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Abstract

The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized
transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains
a challenge largely due to unwanted batch effects and the limited transferabilty, interpretabil-
ity, and scalability of the existing computational methods. We present single-cell Embedded
Topic Model (scETM). Our key contribution is the utilization of a transferable neural-network-
based encoder while having an interpretable linear decoder via a matrix tri-factorization. In
particular, scETM simultaneously learns an encoder network to infer cell type mixture and
a set of highly interpretable gene embeddings, topic embeddings, and batch effect linear in-
tercepts from multiple scRNA-seq datasets. scETM is scalable to over 106 cells and confers
remarkable cross-tissue and cross-species zero-shot transfer-learning performance. Using
gene set enrichment analysis, we find that scETM-learned topics are enriched in biologi-
cally meaningful and disease-related pathways. Lastly, scETM enables the incorporation
of known gene sets into the gene embeddings, thereby directly learning the associations
between pathways and topics via the topic embeddings.
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Background

Advances in high-throughput sequencing technologies [1] provide an unprecedented oppor-
tunity to profile the individual cells’ transcriptomes across various biological and pathological
conditions, and have spurred the creation of several atlas projects [2–5]. Emerged as a key
application of single-cell RNA sequencing (scRNA-seq) data, unsupervised clustering allows
for cell-type identification in a data-driven manner. Flexible, scalable, and interpretable com-
putational methods are crucial for unleashing the full potential from the wealth of single-cell
datasets and translating the transcription profiles into biological insights. Despite considerable
progress made on clustering method development for scRNA-seq data analysis [6–16], several
challenges remain.

First, compared to bulk RNA-seq, scRNA-seq data commonly exhibit higher noise levels
and drop-out rates, where the data only captures a small fraction of a cell’s transcriptome [17].
Changes in gene expression due to experimental design, often referred to as batch effects
[18], can have a large impact on clustering [12,18–20]. If not properly addressed, these technical
artefacts may mask the true biological signals in cell clustering.

Second, the partitioning of the cell population alone is insufficient to produce biological in-
terpretation. The annotations of the cell clusters require extensive manual literature search in
practice and the annotation quality may be dependent on users’ domain knowledge [20]. There-
fore, an interpretable and flexible model is needed. In the current work, we consider model
interpretability as whether the model parameters can be directly used to associate the input
features with latent factors or target outcomes. Latent topic models are a popular approach in
mining genomic and healthcare data [21–23] and are increasingly being used in the scRNA-
seq literature [24]. Specifically, in topic modeling, we infer the topic distribution for both the
samples and genomic features by decomposing the samples-by-features matrix into samples-
by-topics and topics-by-features matrices, which also be viewed as a probabilistic non-negative
factorization (NMF) [25]. Importantly, the top genes under each latent topic can reveal the gene
signatures for specific cellular programs, which may be shared across cell types or exclusive
to a particular cell type. Traditionally, the latter are detected via differential expression analysis
at individual gene levels, which has limited statistical power in scRNA-seq data analysis be-
cause of the sparse gene counts, small number of unique biological samples, and the burdens
of multiple testings.

Third, model transferrability is an important consideration. We consider a model as transfer-
able if the learned knowledge manifested as the model parameters could benefit future data
modeling. In the context of scRNA-seq data analysis, it translates to learning feature represen-
tations from one or more large-scale reference datasets and applying the learned representa-
tions to a target dataset [26, 27]. If the model is not further trained on the target dataset, the
learning setting called zero-shot transfer learning. A model that can successfully separate cells
of distinct cell types that are not present in the reference dataset implies that the model has
learned some meaningful abstraction of the cellular programs from the reference dataset such
that it can generalize to annotating new cell types of different kinds. An analogy would be that
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someone who has learned how to distinguish triangles from rectangles may also be able to
distinguish squares from circles. As the number and size of scRNA-seq datasets continue to
increase, there is an increasingly high demand for efficient exploitation and knowledge transfer
from the existing reference datasets.

Several recent methods have attempted to address these challenges. Seurat [7] uses canon-
ical correlation analysis to project cells onto a common embedding, then identifies, filters,
scores, and weights anchor cell pairs between batches to perform data integration. Harmony
[28] iterates between maximum diversity clustering and a linear batch correction based on the
mixture-of-experts model. Scanorama [10] performs all-to-all dataset matching by querying
nearest neighbors of a cell among all remaining batches, after which it merges the batches with
a Gaussian kernel to form a single cell panorama. These methods rely on feature (gene) se-
lection and/or dimensionality reduction methods; otherwise they can not scale to compendium-
scale reference [2] or cohort-level single-cell transcriptome data [29] or are sensitive to the
noise inherent to scRNA-seq count data. They are also non-transferable, meaning that the
knowledge learned from one dataset cannot be easily transferred through model parameter
sharing to benefit the modeling of another dataset. NMF approaches such as UNCURL [30]
works only with one scRNA-seq dataset. LIGER [9] uses integrative NMF to jointly factorize
multiple scRNA-seq matrices across conditions using genes as the common axis, linking cells
from different conditions by a common set of latent factors also known as metagenes. LIGER
is weakly transferable in the sense that the global metagenes-by-genes matrix can be recycled
as initial parameters when modeling a new target dataset, whereas the cells-by-metagenes and
the final metagenes-by-genes must be further computed and updated by iterative numerical
optimization to fit the target dataset.

Deep learning approaches, especially autoencoders, have demonstrated promising per-
formance in scRNA-seq data modeling. scAlign [15] and MARS [31] encode cells with non-
linear embeddings using autoencoders, which is naturally transferable across datasets. While
scAlign minimizes the distance between the pairwise cell similarity at the embedding and orig-
inal space, MARS looks for latent landmarks from known cell types to infer cell types of un-
known cells. Variational autoencoders (VAE) [32] is an efficient Bayesian framework for approx-
imating intractable posterior distribution using proposed distribution parameterized by neural
networks. Several recent studies have tailored the original VAE framework towards modeling
single-cell data. Single-cell variational inference (scVI) [6] models library size and takes into
account batch effect in generating cell embeddings. scVAE-GM [11] changed the prior distri-
bution of the latent variables in the VAE from Gaussian to Gaussian mixture model, adding a
categorical latent variable that clusters cells. Lotfollahi et al. developed a VAE model called
scGen to infer the expression difference due to perturbation conditions by latent space interpo-
lation [26]. A key drawback for these VAE models is the lack of interpretability – post hoc anal-
yses are needed to decipher the learned model parameters and distill biological meaning from
the learned network parameters. To improve interpretability, Svensson et al. (2020) developed
a linear decoded VAE (hereafter referred to as scVI-LD) as a part of the scVI software [14].

In this paper, we present single-cell Embedded Topic Model (scETM), a generative topic
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model that facilitates integrative analysis of large-scale single-cell transcriptomic data. Our key
contribution is the utilization of a transferable neural-network-based encoder while having an
interpretable linear decoder via a matrix tri-factorization. The scETM simultaneously learns
the encoder network parameters and a set of highly interpretable gene embeddings, topic
embeddings, and batch-effect linear intercepts from scRNA-seq data. The flexibility and expres-
siveness of the encoder network enable scETM to model extremely large scRNA-seq datasets
without the need of feature selection or dimension reduction. By tri-factorizing cells-genes
matrix into cells-by-topics, topics-by-embeddings, and embeddings-by-genes, we are able to
incorporate existing pathway information into gene embeddings during the model training to
further improve interpretability. This is a salient feature compared to related methods such as
scVI-LD. It allows scETM to simultaneously discover interpretable cellular signatures and gene
markers while integrating scRNA-seq data across conditions, subjects and/or experimental
studies.

We demonstrate that scETM offers state-of-the-art performance in clustering cells into known
cell types across a diverse range of datasets with desirable runtime and memory requirements.
We also demonstrate scETM’s capability of effective knowledge transfer between different
sequencing technologies, between different tissues, and between different species. We then
use scETM to discover biologically meaningful gene expression signatures indicative of known
cell types and pathophysiological conditions. We analyze scETM-inferred topics and show that
several topics are enriched in cell-type-specific or disease-related pathways. Finally, we directly
incorporate known pathway-gene relationships (pathway gene set databases) into scETM
in the form of gene embeddings, and use the learned pathway-topic embedding to show the
pathway-informed scETM (p-scETM)’s capability of learning biologically meaningful information.

Results

scETM model overview

We developed scETM to model scRNA-seq data across experiments or studies, which we term
as batches (Fig. 1a and Supp. Fig. S1a). Adapted from the Embedded Topic Model (ETM)
[33], scETM inherits the benefits of topic models, and is effective for handling large and heavy-
tailed distribution of word frequency. In the context of scRNA-seq data analysis, each sampled
single-cell transcriptome is provided as a vector of normalized gene counts to a two-layer fully-
connected neural network (i.e., encoder; see detailed architecture in Supp. Fig. S1c), which
infers the topic mixing proportions of the cell. The trained encoder on a reference scRNA-seq
data can be used to infer topic mixture of unseen scRNA-seq data collected from different
tissues or species (Fig. 1b).

For interpretability, we use a linear decoder with the gene and topic embeddings as the learn-
able parameters. Specifically, we factorize the cells-by-genes count matrix into a cells-by-topics
matrix θ (inferred by the encoder), topics-by-embedding α, and embedding-by-genes ρ ma-
trices (Supp. Fig. S1b). This tri-factorization design allows for exploring the relations among
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cells, genes, and topics in a highly interpretable way. To account for biases across conditions
or subjects, we introduce an optional batch correction parameter λ, which acts as a linear inter-
cept term in the categorical softmax function to alleviate the burden of modeling batch effects
from the encoder to let it focus on inferring biologically meaningful cell topic mixture θd. The
encoder and embedding learning is performed by an amortized variational inference algorithm
to maximize the evidence lower bound (ELBO) of the marginal categorical likelihood of the
scRNA-seq counts [32]. Compared to scVI-LD [14], the linear decoder component that learns
a common embeddings for both topics and genes offers more flexibility and interpretability and
overall better performance as we demonstrate next (Fig. 1c). Details of the scETM algorithm
and implementation are described in Methods.

Data Integration

We benchmarked scETM, along with 7 state-of-the-art single-cell clustering or integrative
analysis methods – scVI [6], scVI-LD [14], Seurat v3 [7], scVAE-GM [11], Scanorama [10],
Harmony [28] and LIGER [9], on 6 published datasets, namely Mouse Pancreatic Islet (MP)
[34], Human Pancreatic Islet (HP) [7], Tabula Muris (TM) [3], Alzheimer’s Disease dataset
(AD) [35], Major Depressive Disorder dataset (MDD) [29], and Mouse Retina (MR) [36, 37]
(Supplementary Methods). Across all datasets, scETM stably delivered competitive results
especially among the transferable and interpretable models, while others methods fluctuate
across different datasets in terms of Adjusted Rand Index (ARI) and Normalized Mutual Infor-
mation (NMI) (Table 1; Supp. Table S1). Overall, Harmony and Seurat have slightly higher
ARIs than scETM, with trade-offs of model transferrability, interpretability, and/or scalability,
which we investigate in the following sections.

We further experimented the same scETM without the batch correction term, namely scETM-
λ. Compared to the λ-ablated model, the full scETM model confers higher ARI in 3 out of the 5
datasets (Table 1) and higher NMI in 4 out of the 5 datasets (Supp. Table S1). Improvement
over the Human Pancreas (HP) dataset is remarkably high, implying an effective correction of
the confounder due to the scRNA-seq technology differences. We observe no improvement
in the AD dataset in terms of both ARI and NMI and small improvement in MDD only in terms
of NMI. This implies a lesser concern of batch effects from only the individual brain sample
donors, with all data being collected by the same technology in a single study.

We also evaluated the batch mixing aspect of scETM and other methods using k-nearest-
neighbor Batch-Effect Test (kBET) [18] (Table 2) and examined to what extent scETM’s batch
mixing performance can be improved by introducing an adversarial loss term to scETM (Methods)
[38]. Briefly, we used a discriminator network (a two-layer feed-forward network) to predict
batch labels using the cell topic mixture embeddings generated by the encoder network, and
directed the encoder network to fool the discriminator. We observe notable improvement on
kBET with similar ARI and NMI scores (Table 1 and Supp. Table S1, row “scETM+adv") at the
cost of up to 50% more running time. This shows the expandability of scETM. For the subse-
quent analyses, we opted to use the results from scETM (without the adversarial loss but with
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the linear batch correction λ) because of its simpler design, scalability, comparable ARI scores,
and less aggressive batch correction (see below).

scETM is also robust to architectural and hyperparameter changes, requiring very few or
no architecture adaptation or hyperparameter tuning efforts when applied to unseen datasets
(Supp. Table S2). As a result, we used the same architecture and hyperparameters for all
datasets in Table 1. We also performed a comprehensive ablation analysis to validate our
model choices. The ablation experiment demonstrates the necessity of the key model compo-
nents, such as the batch effect correction factors λ and the batch normalization technique used
in training the encoder. Normalizing gene expression scRNA-seq counts as the input to the
encoder also improves the performance (Supp. Table S3).

Clustering agreement metrics are not the only metrics for evaluating scRNA-seq methods,
and are not available to unannotated datasets. Therefore, we also evaluated the negative log-
likelihood (NLL) on held-out samples, which is a principled way for model selection without
labels. We computed the held-out (10%) NLL. We found that scETM is robust to different archi-
tectures in terms of the NLL (Supp. Table S2). We also found that ARI and NLL are modestly
negatively correlated on the TM dataset (Supp. Fig. S2), implying an agreement between the
two metrics although this might not be always the case since it highly depends on the cell type
labels and the data quality.

To further verify the clustering performance and validate our evaluation metrics, we visual-
ized the cell embeddings using Uniform Manifold Approximation and Projection (UMAP) [39] for
some of the datasets (Supp. Fig. S3,S4,S5,S6,S7,S8, Fig. 2). Together, these results support
that scETM effectively captures cell-type-specific information, while accounting for artefacts
arising from individual or technological variations.

Batch overcorrection analysis

Some methods may risk over-correcting batch effects and fail to capture some aspect of bio-
logical variations. In the above analysis, we observe that some methods such as LIGER con-
ferred competitive kBET but low ARI, suggesting potential overcorrection of batch effects. To
experiment the extent of batch overcorrection by each method, we conducted two experiments
using two datasets, namely the Human Pancreas (HP) dataset [7] and the Mouse Retina (MR)
dataset [36,37].

For the HP data, we manually removed beta cells from all 5 batches except for batch CelSeq2,
resulting in the cell type distributions shown in Supp. Table S4. We expect that, if a method is
guilty of batch effect overcorrection, it would assign beta cells to other non-beta cell clusters
in the latent space by forcing the alignment of different batches. Consequently, such methods
would have poor clustering scores. We evaluated all of the methods on this dataset using 3
metrics: ARI, kBET, and average silhouette width (ASW) [40]. Briefly, higher ASW indicates
larger distances between cell types and lower distance within cell type in the cell embedding
space (Methods). We measured the overall ASW as well as the ASW for only the beta cells
(i.e., ASW-beta). The results are summarized in Supp. Table S5. We observed that scETM
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struck a good balance between discriminating cell types (ARI: 0.9298; ASW: 0.3525; ASW-
beta: 0.5370) and integrating different batches (kBET: 0.1247). Adding the adversarial loss to
the scETM (i.e., scETM+adv) increased kBET from 0.1247 to 0.3445 (while maintaining ARI
above 0.92) but greatly compromised ASW-beta (0.0045), suggesting a more aggressive over-
correction. Similarly, LIGER performed the best in kBET (0.5978) but conferred a much lower
ARI (0.8476) and low ASW-beta (0.0912), indicating a more severe overcorrection of the batch
effects (i.e., mixing beta cells with other cells).

We then visualized the clustering by UMAP to examine how the beta cells are assigned to
different clusters (Supp. Fig. S9). We found that beta cells (colored in red) were clustered
separately by scETM from other cell types. In contrast, beta cells were mixed up with other cell
types by methods including Harmony and LIGER, which overcorrected the batch effects when
integrating the five batches. Visually, we also observe that scETM+adv method moves the beta
cell cluster closer to the alpha cell cluster, confirming a higher level of overcorrection compared
to scETM.

The MR dataset is a collection of two independent studies on mouse retina [36,37]. Here we
consider the two source studies as two batches, hereafter referred to as the Macosko batch
and the Shekhar batch. Many cell types are uniquely present in the Macosko batch (Supp.
Table S6). There is also a large difference in the cell proportion between the two batches. In
particular, rods is only 0.35% in Shekhar but 65% in Macosko. In this scenario, we expect that
methods that overcorrect the batch effects would tend to mix rods with cells of other cell types
from the Shekhar batch, resulting in low ARI and high kBET. On the contrary, a desirable inte-
gration method would strike a balance between the ARI (or ASW) and kBET on this combined
dataset. Therefore, this setup imposes a great challenge on the integration methods.

Overall, scETM achieved the highest ARI (0.859), reasonable ASW (0.2873), and modest
kBET (0.0656), indicating its ability to capture the true biology from the data without over-
correcting the batch effects (Supp. Table S7). In contrast, LIGER is more aggressive in its
batch correction, resulting in the highest kBET score of 0.176 but lowest ARI score of 0.714.
We further investigated the extent of improving kBET while maintaining a high ARI score with
scETM+adv. Indeed, scETM+adv conferred an increased kBET of 0.1410 and a reasonably
high ARI score of 0.7720. Visualizing the clustering of each method using UMAP (Fig. 2) con-
firms the quantitative clustering results.

Incidentally, we also notice that scETM is not sensitive to the 669 doublelets or contaminants,
all of which were from the Shekhar batch (Supp. Table S8). In contrast, if we did not filter out
the doublets/contaminants, the performance of LIGER and Seurat degrades drastically possibly
due to batch over-correction or failing to integrate the same cell types from different batches
together.

Scalability

A key advantage of scETM is its high scalability and efficiency. We demonstrated this by com-
paring the run time, memory usage, and clustering performance of the state-of-the-art models
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using their recommended pipelines when integrating a merged dataset consisting of cells from
the MDD and AD datasets (Methods). Because of the simple model design and efficient imple-
mentation (e.g., sparse matrix representation, multi-threaded data retrieval, etc; Discussion),
scETM achieved the shortest run time among all deep-learning based models (Fig. 3a). Specif-
ically, on the largest dataset (148,247 cells), scETM ran 3-4 times faster than scVI and scVI-LD,
and over 10 times faster than scVAE-GM. We note that the run time largely depends on the
implementation rather than the network architectures and loss functions in these deep learn-
ing methods. Harmony and Scanorama were the only methods faster than scETM, yet they
both operate on a hundred principal components at most. Although for comparison purpose
we used the top 3000 most variable genes for all of the methods, scETM can easily scale to
all of the genes, which is more desirable because the resulting model can generalize to other
datasets.

Because of the amortized stochastic variational inference [32, 41, 42], scETM in principle
takes linear run-time and constant memory with respect to the sample size per training epoch.
The use of multi-threaded data loader to streamline the random minibatch retrieval and load-
ing further speed up the training process in practice. In contrast, the memory requirement of
Seurat increases rapidly with the number of cells, due to the vast numbers of plausible anchor
cell pairs in the two brain datasets (Fig. 3b). In terms of clustering accuracy, scETM consis-
tently confers competitive performance, whereas Harmony and Scanorama perform unstably
as dataset sizes vary (Fig. 3c). UMAP visual inspection of scVAE embeddings suggests that
scVAE likely suffers from under-correction of batch effects (Supp. Fig. S8). The sudden drop of
LIGER’s clustering performance in the largest benchmark dataset may be due to batch overcor-
rection.

Although it has been widely accepted by the deep learning community that computing using
Graphical Processing Units (GPUs) results in ∼10× speedup over computing using CPU, the
adoption of GPUs in the computational biology community is beginning to catch up. In our non-
exhaustive experiment on the Mouse Pancreas dataset, training scETM for 1000 steps on the
6-core Core i7 10750H CPU requires 650 seconds (Fig. 3a), while with an Nvidia RTX 2070
laptop GPU it only takes 50 seconds - a 13× speedup over the CPU computer.

Transfer learning across single-cell datasets

A prominent feature of scETM is that its parameters, hence the knowledge of modeling scRNA-
seq data, are transferable across datasets. Specifically, as part of the scETM, the encoder
trained on a reference scRNA-seq dataset can be applied to infer cell topic mixture of a tar-
get scRNA-seq dataset (Fig. 1b), regardless of whether the two datasets share the same cell
types. As an example, we trained an scETM model on the Tabula Muris FACS dataset (TM
(FACS)) (which is a subset of the TM dataset) from a multi-organ mouse single-cell atlas, and
evaluated it using the MP data, which only contains mouse pancreatic islet cells. Although
the two datasets were obtained using different sequencing technologies in two independent
studies, the model yielded an encouragingly high ARI score of 0.941, considering that a model
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directly trained on MP achieves ARI 0.946. Interestingly, in the UMAP plot , the TM (FACS)-
pretrained model placed B cells, T cells and macrophages far away from other clusters and
separated B cells and T cells from macrophages, which is not observed in the model directly
trained on MP (Supp. Fig. S3,S4,S5,S6,S7; Supp. Table S9). We repeated the same exper-
iment 3 times with different random seeds and observed consistently that B and T cells are
close to each other and distant from macrophages (Supp. Fig. S10). We also experimented
transfer learning by first training scETM on TM (FACS) with pancreas removed and then ap-
plied to MP dataset. The performance decreased but is still reasonably good (Supp. Table S9),
demontrasting scETM’s ability to transfer knowledge across tissues.

Encouraged by the above results, we then performed a comprehensive set of cross-tissue
and cross-species transfer learning analysis with 6 tasks (Methods): (1) Transfer between
the TM (FACS) and the MP dataset (including MP→TM (FACS)); (2) Transfer between the
Human Pancreas (HP) dataset and the Mouse Pancreas (MP) dataset; (3) Transfer between
the Human primary motor cortex (M1C) (HumM1C) dataset and the Mouse primary motor
area (MusMOp) dataset both obtained from the Allen Brain Map data portal [43]. We chose to
transfer between the human M1C and mouse MOp because of the high number of shared cell
types between the brain regions of the two species. The batches for HumM1C are the two post-
mortem human brain M1 specimens and the two mice for MusMOp. Note that in these transfer
learning tasks (A→ B) we only corrected batch effects during the training on the source data A
but not during the transfer to the target data B.

As a comparison, we evaluated and visualized the clustering results in all 6 transfer learning
tasks using scETM, scVI-LD, and scVI (Fig. 4; Supp. Table S10 and S11). Overall, scETM
achieved the highest ARI across all tasks and competitive kBET scores. In particular, scETM
trained on TM (FACS) on heterogeneous tissues clustered much better the MP cells (ARI:
0.941; kBET: 0.339) than scVI (ARI: 0.484; kBET: 0.257) and scVI-LD (ARI: 0.398; kBET:
0.256). Remarkably, scETM trained only on the MP dataset can cluster reasonably well the
much larger TM single-cell data, which were collected from diverse primary tissues including
pancreas. This implies that scETM does not merely learn cell-type-specific signatures but also
the underlying transcriptional programs that are generalizable to unseen tissues.

In cross-species transfer learning between HP and MP, scETM captured better the con-
served pancreas functions compared to scVI and scVI-LD (Fig. 4; Supp. Table S10). On the
other hand, cross-species transfer between MusMOp and HumM1C is a much more challeng-
ing task due to the evolutionarily divergent functions of the brains between the two species.
Nonetheless, scETM conferred a much higher ARI of 0.696 for the MusMOp→HumM1C trans-
fer and ARI of 0.167 for the HumM1C→MusMOp transfer. In contrast, scVI-LD and scVI did
not work well on these tasks with ARI scores lower than 0.1. Since they cannot separate cells
by cell types, all cells are mixed together, leading to a high kBET score. The improvements
achieved by scETM over scVI(-LD) are possibly attributable to the simpler linear batch correc-
tion on the source data, jointly learning topic and gene embedding, and the topic modeling
formalism, which together lead to an encoder network that is better at capturing the transfer-
able cellular programs.
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Pathway enrichment analysis of scETM topics

We next investigated whether the scETM-inferred topics are biologically relevant in terms of
known gene pathways in human. One approach would be to arbitrarily choose a number of top
genes under each topic and test for pathway enrichment using hypergeometric tests. This ap-
proach works well when there are asymptotic p-values at the individual gene level. In our case,
each gene is characterized by the topic scores, making it difficult to systematically choose
the number of top genes per topic. To this end, we resorted to Gene Set Enrichment Analysis
(GSEA) [44]. Briefly, we calculated the maximum running sum of the enrichment scores with re-
spect to a query gene set by going down the gene list that is sorted in the decreasing order by
a given topic distribution βk (Methods). For each dataset, we trained a scETM with 100 topics.

For the HP dataset, each topic detected many significantly enriched pathways with Benjamini-
Hochberg False Discover Rate (FDR) < 0.01 (Fig. 5a). Many of them are relevant to pancreas
functions, including insulin processing (Fig. 5b), insulin receptor recycling, insulin glucose
pathway, pancreatic cancer, etc (Supp. Table S12). Because scETM jointly learns both the
gene embeddings and topic embeddings, we can visualize both the genes and topics in the
same embedding space via UMAP (Fig. 5c). Indeed, we observe a strong co-localization of the
genes in Insulin Processing pathway and the corresponding enriched topic (i.e., Topic 54).

For the AD dataset, we found topics enriched for Reactome Amyloid Fiber Formation, KEGG
AD, and Deregulated CDK5 triggers multiple neurodegenerative in AD (Supp. Fig. S11; Supp.
Table S13). For MDD dataset, we found enrichment for Substance/Drug Induced Depressive
Disorder (Supp. Fig. S12, S13; Supp. Table S14). The full GSEA enrichment results for all
3 datasets are listed in Supp. Table S18. As a comparison, we also performed GSEA over
the 100 gene loadings learned by scVI-LD (matching the 100 topics in the scETM) on these 3
datasets but found fewer relevant distinct gene sets (Supp. Table S12,S13,Supp. Table S14)
or weaker statistical enrichments by GSEA (Supp. Fig. S14).

Differential scETM topics in disease conditions and cell types

We sought to discover scETM topics that are condition-specific or cell-type specific. Starting
with the AD dataset, we found that the scETM-learned topics are highly selective of cell-type
marker genes (Fig. 6a) and highly discriminative of cell types (Fig. 6b). To detect disease sig-
natures, we separated the cells into the ones derived from the 24 AD subjects and the ones
from the 24 control subjects. We then performed permutation tests to evaluate whether the two
cell groups exhibit significant differences in terms of their topic expression (Methods). Topic 12
and 58 are differentially expressed in the AD cells and control cells (Fig. 6c, d; permutation test
p-value = 1e-5). Interestingly, topic 58 is also highly enriched for mitochondrial genes. Indeed,
it is known that β-amyloids selectively build up in the mitochondria in the cells of AD-affected
brains [45]. For the MDD dataset, topics 1, 52, 68, 70, 86 exhibit differential expressions be-
tween the suicidal group and the healthy group (Supp. Fig. S18c) and interesting neurological
pathway enrichments (Supp. Table S14).
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We also identified several cell-type-specific scETM topics from the HP, AD, and MDD datasets.
In HP, topics or metagenes 20, 45, 99 are up-regulated in acinar cells, topic 12 up-regulated in
macrophage, topic 52 up-regulated in delta, and topics 30 and 37 are up-regulated in more
than one cell types, including endothelial, stellate and others (Supp. Fig. S15). In AD, as
shown by both the cell topic mixture heatmap and the differential expression analysis (Fig. 6b),
topics 19, 35, 50, 69, 97 are up-regulated in oligodendrocytes, micro/macroglia, astrocytes,
endothelial cells, and oligodendrocyte progenitor cells (OPCs) respectively (permutation test p-
value = 1e-5; Fig. 6b, Supp. Fig. S16). Interestingly, two subpopulations of cells from the oligo-
dendrocytes (Oli) and excitatory (Ex) exhibit high expression of topics 12 and 58, respectively,
and are primarily AD cells (Supp. Fig. S17). Among them, there is also a strong enrichment for
the female subjects, which is consistent with the original finding [35].

For MDD, topics 1, 20, 59, 64 and 72 are up-regulated in astrocytes, oligodendrocytes, mi-
cro/macroglia, endothelial cells, and OPCs, respectively (Supp. Fig. S18c). This is consistent
with the heatmap pattern (Supp. Fig. S18b). Several topics are dominated by long non-coding
RNAs (lincRNAs) (Fig. S18a). While previous studies have suggested that lincRNAs can be
cell-type-specific [46], it remains difficult to interpret them [47]. We further experimented the en-
richment using only the protein coding genes, but did not find significantly more marker genes
among the top 10 genes per topic (Supp. Fig. S19).

Pathway-informed scETM topics

To further improve topic interpretability, we incorporated the known pathway information to
guide the learning of the topic embeddings (Fig. 7a). We denoted this scETM variant as the
pathway-informed scETM or p-scETM. In particular, we fixed the gene embedding ρ to a pathways-
by-genes matrix obtained from pathDIP4 database [48, 49]. We then learned only the topics
embedding α, which provides direct associations between topics and pathways (Methods).
We tested p-scETM on the HP, AD and MDD datasets. Without compromising the clustering
performance (Supp. Table S15), p-scETM learned functionally meaningful topic embeddings
(Fig. S20; Supp. Table S16,S17). In the HP topic embeddings, we found Insulin Signaling, Nu-
trient Digestion and Metabolism to be the top pathways among several topics (Fig. S20a). In
the MDD topic embeddings, the top pathway associated with Topic 40, Beta-2 Adrenergic Re-
ceptor Signaling, was also enriched in a MDD genome-wide association studies [50]. In the AD
topic embeddings, we found the association between Topic 9 and Alzheimer Disease-Amyloid
Secretase pathway.

To further demonstrate the utility of p-scETM, we also used 7481 Gene Ontology Biological
Process (GO-BP) terms [51,52] as the fixed gene embedding, which learns the topics-by-GOs
topic embedding from each dataset. Under each topic, we selected the top 5 high-scoring GO-
BP terms to examine their relevance to the target tissue or disease (Fig. 7b; Supp. Table S19).
For the HP dataset, Negative Regulation of Type B Pancreatic Cell (GO:2000675) and Regu-
lation of Pancreatic Juice Secretion (GO:0090186) are among the top GO-BP terms for Topics
27 and 68, respectively. For the AD dataset, Amyloid Precursor Protein Biosynthetic Process
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(GO:0042983) is among the top 5 GO-BP terms under Topic 40. For the MDD dataset, similar
top GO-BP terms were found among topics learned using all of the genes and using only the
coding gene. Many topics exhibit high embedding scores for neuronal functions including Neu-
ronal Signal Transduction (GO:0023041), Central Nervous System Projection Neuron Axono-
genesis (GO:0021952), and Branchiomotor Neuron Axon Guidance (GO:0021785). Interest-
ingly, Topic 98 in MDD - coding genes only and Topics 22, 51 in MDD - all genes involve Adeny-
late Cyclase Modulating G-protein Coupled Receptors (GPCRs) Signaling (GO:0007188),
which is the target of several recently-developed antidepressant drugs [53].

Discussion

As scRNA-seq technologies become increasingly affordable and accessible, large-scale datasets
have emerged. This challenges traditional statistical approaches and calls for transferable, scal-
able, and interpretable representation learning methods to mine the latent biological knowledge
from the vast amount of scRNA-seq data. To address these challenges, we developed scETM
and demonstrated its state-of-the-art performance on several unsupervised learning tasks
across diverse scRNA-seq datasets. scETM demonstrates excellent capabilities of batch effect
correction and knowledge transfer across datasets.

In terms of integrating multiple scRNA-seq data from different technologies, experimental
batches, or studies, we introduce a simple batch-effect bias term to correct for non-biological
effects. This in general improves the cell clustering and topic quality. When using the origi-
nal ETM [33], we observed that ubiquitously expressed genes such as MALAT1 tended to
appear among the top genes in several topics. Our scETM corrects the background gene ex-
pressions by the gene-dependent and batch-dependent intercepts. As a result, the ubiquitously
expressed genes do not dominate all topics from scETM. We also introduced a more aggres-
sive batch correction strategy by adversarial network loss, which shows improved kBET with
small trade-off for the ARI in most datasets.

In terms of scalability, although scETM is similar to other existing VAE models in terms of
theoretical time and space complexity, we emphasize that implementation is also very impor-
tant, especially for deep learning models. For example, scVAE-GM [11] is much slower and
more memory consuming than scVI [6], while they are very similar VAE models. One of the
main speedups provided by scETM comes from our implementation of a multi-threaded data
loader for minibatches of cells, which does not need to be re-initialized at every training epoch
as the standard PyTorch DataLoader. Compared to scVI and scVI-LD, the normalized counts
in both the encoder input and the reconstruction loss used by scETM remove the need to infer
the cell-specific library size variable, and the simpler categorical likelihood choice also helps
reduce the computational time.

In terms of transferability, many existing integration methods require running on both ref-
erence and query datasets to perform post hoc analyses such as joint clustering and label
transfer [7,9,10,28]. In contrast, our method enables a direct or zero-shot knowledge transfer
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of the pretrained encoder network parameters learned from a reference dataset in annotat-
ing a new target dataset without further training. We demonstrated this important aspect in
cross-technology, cross-tissue, and cross-species applications, for which we achieved superior
performance compared to the state-of-the-art methods.

In terms of interpretability, our quantitative experiments showed that scETM identified more
relevant pathways than scVI-LD. Qualitative experiments also show that scETM topics preserve
cell functional and cell-type-specific biological signals implicated in the single-cell transcrip-
tomes. By seamlessly incorporating the known pathway information in the gene embedding,
p-scETM finds biologically and pathologically important pathways by directly learning the as-
sociation between the topics with the pathways via the topic embedding. Recently proposed
by [54], single-cell Hierarchical Poisson Factor (scHPF) model applies hierarchical Poisson
factorization to discover interpretable gene expression signatures in an attempt to address the
interpretability challenge. However, compared to our model, scHPF lacks the flexibility in learn-
ing the gene embedding and incorporating existing pathway knowledge, and is not designed
to account for batch effects. Moreover, scETM has the benefits of both flexibility in the neural
network encoder and the interpretability in the linear decoder.

As future work, we will extend scETM in several directions. To further improve batch correc-
tion, as our current model only considers a single categorical batch variable, we can extend
it to correct for multiple categorical batch variables. For a small number of categorical batch
variables, we may use several sets of batch intercept terms to model them. For hierarchical
batch variables, we may use a tree of batch intercept terms. For numerical batch effects such
as subject age, one way is to convert them into categorical batch variables by numerical ranges.
When the number of batch variables become larger, we consider three strategies. First, we can
add the batch variables as the covariates in the linear regression on the gene expression and
fit the linear coefficients each corresponding to a sample-dependent batch variable. Second,
we can factorize the batches-by-genes into batches-by-factors and factors-by-genes. Learn-
ing the two matrices will be similar to the scETM algorithm. Third, we can extend our current
scETM+adv to correct for both categorical and continuous batch variables with a discriminator
network, which predicts batch effects using the encoder-generated cell topic mixture [38].

To further improve data integration, we can extend scETM to a multi-omic integration method,
which can integrate scRNA-seq plus other omics such as protein expression measured in the
same cells as scRNA-seq [55] or scATAC-seq measured in different cells but the same biolog-
ical system [7]. In these applications, multi-modality over different omics will need to be con-
sidered to capture the intrinsic technical and biological variance of each omic while borrowing
information among them.

To further improve interpretability, the original ETM used pretrained word embedding from
word2vec [56] on a larger reference corpus such as Wikipedia to improve topic quality on mod-
eling the target documents [33]. Similarly, although we demonstrated the use of existing path-
way information in p-scETM, we can also pretrain our gene embeddings on PubMed articles,
gene regulatory network, protein-protein interactions, or Gene Ontology graph using either
gene2vec [57] or more general graph embedding approaches [58,59] [59]. We expect that the
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gene embedding pretrained from these (structured) knowledge graphs will further improve the
efficiency and interpretability of scETM.

Together, scETM serves as a unified and highly scalable framework for integrative analysis of
large-scale single-cell transcriptomes across multiple datasets. Compared to existing methods,
scETM offers consistently competitive performance in data integration, transfer learning, scala-
bility, and interpretability. The simple Bayesian model design in scETM also provides a highly
expandable framework for future developments.

Methods

scETM data generative process

To model scRNA-seq data distribution, we take a topic-modeling approach [60]. In our frame-
work, each cell is considered as a “document", each scRNA-seq read (or UMI) as a “token"
in the document, and the gene that gives rise to the read (or UMI) is considered as a “word"
from the vocabulary of size V . We assume that each cell can be represented as a mixture
of latent cell types, which are commonly referred to as the latent topics. The original LDA
model [60] defines a fixed set of K independent Dirichlet distributions β over a vocabulary
of size V . Following the ETM model [33], here we decompose the unnormalized topic distribu-
tion β∗ ∈ RK×V into the topic embedding α ∈ RK×L and gene embedding ρ ∈ RL×V , where L
denotes the size of the embedding space. Therefore, the unnormalized probability of a gene
belonging to a topic is proportional to the dot product between the topic embedding matrix and
the gene embedding matrix. Formally, the data generating process of each scRNA-seq profile d
is:

1. Draw a latent cell type proportion θd for a cell d from logistic normal θd ∼ LN (0, I):

δd ∼ N (0, I), θd = softmax(δd) =
exp(δd,k)∑K
k=1 exp(δd,k)

(1)

2. For each gene read (or UMI) wi,d in cell d, draw gene g from a categorical distribution
Cat(rd,·):

wi,d ∼
∏
g

r
[wi,d=g]

d,g , yd,g =

Nd∑
i=1

[wi,d = g] (2)

Here Nd is the library size of cell d, wi,d is the index of the gene that gives rise to the ith read (or
UMI) in cell d (i.e., [wi,d = g]), and yd,g is the total counts of gene g in cell d. The transcription
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rate rd,g is parameterized as follows:

rd,g =
exp(r̂d,g)∑
g′ exp(r̂d,g′)

, r̂d,g = θdαρg + λs(d),g (3)

Here θd is the 1×K cell topic mixture for cell d, α is the global K × L cell topic embedding, ρg
is a L× 1 gene-specific embedding, and λs(d),g is the batch-dependent and gene-specific scalar
effect, where s(d) indicates the batch index for cell d. Notably, to model the sparsity of gene
expression in each cell (i.e., only a small fraction of the genes have non-zero expression), we
use the softmax function to normalize the transcription rate over all of the genes.

scETM model inference

In scETM, we treat the latent cell topic mixture δd for each cell d as the only latent variable. We
treat the topic embedding α, the gene-specific transcriptomic embedding ρ, and the batch-
effect λ as point estimates. Let Y be the D × V gene expression matrix for D cells and V
genes. The posterior distribution of the latent variables p(δ|Y) is intractable. Hence, we took
a variational inference approach using a proposed distribution q(δd) to approximate the true
posterior. Specifically, we define the following proposed distribution: q(δ | y) =

∏
d q(δd|yd),

where q(δd|yd) = µd + diag(σd)N (0, I) and [µd, logσ2
d] = NNET(ỹd;Wθ). Here ỹd is the normal-

ized counts for each gene as the raw count of the gene divided by the total counts in cell d. The
function NNET(v;W) is a two-layer feed-forward neural network used to estimate the sufficient
statistics of the proposed distribution for the cell topic mixture δd.

To learn the above variational parameters Wθ, we optimize the evidence lower bound (ELBO)
of the log likelihood, which is equivalent to minimizing the Kullback-Leibler (KL) divergence be-
tween the true posterior and the proposed distribution: ELBO = Eq[log p(Y|Θ)]−KL [q(Θ|Y)||p(Θ)].
The Bayesian learning is carried out by maximizing the reconstruction likelihood with regulariza-
tion in the form of KL divergence of the proposed distribution (q(δd|yd) = N (µd,diag(σd))) from
the prior (p(δd) = N (0, I)). For computational efficiency, we optimize ELBO with respect to the
variational parameters by amortized variational inference [32,41,42]. Specifically, we draw a sam-
ple of the latent variables from q(δ | y) for a minibatch of cells from reparameterized Gaussian
proposed distribution q(δ | y) [32], which has the mean and variance determined by the NNET
functions. We then use those draws as the noisy estimates of the variational expectation for the
ELBO. The optimization is then carried out by back-propagating the gradients into the encoder
weights and the topic and gene embeddings.

Details of training scETM

We chose the encoder for inferring the cell topic mixture to be a 2-layer neural network, with
hidden sizes of 128, ReLU activations [61], 1D batch normalization [62], and 0.1 dropout
rate between layers. We set the gene embedding dimension to 400, and the number of top-
ics to 50. We optimize our model with Adam Optimizer and a 0.005 learning rate. To prevent
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over-regularization, we start with zero weight penalty on the KL divergence and linearly in-
crease the weight of the KL divergence in the ELBO loss to 10−7 during the first 1

3
epochs.

With a minibatch size of 2000, scETM typically needs 5k-20k training steps to converge. We
show that our model is robust to changes in the above hyperparameters (Supp. Table S2).
During the evaluation, we used the variational mean of the unnormalized topic mixture µd in
q(δd|yd) = N (µd,diag(σd)) as the scETM cell topic mixture for cell d.

scETM+adv: adversarial loss for further batch correction

In the scETM+adv variant, we added a discriminator network (a two-layer fully-connected net-
work) to predict batch labels using the unnormalized cell topic mixture embedding δ generated
by the encoder network. This discriminator helps batch correction in an adversarial fashion.
Specifically, in each training iteration, we first update the scETM parameters once by maxi-
mizing the ELBO plus the batch prediction cross-entropy loss from the discriminator, with a
hyperparameter controlling the weight of the latter term. It should be noted that by maximiz-
ing the prediction loss the encoder network learns to produce batch agnostic cell embeddings.
Then we update the discriminator network eight times by trying to minimize the cross-entropy
loss in predicting the batch labels.

scETM software

We implemented scETM using the PyTorch library [63]. Our initial implementation was based
on the ETM code from GitHub (adjidieng/ETM) by [33]. Since then, we completely revamped
the code to substantially improve the scalability and to integrate it into the Python ecosystem.
In particular, we packaged and released our code on PyPI so one can easily install the pack-
age by entering pip install scETM in the terminal. The package is integrated with scanpy [16]
and tensorboard [64]. Users can view the cell, gene and topic embeddings interactively via
tensorboard. For example, one can easily train a scETM as follows:

from scETM import scETM, UnsupervisedTrainer
model = scETM(adata.n_vars, adata.obs.batch_indices.nunique())
trainer = UnsupervisedTrainer(model, adata)
trainer.train(save_model_ckpt = False)
model.get_all_embeddings_and_nll(adata)

The above code snippet will instantiate an scETM model object, train the model, infer the un-
normalized cell topics mixture of adata and store them in adata.obsm[‘delta’]. We can also
access the gene and topic embeddings via adata.varm[‘rho’] and adata.uns[‘alpha’].

Transfer learning with scETM

When transferring from a reference dataset to a target dataset, we operate on the genes com-
mon to both datasets. For cross-species transfer, the orthologous genes based on the Mouse
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Genome Informatics database [65,66] are considered as common genes. The trained scETM
encoder can be directly applied to an unseen target dataset, as long as the genes in the target
dataset are aligned to the genes in the reference dataset. In the main text, for example, we
trained scETM on a reference dataset and evaluated the scETM-encoder on a target dataset in
6 transfer learning tasks (Fig. 4).

Pathway enrichment analysis

To assess whether a topic is enriched in any known pathway, one common way is to test for
Over Representation Analysis (ORA) [67]. However, ORA requires choosing a subset of genes
(e.g., from differential expression analysis). While we could choose the top genes scored by
each topic, it requires some arbitrary threshold to select those genes. To avoid thresholding
genes, we employed Gene Set Enrichment Analysis (GSEA) [44]. GSEA calculates a running
sum of enrichment scores (ES) by going down the gene list that is sorted in the decreasing
order by their association statistic with a phenotype.

In our context, we treated the gene scores under each topic from the genes-by-topics matrix
(i.e., β) as the association statistic. The ES for a gene set S is the maximum difference be-
tween P_hit(S,i) and P_miss(S,i), where P_hit(S,i) is the fraction of genes in S weighted by their
topic scores up to gene index i in the sorted list and P_miss(S,i) is the fraction of genes not in
S weighted by their topic scores up to gene index i in the sorted list. The enrichment p-value
for each gene set is computed by permutation tests by randomly shuffling the gene symbols
on the sorted list (while keeping the gene topic scores in the decreasing order) 1000 times to
compute the null distribution of the ES for each gene set and each topic. The empirical p-value
was calculated as (N’+1)/(N+1), where N’ is the number of permutation trials in which ES is
greater than the observed ES, and N is the total number of trials (i.e., 1000). We then corrected
the p-values for multiple testing using Benjamini-Hochberg (BH) method [68].

For AD and HP datasets, we used the MSigDB Canonical Pathways gene sets [69] as the
gene set database in GSEA; and for MDD, we used PsyGeNET database [70] in order to find
psychiatric disease-specific associations. We also run GSEA for scVI-LD gene loadings for
comparison. The detailed pathway enrichment statistic can be found in Supp. Table S18.

Differential analysis of topic expression

We aimed to identify topics that are differentially associated with known cell type labels or dis-
ease conditions. For topic k and cell label j (i.e., cell type or disease condition), we first calcu-
lated the difference of the average topic activities between the cells with label j and the cells
without label j. For each permutation trial, we randomly shuffled the label assignments among
cells and recalculated the difference of average topic activities from the resulting permutation.
The empirical p-value was calculated as (N’+1)/(N+1), where N’ is the number of permutation
trials in which the difference is greater than the observed difference, and N is the total number
of trials. To account for multiple hypotheses, we applied Bonferroni correction by multiplying the
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p-value by the product of the topic number and the number of labels. We performed N=100,000
permutations.

We determined a topic to be differentially expressed (DE) if the Bonferroni corrected q-value
is lower than 0.01 and the mean difference is greater than 2 for cell-type DE topcis or 0.2 for
disease DE topics. Supp. Table S20 summarizes the number of DE topics we identified for
each cell type and disease conditions from the AD and MDD data. We use the PanglaoDB
database [71] to find the overlap between top genes of cell-type-specific DE topics and known
cell type markers.

Incorporation of pathway knowledge into the gene embeddings in p-scETM

We downloaded the pathDIP4 pathway database from [49], and the Gene Ontology (Biological
Processes) (GO-BP) dataset from MSigDB v7.2 Release [69]. Pathway gene sets or GO-BP
terms containing fewer than five genes were removed. We represented the pathway knowledge
as a pathways-by-genes ρ matrix, where ρij = 1 if gene set i contains gene j, and ρij = 0 oth-
erwise. We standardized each column (i.e., gene) of this matrix for numerical stability. During
training the p-scETM, we fixed the gene embedding matrix ρ to the pathways-by-genes matrix.

Clustering performance benchmark and visualization

We assessed the performance of each method by three metrics: Adjusted Rand Index (ARI)
[72], Normalized Mutual Information (NMI) and k-nearest-neighbor Batch-Effect Test (kBET)
[18]. ARI and NMI are widely-used representatives of two families of clustering agreement
measures, pair-counting and information theoretic measures, respectively. A high ARI or NMI
indicates a high degree of agreement for a given clustering result against the ground-truth cell
type labels. We calculated ARI and NMI using the Python library scikit-learn [73].

kBET measures how well mixed the batches are based on the local batch label distribution in
randomly sampled nearest-neighbor cells compared against the global batch label distribution.
Average silhouette width (ASW) [40] indicates clustering quality using cell type labels. Silhou-
ette width (SW) of a cell i is the distance of cell i from all of the cells within the same cluster
subtracted by the distance of cell i from cells in a nearest but different cluster, normalized by
the maximum of these two values. ASW is the averaged SW over all the cells in a dataset and
larger values indicate better clustering quality. Therefore, larger ASW indicates the higher dis-
tances between cell types and lower distance within cell type in the cell embedding space. We
choose the distance function to be the euclidean distance. We adapted the Pegasus implemen-
tation [74] for kBET calculation, and set the k to 15.

All embedding plots were generated using the Python scanpy package [16]. We use UMAP
[39] to reduce the dimension of the embeddings to 2 for visualization, and Leiden [75] to cluster
cells by their cell embeddings produced by each method in comparison. During the cluster-
ing, we tried multiple resolution values and reported the result with the highest ARI for each
method.
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For reproducibility, the evaluation and the plotting steps were implemented in a single evaluate
function in the scETM package, which takes in an AnnData object with cell embeddings and
returns a Figure object for the ARI, NMI, kBET and embedding plot. For consistency, we
used this function to evaluate all methods, including those written in R, where we used the
reticulate package [76] to call our evaluate function.

We ran all methods under their recommended pipeline settings (Supplementary Methods),
and we use batch correction option whenever applicable to account for batch effects. All results
are obtained on a compute cluster with Intel Gold 6148 Skylake CPUs and Nvidia V100 GPUs.
We limit each experiment to use 8 CPU cores, 192 GB RAM and 1 GPU.

Efficiency and scalability benchmark of the existing methods

To create a benchmark dataset for evaluating the run time of each method, we merged MDD
and AD, keeping the genes that appear in both datasets. We then selected the 3000 most vari-
able genes using scanpy’s highly_variable_genes(n_top_genes=3000, flavor=‘seurat_v3’)
function, and randomly sampled 28,000, 14,000, 70,000 and 148,247 (all) cells to create our
benchmark datasets. The memory requirements reported in Fig. 3 were obtained by reading
the rss attribute of the named tuple returned by calling Process().memory_info() from the
psutil Python package [77]. For methods based on R, we use the reticulate package [76]
to call the above Python function for consistency. We used the same settings (RAM size, num-
ber of GPUs, etc) as described in the Clustering performance benchmark and visualization
section throughout the experiments.
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Figures

Figure 1: scETM model overview. (a) scETM training. Given as input the scRNA-seq data
matrices across multiple experiments or studies (i.e., batches), scETM models the single-cell
transcriptomes using an embedded topic modeling approach. Each scRNA-seq profile serves
as an input to a variational autoencoder (VAE) as the normalized gene counts. The encoder
network produces a stochastic sample of the latent topic mixture (θs,d for batch s = 1, . . . , S
and cell d = 1, . . . , Ns), which can be used for clustering cells (see panel b). The linear decoder
learns topic embedding and gene embedding, which can be used to analyze cellular programs
via enrichment analyses (see panel c). (b) Workflow used to perform zero-shot transfer learn-
ing. The trained scETM-encoder on a reference scRNA-seq dataset is used to infer the cell
topic mixture θ∗ from an unseen scRNA-seq dataset without training them. The resulting cell
mixtures are then visualized via UMAP visualization and evaluated by standard unsupervised
clustering metrics using the groundtruth cell types. (c) Exploring gene embeddings and topic
embeddings. Because the genes and topics share the same embedding space, we can explore
their connections via UMAP visualization or annotate each topic via enrichment analyses using
known pathways.

Figure 2: Integration and batch correction on the Mouse Retina dataset. Each panel
shows the Mouse Retina cell clusters using UMAP based on the cell embeddings obtained by
each of the 9 methods. The cells are colored by cell types in the first two rows and by batches,
which are the two source studies, in the last two rows. The ARI and kBET scores of each
method are shown below each plot. UMAP visualization for the other 5 datasets are illustrated
in Supp. Fig. S3,S4,S5,S6,S7.

Figure 3: Benchmark of the efficiency and scalability of the seven scRNA-seq clustering
algorithms. The line styles in the plot indicate model inputs. The number of genes was fixed
to 3000 in this experiment. We increased the number of cells randomly sampled from the com-
bined AD and MDD dataset and evaluated the performance of each method in terms of: (a)
runtime, (b) memory usage, and (c) Adjusted Rand Index (ARI). The run time of scETM on
CPU is annotated on the left panel.
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Figure 4: Cross-tissue and cross-species zero-shot transfer learning. Each panel dis-
plays the UMAP visualization of cells by training on dataset A and the applied to dataset B
(i.e., A→B). In total, we performed 6 transfer learning tasks: TM (FACS)↔ MP, HP (inDrop)
↔ MP, MusMOp↔ HumM1C. For each task, we evaluated scETM, scVI-LD, or scVI, which
are the rows in the above figure. The cells are colored by tissues or cell types as indicated in
the legend. The corresponding ARI and kBET are indicated below each panel. For MP→TM
(FACS), we evaluated the ARI based on the 92 cell types although we colored the cells by the
20 tissues of origin instead of their cell types because of the large number of cell types. Ab-
breviations: TM (FACS): Tabula Muris sequenced with Fluorescence-Activated Single Cell
Sorting; MP: Mouse Pancreas; HP (inDrop): Human Pancreas sequenced with InDrop technol-
ogy; HumM1C: human primary motor cortex (from Allen Brain map); MusMOp: Mouse primary
motor area (from Allen Brain map).

Figure 5: Gene set enrichment analysis of the Human Pancreas dataset. (a) Manhattan
plot of the GSEA results on the 100 scETM topics learned from the HP dataset. The x-axis
is the topic and the y-axis is the -log q-value from the permutation test corrected for multiple
testings by the BH-method. The dots correspond to the tested GSEA gene sets. The maximum
-log q-value is capped at 5. (b) Leading edge analysis of Insulin Processing (IP) pathway using
Topic 54. The genes are ranked by the topic score (i.e., the unnormalized topic mixture beta)
under Topic 54. The running sum enrichment score was calculated by GSEA. The black bars
in the middle indicate the genes that are found in the IP pathway. Topic 54 is significantly en-
riched in Insulin Processing pathway (GSEA permutation test BH-adjusted q-value = 0). (c)
UMAP visualization of the gene and topic embeddings learned from the HP dataset. Genes
in IP are colored in red and Topic 54 in blue. The inset box displays a magnified view of the
cluster zooming into the IP pathway genes (including Insulin (INS)) that are near Topic 54 in the
embedding space.

Figure 6: scETM topic embeddings of the Alzheimer’s Disease snRNA-seq dataset. (a)
Gene-topic heatmap. The top genes which are known as cell-type marker genes based on
PanglaoDB are highlighted. For visualization purposes, we divided the topic values by the
maximum absolute value within the same topic. Only the differential topics with respect to
cell-type or AD were shown. (b) Topics intensity of cells (n=10,000) sub-sampled from the AD
dataset. Topic intensities shown here are the Gaussian mean before applying softmax. Only
the select topics with the sum of absolute values greater than 1500 across all sampled cells
are shown. The three color bars show disease conditions, cell types, and batch identifiers (i.e.,
subject IDs). (c) Differential expression analysis of topics across the 8 cell types and 2 clinical
conditions. Colors indicate mean differences between cell groups with and without a certain
label (cell-type or condition). Asterisks indicate Bonferroni-corrected empirical p-value < 0.05
for 100,000 permutation tests of up-regulated topics in each cell-type and disease labels.
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Figure 7: Pathway-topics embeddings learned by the pathway-informed scETM (p-
scETM). (a) p-scETM overview. Pathways information as pathways-by-genes are provided
as the gene embedding in the linear decoder. The learned topic embedding is the direct associ-
ation between the topics and pathways. (b) The pathway-topics heatmap of top 5 pathways
in selected topics. Here the pathways are the Gene Ontology - Biological Processes (GO-
BP) terms. For the HP dataset, GO-BP terms whose names include the keywords “insulin"
or “pancreatic" were highlighted. For the AD dataset, GO-BP terms whose names include the
keywords “amyloid" or “alzheimer" were highlighted. For MDD - all genes and MDD - coding
genes only, GO-BP terms whose names include the keywords “neuron" or “G-protein" were
highlighted.
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Tables

Transferable Interpretable MP HP TM AD MDD MR

Harmony 0.969 0.955 0.705 0.994 0.784 0.763
Scanorama 0.915 0.859 0.542 0.997 0.587 0.780
Seurat 0.944 0.968 0.676 0.991 0.550 0.781

scVAE-GM X 0.805 NA NA 0.997 0.563 0.778
scVI X 0.932 0.759 0.670 0.991 0.541 0.783

LIGER X X 0.914 0.911 0.591 0.894 0.704 0.714
scVI-LD X X 0.875 0.656 0.608 0.989 0.666 0.718
scETM X X 0.946 0.943 0.761 0.996 0.717 0.859
scETM−λ X X 0.851 0.474 0.629 0.996 0.719 0.773
scETM+adv X X 0.944 0.946 0.704 0.993 0.717 0.772

Batch Effect Strain Tech. Tech. Ind. Ind. Studies

Table 1: Model properties and unsupervised clustering performance on data integration
tasks. The clustering performance is measured by Adjusted Rand Index (ARI) between ground
truth cell types and Leiden [75] clusters. scETM performances with or without the linear batch
correction (scETM, scETM−λ) are both reported. scETM+adv is scETM plus adversarial net-
work loss to further correct batch effects. Batch variables include strain, sequencing technolo-
gies ("Tech.") and individuals ("Ind."). NA is reported for models that did not converge. Ex-
perimental details are described in the Methods section. We ran Seurat on all datasets with
integration turned on whenever applicable.
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MP HP TM AD MDD MR

Harmony 0.390 0.342 0.148 0.518 0.440 0.063
Scanorama 0.439 0.155 0.001 0.286 0.202 0.063
Seurat 0.538 0.381 0.281 0.195 0.085 0.053

scVAE-GM 0.233 NA NA 0.073 0.051 0.033
scVI 0.516 0.140 0.056 0.434 0.313 0.073

LIGER 0.602 0.660 0.374 0.771 0.716 0.176
scVI-LD 0.148 0.034 0.069 0.476 0.277 0.022
scETM+adv 0.546 0.443 0.144 0.627 0.570 0.141
scETM 0.270 0.163 0.096 0.278 0.228 0.066
scETM−λ 0.217 0.000 0.000 0.122 0.066 0.017

Batch Effect Strain Technology Technology Individual Individual Studies

Table 2: Batch correction performance on data integration tasks. The batch correction per-
formance is measured by kBET [18]. More details are described in Table 1 caption and Meth-
ods.
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S1 Supplementary Methods

S1.1 Data processing

All of the single-cell datasets used in this study are from publicly available repositories or data
portals. We describe below the acquisition and quality control (QC) for each of the datasets
used in the current work.

S1.1.1 Human pancreatic islet

We obtained the human pancreatic islet dataset and the ground truth cell type labels from
Satija Lab at the following link: https://satijalab.org/seurat/v3.0/integration.html (ac-
cessed 1 Dec 2020), originally deposited by Stuart et al. [7]. This dataset is a compilation of
scRNA-seq data from five studies which can be accessed using the following Gene Expression
Omnibus (GEO) accession numbers: GSE81076 (CelSeq), GSE85241 (CelSeq2), GSE86469
(Fluidigm C1), E-MTAB-5061 (SMART-Seq2), and GSE84133 (inDrop). A QC step was con-
ducted by [7], and no additional QC was performed. In our benchmarking experiment, we use
the different scRNA-seq technologies as the batch variable.

S1.1.2 Mouse pancreatic islet

We obtained the mouse pancreatic islet data and ground truth cell type labels from GSE84133
(inDrops) without conducting additional QC. There are 1,886 mouse cells from two mice of dif-
ferent strains, ICR and C57BL/6 [34]. The cell counts from the two trains are of approximately
equal proportions. In our benchmarking experiment, we treated the mouse strain as the batch
variable because of the different genetic backgrounds.

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.01.13.426593doi: bioRxiv preprint 

https://satijalab.org/seurat/v3.0/integration.html
https://doi.org/10.1101/2021.01.13.426593
http://creativecommons.org/licenses/by-nc-nd/4.0/


S1.1.3 Major Depressive Disorder (MDD)

We obtained the 10X Genomics-based MDD snRNA-seq dataset with ground truth cell type
labels from GSE144136. A strict QC step was conducted in the original empirical study by
[29], where cells with fewer than 110 detected genes were removed. The top 0.5% of cells
based on the total number of UMI (unique molecular identifiers) detected in each cell were
also excluded because they are likely to be multiplets rather than single nuclei. No additional
QC was performed. The MDD dataset consists of 78,886 cells from the dorsolateral prefrontal
cortex of 34 male participants. The participants in the control group (n=17) who died due to
natural cause and case group (n=17) who died by suicide were matched for age (18–87 years),
postmortem interval (12–93h) and brain pH (6–7.01) [29]. The number of cells from each donor
is approximately the same.

S1.1.4 Alzheimer’s Disease (AD)

We obtained the droplet-based AD snRNA-seq data and the corresponding ground truth cell
type labels from Synapse (https://www.synapse.org/#!Synapse:syn18485175) under the
doi 10.7303/syn18485175, and the metadata from https://www.synapse.org/#!Synapse:
syn3157322. A strict QC step based on UMI counts and mitochondrial ratio values was con-
ducted in the original empirical study by Mathys et al. [35]. The AD dataset consists of 70,634
cells from the prefrontal cortex of 48 individuals, both male and female, in the Religious Order
Study (ROS) or the Rush Memory and Aging Project (MAP), two longitudinal cohort studies of
aging and dementia. The cases group consists of 24 individuals with high levels of β-amyloid
and other pathological hallmarks of AD, and the control group consists of 24 individuals who
have no or very low β-amyloid or other pathologies.

Study data were provided by the Rush Alzheimer’s Disease Center, Rush University Medical
Center, Chicago. Data collection was supported through funding by NIA grants P30AG10161
(ROS), R01AG15819 (ROSMAP; genomics and RNAseq), R01AG17917 (MAP), R01AG30146,
R01AG36042 (5hC methylation, ATACseq), RC2AG036547 (H3K9Ac), R01AG36836 (RNAseq),
R01AG48015 (monocyte RNAseq) RF1AG57473 (single nucleus RNAseq), U01AG32984
(genomic and whole exome sequencing), U01AG46152 (ROSMAP AMP-AD, targeted pro-
teomics), U01AG46161(TMT proteomics), U01AG61356 (whole genome sequencing, targeted
proteomics, ROSMAP AMP-AD), the Illinois Department of Public Health (ROSMAP), and the
Translational Genomics Research Institute (genomic). Additional phenotypic data can be re-
quested at www.radc.rush.edu.

S1.1.5 Tabula Muris

We obtained the Tabula Muris dataset with ground truth cell type labels from FigShare (https:
//figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of_20_organs_
and_tissues_from_Mus_musculus_at_single_cell_resolution/27733) for the Version 2 re-
lease [3]. This dataset includes mouse single-cell transcriptome data sequenced by two tech-
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nologies: microfluidic droplet-based, and fluorescence-activated cell sorting (FACS)-based. A
QC cutoff was applied in the original empirical study where only cells with at least 500 genes
and 50,000 reads/ 1000 UMI are kept. The droplet subset includes data for 422,803 droplets,
55,656 of which passed the QC cutoff. The FACS subset, denoted as “TM (FACS)" in the paper,
contains data for 53,760 cells, 44,879 of which passed the QC cutoff.

S1.1.6 Allen Brain Atlas

We downloaded two brain datasets from Allen Brain Atlas [78] (accessed 03/21/2021). The
human primary motor cortex dataset (HumM1C) includes single-nucleus transcriptomes from
76,533 nuclei from the primary motor cortex (M1C) of 2 post-mortem human brain specimens.
In total, 127 transcriptomic cell types are present in this dataset. The sample processing fol-
lows the 10x Genomics pipeline. To generate the ground-truth cell labels, the default 10x Cell
Ranger v3 pipeline was used except substituting the curated genome annotation used for
SMART-seq v4 quantification. The mouse brain dataset includes single-cell transcriptomes
from more than 20 areas of mouse cortex and the hippocampus, which has 1,093,785 cells
in total. Samples were collected from male and female mice around 8 week-old, from pan-
neuronal transgenic lines. The cell transcriptomes were sequenced using 10x Genomics. We
used the subclass labels in the metadata used as ground truth cell type label in the current
study. We removed the cells and nuclei with subclass label “outlier". To encourage better trans-
fer from HumM1C, we subset the mouse brain dataset by keeping the 124,953 cells with re-
gion_label "MOp", and obtain the MusMOp dataset.

S1.1.7 Mouse Retina

We obtained the MR dataset from https://hemberg-lab.github.io/scRNA.seq.datasets/
mouse/retina/, which is a collection of mouse retina scRNA-seq datasets from two indepen-
dent studies, namely Macosko et al. [36] with 44808 samples, and Shekhar et al. [37] with
27499 samples. Both subsets were sequenced using Drop-seq. We kept the genes shared by
the two subsets, and filtered out the 669 samples labeled as "Doublets/Contaminants" in the
Shekhar batch. The merged dataset contains 71638 cells and 12333 genes.

S1.2 Experimental details of other scRNA-seq methods

Neural-network based models, including scVI, scVI-LD, scVAE-GM and scETM typically need
at least 5000 gradient updates to converge. When running on small datasets, the total number
of gradient updates per epoch may be very small (sometimes as low as 1). In these cases, we
increase the number of epochs T to ensure the model goes through at least 12000 gradient
updates, i.e. T = max(800, 12000B

N
), where N is the number of cells in the dataset and B is the

mini-batch size.
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S1.2.1 Seurat v3

We downloaded Seurat v3 (version 3.1.5) from CRAN [8]. We followed the steps outlined by
the integration workflow (https://satijalab.org/seurat/v3.2/integration.html) which
includes NormalizeData, FindVariableFeatures, FindIntegrationAnchors, and IntegrateData.
To make the comparisons more equitable, we set the min.features=0 to avoid exclusion of
cells. All other parameters were set as default. We noted that, with batch integration turned on,
Seurat reports error in the integration step due to the high number of anchors arising from the
48 individuals (batch variable in AD), which is a known implementation issue with the standard
Seurat v3 integration workflow [79]. We therefore turned off the batch integration for AD in
the benchmarking experiments (see Clustering performance benchmark and visualization
and Efficiency and scalability benchmark of the existing methods) and followed the steps
described in the Guided Clustering Tutorial (https://satijalab.org/seurat/v3.2/pbmc3k_
tutorial.html).

S1.2.2 Scanorama

We downloaded the source code from GitHub brianhe/scanorama. We used the integrate_scanpy
function for dataset integration and batch correction as suggested by the guided tutorial. All pa-
rameters were set as default. The algorithm performs a PCA on the stacked datasets and uses
100 PCs for downstream computation.

S1.2.3 Harmony

We downloaded the source code from GitHub slowkow/harmonypy suggested by the primary
repository immunogenomics/harmony and followed the preprocessing (normalization and top
variable gene selection) described in the publication and the integration steps in the provided
tutorial. We used the run_harmony function to obtain the corrected PCA embeddings and used
50 PCs as input. All other parameters were set as default.

S1.2.4 LIGER

We used the official implementation provided on the website of the LIGER package. For the
convenience of implementation, we followed the usage tutorial using Seurat Wrapper to pro-
cess the raw data and then ran LIGER with default parameters.

S1.2.5 scVI/scVI-LD

We downloaded the implementation from the Github repository YosefLab/scVI. We used the
default model, which has one layer for both the encoder and decoder (for scVI-LD the decoder
is a latent dimensions-by-genes matrix), 128 hidden units, 10 latent dimensions and ZINB dis-
tribution for modeling the data. We chose 10−3 as the learning rate and trained on each unpro-
cessed dataset for 400 epochs, following the provided tutorials. We change the training batch
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size to 2000 for faster training. We obtained the cell embeddings via the get_latent method.
We also compared the performance of scVI(-LD) with 10 and 100 latent dimensions on the five
benchmark scRNA-seq datasets (Supp. Table S21). We found that in most cases, scVI(-LD)
with 10 latent dimensions performs better than scVI(-LD) with 100 latent dimensions, justifying
the hyperparameter choices made by the scVI(-LD) authors. When evaluating the interpretabil-
ity aspect of scVI-LD, we use 100 latent dimensions for fair comparison with scETM.

S1.2.6 scVAE

We downloaded the implementation from GitHub repository scvae/scvae. We set the hidden
units to be (256, 128) for the encoder. The decoder is symmetric to the encoder. Latent dimen-
sion was set to 128 to match scETM. We chose 10−4 as the learning rate and NB distribution
for modeling the data following the authors’ recommendation. We trained on each unprocessed
dataset for 400 epochs with batch size of 250, including a 200-epoch warm-up for the KL diver-
gence loss. In the scalability benchmark, we disabled the time-consuming per-epoch check-
points to match other methods. The model did not converge on the Human Pancreatic Islet
dataset, where the ELBO went to infinity. It failed to extract meaningful information from the
Tabula Muris dataset, resulting in an ARI of 0.0.
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Supplementary Figures

Figure S1: scETM model details. (a) The plate model for scETM. We model the scRNA-profile
count matrix yd,g in cell d and gene g across S batches by a multinomial distribution with the
rate parameterized by cell topic mixture θ, topic embedding α, gene embedding ρ, and batch
effects λ. (b) Matrix factorization view of scETM. (c) Encoder architecture for inferring the cell
topic mixture θ.

Figure S2: Relationship between average negative log-likelihood (NLL) and adjusted
Rand Index (ARI) on the TM dataset. Each point denotes the performance of a trained
scETM instance with a specific hyperparameter configuration (e.g., encoder hidden size, topic
number, embedding dimensions, etc), averaged over three runs with different random seeds.
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Figure S3: Integration and batch correction on the Mouse Pancreas (MP) dataset. Each
panel shows the MP cell clusters using UMAP based on the cell embeddings obtained by each
of the 9 methods. The cells are colored by cell types in the first two rows and by batches, which
are the two mouse strains, in the last two rows.
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Figure S4: Integration and batch correction on the Human Pancreas (HP) dataset. Each
panel shows the HP cell clusters using UMAP based on the cell embeddings obtained by each
of the 9 methods. The cells are colored by cell types in the first two rows and by batches, which
are the five sequencing technologies, in the last two rows.
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Figure S5: Integration and batch correction on the Tabula Muris (TM) dataset. Each panel
shows the TM cell clusters using UMAP based on the cell embeddings obtained by each of the
9 methods. The cells are colored by cell types in the first two rows and by batches, which are
the two sequencing technologies, in the last two rows.
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Figure S6: Integration and batch correction on the Alzheimer’s Disease (AD) dataset.
Each panel shows the prefrontal cortex (PFC) cell clusters using UMAP based on the cell em-
beddings obtained by each of the 9 methods. The cells are colored by cell types in the first two
rows and by batches, which are the 48 donors, in the last two rows.
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Figure S7: Integration and batch correction on the Major Depressive Disorder (MDD)
dataset. Each panel shows the prefrontal cortex (PFC) cell clusters from the MDD or healthy
subjects using UMAP based on the cell embeddings obtained by each of the 9 methods. The
cells are colored by cell types in the first two rows and by batches, which are the 34 donors, in
the last two rows.
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Figure S8: UMAP visualization of scETM, LIGER and scVAE-GM cell embeddings on the com-
bined MDD and AD benchmark dataset, which includes in total 148247 cells and 3000 genes.
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Figure S9: Integration and batch correction on the HP–beta dataset. Each panel shows the
HP–beta cell clusters using UMAP based on the cell embeddings obtained by each of the 8
methods (scVAE did not converge on this dataset). The cells are colored by cell types in the
first two rows and by batches, which are the five sequencing technologies, in the last two rows.
The ARI and kBET scores of each method are shown below each plot.
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Figure S10: Reproducibility of the separation of T-cells and B-cells from macrophages.
We trained scETM on TM (FACS) and applied it to the MP data. To assess the reproducibility,
we repeated the experiments 3 times using different random seeds to initialize the model.

Figure S11: Alzheimer’s Disease dataset gene and topic embedding. (a) Manhattan plot
of the GSEA results on the 100 scETM topic learned from the AD dataset. The maximum -
log q-value is capped at 5. (b) Leading edge analysis of KEGG_ALZHEIMERS_DISEASE
(KAD) pathway. The genes are ranked by the topic score (i.e., the unnormalized topic mixture
beta) under Topic 75. Topic 75 is significantly enriched in KAD pathway (GSEA permutation
test q-value=0). (c) UMAP visualization of the embeddings of all genes in AD and Topic 75. A
magnified view of the cluster shows the KAD pathway genes that are near Topic 75.
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Figure S12: MDD dataset gene and topic embedding. (a) Manhattan plot of the GSEA re-
sults on the 100 scETM topic learned from the MDD dataset. (b) Leading edge analysis of
SUBSTANCE/DRUG INDUCED DEPRESSIVE DISORDER (SID) pathway. Topic 13 is signifi-
cantly enriched in SID pathway (GSEA permutation test q-value=0). (c) UMAP visualization of
the embeddings of all genes in the MDD dataset and Topic 13. A magnified view of the cluster
shows the SID pathway genes that are near Topic 13.
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Figure S13: Gene and topic embedding of MDD (coding genes only). (a) Manhattan plot of
the GSEA results on the 100 scETM topic learned from the MDD dataset. (b) Leading edge
analysis of SUBSTANCE/DRUG INDUCED DEPRESSIVE DISORDER (SID) pathway. Topic
49 is significantly enriched in SID pathway (GSEA permutation test q-value=0). (c) UMAP
visualization of the embeddings of all protein coding genes in MDD dataset and Topic 49. A
magnified view of the cluster shows the SID pathway genes that are near Topic 49.
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Figure S14: GSEA leading edge plots for scETM (left column) and scVI-LD (right col-
umn) on Human Pancreas (HP), Alzheimer’s Disease (AD), and Major Depressive Disor-
der (MDD). Due to the disease relevance, we showed Reactome Insulin Processing, KEGG
Alzheimer’s Disease, and PsyGeNet substance/drug induced depressive disorder for HP, AD,
and MDD, respectively.
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Figure S15: scETM topic embeddings of Human Pancreas scRNA-seq data. (a) Gene-
topics heatmap of top 10 genes in each topic based on topic intensity. The top genes which are
known as cell-type marker genes based on PanglaoDB are highlighted (rows). For visualization
purposes, we divided the topic values by the maximum absolute value within the same topic.
Only cell-type and disease differntial topics are shown. (b) Topic intensity of cells (n=10,000)
sub-sampled from the HP dataset. Topic intensities shown here are the Gaussian mean before
applying softmax. Only the select topics with the sum of absolute values greater than 1500
across all sampled cells are shown. The two color bars show cell types and batch identifiers
(i.e., sequencing technologies). (c) Differential expression analysis of topics across the 13 cell
types. Colors indicate mean differences between cell groups with and without a certain label
(cell-type). Asterisks indicate Bonferroni-corrected empirical p-value < 0.05 for permutation
tests of up-regulated topics in each cell-type labels. The number of permutations in each test is
100,000.
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Figure S16: UMAP cell embedding visualization on the AD dataset, colored by differentially
expressed topics (or metagenes) and ground truth labels for the cell types. Circled cell clusters
has been discussed in the main text (see Differential scETM topics in disease conditions
and cell types section).
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Figure S17: UMAP cell embedding visualization on the AD dataset, colored by differentially
expressed topics (or metagenes) and AD/control or Male/Female labels. Circled cell clusters
were discussed in the main text (see Differential scETM topics in disease conditions and
cell types section).
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Figure S18: scETM-topic embeddings learned from the Major Depressive Disorder
scRNA-seq data. (a) Gene-topics heatmap of top 10 genes in each topic based on topic in-
tensity. The top genes which are known as cell-type marker genes based on PanglaoDB are
highlighted (rows). For visualization purposes, we divided the topic values by the maximum
absolute value within the same topic. Only cell-type and disease differential topics are shown.
(b) Topics intensity of cells (n=10,000) sub-sampled from the MDD dataset. Topic intensities
shown here are the Gaussian mean before applying softmax. Only the select topics with the
sum of absolute values greater than 1500 across all sampled cells are shown. The three color
bars show disease conditions, cell types, and batch identifiers (i.e., subject IDs). (c) Differential
expression analysis of topics across the 8 cell types and 2 clinical conditions. Colors indicate
mean differences between cell groups with and without a certain label (cell-type or condition).
Asterisks indicate Bonferroni-corrected empirical p-value < 0.05 for permutation tests of up-
regulated topics in each cell-type and disease labels. The number of permutations in each test
is 100,000.
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Figure S19: scETM-topic embeddings learned from the Major Depressive Disorder
scRNA-seq data with genes restricted to protein coding genes. (a) Gene-topics heatmap
of top 10 genes in each topic based on topic intensity. (b) Topics intensity of cells (n=10,000)
sub-sampled from the MDD - coding genes only dataset. (c) Differential expression analysis of
topics across the 8 cell types and 2 clinical conditions.
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Figure S20: p-scETM pathway-topics embeddings by fixing pathDIP gene set database as
ρ. (a) The pathway-topics heatmap of top 5 pathways in selected topics, inferred by a p-scETM
model trained on HP. Pathways potentially related to pancreas function, insulin signalling and
digestion are highlighted. (b) The pathway-topics heatmap of top 5 pathways in selected topics,
inferred by a p-scETM model trained on MDD. Pathways potentially related to MDD pathogene-
sis and therapeutic targets are highlighted. (c) The pathway-topics heatmap of top 7 pathways
in selected topics, inferred by a p-scETM model trained on AD. Pathways potentially related to
AD pathogenesis and therapeutic targets are highlighted.
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Supplementary Tables

MP HP TM AD MDD MR

Harmony 0.928 0.927 0.827 0.983 0.705 0.726
Scanorama 0.845 0.816 0.766 0.988 0.561 0.747
Seurat 0.913 0.947 0.825 0.967 0.540 0.783

scVAE-GM 0.764 NA NA 0.989 0.526 0.781
scVI 0.876 0.783 0.835 0.977 0.534 0.763

LIGER 0.875 0.876 0.757 0.861 0.618 0.742
scVI-LD 0.831 0.713 0.797 0.975 0.614 0.765
scETM+adv 0.852 0.908 0.838 0.985 0.598 0.747
scETM 0.902 0.902 0.856 0.987 0.583 0.809
scETM−λ 0.819 0.644 0.819 0.987 0.604 0.764

Batch Effect Strain Tech. Tech. Ind. Ind. Studies

Table S1: Normalized Mutual Information (NMI) between ground truth cell types and leiden
clusters on 6 benchmark scRNA-seq datasets. NA is reported for models that did not converge.
scETM performances with or without the linear batch correction (scETM, scETM−λ) are both
reported. scETM+adv is scETM plus adversarial network loss to further correct batch effects.
Batch variables include strain, sequencing technologies ("Tech.") and individuals ("Ind."). NA
is reported for models that did not converge. More details are described in Table 1 caption and
Methods.

MP HP
ARI NLL ARI NLL

Current model 0.951 6.721 0.943 7.155
Encoder arch (256, 128) 0.897 6.741 0.940 7.151
Encoder arch (512, 256, 128) 0.898 6.722 0.936 7.159
Gene emb. dim. 25 0.920 6.716 0.945 7.166
Gene emb. dim. 100 0.916 6.734 0.944 7.155
10 topics 0.941 6.723 0.940 7.168
200 topics 0.915 6.771 0.944 7.152

Table S2: Robustness analysis of the scETM model. Changing the encoder architecture, gene
embedding dimensions and number of topics has limited impact on model performance. We
report the average ARI and the held-out negative log-likehood (NLL) of three runs with differ-
ent random seeds. The current model has an encoder with one 128-dim hidden layer, a gene
embedding dimension of 400 and 50 topics.
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MP HP
ARI NLL ARI NLL

Current model 0.951 6.721 0.943 7.155
- BatchNorm 0.844 6.724 0.834 7.149
- Total count Normalization 0.726 6.815× 104 0.388 2.041× 106

- BatchNorm - Total count Normalization 0.000 6.420× 104 0.000 1.909× 106

- Batch correction module 0.851 6.724 0.471 7.163

Table S3: Ablation study of the scETM model. We report the average ARI of three repeated
trails.

CelSeq CelSeq2 Fludigm C1 InDrop SmartSeq2

acinar 229 274 21 1152 188
activated stellate 19 90 16 294 55
alpha 213 844 241 2309 1008
beta 0 445 0 0 0
delta 50 203 25 608 127
ductal 304 257 34 915 444
endothelial 5 21 14 235 21
epsilon 1 4 1 16 8
gamma 18 110 18 266 213
macrophage 1 15 1 55 7
mast 1 6 3 39 7
quiescent stellate 1 12 1 160 6
schwann 1 4 5 13 2

Table S4: Cell type distribution of HP–beta. Beta cells are removed from all batches except
CelSeq2 of the HP dataset.

ARI ASW ASW-beta kBET

Seurat v3 0.9225 0.2732 0.1490 0.3337
Harmony 0.9024 0.2323 0.1558 0.2637
Scanorama 0.8989 0.3832 0.3203 0.1067
LIGER 0.8476 0.1946 0.0912 0.5978
scVI-LD 0.5077 0.1397 0.6135 0.0031
scVI 0.6975 0.1579 0.4044 0.0567
scETM+adv 0.9265 0.3026 0.0045 0.3445
scETM 0.9298 0.3525 0.5370 0.1247

Table S5: Batch overcorrection analysis on HP–beta. We report ARI, ASW, ASW-beta (SWs
averaged over all beta cells) and kBET scores on the HP–beta dataset.
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Shekhar et al. Macosko et al.

amacrine 252 4426
astrocytes 0 54
bipolar 23494 6285
cones 48 1868
fibroblasts 0 85
ganglion 0 432
horizontal 0 252
microglia 0 67
muller 2945 1624
pericytes 0 63
rods 91 29400
vascular endothelium 0 252

Table S6: Cell type distribution of MR.

ARI ASW kBET

Harmony 0.7632 0.1366 0.0631
Scanorama 0.7795 0.0934 0.0625
Seurat v3 0.7813 0.3464 0.0534
LIGER 0.7135 0.2215 0.1761
scVI 0.7827 0.1331 0.0732
scVI-LD 0.7182 0.1964 0.0217
scETM+adv 0.7720 0.2669 0.1410
scETM 0.8593 0.2873 0.0656

Table S7: Batch overcorrection analysis on MR. We report ARI, ASW and kBET scores on
the MR dataset.

Dataset w/ filtering w/o filtering
Metric ARI kBET ARI kBET

Harmony 0.763 0.063 0.763 0.044
Scanorama 0.780 0.063 0.770 0.052
Seurat v3 0.781 0.053 0.638 0.007
scVI 0.783 0.073 0.774 0.060
LIGER 0.714 0.176 0.463 0.196
scVI-LD 0.718 0.022 0.701 0.013
scETM+adv 0.772 0.141 0.767 0.129
scETM 0.859 0.066 0.854 0.057

Table S8: The impacts of doublets/contaminants on the model performance. ARI and
kBET scores of each method, with and without filtering of the 669 doublets/contaminants in
the Mouse Retina (MR) dataset, are reported.
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Source dataset MP TM (FACS) TM (FACS) w/o Pancreas
Target dataset MP MP MP

ARI 0.9457 0.9409 0.8072
kBET 0.2697 0.3388 0.4772
RCD(B-cell, macrophage) 0.2207 0.7214 0.6686
RCD(macrophage, B-cell) 0.6898 0.8620 0.8368
RCD(T-cell, macrophage) 0.3561 0.7063 0.7002
RCD(macrophage, T-cell) 0.7635 0.8654 0.8413
RCD(B-cell, T-cell) 0.3243 0.4612 0.4307
RCD(T-cell, B-cell) 0.2814 0.4178 0.4698

Table S9: Separation of immune cell types in MP with transfer learning on TM (FACS).
We separately trained scETM on MP, TM (FACS) without Pancreas and TM (FACS), and
then applied them to the MP dataset to cluster MP cells. We reported the Relative Clus-
ter Distance (RCD) between different immune cell types (T-cell and B-cell) in MP, as well
as the overall ARI and kBET scores. RCD is inspired by silhouette width and is defined by
RCD(A,B) = dAA−dAB

max(dAA,dAB)
, where A, B are two cell types and d is the cosine distance. Higher

values indicate cell types A and B are more separated in the embedding. All results are aver-
ages over three runs with different random seeds.

Type of transfer Cross-tissue Cross-species
Source dataset MP TM (FACS) TM (FACS) w/o Panc MP HP (InDrop) MusMOp HumM1C
Target dataset TM (FACS) MP MP HP (InDrop) MP HumM1C MusMOp

scVI 0.5075 0.4844 0.4197 0.5236 0.4251 0.0900 0.0252
scVI-LD 0.5159 0.3985 0.4317 0.6902 0.4757 0.0895 0.0375
scETM 0.5659 0.9409 0.8072 0.8680 0.7998 0.7105 0.3515

Table S10: Clustering performance on target datasets in the 6 cross-tissue and cross-
species transfer learning tasks. The clustering performance is measured by Adjusted Rand
Index (ARI) between ground truth cell types and Leiden [75] clusters. The cell clusters based
on the cell embedding produced by each method are also depicted in the UMAP visualization
in Fig. 4. Abbreviations: MP: Mouse Pancreas; HP (InDrop): Human Pancreas sequenced
with InDrop technology; TM (FACS) : A subset of Tabula Muris sequenced with Fluorescence-
Activated Single Cell Sorting; TM (FACS) w/o Panc: TM-FACS without Pancreas; HumM1C:
human primary motor cortex (from Allen Brain map); MusMOp: Mouse primary motor area
(from Allen Brain map).

Type of transfer Cross-tissue Cross-species
Source dataset MP TM (FACS) TM (FACS) w/o Panc MP HP (InDrop) MusMOp HumM1C
Target dataset TM (FACS) MP MP HP (InDrop) MP HumM1C MusMOp

scVI 0.0874 0.2570 0.2672 0.1707 0.2276 0.9002 0.8478
scVI-LD 0.0559 0.2564 0.2948 0.1425 0.2204 0.9181 0.8524
scETM 0.0585 0.3388 0.4772 0.1782 0.2930 0.7391 0.7775

Table S11: kBET scores on target datasets during cross-tissue and cross-species trans-
fer learning. Abbreviations are the same as in Supp. Table S10
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Pathway Name scETM scVI-LD

REACTOME_INSULIN_PROCESSING 15 2
REACTOME_INSULIN_RECEPTOR_RECYCLING 6 0
PID_INSULIN_GLUCOSE_PATHWAY 4 0
WP_PANCREATIC_ADENOCARCINOMA_PATHWAY 2 0
KEGG_PANCREATIC_CANCER 2 0
PID_INSULIN_PATHWAY 2 0
SIG_INSULIN_RECEPTOR_PATHWAY_IN_CARDIAC_MYOCYTES 1 0
REACTOME_REGULATION_OF_GENE_EXPRESSION_IN_LATE_STAGE... 1 0
REACTOME_REGULATION_OF_INSULIN_SECRETION 1 1
REACTOME_REGULATION_OF_INSULIN_LIKE_GROWTH_FACTOR... 1 3
WP_INSULIN_SIGNALING 1 0
BIOCARTA_INSULIN_PATHWAY 1 0
REACTOME_INSULIN_RECEPTOR_SIGNALLING_CASCADE 0 1
REACTOME_SYNTHESIS_SECRETION_AND_INACTIVATION_OF_GLUCOSE... 0 1
REACTOME_SIGNALING_BY_TYPE_1_INSULIN_LIKE_GROWTH_FACTOR... 0 1
WP_FACTORS_AND_PATHWAYS_AFFECTING_INSULINLIKE_GROWTH_FACTOR... 0 1

Total number of pathways 12 7

Table S12: Pathway enrichment statistics for Human Pancreas dataset. Pathways whose
names include the keywords "insulin" or "pancreatic" are shown. For each pathway, the number
of topics with significant enrichment (BH-corrected q-value < 0.01) are counted. Both scETM
and scVI-LD use latent dimensions of 100 for fair comparison.

Pathway Name scETM scVI-LD

REACTOME_AMYLOID_FIBER_FORMATION 1 2
KEGG_ALZHEIMERS_DISEASE 1 2
REACTOME_DEREGULATED_CDK5_TRIGGERS_MULTIPLE_
NEURODEGENERATIVE_PATHWAYS_IN_ALZHEIMER_S_DISEASE_MODELS 1 0

Total number of pathways 3 2

Table S13: Pathway enrichment statistics for AD dataset. Pathways whose names include
the keywords "amyloid" or "alzheimer" are shown. For each pathway, the number of topics with
significant enrichment (BH-corrected q-value < 0.01) are counted. Both scETM and scVI-LD
use latent dimensions of 100 for fair comparison.

Pathway Name scETM scVI-LD

SUBSTANCE/DRUG INDUCED DEPRESSIVE DISORDER 2 2

Total number of pathways 1 1

Table S14: Pathway enrichment statistics for MDD dataset. Pathways whose names include
the keyword "depressive" are shown. For each pathway, the number of topics with significant
enrichment (BH-corrected q-value < 0.01) are counted. Both scETM and scVI-LD use latent
dimensions of 100 for fair comparison.
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HP MDD AD

scETM 0.937 0.734 0.976
p-scETM 0.926 0.753 0.996

Table S15: Adjusted Rand Index (ARI) comparison of scETMs and p-scETMs in three human
single cell transcriptomics datasets. Refer to Incorporation of pathway knowledge into the
gene embeddings in p-scETM section for experimental details.

Pathway Relevance Reference

Methionine Metabolism MDD treatment [80]
Inflammatory mediator regulation of TRP channels MDD treatment [81]
Desipramine Action Pathway MDD treatment [82,83]
2-arachidonoylglycerol_biosynthesis MDD pathogenesis [84]
transcription factor creb and its extracellular signals MDD treatment [85,86]
role of erk5 in neuronal survival MDD pathogenesis and treatment [87]
Beta2_adrenergic_receptor_signaling same pathway enrichment found in a MDD study [50]
Tamoxifen Action Pathway correlation with MDD onset [88]
Isovaleric acidemia correlation with MDD [89]
Nicotine Action Pathway correlation with MDD onset [90]
Bumetanide Action Pathway MDD treatment [91]
3-Methylthiofentanyl Action Pathway MDD treatment [92]

Table S16: MDD-relevant pathways from the pathway-topic embedding inferred by p-scETM
trained on the MDD dataset.

Pathway Relevance Reference

Wnt Signaling Pathway and Pluripotency AD treatment [93]
Alzheimer_disease_amyloid_secretase AD pathogenesis [94]
TNF receptor superfamily (TNFS) members mediating non-canonical NF-kB AD treatment [95]
Glutathione synthesis and recycling AD pathogenesis [96]
Endothelin_signaling AD treatment [97]
GABA-B_receptor_II AD treatment [98,99]
GABA_Transaminase_Deficiency_Metabolite AD treatment [98,99]
Leukotriene_modifiers_pathway_Pharmacodynamics AD treatment [100]

Table S17: AD-relevant pathways from the pathway-topic embedding inferred by p-scETM
trained on the AD dataset.

Table S18: Pathway enrichment statistics breakdown of scETM for four datasets including HP,
AD, MDD (all genes) and MDD (coding genes only), and scVI-LD for three datasets including
HP, AD, MDD (all genes). The table is saved in Additional file 1.xlsx.

Table S19: Top 5 pathways of each topic (row) based on alpha intensities for four datasets
including HP, AD MDD (all genes), MDD (coding genes only). The table is saved in Additional
file 2.xlsx.
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AD MDD

DE cell-type and topics pairs 58 110
Cell types identified by DE topics 8 8
DE topics w.r.t. disease 8 15
Topics associated with cell types and disease 8 15

Table S20: Differential expression (DE) analysis summary of topics in AD and MDD data (up-
regulation only).

Metric Method MP HP MDD AD TM

ARI

scVI-LD (10) 0.8753 0.6563 0.6401 0.9889 0.6076
scVI-LD (100) 0.4454 0.4431 0.6145 0.9848 0.6705
scVI (10) 0.9325 0.7590 0.5411 0.9915 0.6699
scVI (100) 0.8215 0.7051 0.5813 0.9921 0.6284

kBET

scVI-LD (10) 0.1483 0.0335 0.2759 0.3967 0.0687
scVI-LD (100) 0.4601 0.0045 0.2745 0.3570 0.0331
scVI (10) 0.5159 0.1403 0.3132 0.4338 0.0557
scVI (100) 0.6856 0.0876 0.3402 0.4371 0.0301

Table S21: Performance of scVI(-LD) with 10 and 100 latent dimensions on the five benchmark
scRNA-seq datasets. The results showed that scVI and scVI-LD with 10 dimensions performed
better than the same models with 100 dimensions, justifying our choice of 10 latent dimensions
when comparing these models with other models.
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a. Pathway-informed scETM (p-scETM)

b. topic embeddings from the four scRNA-seq datasets
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