice users get started running AutoLFADS 457 
on GCP without expert knowledge of cloud computing or machine learning. The tutorial describes how to set up the 458 
framework, prepare input data, set up AutoLFADS runs, and load the final results. Users of AutoLFADS on GCP don’t 459 
need to worry about the upfront hardware and labor costs associated with maintaining a local computing cluster, yet 460 
have access to virtually unlimited computation on demand. This framework allows researchers to spend less time doing 461 
non-research tasks like dependency management and hyperparameter optimization, while giving them confidence that 462 
their models are performing well, regardless of brain area or task. We include links to the code and tutorial in Code 463 
Availability. 464 
 465 
Discussion 466 
The original LFADS work (20) provided a method for inferring latent dynamics, denoised firing rates, and external inputs 467 
from large populations of neurons, producing representations that were more informative of behavior than previous 468 
approaches (33). However, application of LFADS to neural populations with different dynamics, strong external inputs, 469 
or unconstrained behavior would have necessitated time-consuming and subjective manual tuning. In the current work, 470 
we show that with robust regularization and efficient hyperparameter tuning it is possible to train high-performing LFADS 471 
models for neural spiking datasets with arbitrary size, trial structure, and dynamical complexity. We demonstrated several 472 
properties of the AutoLFADS training approach which have broad implications. On the maze task, we showed that 473 
AutoLFADS models are more robust to dataset size, opening up new lines of inquiry on smaller datasets and reducing 474 
the number of trials that must be conducted in future experiments. Using the random target task, we demonstrated how 475 
AutoLFADS needs no task information in order to generate rich dynamical models of neural activity. This enables the 476 
study of dynamics during richer tasks and reuse of datasets collected for another purpose. With the perturbed reaching 477 
task, we demonstrated the first application of dynamical modeling, as opposed to encoder-based modeling, to the highly 478 
input-driven somatosensory area 2. Finally, in the timing task, we showed that AutoLFADS found the appropriate balance 479 
between inputs and internal dynamics for a cognitive area by modeling DMFC.  480 
 481 
AutoLFADS inherits some of the flaws of the LFADS model. For example, the linear-exponential-Poisson observation 482 
model is likely an oversimplification. However, we used this architecture as a starting point to show that a large-scale 483 
hyperparameter search is feasible and beneficial. By enabling large-scale searches,  we can be reasonably confident 484 
that any performance differences achieved by future architecture changes will be due to real differences in modeling 485 
capabilities rather than a simple lack of HP optimization.  486 
 487 
AutoLFADS performed well using a simple binary tournament exploitation and perturbation exploration strategies for 488 
PBT (25). Future work might investigate alternate exploitation or exploration strategies, or whether more powerful and 489 
efficient PBT variants (53) can increase speed and performance of AutoLFADS while lowering computational cost. A 490 
current limitation of AutoLFADS is its inability to explore hyperparameters that modify the underlying model architecture. 491 
Thus, another avenue for further work lies in combining AutoLFADS with the recent techniques for automated neural 492 
architecture search (54). 493 
 494 
Though AutoLFADS is much more efficient than previous approaches, it still requires substantial computational 495 
resources that may not be available for all potential users. Setting up the requisite software environments can be an 496 
additional hurdle. Our GCP implementation allows users to apply AutoLFADS without needing to purchase and maintain 497 
a local cluster. We estimate that the compute cost for a typical AutoLFADS run on GCP is between $5-25, depending 498 
on dataset and model sizes. We have created detailed tutorials to guide novice users through the setup, model training, 499 
and data retrieval processes, making AutoLFADS accessible to anyone who works with neural spiking data. 500 
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 501 
 502 
Taken together, AutoLFADS provides an accessible and extensible framework for generalized inference of single-trial 503 
neural dynamics that has the potential to unify the way we study computation through dynamics across brain areas and 504 
tasks.  505 
 506 
Code Availability 507 
AutoLFADS for GCP can be downloaded from GitHub at github.com/snel-repo/autolfads and the tutorial is 508 
available at snel-repo.github.io/autolfads. 509 
 510 
Data Availability 511 
Data will be made available upon reasonable request from the authors. The random target dataset is publicly available 512 
at http://doi.org/10.5281/zenodo.3854034. 513 
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 670 
Methods 671 
LFADS architecture and training 672 
A detailed overview of the LFADS model is given in (20). Briefly: at the input to the model, a pair of bidirectional RNN 673 
encoders read over the spike sequence and produce initial conditions for the generator RNN and time-varying inputs for 674 
the controller RNN. All RNNs were implemented using gated recurrent unit (GRU) cells. At each time step, the generator 675 
state evolves with input from the controller and the controller receives delayed feedback from the generator. The 676 
generator states are linearly mapped to factors, which are mapped to the firing rates of the original neurons using a 677 
linear mapping followed by an exponential. The optimization objective is to minimize the negative log-likelihood of the 678 
data given the inferred firing rates, and includes KL and L2 regularization penalties. 679 
 680 
Identical architecture and training hyperparameter values were used for most runs, with a few deviations. We used a 681 
generator dimension of 100, initial condition dimension of 100 (50 for area 2 runs), initial condition encoder dimension 682 
of 100, factor dimension of 40, controller and controller input encoder dimension of 80 (64 for DMFC runs), and controller 683 
output dimension of 4 (10 for overfitting runs).  684 
 685 
We used the Adam optimizer with an initial learning rate of 0.01 and, for non-AutoLFADS runs, decayed the learning 686 
rate by a factor of 0.95 after every 6 consecutive epochs with no improvement to the validation loss. Training was halted 687 
for these runs when the learning rate reached 1e-5. The loss was scaled by a factor of 1e4 immediately before 688 
optimization for numerical stability. GRU cell hidden states were clipped at 5 and the global gradient norm was clipped 689 
at 200 to avoid occasional pathological training. 690 
 691 
We used a trainable mean initialized to 0 and fixed variance of 0.1 for the Gaussian initial condition prior and set a 692 
minimum allowable variance of 1e-4 for the initial condition posterior. The controller output prior was autoregressive with 693 
a trainable autocorrelation tau and noise variance, initialized to 10 and 0.1, respectively. 694 
 695 
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Memory usage for RNNs is highly dependent on the sequence length, so batch size was varied accordingly (100 for 696 
maze and random target datasets, 500 for synthetic and area 2 datasets, and 300/400 for the DMFC dataset). KL and 697 
L2 regularization penalties were linearly ramped to their full weight during the first 80 epochs for most runs to avoid local 698 
minima induced by high initial regularization penalties. Exceptions were the runs on synthetic data, which were ramped 699 
over 70 epochs and random searches on area 2 and DMFC datasets, which used step-wise ramping over the first 400 700 
steps. 701 
 702 
Random searches and AutoLFADS runs used the architecture parameters described above, along with regularization 703 
HPs sampled from ranges (or initialized with constant values) given in Supp. Table 2. Most runs used a default set of 704 
ranges, with a few exceptions outlined in the table. Dropout was sampled from a uniform distribution and KL and L2 705 
weight HPs were sampled from log-uniform distributions. 706 
 707 
During PBT, weights were used to control maximum and minimum perturbation magnitudes for different HPs (e.g. a 708 
weight of 0.3 results in perturbation factors between 0.7 and 1.3). The dropout and CD HPs used a weight of 0.3 and KL 709 
and L2 penalty HPs used a weight of 0.8. CD rate, dropout rate, and learning rate were limited to their specified ranges, 710 
while the KL and L2 penalties could be perturbed outside of the initial ranges. Each generation of PBT consisted of 50 711 
training epochs. AutoLFADS training was stopped when the best smoothed validation NLL improved by less than 0.05% 712 
over the course of four generations. 713 
 714 
Validation NLL was exponentially smoothed with 𝛼 = 0.7 during training. For non-AutoLFADS runs, the model checkpoint 715 
with the lowest smoothed validation NLL was used for inference. For AutoLFADS runs, the checkpoint with the lowest 716 
smoothed validation NLL in the last epoch of any generation was used for inference. Firing rates were inferred 50 times 717 
for each model using different samples from initial condition and controller output posteriors. These estimates were then 718 
averaged, resulting in the final inferred rates for each model. 719 
 720 
Overfitting on synthetic data 721 
Synthetic data were generated using a 2-input chaotic vanilla RNN (𝛾 = 1.5) as described in the original LFADS work 722 
(20,22). The only modification was that the inputs were white Gaussian noise. In brief, the 50-unit RNN was run for 1 723 
second (100 time steps) starting from 400 different initial conditions to generate ground-truth Poisson rates for each 724 
condition. These distributions were sampled 10 times for each condition, resulting in 4000 spiking trials. Of these trials, 725 
80% (3200 trials) were used for LFADS training and the final 20% (800 trials) were used for validation. 726 
 727 
We sampled 200 HP combinations from the distributions specified in Supp. Table 2 and used them to train LFADS 728 
models on the synthetic dataset. We then trained 200 additional models with the same set of HPs using a CD rate of 0.3 729 
(i.e., using 70% of data as input and remaining 30% for likelihood evaluation) (26). The coefficient of determination 730 
between inferred and ground truth rates was computed across all samples and neurons on the 800-sample validation 731 
set. 732 
 733 
M1 maze task 734 
We used the previously-collected maze dataset (55) described in detail in the original LFADS work (20). Briefly, a male 735 
macaque monkey performed a two-dimensional center-out reaching task by guiding a cursor to a target without touching 736 
any virtual barriers while neural activity was recorded via two 92-electrode arrays implanted into M1 and dorsal PMd. 737 
The full dataset consisted of 2,296 trials, 108 reach conditions, and 202 single units. 738 
 739 
The spiking data were binned at 1 ms and smoothed by convolution with a Gaussian kernel (30 ms s.d.). Hand velocities 740 
were computed using second order accurate central differences from hand position at 1kHz. An antialiasing filter was 741 
applied to hand velocities and all data were then resampled to 2 ms. Trials were created by aligning the data to 250 ms 742 
before and 450 ms after movement onset, as calculated in the original paper.  743 
 744 
Datasets of varying sizes were created for LFADS by randomly selecting trials with 20, 10, and 5% of the original dataset 745 
using seven fixed seeds, and then splitting each of these into 80/20 training and validation sets for LFADS (22 total, 746 
including the full dataset). As a baseline for each data subset, we trained LFADS models with fixed HPs that had been 747 
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previously found to result in high-performing models for this dataset, with the exception of controller input encoder and 748 
controller dimensionalities (see LFADS architecture and training and Supp. Table 2). We increased the dimensionality 749 
of these components to allow improved generalization to the datasets from more input-driven areas while keeping the 750 
architecture consistent across all datasets. We also trained AutoLFADS models (40 workers) on each subset using the 751 
search space given in Supp. Table 2. Additionally, we ran a random search using 100 HPs sampled from the AutoLFADS 752 
search space on one of the 230-trial datasets. 753 
 754 
We used rates from spike smoothing, manually tuned LFADS models, random search LFADS models, and AutoLFADS 755 
models to predict x and y hand velocity delayed by 90 ms using ridge regression with a regularization penalty of 𝜆 = 1. 756 
Each data subset was further split into 80/20 training and validation sets for decoding. To account for the difficulty of 757 
modeling the first few time points of each trial with LFADS, we discarded data from the first 50 ms of each trial and did 758 
not use that data for model evaluation. Decoding performance was evaluated by computing the coefficient of 759 
determination for predicted and true velocity across all trials for each velocity dimension. The result was then averaged 760 
across the two velocity dimensions. 761 
 762 
To evaluate PSTH reconstruction for random search and AutoLFADS models, we first computed the empirical PSTHs 763 
by averaging smoothed spikes from the full 2296-trial dataset across all 108 conditions. We then computed model PSTHs 764 
by averaging inferred rates across conditions for all trials in the 230-trial subset. We computed the coefficient of 765 
determination between model-inferred PSTHs and empirical PSTHs for each neuron across all conditions in the subset. 766 
We then averaged the result across all neurons. 767 
 768 
M1 random target task 769 
The random target dataset consists of neural recordings and hand position data recorded from macaque M1 during a 770 
self-paced, sequential reaching task between random elements of a grid (31). For our experiments, we used only the 771 
first 30% (approx. 9 minutes) of the dataset recorded from Indy on 04/26/2016. 772 
 773 
We started with sorted units obtained from M1 and binned their spike times at 1 ms. To avoid artifacts in which the same 774 
spikes appeared on multiple channels, we computed cross-correlations between all pairs of neurons over the first 10 sec 775 
and removed individual correlated neurons (𝑛 = 34) by highest firing rate until there were no pairs with correlation above 776 
0.0625, resulting in 181 uncorrelated neurons. The position data were provided at 250 Hz, so we upsampled these data 777 
to 1 kHz using cubic interpolation. We smoothed the spikes by convolving with a Gaussian kernel (50 ms s.d.), applied 778 
an antialiasing filter to hand velocities, and downsampled to 2 ms. The continuous neural spiking data were chopped 779 
into overlapping segments of length 600 ms, where each segment shared its last 200 ms with the first 200 ms of the 780 
next. The resulting 1321 segments were split into 80/20 training and validation sets for LFADS, where the validation 781 
segments were chosen in blocks of 3 to minimize the overlap between training and validation subsets. 782 
 783 
The chopped segments were used to train an AutoLFADS model and to run a random search using 100 HPs sampled 784 
from the AutoLFADS search space. After modeling, the chopped data were merged using a quadratic weighting of 785 
overlapping regions that placed more weight on the rates inferred at the ends of the segments. The merging technique 786 
weighted the ends of segments as 𝑤 = 1 − 𝑥! and the beginnings of segments as 1 − 𝑤, with x ranging from 0 to 1 787 
across the overlapping points. After weights were applied, overlapping points were summed, resulting in a continuous 788 
~9-minute stretch of modeled data. 789 
 790 
We computed hand velocity from position using second-order accurate central differences and introduced a 120 ms 791 
delay between neural data and kinematics. We used ridge regression (𝜆 = 1𝑒 − 5) to predict hand velocity across the 792 
continuous data using smoothed spikes, random search LFADS rates, and AutoLFADS rates. We computed coefficient 793 
of determination for each velocity dimension individually and then averaged the two velocity dimensions to compute 794 
decoding performance. 795 
 796 
To prepare the data for subspace visualization, the continuous activity for each neuron was soft-normalized by 797 
subtracting its mean and dividing by its 90th quantile plus an offset of 0.01. Trials were identified in the continuous data 798 
as the intervals over which target positions were constant (314 trials). To identify valid trials, we computed the normalized 799 
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distance from the final position. Trials were removed if the cursor exceeded 5% of this original distance or overshot by 800 
5%. Thresholds (𝑛 = 100) were also created between 25 and 95% of the distance and trials were removed if they crossed 801 
any of those thresholds more than once. We then computed an alignment point at 90% of the distance from the final 802 
position for the remaining trials and labeled it as movement onset (227 trials). For each of these trials, data were aligned 803 
to 400 ms before and 500 ms after movement onset. The first principal component of AutoLFADS rates during aligned 804 
trials was computed and activation during the first 100 ms of each trial was normalized to [0,1]. Trials were rejected if 805 
activation peaked after 100 ms or the starting activation was more than 3 standard deviations from the mean. The PC1 806 
onset alignment point was calculated as the first time that activity in the first principal component crossed 50% of its 807 
maximum in the first 100 ms (192 trials). This alignment point was used for all neural subspace analyses. 808 
 809 
Movement-relevant subspaces were extracted by ridge regression from neural activity onto x-velocity, y-velocity, and 810 
speed. Similarly, position-relevant subspaces involved regression from neural activity onto x-position and y-position. For 811 
movement and position subspaces, neural and behavioral data were aligned to 200 ms before and 1000 ms after PC1 812 
onset. Target subspaces were computed by regressing neural activity onto time series that represented relative target 813 
positions. As with the movement and position subspaces, the time series spanned 200 ms before to 1000 ms after PC1 814 
onset. A boxcar window was used to confine the relative target position information to the time period spanning 0 to 200 815 
ms after PC1 onset, and the rest of the window was zero-filled. For kinematic prediction from neural subspaces, we used 816 
a delay of 120 ms and 80/20 trial-wise training and validation split. For each behavioral variable and neural data type, a 817 
5-fold cross-validated grid search (𝑛 = 100) was used on training data to find the best-performing regularization across 818 
orders of magnitude between 1e-5 and 1e4. 819 
 820 
Single subspace dimensions were aligned to 200 ms before and 850 ms after PC1 onset for plotting. Subspace 821 
activations were calculated by computing the norm of activations across all dimensions of the subspace and then 822 
rescaling the min and max activations to 0 and 1, respectively. Multidimensional subspace plots for the movement 823 
subspace were aligned to 180 ms before and 620 ms after PC1 onset and for target subspace 180 ms before and 20 824 
ms after. 825 
 826 
Area 2 bump task 827 
The sensory dataset consisted of two recording sessions during which a monkey moved a manipulandum to direct a 828 
cursor towards one of eight targets (active trials). During passive trials, the manipulandum induced a mechanical 829 
perturbation to the monkey’s hand prior to the reach. Activity was recorded via an intracortical electrode array embedded 830 
in Brodmann’s area 2 of the somatosensory cortex. For the second session, joint angles were calculated from motion 831 
tracking data collected throughout the session. The first session was used for PSTH, GLM, subspace, and velocity 832 
decoding analyses and the second session was only used for pseudo-R2 comparison to GLM and joint angle decoding. 833 
More details on the task and dataset are given in the original paper (39).  834 
 835 
For both sessions, only sorted units were used. Spikes were binned at 1 ms and neurons that were correlated over the 836 
first 1000 sec were removed (𝑛 = 2 for each session) as described for the random target task, resulting in 53 and 68 837 
neurons in the first and second sessions, respectively. Spikes were then rebinned to 5 ms and the continuous data were 838 
chopped into 500 ms segments with 200 ms of overlap. Segments that did not include data from rewarded trials were 839 
discarded (kept 9,626 for the first session and 7,038 for the second session). A subset of the segments (30%) were 840 
further split into training and validation data (80/20) for LFADS. An AutoLFADS model (32 workers) was trained on each 841 
session and a random search (96 models) was performed on the first session. After modeling, LFADS rates were then 842 
reassembled into their continuous form, with linear merging of overlapping data points. 843 
 844 
Empirical PSTHs were computed by convolving spikes binned at 1 ms with a half-Gaussian (10 ms s.d.), rebinning to 5 845 
ms, and then averaging across all trials within a condition. LFADS PSTHs were computed by similarly averaging LFADS 846 
rates. Passive trials were aligned 100 ms before and 500 ms after the time of perturbation, and active trials were aligned 847 
to the same window around an acceleration-based movement onset (39). Neurons with firing rates lower than 1 Hz were 848 
excluded from the PSTH analysis. To quantitatively evaluate PSTH reconstruction, the coefficient of determination was 849 
computed for each neuron and passive condition in the four cardinal directions, and these numbers were averaged for 850 
each model. 851 
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 852 
As a baseline for how well AutoLFADS could reconstruct neural activity, we fit generalized linear models (GLMs) to each 853 
individual neuron’s firing rate, based on the position and velocity of and forces on the hand (see Chowdhury et al., 2020 854 
for details of the hand kinematic-force GLM). Notably, in addition to fitting GLMs using the concurrent behavioral 855 
covariates, we also added 10 bins of behavioral history (50 ms) to the GLM covariates, increasing the number of GLM 856 
parameters almost tenfold. Furthermore, because we wanted to find the performance ceiling of a behavioral-encoder-857 
based GLMs to compare with the dynamics-based AutoLFADS, we purposefully did not cross-validate the GLMs. 858 
Instead, we simply evaluated GLM fits on data used to train the model. 859 
 860 
To evaluate AutoLFADS and GLMs individually, we used the pseudo-R2 (pR2), a goodness-of-fit metric adapted for the 861 
Poisson-like statistics of neural activity. Like variance-accounted-for and R2, pR2 has a maximum value of 1 when a 862 
model perfectly predicts the data, and a value of 0 when a model predicts as well as a single parameter mean model. 863 
Negative values indicate predictions that are worse than a mean model. For each neuron, we compared the pR2 of the 864 
AutoLFADS model to that of the GLM (Fig 5e). To determine statistically whether AutoLFADS performed better than 865 
GLMs, we used the relative-pR2 (rpR2) metric, which compares the two models against each other, rather than to a mean 866 
model (see Perich et al., 2018 for full description of pR2 and rpR2). In this case, a rpR2 value above 0 indicated that 867 
AutoLFADS outperformed the GLM (indicated by filled circles in Fig 5e). We assessed significance using a bootstrapping 868 
procedure, after fitting both AutoLFADS and GLMs on the data. On each bootstrap iteration, we drew a number of trials 869 
from the session (with replacement) equal to the total number of trials in the session, evaluating the rpR2 on this set of 870 
trials as one bootstrap sample. We repeated this procedure 100 times. We defined neurons for which at least 95 of these 871 
rpR2 samples were greater than 0 as neurons that were predicted better by AutoLFADS than a GLM. Likewise, neurons 872 
for which at least 95 of these samples were below 0 would have been defined as neurons predicted better by GLM 873 
(though there were no neurons with this result). 874 
 875 
For the subspace analysis, spikes were smoothed by convolution with a Gaussian (50 ms s.d.) and then rebinned to 50 876 
ms. Neural activity was scaled using the same soft-normalization approach outlined for the random target task subspace 877 
analysis. Movement onset was calculated using the acceleration-based movement onset approach for both active and 878 
passive trials. For decoder training, trials were aligned to 100 ms before to 600 ms after movement onset. For plotting, 879 
trials were aligned to 50 ms before and 600 ms after movement onset. The data for successful reaches in the four 880 
cardinal directions was divided into 80/20 trial-wise training and validation partitions. Separate ridge regression models 881 
were trained to predict each hand velocity dimension for active and passive trials using neural activity delayed by 50 ms 882 
(total 4 decoders). The regularization penalty was determined through a 5-fold cross validated grid search of 25 values 883 
from the same range as the random target task subspace decoders. 884 
 885 
For hand velocity decoding, spikes during active trials were smoothed by convolution with a half-Gaussian (50 ms s.d.) 886 
and neural activity was delayed by 100 ms relative to kinematics. The data were aligned to 200 ms before and 1200 ms 887 
after movement onset and trials were split into 80/20 training and validation sets. Simple regression was used to estimate 888 
kinematics from neural activity and the coefficient of determination was computed and averaged across x- and y-velocity. 889 
 890 
GPFA was performed on segments from all rewarded trials using a latent dimension of 20 and Gaussian smoothing 891 
kernel (30 ms s.d.). Decoding data were extracted by aligning data from active trials to 200 ms before and 500 ms after 892 
movement onset. Data were split into 80/20 training and validation sets and neural activity was lagged 100 ms behind 893 
kinematics. Ridge regression (𝜆 = 0.001) was used to decode all joint angle velocities from smoothed spikes (half-894 
Gaussian, 50 ms kernel s.d.), rates inferred by GPFA, and rates inferred by AutoLFADS. 895 
 896 
DMFC timing task 897 
The cognitive dataset consisted of one session of recordings from the dorsomedial frontal cortex (DMFC) while a monkey 898 
performed a time interval reproduction task. The monkey was presented with a “Ready” visual stimulus to indicate the 899 
start of the interval and a second “Set” visual stimulus to indicate the end of the sample timing interval, ts. Following the 900 
Set stimulus, the monkey made a response (“Go”) so that the production interval (tp) between Set and Go matches the 901 
corresponding ts. The animal responded with either a saccadic eye movement or a joystick manipulation to the left or 902 
right depending on the location of a peripheral target. The two response modalities, combined with 10 timing conditions 903 
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(ts) and two target locations, led to a total of 40 task conditions. A more detailed description of the task is available in the 904 
original paper (57). 905 
 906 
To prepare the data for LFADS, the spikes from sorted units were binned at 20 ms. To avoid artifacts from correlated 907 
spiking activity, we computed cross-correlations between all pairs of neurons for the duration of the experiment and 908 
sequentially removed individual neurons (𝑛 = 8) by the number of above-threshold correlations until there were no pairs 909 
with correlation above 0.2, resulting in 45 uncorrelated neurons. Data between the “Ready” cue and the trial end was 910 
chopped into 2600 ms segments with no overlap. The first chop for each trial was randomly offset by between 0 and 100 911 
ms to break any link between trial start times and chop start times. The resulting neural data segments (1659 total) were 912 
split into 80/20 training and validation sets for LFADS. An AutoLFADS model (32 workers) and random search (96 913 
models) were trained on these segments (see Supp. Table 2).  914 
 915 
For all analyses of smoothed spikes, smoothing was performed by convolving with a Gaussian kernel (widths described 916 
below) at 1 ms resolution. 917 
 918 
Empirical PSTHs were computed by trial-averaging smoothed spikes (25 ms kernel s.d., 20 ms bins) within each of the 919 
40 conditions. LFADS PSTHs were computed by similarly averaging LFADS rates. The coefficient of determination was 920 
computed between inferred and empirical PSTHs across all neurons and time steps during the “Ready-Set” and “Set-921 
Go” periods for each condition and then averaged across periods and conditions. 922 
 923 
To visualize low-dimensional neural trajectories, demixed principal component analysis (dPCA; Kobak et al., 2016) was 924 
performed on smoothed spikes (40 ms kernel s.d., 20 ms bins) and AutoLFADS rates during the “Ready-Set” period. 925 
The two conditions used were rightward and leftward hand movements with 𝑡 " = 1000	𝑚𝑠.  926 
 927 
Besides LFADS/AutoLFADS, three alternate methods were applied for speed-tp correlation comparisons: spike 928 
smoothing, GPFA, and PCA. For spike smoothing, analyses were performed by smoothing with a 40 ms s.d.. For GPFA, 929 
a model was trained on the concatenated training and validation sets with a latent dimension of 9. Principal component 930 
analysis (PCA) was performed on smoothed spikes (40 ms kernel s.d., 20 ms bins) and 5-7 top PCs that explained more 931 
than 75% of data variance across conditions were included in the later analysis. 932 
 933 
Neural speed was calculated by computing distances between consecutive time bins in a multidimensional state space 934 
and then averaging the distances across the time bins for the production epoch. The number of dimensions used to 935 
compute the neural speed was 45, 5-7, 9, and 45 for smoothing, PCA, GPFA  and LFADS, respectively. The Pearson’s 936 
correlation coefficient between neural speed and the produced time interval was computed across trials within each 937 
condition. 938 
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