Title: *Manduca sexta* experience high parasitoid pressures in the field but minor fitness costs of
 consuming plant secondary compounds

3 Abstract

4	1.	Plant-herbivore co-evolutionary interactions have led to a range of plant defenses that
5		minimize insect damage and a suite of counter-adaptations that allow herbivores to feed
6		on defended plants. Consuming plant secondary compounds results in herbivore growth
7		and developmental costs but can have beneficial effects such as deterrence or harm of
8		parasitoid enemies. Therefore, the role of secondary compounds on herbivore fitness
9		must be considered in the context of the abundance and level of harm from natural
10		enemies and the costs herbivores incur feeding on plant secondary compounds.
11	2.	In this study, I combined field measurements of Cotesia congregata wasp parasitism
12		pressure with detailed measurements of the costs of plant secondary compounds across
13		developmental stages in the herbivore host, Manduca sexta.
14	3.	I show that C. congregata parasitoids exert large negative selective pressures, killing 31-
15		57% of <i>M. sexta</i> larvae in the field. <i>Manduca sexta</i> developed fastest during instars most
16		at risk for parasitoid oviposition but growth was slowed by consumption of plant
17		secondary compounds. The negative effects of consuming plant secondary compounds as
18		larvae influenced adult size traits but there were no immune, survival, or fecundity costs.
19	4.	These results suggest that developmental costs experienced by M. sexta herbivores
20		consuming defensive compounds are minor in comparison to the strong negative survival
21		pressures from abundant parasitoid enemies.
22	Keyw	ords: growth, herbivore, immune, Manduca, parasitoid, plant secondary compound

24 Introduction

Coevolution between herbivorous insects and their host plants often mitigates their 25 reciprocal (negative) fitness effects, resulting in rapid evolution of plant anti-herbivore defense 26 27 and insect counter-adaptations to these defenses (Ehrlich and Raven 1964, Maron et al. 2019). Plants produce combinations of physical and chemical defenses that may lower herbivore fitness 28 29 by reducing growth, disrupting development, decreasing survival, and/or attracting natural enemies of herbivores (Price et al. 1980, Howe and Jander 2008, Furstenberg-Hagg et al. 2013). 30 Herbivores feeding on defended plants may experience immediate or delayed effects of 31 consuming secondary compounds and these consequences may extend past the life stage at 32 which the stress was experienced (Fellous and Lazarro 2010, van Dam et al. 2011). 33 34 Understanding how insect herbivores evolve to feed on defended plants requires quantifying the 35 fitness effects of plant defenses across herbivore life stages and examining the conditions under which consumption of plant secondary compounds is beneficial to herbivores. An important 36 37 component of estimating these fitness consequences is to determine how additional stressors, such as natural enemies, affect herbivore fitness in conjunction with plant defense. 38 39 One way that herbivores mitigate the negative consequences of plant defense is if 40 consumption of these secondary compounds directly or indirectly harms natural enemies. Insects 41 are predicted to consume defended plants despite the apparent negative effects if the anti-enemy 42 benefit of consuming plant secondary compounds outweighs the costs. Enemies can exert a large 43 negative selective pressure on their targets when the enemies are at high abundance and/or when

they drastically decrease herbivore fitness (Hassell and Waage 1984). Parasitoids, for instance,

45 have an especially negative fitness effect because they kill their host at an immature (pre-

46 reproductive) stage and reduce host fitness to zero (Godfray 1994). Endoparasitoids—those that

develop inside the body of their hosts--are common enemies of lepidopteran species and 47 endoparasitoid fitness may be particularly affected by host quality (Eggleton and Belshaw 1992). 48 49 In insect hosts that sequester secondary compounds, there is clear co-option of plant toxins for herbivore anti-enemy defense but sequestration is considered more effective against predators 50 rather than parasitoids because of the trade-off between chemical sequestration and immune 51 52 function needed to defend against parasitoid eggs (Gauld et al. 1992, Smilanich et al. 2009). 53 In herbivore hosts that do not sequester plant secondary compounds, such as Manduca sexta, plant defenses can still reduce endoparasitoid success on hosts fed secondary compounds, 54 either through direct toxicity to parasitoids or indirect effects on host quality (Beckage and 55 Riddiford 1978, Thorpe and Barbosa 1986, Barbosa et al. 1991; Harvey et al. 2007). 56 57 Endoparasitoids may come into contact with the toxic compounds their herbivore hosts consume 58 as these compounds are detoxified or excreted from the host (Wink and Theile 2002, Kumar et al. 2014). Endoparasitoids are also sensitive to the indirect effects of secondary compounds on 59 60 host growth, survival, and immune function (Parr and Thurston 1972, Price et al. 1980, Barbosa et al. 1991, Appel and Martin 1992, Stamp 1993, Alleyne and Beckage 1997, Ode 2006, 61 62 Bukovinsky et al. 2009, Thaler et al. 2012, D'Incao et al. 2012). One host immune response in 63 particular, the encapsulation and melanization of parasitoid eggs, can decrease parasitoid egg 64 hatching success but whether this response is increased or hindered by secondary compounds is 65 hard to predict given current evidence (Kraaijeveld et al. 2001, Bukovinszky et al. 2009, 66 Smilanich et al. 2009).

Disentangling the effects of secondary compounds and their impacts on herbivore
immune function and growth is necessary to determine how secondary compounds alter
herbivore health and interactions between herbivores and parasitoids. Secondary compounds

70	may prime the insect's immune response to allow the insect to better respond to subsequent
71	stress, such as parasitoid attack, or (alternatively) insect immunity may suffer as a result of
72	eating defended plant tissues (Fellous and Lazzaro 2010). The impact of secondary compounds
73	on herbivore immune function must be interpreted in the context of larval growth since limited
74	resources are predicted to result in a trade-off between growth and immunity (Ode 2006,
75	Bascunan-Garcia et al. 2010; van der Most et al. 2011, Wilson et al. 2019). The effects of
76	secondary compounds may also be more pronounced at specific herbivore developmental stages.
77	Studies that measure overall increases in time from hatching to pupation or short-term decreases
78	in growth rate do not fully capture whether these developmental changes alter herbivore fitness
79	or exposure to parasitoids (e.g. Parr and Thurston 1972, Granzow et al. 1985, Barbosa et al.
80	1991, Harvey et al. 2007, but see Van Dam et al. 2001).
81	Whether larval consumption of secondary compounds influences herbivore fitness
82	depends in part on if stress experienced at the larval stage impacts adult mating and reproductive
83	traits in addition to survival to adulthood (Bessin and Reagan 1990, Spurgeon et al. 1995). The
84	effect of larval experience on reproductive fitness may differ based on insect life histories and
85	developmental patterns. Larval experience has been shown to impact adult traits in non-
86	holometabolous insects (Hopkins 1917, Corbet 1985), but has received less attention in insects
87	that undergo metamorphosis because pupation is often thought of as a re-setting period that can
88	erase larval experiences (Barron 2001, Fellous and Lazzaro 2010). However, pupal size and adult
89	fecundity are correlated in some lepidopteran species, indicating that larval are not always
90	negated by the restructuring that occurs during pupation and larval resource acquisition can
91	affect adult traits (Bessin and Reagan 1990, Spurgeon et al. 1995, Kariyat and Portman 2016).
92	Therefore, quantifying the impacts of larval stress on adult morphological and behavioral traits is

93 necessary to determine if there are lasting effects of plant defense on adult mating and fitness
94 traits or if larval consumption of secondary compounds simply alters survival to adulthood but
95 the surviving adults are unaffected by larval stress.

In this study, I use the herbivore Manduca sexta (Lepidoptera: Sphingidae) to determine 96 the fitness costs posed by natural enemies and the costs of larval consumption of chemically 97 defended plants on herbivore immunity, development, survival, and adult fitness traits. By 98 99 collecting and monitoring *M. sexta* from a field population, I establish that *Cotesia congregata* parasitoids exert large negative survival costs on larval M. sexta. Because the anti-parasitoid 100 benefits of consuming host plants high in secondary compounds could outweigh mild negative 101 developmental effects on herbivores, I also quantified the fitness effects of plant secondary 102 103 compounds in field-collected and lab colonies of *M. sexta*. I show that while two different types 104 of secondary compounds (inducible nicotine and constitutive rutin) affect M. sexta larval and 105 adult size and morphological traits, they do not have strong negative effects on survival to 106 adulthood, immune responses to artificial parasitoids, or adult fecundity. Because nicotine is known to have protective effects against C. congregata parasitoids (Beckage and Riddiford 107 108 1978, Thorpe and Barbosa 1986, Barbosa et al. 1991, Harvey et al. 2007), these results suggest that the developmental costs experienced by M. sexta consuming defensive compounds may be 109 110 minor in comparison to the harm from abundant enemy pressures.

111 Materials and Methods

112 <u>Study system: Manduca sexta and Cotesia congregata</u>

Manduca sexta are ecologically and economically important pollinators and herbivores of
 Solanaceous plants. While feeding on host plants, *M. sexta* larvae are targeted by natural
 enemies, including *Braconid* wasp and *Tachinid* fly parasitoids that lay eggs inside their hosts

116	(Yamamoto and Fraenkel 1960, Stireman et al. 2006, Garvey et al. 2020). Cotesia congregata
117	parasitoid eggs hatch and feed inside the M. sexta host larvae before they emerge from the host
118	larval cuticle to pupate, ultimately killing the host (Alleyne and Beckage 1997). Prior studies
119	have shown that consumption of plant secondary compounds by larvae of <i>M. sexta</i> can be
120	protective against parasitoids by deterring parasitoid oviposition and harming parasitoid
121	development (Beckage and Riddiford 1978, Thorpe and Barbosa 1986, Barbosa et al. 1991;
122	Harvey et al. 2007).
123	Field collection of M. sexta larvae

Manduca sexta larvae were collected from leaves of dark tobacco (Nicotiana tabacum) at 124 the University of Kentucky Research and Education Center (Princeton, KY) to determine 125 parasitoid abundance and establish a field-collected colony for experiments testing the effects of 126 secondary compounds on *M. sexta*. The 4.5-acre field area contained ~4900 dark tobacco 127 plants/acre, with a cured leaf content of approximately 3-5% nicotine (Dr. Andrew Bailey, 128 129 personal communication). Over three field collection dates all larvae found in the field were collected, for a total of 395 *M. sexta* larvae ranging from second to fifth/sixth instar collected (21 130 July 2013 N = 98; 20 August 2013 N = 156; 28 July 2014 N = 141). These dates were timed to 131 132 occur after the residual insecticide used in transplanting (late May-early June) wore off and 133 before application of additional pesticides. 134 Measurements of parasitoid abundance on field M. sexta 135 After each of the three field collections, M. sexta larvae were brought back to the lab and

monitored twice daily for parasitoid emergence. Because *M. sexta* consume a large amount of
leaf tissue, field-collected larvae were transitioned to an artificial wheat germ-based diet with 10-

138	20% wet volume of Solanaceous leaf tissue added to facilitate diet acceptance (SI Table 1).
139	Larvae were fed <i>ad libitum</i> under 14:10 light:day cycles at 22.2+/-0.5 °C (Bell <i>et al.</i> 1975).
140	Parasitoid development takes a predictable number of days, meaning that the time between field
141	collection and parasitoid emergence can be used to estimate the instar at which parasitoid
142	oviposition occurred (Gilmore 1938). In July 2014, I recorded the approximate instar at field
143	collection and determined the time it took parasitoids to emergence from different host instars.
144	Chi-squared tests were used to test for variation in the proportion of M. sexta larvae with
145	parasitoids among the three field collection dates. Parasitoid load and number of days post-field
146	collection until C. congregata emergence were compared for larvae collected from the field at
147	different instars using Poisson general linear models (GLM) (R v. 3.2.2; R Core Team 2014).
148	Robust standard errors were used as Breusch-Pagan tests showed heteroskedasticity (bptest() in
149	LMTEST; Zeileis and Hothorn 2002). Instar five was excluded from instar-specific models
150	because I collected only two fifth instars.
151	Rearing of Manduca sexta field-collected and lab colonies
152	Because laboratory and natural populations of <i>M. sexta</i> have been shown to have
153	different evolutionary histories and responses to stressful conditions (Kingsolver 2007, Diamond
154	et al. 2010, Kingsolver et al. 2020), I used the surviving M. sexta from the 2014 field collection
155	to establish a field-collected colony to use alongside the standard lab colony to test the effects of
156	secondary compounds on herbivore growth and fitness (Supplementary Methods 1). The lab
157	colony was derived from a colony maintained under solely laboratory conditions (artificial diet,
158	no introduction of wild individuals) for >250 generations since the 1960s (Carolina Biological
159	Supply, Kingsolver et al. 2009). Field-collected and lab colonies were kept in separate cages in

160 the same greenhouse. Prior to experiments, the field-collected colony was reared through a

- 161 generation on solely artificial diet to control for maternal effects.
- 162 Preparation of *M. sexta* diets with secondary compounds

Using artificial diets containing either nicotine or rutin (SI Table 1), I tested the effects of 163 secondary compounds on *M. sexta* development and fitness traits. As a specialist herbivore, *M.* 164 165 sexta often feed on leaves containing nicotine, a pyridine alkaloid found only in the Solanaceae plant family, which serves as a defensive chemical against herbivory and can be induced via the 166 jasmonic acid pathway (Keinanen et al. 2001, Steppuhn et al. 2004). I used 0.5% wet weight 167 nicotine, which represents a high but relevant concentration that larvae feeding on tobacco would 168 encounter (Parr and Thurston 1972, Saitoh et al. 1985, Sisson and Saunders 1982, Sisson and 169 170 Saunders 1983, Thompson and Redak 2007). To test whether herbivore responses to plant 171 defensive chemicals are consistent across different compounds, I also tested the effects of 0.5% rutin (quercetin 3-rhamnoglucoside) on the same herbivore traits. Rutin is found in 32 plant 172 173 families and is constitutively present at 0.008- 0.61% wet mass in tobacco (Krewson and Naghski 1953, Keinanen et al. 2001, Kessler and Baldwin 2004). Manduca sexta used for the 174 175 immunity, growth, and adult measurements were fed artificial diet (control, 0.5% nicotine, or 176 0.5% rutin depending on treatment) ad libitum.

177 <u>*M. sexta* larval immune responses to artificial parasitoids</u>

178 Injections of artificial parasitoid eggs into *M. sexta* larvae were used to test whether 179 secondary compounds alter host immune responses and if growth and immunity trade off. 180 *Manduca sexta* from both colonies were collected concurrently as neonate larvae and reared 181 individually on 0.5% nicotine, 0.5% rutin, or control diets until the fourth instar (N = 27-30 per 182 diet treatment for the lab colony and N = 16-20 per diet treatment for the field-collected colony).

Fourth-instar larvae were used for injections because larvae are large enough to manipulate 183 without causing death (Beetz et al. 2008). Forceps were used to insert an artificial parasitoid egg 184 185 (a 2 mm-long piece of roughened nylon filament) through a needle hole pricked behind the fourth proleg as in Piesk et al. (2013). Larvae were returned to their respective diets and fed 186 readily after egg insertion. Pre-challenge growth rate was calculated as ln(larval mass at fourth 187 188 instar)/number of days from hatching to fourth instar. Post-challenge growth rate was calculated as ln(larval mass 24 hours post egg insertion/larval mass at time of egg insertion) (Diamond and 189 Kingsolver 2011). 190

After the final weighing, larvae were frozen at -20°C for dissections to quantify the 191 strength of the immune response to the artificial parasitoid. Melanization (dark buildup by 192 193 hemocyte immune cells) was photographed using a Leica M205FA Stereo microscope and the 194 percent melanized was calculated using ImageJ (Diamond and Kingsolver 2011). Percent melanized was used for GLM with robust standard errors to determine whether immune 195 196 responses differed based on secondary compounds, prior condition (pre-challenge growth rate), or trade-offs between post-challenge growth rate and melanization. Pairwise interactions 197 198 between diet-colony and diet-growth rates were non-significant (P > 0.1 for all) and were 199 removed from the model. Area melanized was transformed for non-normality using Box-Cox lambda power transformations after scaling of non-positive values (BC = 0.1; boxcox() in 200 201 MASS; Box and Cox 1964).

202 *M. sexta* larval and pupal traits on nicotine and rutin diets

Because of the large numbers of *M. sexta* needed, the effects of nicotine and rutin on growth and fitness traits were tested and analyzed at separate generations. Larvae from both colonies were fed control or experimental diets (0.5% nicotine or 0.5% rutin) and monitored daily for molting and the number of days per larval instar (N = 80 per diet treatment and colony). The total number of larval instars was recorded because larvae undergo either five or six instars depending on size (Kingsolver 2007) (SI Table 2). Poisson GLM and Wald tests were used to test for variability in the number of days per instar and whether any instar was more sensitive to the effects of nicotine or rutin (wald.test() in AOD; Lesnoff and Lancelot, 2012). Non-significant interactions (P > 0.1) between instar and nicotine or rutin were removed.

I recorded the number of days to pupation and pupal mass for *M. sexta* males and females 212 to test whether larval consumption of nicotine or rutin altered pupal traits. Poisson GLM was 213 used to determine if nicotine or rutin extended the number of days to reach pupation. ANOVA 214 with type III sums-of-squares was used to test for differences in pupal size mass based on 215 secondary compounds or sex and whether the effects of nicotine or rutin were stronger for either 216 217 sex (diet*sex interaction) (Anova() in CAR; Fox and Weisberg 2011). Pupal mass for lab moths in the rutin experiment was transformed by BC = 2. One-sided Fisher tests (fisher.test()) were 218 219 used to test if secondary compounds increased larval and pupal deformities.

220 <u>*M. sexta* adult size and fitness traits</u>

To test if larval consumption of secondary compounds resulted in size differences postpupation, surviving adults were frozen at -20°C the morning post-eclosion to measure adult body and wing length. Kaplan-Meier survival analyses were used to determine if either secondary compound reduced moth survival to eclosion (survdiff() in SURVIVAL; Therneau and Grambsch 2000, Therneau 2015). ANOVA models for adult body and wing length included diet, sex, and a diet* sex interaction. Wing length was transformed by BC = 6 for moths in the lab colony.

228	Fecundity estimates were obtained by dissecting ovarioles from adult females and
229	counting follicle numbers under a dissecting scope as in Diamond <i>et al.</i> 2010 (N = $25-30$ per diet
230	treatment for the lab colony and $N = 8-25$ per diet treatment for the field-collected colony).
231	Because larger moths may produce more eggs, the ratio of follicles to body area was used as the
232	dependent variable in ANOVA models testing for an effect of larval consumption of secondary
233	compounds on fecundity. Follicles/body area was calculated as: (number of follicles in a female
234	moth) / ($\frac{1}{2}$ body length x $\frac{1}{2}$ body width x 3.14). Correlations among adult traits are shown in SI
235	Table 3.
236	M. sexta larval dietary choice trials
237	Binary choice trials were used to determine if neonate <i>M. sexta</i> exhibit a preference for
238	artificial diets with or without secondary compounds. Neonate larvae from both colonies were
239	collected within three hours of hatching and placed in the center of individual 9 cm diameter
240	petri dishes with 1 cm ² pieces of control diet and experimental diet (0.5% nicotine or 0.5% rutin)
241	placed on opposite sides. Dishes were oriented haphazardly under 14:10 dark:light conditions
242	and monitored at 1, 6, and 24 hours before scoring contact with either diet at 48 hours as a
243	choice. Larvae did not leave or switch once choosing a diet. Chi-Squared analyses were used to
244	test if control or experimental diets were chosen significantly more than half the time. Larvae
245	that did not choose in 48 hours (field $N = 11/60$ and lab $N = 3/76$) were excluded.
246	
247	Results
248	Cotesia congregata parasitoids are common on M. sexta larvae in the field
249	Surveys of a tobacco plot at three timepoints revealed that a high but variable proportion

of *M. sexta* larvae were parasitized. The highest proportion of larvae parasitized by *C*.

congregata was observed at the first collection (0.57 parasitized in July 2013), compared with 251 0.31 parasitized in August 2013 and 0.39 parasitized in July 2014 ($X^2_2 = 16.74, P < 0.001$) (SI 252 253 Fig. 1). Median C. congregata parasitoid load emerging from an individual larva was 21.5 (N = 44) and all larvae with parasitoids emerging died before pupation. Tachinid fly parasitoids 254 eclosed from only two M. sexta. 255 256 The timing of C. congregata parasitoid emergence from M. sexta collected in the field at different instars was consistent with parasitoids ovipositing in younger larvae. Because 257 parasitoids take a predictable amount of time to emerge from the host cuticle after oviposition 258 (Gilmore 1938), the length of time between field collection and parasitoid emergence for larvae 259 of different instar stages can be used to determine the age at parasitism. The number of days 260 post-M. sexta field collection to C. congregata emergence was higher for host M. sexta collected 261 as younger instars (GLM; instar 2 b = 2.599, P < 0.01; instar 3 b = -0.629, P < 0.001; instar 4 b =262 -1.100, P < 0.001). There were no significant increases in the number of parasitoids emerging 263 264 from third and fourth instar host *M. sexta* larvae compared with second instar host larvae (GLM; instar 2 b = 2.99, P < 0.01; instar 3 b = 0.255, P = 0.236; instar 4 b = 0.340, P = 0.094) (Table 1). 265 266 Immune responses to an artificial parasitoid do not trade-off with larval growth 267 Following implantation of an artificial parasitoid egg, Manduca sexta immune response (melanization) was higher in larvae with faster growth rates, regardless of diet. There was a 268 269 positive relationship between growth rate post-challenge and the melanization of the artificial 270 parasitoid (GLM; z = 0.20, P < 0.001). Growth rate prior to the artificial parasitoid did not affect melanization (z = -0.03, P = 0.85). Neither nicotine (z = -0.02, P = 0.37) nor rutin (z = 0.04, P = 0.04). 271

272 0.10) affected melanization. Larvae from the field-collected colony had higher immune

responses to the artificial parasitoid than larvae from the lab colony (z = 0.080, P < 0.001) with a

mean melanization level of 19% for the field-collected colony and 12% for the lab colony.

275 Secondary compounds increase developmental time for each larval instar

276 Developmental assays of *M. sexta* larvae revealed that the number of days needed to complete each instar is variable and secondary compounds extend the length of each instar. 277 278 Nicotine and rutin increased the number of days needed to complete each of the first four instars but specific instars were not more sensitive to the effects of the secondary compounds (Table 2). 279 Larvae spent the fewest number of days in the second instar but there was variation in 280 development times between the nicotine and rutin experiments. In the M. sexta generation used 281 to test the effects of nicotine, the number of days taken to complete the second and third instars 282 283 was shorter than the number of days taken to complete the first and fourth instars (Table 2A). In the generation used to test the effects of rutin, only the second instar was shorter (Table 2B). 284

The overall effect of secondary compounds on larval development was to increase the 285 286 number of days from hatching to pupation. In both colonies, the number of days from hatching to pupation was higher on the nicotine diet (GLM; field nicotine z = 2.183, P = 0.029; lab nicotine 287 z = 4.039, P < 0.001) and on the rutin diet (field rutin z = 4.149, P < 0.001; lab rutin z = 5.65, P288 289 < 0.001) compared to control diets (Table 3). Larvae normally complete five instars, but a small 290 percent of larvae went through an additional sixth instar prior to pupation and this was more 291 common in M. sexta in the lab colony fed nicotine and for M. sexta in lab and field-collected 292 colonies fed rutin (SI Table 2).

293 Pupal mass was reduced by larval consumption of secondary compounds

Larval consumption of secondary compounds decreased pupal mass but the sex-specific
patterns differed between nicotine and rutin (Fig. 1). Pupal mass was smaller when larvae were

296	fed nicotine in both colonies (ANOVA; field nicotine $F_{1,76} = 21.562$, $P < 0.001$; lab nicotine $F_{1,76}$
297	$_{112}$ = 23.527, $P < 0.001$) (Fig. 1A). There was an interaction between sex and nicotine in the lab
298	colony, such that females had a greater decrease in pupal mass from nicotine than males (lab
299	sex*nicotine $F_{1,112} = 5.285$, $P = 0.023$) and male pupae were smaller than female (lab sex $F_{1,112}$
300	= 8.265, $P = 0.005$). The field-collected colony had no differences between male and female
301	pupal mass (field sex $F_{1,76} = 0.479$, $P = 0.491$) and there was no interaction between sex and
302	nicotine (field sex*nicotine $F_{1, 76} = 0.176$, $P = 0.676$) (Fig. 1A). Pupal mass also decreased in
303	both colonies in response to rutin (ANOVA; field rutin $F_{1,45} = 7.362$, $P = 0.009$; lab rutin $F_{1,118}$
304	= 7.975, $P = 0.006$). There was no interaction between sex and rutin (field sex*rutin $F_{1,45}$ =
305	2.196, $P = 0.145$; lab sex*rutin F _{1,118} = 0.277, $P = 0.600$) although male pupae were smaller
306	than female (field sex $F_{1, 45} = 7.071$, $P = 0.011$; lab sex $F_{1, 118} = 8.024$, $P = 0.005$) (Fig. 1B).
307	Secondary compounds do not increase M. sexta deformities
308	Minor deformities at the larval and pupal stage are common during <i>M. sexta</i> development
309	but were not increased by dietary nicotine or rutin. The main deformities observed were
310	incomplete larval molting (field $N = 8/350$ larvae; lab $N = 13/320$ larvae) and incomplete
311	sclerotization of pupal cases (field N = $1/131$ larvae; lab N = $26/243$ larvae). The incidence of
312	deformities was not increased by nicotine (one-sided Fisher's exact tests; molting: field $P = 0.75$,
313	lab $P = 0.5$; incomplete sclerotization: field $P = 1$, lab $P = 0.67$) or by rutin (one-sided Fisher's
314	exact tests; molting: field $P = 0.34$, lab $P = 0.36$; incomplete sclerotization: field $P = 0.48$, lab P

315 = 0.51).

316 *M. sexta* survival to adulthood is not decreased by larval consumption of secondary compounds

The proportion of *M. sexta* surviving to adult eclosion was not significantly reduced by either secondary compound in the larval diets. Larvae from the lab colony had only marginally

significantly reduced survival to adult eclosion when reared on nicotine compared to those fed 319 the control diet ($X^2_1 = 3.6$, N = 149, P = 0.057) and there were no differences in survival for 320 moths from the field-collected colony when fed nicotine versus control diets ($X^2_1 = 0$, N = 152, P 321 = 0.886) (Fig. 2A). Rutin did not significantly decrease survival of moths from either colony 322 (lab: $X^{2}_{1} = 0.7$, N = 158, P = 0.408; field $X^{2}_{1} = 0$, N = 189, P = 0.956) (Fig. 2B). 323 324 Adult body size was smaller when moths had consumed secondary compounds as larvae Measurements of body length on newly eclosed adults showed that larval consumption of 325 secondary compounds decreased M. sexta size at the adult stage, but the effects differed for 326 female and male moths. These effects are not explained by size variation between the sexes, as 327

329 $F_{1,72} = 0.342, P = 0.561$; lab sex $F_{1,105} = 0.398, P = 0.530$; rutin experiment: field sex $F_{1,43} =$

male and female adult body lengths were similar within a colony (nicotine experiment: field sex

330 1.003,
$$P = 0.322$$
; lab sex F_{1,115} = 01.617 $P = 0.206$).

328

For both colonies, nicotine decreased adult length (ANOVA: field nicotine $F_{1, 72} = 7.978$, P = 0.006; lab nicotine $F_{1, 105} = 19.896$, P < 0.001). The negative effect of nicotine on adult length was stronger on females than males from the field-collected colony (field sex*nicotine $F_{1, 72} = 4.072$, P = 0.047). There was no sex difference in the effect of nicotine in the lab colony (lab sex*nicotine $F_{1, 105} = 0.366$, P = 0.546).

Larval consumption of rutin decreased adult male body size in the field-collected colony (field sex*rutin $F_{1,43} = 4.419$, P = 0.041; field rutin $F_{1,43}=3.835$, P = 0.057). There was no effect of rutin on adult moth size for the lab colony (lab sex*rutin $F_{1,115} = 0.125$, P = 0.724; lab rutin $F_{1,115} = 2.878$, P = 0.093).

340 Adult wing size was smaller when moths had consumed secondary compounds as larvae

341 Larval consumption of secondary compounds decreased adult wing size. Males had

smaller wings than females but were not more sensitive to the effect of secondary compounds onwing length.

For both colonies, wing length was smaller when the *M. sexta* had been fed nicotine as larvae (ANOVA; field nicotine $F_{1, 70} = 19.432$, P<0.001; lab nicotine $F_{1, 102} = 18.505$, P<0.001). Although males had smaller wings than females (field sex $F_{1, 70} = 34.753$, P<0.001; lab sex $F_{1, 70} = 73.822$, P<0.001), the effect of nicotine did not differ between the sexes within a colony (field sex*nicotine $F_{1, 70} = 0.478$, P = 0.492; lab sex*nicotine $F_{1, 102} = 1.730$, P = 0.191) (Fig. 3A).

Similarly, larval rutin consumption decreased adult wing size (ANOVA; field rutin $F_{1,}$

351 $_{42}$ = 20.99, P<0.001; lab rutin $F_{1, 106}$ = 7.528, P = 0.007). Males had smaller wings than females

352 (field sex $F_{1,42} = 15.504$, P < 0.001; lab sex $F_{1,106} = 44.040$, P < 0.001) but the effect of rutin did

not differ between the sexes within a colony (field sex*rutin $F_{1,42} = 1.301$, P = 0.26; lab

354 sex*rutin $F_{1, 106} = 0.02, P = 0.88$) (Fig. 3B).

355 Female fecundity was unaffected by larval consumption of secondary compounds

356 Female fecundity (follicle number) did not differ between *M. sexta* reared on control diets

versus those reared on diets containing secondary compounds, even when taking adult size

358 differences into account. Although pupal weight and adult size traits were positively correlated,

359 correlations between adult body size and follicle numbers were not present in most treatments

360 (SI Table 3). Larval consumption of nicotine did not reduce adult follicle-body area ratios

361 (ANOVA; field nicotine $F_{1,39} = 0.113$, P = 0.738; lab nicotine $F_{1,57} = 0.663$, P = 0.419).

362 Similarly, larval consumption of rutin did not decrease the follicle-body area ratio (ANOVA;

363 field rutin $F_{1,13} = 0.085$, P = 0.775; lab rutin $F_{1,52} = 0.817$, P = 0.370).

364 Neonate *M. sexta* do not show behavioral avoidance of diets with secondary compounds.

In the behavioral experiments testing for a preference for diets with or without secondary compounds, neonate larvae did not display significant avoidance of either nicotine or rutin diets. For larvae that chose between nicotine or control diets (N = 25/30 field, N= 36/38 lab), 48% of the field-collected colony chose control diet ($X^2_1 = 0.04$, P = 0.842) and 64% of the lab colony chose control diet ($X^2_1 = 2.778$, P = 0.096). For larvae that chose between rutin or control diets (N = 24/30 field, N = 37/38 lab), 38% of the field-collected colony chose control diet ($X^2_1 = 1.5$, P = 0.221) and 43% of the lab colony chose control diet ($X^2_1 = 0.676$, P = 0.411).

372

373 Discussion

Plant-insect coevolution depends not only on plant defenses and herbivore counter-374 adaptions to these defenses, but also on tri-trophic interactions that include top-down effects 375 (Bruce 2014). In this study, I examined the effects of plant secondary compounds on herbivore 376 fitness in the context of natural enemies. Using field surveys of parasitoid prevalence paired with 377 378 experimental measurements of the effects of larval consumption of secondary compounds on growth and fitness traits across Manduca sexta life stages, I show that natural enemies kill a 379 large proportion of *M. sexta* larvae in the field, while the fitness effects of dietary secondary 380 381 compound ingestion are less severe (Table 4). Previous studies have established that a defended diet is protective against parasitoids (Thorpe and Barbosa 1986, Barbosa et al. 1991, Harvey et 382 383 al. 2007) but the ecological importance of this benefit is highly dependent on parasitoid 384 prevalence. Prior studies using controlled parasitoid oviposition on predetermined hosts or 385 studies that introduce laboratory M. sexta into a field setting may not reflect interactions in the field. In this study, I provide important evidence that that parasitoids kill a large proportion of M. 386 387 sexta larvae in the field, representing a total loss of fitness for parasitized hosts.

388	The <i>M. sexta</i> larval growth patterns seen in this study minimize exposure to parasitoids
389	during the timeframe that larvae are most likely to be parasitized. I found relatively faster M.
390	sexta development time during the second and third instars, which aligns with the instars
391	preferred for C. congregata oviposition (Gilmore 1938, Beckage and Riddiford 1978, Barbosa et
392	al. 1991, Kingsolver et al. 2012). In the field survey, similar numbers of parasitoids emerged
393	from larvae removed from the field as second to fourth instars, suggesting that larvae remaining
394	in the field as fourth instars did not result in additional parasitoids. Parasitoids also emerged
395	quickly from larvae removed from the field as fourth instars, indicating the parasitoids had been
396	laid prior to the fourth instar based on a 12-16 day oviposition-to-emergence time (Gilmore
397	1938).

Rapid development that reduces exposure time to parasitoids is expected to be beneficial, 398 399 as fast growth did not come at the cost of reducing immune responses to an artificial parasitoid egg. Although C. congregata often lay more than a single egg in an oviposition event, the 400 401 immune stress represented by a single parasitoid egg represents a parasitoid attack that an M. sexta larvae could survive by mounting a strong immune response that prevented the parasitoid 402 403 egg from hatching. In contrast to the predicted energetic trade-off between growth and immunity 404 (Smilanich et al. 2009), I found that larvae with higher growth rates following injection of the 405 artificial parasitoid egg actually had higher levels of melanization regardless of control or 406 defended diets. The lack of a growth-immune trade-off in Manduca sexta has also been observed 407 in other recent studies (Wilson et al. 2019) and may be because M. sexta larvae do not actively 408 sequester plant compounds and therefore do not have this energetic cost (Wink and Theile 2002, Smilanich et al. 2009). Nicotine and rutin did not increase melanization of the artificial 409 410 parasitoid egg, suggesting that host immune responses to secondary compounds are unlikely to

be a significant driver of the reduced parasitoid success on hosts fed nicotine seen in other 411 studies (Beckage and Riddiford 1978, Barbosa et al. 1986, Barbosa et al. 1991, Harvey et al. 412 413 2007). Although it is possible that real and/or additional parasitoid eggs would increase M. sexta's immune response to a greater extent than an artificial parasitoid egg, C. congregata 414 parasitoids have been shown to impair host encapsulation responses by infecting their hosts with 415 416 immunosuppressant viruses during oviposition (Amaya et al. 2005). Therefore, the protective effects of secondary compounds against *M. sexta* parasitoids probably result from toxicity of 417 nicotine to the parasitoids or the indirect effects of slowed M. sexta growth on C. congregata 418 development (Barbosa et al. 1986, Appel and Martin 1992). Interestingly, I observed higher 419 melanization rates in the field-collected colony than in the lab colony, which may reflect that the 420 421 lab colony has been removed from parasitoid pressures for many generations (Diamond and 422 Kingsolver 2011, Kingsolver et al. 2020).

Secondary compounds had negative effects on larval size and developmental time that 423 424 can impact interactions with parasitoids, even in the absence of effects on immune responses. Different larval instars may be more or less susceptible to the effects of secondary compounds 425 426 (van Dam et al. 2011) because of the differences in size and amount of food required to complete 427 the different instars. In this study, nicotine and rutin extended the amount of time larvae needed 428 to complete each instar, with no instar specific effects of either compound. Delayed development 429 time and smaller size of *M. sexta* fed secondary compounds as larvae may be the result of 430 changes in digestion, energy spent on maintenance metabolism (Appel and Martin 1992), 431 reduced consumption of defended diets (Voelckel 2001), or disruptions in juvenile hormone (Lee et al. 2015). The low levels of incomplete molting I observed in M. sexta larvae indicate any 432 changes in hormone levels due to secondary compounds were not enough to fully disrupt 433

molting. Regardless of mechanism, an extended development time means herbivores are exposed
to parasitoids for longer when feeding on defended tissues, but this may be offset by the smaller
size of these larvae making them harder for parasitoids to locate (Clancy and Price 1987, Benrey
and Denno 1997).

These effects of exposure to secondary compounds at the larval stage contribute to M. 438 439 sexta fitness either by altering the probability of surviving to reproduce as adults or through correlations with adult reproductive traits. In the absence of parasitoid pressures, larval 440 consumption of secondary compounds did not affect survival to adult eclosion or fecundity but 441 had negative effects on adult body size and wing size. Females with smaller bodies have been 442 shown to have reduced pheromone production in other Lepidoptera and may be less attractive to 443 444 males (Harari et al. 2011). Wing size is positively correlated with increased flight time and 445 distance which may be important for finding mates or host plants for egg laying (Shirai 1993, Berwaerts et al. 2002, Cahenzli et al. 2015). Although I found that fecundity (female follicle 446 447 numbers) did not differ based on consumption of secondary compounds, actual fertility may be lower if these eggs are not fertilized because of reduced mating success. Body and wing traits 448 449 may also impact an adult's ability to disperse offspring and/or choose appropriate oviposition 450 sites. However, the impact of maternal oviposition choice depends on whether offspring can behaviorally select their own feeding sites or if early diet is determined by hatching location 451 452 (Jaenike 1978, Soler et al. 2012).

The lack of neonate differentiation I observed between defended and non-defended diets is evolutionarily important because it indicates that maternal oviposition choices rather than offspring choices likely determine whether offspring experience early exposure to secondary compounds (Kester *et al.* 2002). Behavioral responses to plant compounds may vary based on

457	herbivore age. In other studies that have used older larvae, nicotine has shown to be deterrent
458	(Kester et al. 2002; Parr and Thurston 1972) while rutin has not been shown to deter feeding and
459	has even been seen to stimulate feeding (De Boer and Hanson 1987, Stamp and Skrobola 1993).
460	The lack of an effect of secondary compounds on neonate choice could indicate that mechanisms
461	needed to recognize chemical cues are not completely developed until later instars, that there are
462	additional important leaf cues that are not present in an artificial diet, or that deterrence may
463	occur via post-ingestive mechanisms rather than pre-ingestive mechanisms (Glendinning 2002).

Conclusions

Overall, the results of this study indicate that although nicotine and rutin differ in their chemical composition and prevalence in plants, both have negative effects on *M. sexta* that extend past the larval stage at which the compounds are consumed. Despite effects on adult body and wing size that may influence mating and offspring dispersal, there were no strong effects on survival or fecundity. Therefore, the negative effects of secondary compounds on M. sexta development and fitness are likely outweighed by the known protection that ingestion of these compounds offers against C. congregata parasitoids, which exerted large negative survival costs on *M. sexta* in the field. At a larger scale, coevolutionary and tri-trophic interactions can maintain a balance between the costs and benefits of secondary compounds on herbivore fitness.

Alleyne, M. and Beckage, N.E. (1997) Parasitism-induced effects on host growth and

480 **References**

482	metabolic efficiency in tobacco hornworm larvae parasitized by Cotesia congregata.
483	Journal of Insect Physiology, 43, 407-424.
484	Amaya, K.E., Asgari, S., Jung, R., Hongskula, M., Beckage, N. (2005). Parasitization of
485	Manduca sexta larvae by the parasitoid wasp Cotesia congregata induces an impaired
486	host immune response. Journal of Insect Physiology, 51, 505-512.
487	Appel, H.M. and Martin, M.M (1992) Significance of metabolic load in the evolution of host
488	specificity of Manduca sexta. Ecology, 73, 216-228.
489	Barbosa, P., Saunders, J.A., Kemper, J., Trumbule, R., Olechno, J., and Martinat, P. (1986)
490	Plant allelochemicals and insect parasitoids effects of nicotine on Cotesia congregata
491	(say) (Hymenoptera, Braconidae) and Hyposoter annulipes (Cresson) (Hymenoptera,
492	Ichneumonidae). Journal of Chemical Ecology, 12, 1319-1328.
493	Barbosa, P., Gross, P., and Kemper, J. (1991) Influence of plant allelochemicals on the tobacco
494	hornworm and its parasitoid, Cotesia congregata. Ecology, 72, 1567-1575.
495	Barron, A.B. (2001) The life and death of Hopkins' host-selection principle. Journal of Insect
496	Behavior, 14, 725-737.
497	Beckage, N.E. and Riddiford, L.M. (1978) Developmental interactions between tobacco
498	hornworm Manduca-sexta and its braconid parasite Apanteles congregatus.
499	Entomologia Experimentalis Et Applicata, 23, 139-151.
500	Beetz, S., Holthusen, T.K., Koolman, J., & Trenczek, T. (2008) Correlation of hemocyte counts
501	with different developmental parameters during the last larval instar of the tobacco
502	hornworm, Manduca sexta. Archives of Insect Biochemistry and Physiology, 67, 63-75.

503	Benrey, B. and Denno, R.F. (1997) The slow-growth-high-mortality hypothesis: a test using the
504	cabbage butterfly. <i>Ecology</i> , 78 , 987-999.

- Berwaerts, K., Van Dyck, H., and Aerts, P. (2002) Does flight morphology relate to flight
 performance? An experimental test with the butterfly *Pararge aegeria*. *Functional*
- 507 *Ecology*, **16**, 484-491.
- Bessin, R.T. and Reagan, T.E. (1990) Fecundity of sugarcane borer (Lepidoptera, Pyralidae), as
 affected by larval development on gramineous host plants. *Environmental Entomology*,
 19, 635-639.
- 511 Box, G.E.P. and Cox, D.R. (1964) An analysis of transformations. *Journal of the Royal*

512 Statistical Society Series B-Statistical Methodology, **26**, 211-252.

- Bruce, J.A. (2014) Interplay between insects and plants: dynamic and complex interactions that
 have coevolved over millions of years but act in milliseconds. *Journal of Experimental Botany*, 66, 455-465.
- 516 Bukovinszky, T., Poelman, E.H., Gols, R., Prekatsakis, G., Vet, L.E.M., Harvey, J.A., and Dicke,
- 517 M. (2009) Consequences of constitutive and induced variation in plant nutritional quality
 518 for immune defence of a herbivore against parasitism. *Oecologia*, 160, 299-308.
- 519 Cahenzli, F., Wenk, B.A., and Erhardt, A. (2015) Female butterflies adapt and allocate their
- progeny to the host-plant quality of their own larval experience. *Ecology*, **96**, 1966-1973.
- 521 Clancy, K.M. and Price, P.W. (1987) Rapid herbivore growth enhances enemy attack: sublethal
 522 plant defenses remain a paradox. *Ecology*, 68, 733-737.
- 523 Corbet, S.A. (1985) Insect chemosensory responses a chemical legacy hypothesis. *Ecological* 524 *Entomology*, 10, 143-153.

525	D'Incao, M.P., Gosmann, G., Machado, V., Fiuza, L.M., Moreira, G.R.P. (2012) Effect of
526	Saponin Extracted from Passiflora alata Dryander (Passifloraceae) on development of
527	Spodoptera frugiperda (J.E. Smith) (Lepidoptera, Noctuidae). International Journal of
528	<i>Plant Research</i> , 2 , 151-159.
529	De Boer, G. and Hanson, F.E. (1987) Feeding responses to solanaceous allelochemicals by
530	larvae of the tobacco hornworm Manduca-sexta. Entomologia Experimentalis et
531	<i>Applicata</i> , 45 , 123-132.
532	Diamond, S.E., Hawkins, S.D., Nijhout, H.F., and Kingsolver, J.G. (2010) Evolutionary
533	divergence of field and laboratory populations of Manduca sexta in response to host-plant
534	quality. <i>Ecological Entomology</i> , 35 , 166-174.
535	Diamond, S.E. and Kingsolver, J.G. (2011) Host plant quality, selection history and trade-offs
536	shape the immune responses of Manduca sexta. Proceedings of the Royal Society B-
537	Biological Sciences, 278, 289-297.
538	Eggleton, P. and Belshaw, R. (1992) Insect parasitoids: an evolutionary overview. Philosophical
539	Transactions: Biological Sciences, 337, 1-20.
540	Ehrlich, P.R. and Raven, P.H. (1964) Butterflies and plants - a study in coevolution. Evolution,
541	18 , 586-608.
542	Fellous, S. and Lazzaro, B.P. (2010) Larval food quality affects adult (but not larval) immune
543	gene expression independent of effects on general condition. Molecular Ecology, 19,
544	1462-1468.
545	Fox, J. and Weisberg, S. (2011) An {R} Companion to Applied Regression, Second Edition.
546	Thousand Oaks CA: Sage.

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426617; this version posted April 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

547	Furstenberg-Hagg, J., Zagrobelny, M., and Bak, S. (2013) Plant defense against insect
548	herbivores. International Journal of Molecular Sciences, 14, 10242-10297.
549	Garvey, M.A., Creighton, J.C., and Kaplan, I. (2020) Tritrophic interactions reinforce a negative
550	preference-performance relationship in the tobacco hornworm (Manduca sexta).
551	Ecological Entomology, 45, 783-794.
552	Gauld, I.D., Gaston, K.J., and Janzen, D.H. (1992) Plant allelochemicals, tritrophic interactions
553	and the anomalous diversity of tropical parasitoids: the 'nasty' host hypothesis. Oikos, 65,
554	352-357.
555	Gilmore, J.U. (1938) Notes on Apanteles congregatus (Say) as a parasite of tobacco
556	hornworms. Journal of Economic Entomology, 31 , 712-715.
557	Glendinning, J.I. (2002) How do herbivorous insects cope with noxious secondary plant
558	compounds in their diet? Entomologia Experimentalis Et Applicata, 104, 15-25.
559	Godfray, H.C.J. (1994) Parasitoids: behavioral and evolutionary ecology. i-ix, 1-473.
560	Princeton University Press. Princeton, N.J
561	Granzow, P., Shalosky, T., and Johnson, A. (1985) Effect of nicotine concentration in an
562	artificial diet on the development and survival of newly hatched tobacco budworm
563	Heliothis virescens larvae. Tobacco Science, 29, 111-112.
564	Harvey, J.A., Van Dam, N.M., Witjes, L.M.A., Solerro, R., and Gols, R. (2007) Effects of
565	dietary nicotine on the development of an insect herbivore, its parasitoid and secondary
566	hyperparasitoid over four trophic levels. Ecological Entomology, 32, 15-23.
567	Hassell, M.P. and Waage, J.K. (1984) Host-parasitoid population interactions. Annual Review
568	of Entomology, 29 , 89-114.

- Hopkins, A.D. (1917) A discussion of C. G. Hewitt's paper on. "Insect Behaviour." *Journal of Economic Entomology*, **10**, 92-93.
- Howe, G.A. and Jander, G. (2008) Plant immunity to insect herbivores. *Annual Review of Plant Biology*, **59**, 41-66.
- Jaenike, J. (1978) Optimal oviposition behavior in phytophagous insects. *Theoretical Population Biology*, 14, 350-356.
- Kariyat, R.R. and Portman, S.L. (2016). Plant-herbivore interactions: Thinking beyond larval
 growth and mortality. *American Journal of Botany*, **103**, 789-791.
- 577 Keinanen, M., Oldham, N.J., and Baldwin, I.T. (2001) Rapid HPLC screening of jasmonate-
- induced increases in tobacco alkaloids, phenolics, and diterpene glycosides in *Nicotiana attenuata. Journal of Agricultural and Food Chemistry*, **49**, 3553-3558.
- 580 Kessler, A. and Baldwin, I.T. (2004) Herbivore-induced plant vaccination. Part I. The
- orchestration of plant defenses in nature and their fitness consequences in the wild
 tobacco *Nicotiana attenuata*. *Plant Journal*, **38**, 639-649.
- 583 Kester, K.M., Peterson, S.C., Hanson, F., Jackson, D.M., and Severson, R.F. (2002) The roles of
- nicotine and natural enemies in determining larval feeding site distributions of *Manduca*
- *sexta* L. and *Manduca quinquemaculata* (Haworth) on tobacco. *Chemoecology*, **12**, 1-10.
- 586 Kingsolver, J.G. (2007) Variation in growth and instar number in field and laboratory
- 587 *Manduca sexta. Proceedings: Biological Sciences*, **274**, 977-981.
- 588 Kingsolver, J.G., Ragland, G.J., and Diamond, S.E. (2009) Evolution in a constant environment:
- 589thermal fluctuations and thermal sensitivity of laboratory and field populations of
- 590 *Manduca sexta. Evolution*, **63**, 537-541.

591	Kingsolver, J.G., Diamond, S.E., Seiter, S.A., and Higgins, J.K. (2012) Direct and indirect
592	phenotypic selection on developmental trajectories in Manduca sexta. Functional
593	<i>Ecology</i> , 26 , 598-607.
594	Kingsolver, J.G., Moore, M.E., Hill, C.A., Augustine, K.E. (2020). Growth, stress, and
595	acclimation responses to fluctuating temperatuers in field and domesticated populations
596	of Manduca sexta. Ecology and Evolution, 10, 13980-13989.
597	Kraaijeveld, A.R., Limentani, E.C., and Godfray, H.C.J. (2001) Basis of the trade-off between
598	parasitoid resistance and larval competitive ability in Drosophila melanogaster.
599	Proceedings of the Royal Society B-Biological Sciences, 268, 259-261.
600	Krewson, C.F. and Naghski, J. (1953) Occurrence of rutin in plants. American Journal of
601	Pharmacy and the sciences supporting public health, 125, 190-193.
602	Kumar, P., Rathi, P., Schöttner, M., Baldwin, I.T., Pandit, S. (2014) Differences in nicotine
603	metabolism of two Nicotiana attenuata herbivores render them differentially susceptible
604	to a common native predator. PLoS One, 9, e95982.
605	Lee, SH., Oh, HW., Fang, Y., An, SB., Park, DS., Song, HH., Oh, SR., Kim, SY.,
606	Kim, S., Kim, N., Raikhel, A.S., Je, Y.H., and Shin, S.W. (2015) Identification of plant
607	compounds that disrupt the insect juvenile hormone receptor complex. Proceedings of the
608	National Academy of Sciences of the United States of America, 112, 1733-1738.
609	Lesnoff, M. and Lancelot, R. (2012) aod: Analysis of Overdispersed Data. R package version
610	1.3, URL http://cran.r-project.org/package = aod.
611	Maron, J.L., Agrawal, A.A., Schemske, D.W. (2019) Plant-herbivore coevolution and plant

612 speciation. *Ecology*, **100**, e02704.

613	Ode, P.J. (2006). Plant chemistry and natural enemy fitness: Effects on herbivore and natural
614	enemy interactions. Annual review of entomology, 51, 163-185.
615	Parr, J.C. and Thurston, R. (1972) Toxicity of nicotine in synthetic diets to larvae of tobacco
616	hornworm Lepidoptera-Sphingidae. Annals of the Entomological Society of America, 65,
617	1185-1188.
618	Piesk, M., Karl, I., Franke, K., and Fischer, K. (2013) High larval density does not induce a
619	prophylactic immune response in a butterfly. <i>Ecological Entomology</i> , 38 , 346-354.
620	Price, P.W., Bouton, C.E., Gross, P., McPheron, B.A., Thompson, J.N., and Weis, A.E. (1980)
621	Interactions among 3 trophic levels - influence of plants on interactions between insect
622	herbivores and natural enemies. Annual Review of Ecology and Systematics, 11, 41-65.
623	R Core Team. (2014) R: A language and environment for statistical computing. R Foundation for
624	Statistical Computing.
625	Saitoh, F., Noma, M., and Kawashima, N. (1985) The alkaloid contents of 60 Nicotiana
626	species. Phytochemistry, 24, 477-480.
627	Shirai, Y. (1993) factors influencing flight ability of male-adults of the diamondback moth,
628	Plutella-xylostella, with special reference to temperature conditions during the larval
629	stage. Applied Entomology and Zoology, 28, 291-301.
630	Sisson, V.A. and Saunders, J.A. (1983) Catalog of the tobacco introductions in the United-
631	States- Department-of-Agricultures tobacco germplasm collection (Nicotiana tabacum).
632	Alkaloid content of the cured leaf. Science and Education Administration Publications,
633	ARM, NS-27:1-27.
634	Sisson, V.A.and Saunders, J.A. (1982) Alkaloid composition of the USDA tobacco (Nicotiana
635	tabacum L.) introduction collection. Tobacco International, 184, 30-33.

636	Smilanich, A.M., Dyer, L.A., Chambers, J.Q., and Bowers, M.D. (2009) Immunological cost of
637	chemical defence and the evolution of herbivore diet breadth. Ecology Letters, 12, 612-
638	621.

- 639 Soler, R., Pineda, A., Li, Y., Ponzio, C., van Loon, J.J.A., Weldegergis, B.T., and Dicke, M.
- 640 (2012) Neonates know better than their mothers when selecting a host plant. *Oikos*, 121,
 641 1923-1934.
- Spurgeon, D.W., Lingren, P.D., Shaver, T.N., and Raulston, J.R. (1995) Realized and potential
 fecundity of the mexican rice borer (Lepidoptera, Pyralidae) as a function of pupal
- 644 weight. *Environmental Entomology*, **24**, 94-98.
- Stamp, N.E. and Skrobola, C.M. (1993) Failure to avoid rutin diets results in altered food
 utilization and reduced growth-rate of *Manduca sexta* larvae. *Entomologia*

647 *Experimentalis Et Applicata*, **68**, 127-142.

- Steppuhn, A., Gase, K., Krock, B., Halitschke, R., and Baldwin, I.T. (2004) Nicotine's defensive
 function in nature. *Plos Biology*, 2, 1074-1080.
- Stireman, J.O. III., O'Hara, J.E., and Wood, D.M. (2006). Tachinidae: Evolution, behavior, and
 ecology. *Annual Review of Entomology*, **51**, 525-555.
- 652 Thaler, J.S., McArt, S.H., and Kaplan, I. (2012) Compensatory mechanisms for ameliorating the
- 653 fundamental trade-off between predator avoidance and foraging. *Proceedings of the*
- 654 *National Academy of Sciences of the United States of America*, **109**, 12075-12080.
- 655 Therneau, T. (2015) A Package for Survival Analysis in R. version 2.38, http://CRAN.R-

656 project.org/package = survival.

Therneau, T.M. and Grambsch, P.M. (2000) Modeling Survival Data: Extending the Cox Model.
Springer, New York. ISBN 0-387-98784-3.

659	Thompson, S.N. and Redak, R.A. (2007) Nicotine moderates the effects of macronutrient
660	balance on nutrient intake by parasitized Manduca sexta L. Journal of Comparative
661	Physiology B-Biochemical Systemic and Environmental Physiology, 177, 375-391.
662	Thorpe, K.W. and Barbosa, P. (1986) Effects of consumption of high and low nicotine tobacco
663	by Manduca sexta (Lepidoptera, Sphingidae) on survival of gregarious endoparasitoid
664	Cotesia congregata (Hymenoptera, Braconidae). Journal of Chemical Ecology, 12,
665	1329-1337.
666	van der Most, P.J., de Jong, B., Parmentier, H.K., and Verhulst, S. (2011) Trade-off between
667	growth and immune function: a meta-analysis of selection experiments. Functional
668	<i>Ecology</i> , 25 , 74-80.
669	Voelckel, C., Krügel, T., Gase, K., Heidrich, N, van Dam, N.M., Winz, R., and Baldwin, I.T.
670	(2001). Anti-sense expression of putrescine N-methyltransferase confirms defensive role
671	of nicotine in Nicotiana sylvestris against Manduca sexta. Chemoecology, 11, 121-126.
672	Wilson, J.K., Ruiz, L., and Davidowitz, G. (2019). Dietary protein and carbohydrates affect
673	immune function and performance in a specialist herbivore insect (Manduca sexta).
674	Physiological and Biochemical Zoology, 92, 58-70.
675	Wink, M. and Theile, V. (2002) Alkaloid tolerance in Manduca sexta and phylogenetically
676	related sphingids (Lepidoptera : Sphingidae). Chemoecology, 12, 29-46.
677	Yamamoto, R.T. and Fraenkel, G.S. (1960) The specificity of the tobacco hornworm,
678	Protoparce sexta, to Solanaceous plants. Annals of the Entomological Society of America,
679	53 , 503-507.
680	Zeileis, A. and Hothorn, T. (2002) Diagnostic checking in regression relationships. <i>R News</i> , 2,

681 7-10.

Table 1. Proportion of *Manduca sexta* with parasitoids, parasitoid load, and emergence times on *M. sexta* collected from the field as different instars. The proportion of larvae with parasitoids was calculated based on field collections from July 2014. The number of *C. congregata* is presented as the median per *M. sexta* host. The time to emergence is presented as the median number of days from *M. sexta* field collection to parasitoid larval emergence through the host cuticle. For *C. congregata* number and days to emergence, host sample size and inter-quartile range are presented in parentheses.

M. sextaProportion of larvaeinstarwith parasitoids		Median number of <i>C</i> . <i>congregata</i> per host	Days until C. <i>congregata</i> emergence	
2	0.20 (N=56)	18 (N=11, IQR= 13-26)	14 (N=11, IQR= 12-15)	
3	0.53 (N=53)	20 (N=21, IQR= 12-30)	7 (N=58, IQR= 6-9)	
4	0.60 (N=20)	28 (N=12, IQR= 18-36)	4 (N=23, IQR= 3-5)	

Table 2. The number of days spent in each instar in both the field-collected colony and lab703colony increased in response to A) nicotine or B) rutin. Grey rows show the total number of days704these secondary compounds add to the number of days per instar and significant effects of705nicotine and rutin are indicated by asterisks (*). Rows for each instar indicate the total number of706days spent in each instar and the results of the GLM and Wald tests comparing the lengths of707instars 2,3, and 4 to the time spent in instar 1. Asterisks (*) following P values for instars show708significantly shorter or longer times in those instars compared to instar 1 (P < 0.05).

		<u>Field</u>			Lab	
A)	days	Z	Р	days	Z	Р
Nicotine	+0.7/instar	2.77	<0.01*	+0.7/instar	3.53	<0.01*
instar 1	5.4	35.31	< 0.01	4.7	35.40	<0.01
instar 2	4.1	-4.30	<0.01*	3.6	-4.40	<0.01*
instar 3	4.0	-4.80	<0.01*	4.0	-2.62	0.01*
instar 4	5.0	-1.22	0.22	4.7	0.00	1
		Field			Lab	
B)	days	<u>Field</u> z	Р	days	<u>Lab</u> z	Р
B) Rutin	days +0.8/instar	<u>Field</u> z 2.57	P 0.01*	days +0.7/instar	<u>Lab</u> z 3.68	P <0.001*
B) Rutin instar 1	days +0.8/instar 4.6	Field z 2.57 23.45	P 0.01* <0.01	days +0.7/instar 4.2	Lab z 3.68 32.80	P <0.001* <0.01
B) Rutin instar 1 instar 2	days +0.8/instar 4.6 3.9	Field z 2.57 23.45 -3.06	P 0.01* <0.01 0.01*	days +0.7/instar 4.2 3.5	Lab z 3.68 32.80 -2.95	P <0.001* <0.01 <0.01*
B) Rutin instar 1 instar 2 instar 3	days +0.8/instar 4.6 3.9 4.1	Field z 2.57 23.45 -3.06 -1.24	P 0.01* <0.01 0.01* 0.22	days +0.7/instar 4.2 3.5 4.3	Lab z 3.68 32.80 -2.95 0.50	P <0.001* <0.01 <0.01* 0.62

Table 3. Consumption of nicotine and rutin increased the number of days to pupation for both

the field-collected and lab colonies. Values are presented as medians followed by interquartile

ranges in parentheses. Asterisks (*) indicate a significantly longer development time on the diet

containing the secondary compound compared with the control (GLM P < 0.05). Separate

controls are presented for nicotine and rutin because the effects of these secondary compounds

718 were tested at different generations.

	Days from hatching to pupation					
	control	nicotine	control	rutin		
Field	31 (29-33)	34* (32.25-35)	29 (28-31)	36* (33-38)		
Lab	28.5 (28-30)	32.5* (31.75-34)	29 (28-31)	35* (33-38)		
	1					

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426617; this version posted April 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Table 4. Summary of *Manduca sexta* responses to secondary compounds for the traits measured

across life stages. Dashes indicate no significant effect and an arrow indicates a significant

negative effect of the secondary compound compared to the control diet at P < 0.05. The

- 741 direction of the arrow indicates whether the secondary compound increased or decreased the
- 742 trait.

		effect of	nicotine	effect of rutin	
Stage	Trait	field	lab	field	lab
	immunity	-	-	-	-
vae	days per instar	\uparrow	\uparrow	\uparrow	\uparrow
lar	incomplete molting	-	-	-	-
	diet choice	-	-	-	-
pa	development time	\leftarrow	\uparrow	\leftarrow	\uparrow
nd	pupal mass	\rightarrow	\checkmark	\rightarrow	\downarrow
	survival	-	-	-	-
ult	body length	\rightarrow	\downarrow	\rightarrow	-
ad	wing length	\rightarrow	\downarrow	\rightarrow	\downarrow
	follicle number	-	-	-	-

Figure 1. *Manduca sexta* pupae were smaller when larvae were fed secondary compounds.

A) *M. sexta* larvae fed nicotine (red) weighed less at pupation than those fed control diets (grey)

(ANOVA, P < 0.01 for both colonies) **B**) *M. sexta* larvae fed rutin (green) weighed less at

pupation than those fed control diets (grey) (ANOVA, P < 0.01 for both colonies). Separate

controls are presented for nicotine and rutin because the effects of these secondary compoundswere tested at different generations.

Figure 2. Secondary compounds did not significantly decrease *Manduca sexta* survival to adult eclosion. A) *M. sexta* from the field-collected colony had similar survival on nicotine (red) versus control diets (grey) but there was a slight, non-significant decrease in survival for lab colony fed nicotine (Kaplan-Meier survival curves; field P = 0.9, lab P = 0.06). B) Neither colony had reduced survival on rutin (green) versus control diets (grey) (field P > 0.01, lab P >0.1). Tick marks represent censored data (insects that pupated prior to end of time period).

Figure 3. Manduca sexta adults had shorter wings when reared on larval diets containing 769 770 secondary compounds. Males had shorter wings than females but there were no sex-specific effects of either compound (ANOVA P > 0.1 for all sex-diet interactions). A) Nicotine (red) 771 772 decreased wing length compared to control diets (grey) in both the lab (left pane, ANOVA P <0.01) and field-collected colonies (right pane, P < 0.01). B) Rutin (green) decreased wing length 773 compared to control diets (grey) in both the lab (left pane, P < 0.01) and field-collected colonies 774 (right pane, P < 0.01). Separate controls are presented for nicotine and rutin because the effects 775 776 of these secondary compounds were tested at different generations.

