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Abstract 
 
Alternative splicing produces multiple functional transcripts from a single gene. Dysregulation of 
splicing is known to be associated with disease and as a hallmark of cancer. Existing tools for 
differential transcript usage (DTU) analysis either lack in performance, cannot account for complex 
experimental designs or do not scale to massive scRNA-seq data. We introduce satuRn, a fast and 
flexible quasi-binomial generalized linear modelling framework that is on par with the best performing 
DTU methods from the bulk RNA-seq realm, while providing good false discovery rate control, 
addressing complex experimental designs and scaling to scRNA-seq applications. 

Introduction 
 

Studying differential expression (DE) is one of the key tasks in the downstream analysis of RNA-seq 
data. Typically, DE analyses identify expression changes on the gene level. However, the widespread 
adoption of expression quantification through pseudo-alignment1,2, which enables fast and accurate 
quantification of expression at the transcript level, has effectively paved the way for transcript-level 
analyses. Here, we specifically address differential transcript usage (DTU) analysis, one type of 
transcript-level analysis that studies the change in relative usage of transcripts/isoforms within the 
same gene. DTU analysis holds great potential: previous research has shown that most multi-exon 
human genes are subject to alternative splicing and can thus produce a variety of functionally different 
isoforms from the same genomic locus3–5. The dysregulation of this splicing process has been reported 
extensively as a cause for disease6–9, including several neurological diseases such as frontotemporal 
dementia, Parkinsonism and spinal muscular atrophy, and is a well-known hallmark of cancer10. 
  
In this context, full-length single-cell RNA-Seq (scRNA-seq) technologies such as Smart-Seq211 and 
Smart-Seq312 hold the promise to further increase the resolution of DTU analysis from bulk RNA-seq 
data towards the single-cell level, where differences in transcript usage are expected to occur naturally 
between cell types. However, only a few bespoke DTU methods have been developed for scRNA-seq 
data and they lack biological interpretation. Indeed, methods specifically developed for scRNA-seq 
data are either restricted to exon/event level13,14 analysis (e.g. pinpointing exons involved in splicing 
events), or they can only pinpoint DTU genes without unveiling the actual transcripts that are 
involved15. Interestingly, many DTU methods for bulk RNA-seq do provide inference at the transcript 
level and their performance has already been extensively profiled in benchmark studies16–18. Based on 
a subset of the simulated RNA-seq dataset from Love et al.18 (see Methods), we show the performance 
of six DTU tools; DEXSeq19, DoubleExpSeq20, DRIMSeq21, edgeR diffSplice22, limma diffSplice23 and 
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NBSplice24 (Figure 1A). DEXSeq and DoubleExpSeq have a higher performance than the other methods. 
In addition, we observe that most methods, and DRIMSeq in particular, fail to control the false 
discovery rate (FDR) at its nominal level, which is in line with previous reports16–18. 
 

Figure 1: Performance and scalability evaluation of six DTU methods. A: Performance evaluation on the 
simulated bulk RNA-Seq dataset from Love et al.18. Each curve displays the performance of each method by 
evaluating the sensitivity (TPR) with respect to the false discovery rate (FDR). The three circles on each curve 
represent working points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles 
are filled if the empirical FDR is equal or below the imposed FDR threshold. DEXSeq and DoubleExpSeq clearly 
have the highest performances. Note that most methods, and DRIMSeq in particular, fail to control the FDR at 

its nominal level. B: Scalability with respect to the number of cells in a scRNA-Seq dataset. While all other 

methods scale linearly with an increasing number of cells, DEXSeq scales quadratically. As such, DEXSeq cannot 
be used for the analysis of large bulk and scRNA-Seq datasets. For all sample sizes, the number of transcripts in 
the datasets were set at 30.000. Note that NBSplice needed to be omitted from this analysis as it fails to converge 
on datasets with a large proportion of zero counts (see below). C: Scalability with respect to the number of 
transcripts in a scRNA-Seq dataset. While all other methods scale linearly with an increasing number of cells, 
BANDITS scales quadratically. Moreover, BANDITS failed to run on our system for datasets with 7.500 transcripts 
or more. As such, it had to be omitted from panels A and B. A performance and scalability evaluation of BANDITS 
on datasets with an (artificial) lower number of transcripts is provided in supplementary Figures S1 and S3. 

 
In order to assess DTU in single-cell applications, however, these bulk RNA-seq DTU tools should scale 
to the large data volumes generated by full-length scRNA-seq platforms, which can profile the 
transcriptome of several thousands of cells25–27 in a single experiment. In Figure 1B, we evaluate the 
required computational time in function of the number of sequenced libraries for a two-group DTU 

A 

B C 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.14.426636doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426636
http://creativecommons.org/licenses/by-nd/4.0/


3 
 

analysis for 30,000 transcripts on a subset of the scRNA-seq dataset from Chen et al.28. In spite of its 
good performance, the popular tool DEXSeq already required more than five hours to analyze two 
groups of 32 cells and clearly does not scale to large bulk nor scRNA-seq datasets.  
 
In addition, DTU methods should allow for the analysis of datasets with large numbers of (unique) 
transcripts. The number of transcripts that are typically assessed depends on the coverage of the RNA-
seq experiment and the adopted filtering criteria in the data analysis workflow. As the coverage of 
RNA-seq experiments has increased rapidly over the past few years and can be expected to continue 
expanding, scalability towards large numbers of transcripts will be essential to enable a transcriptome-
wide view on the isoform usage changes. In Figure 1C, we perform a DTU analysis across a range of 
transcripts in a two-group comparison with 16 cells each, using the dataset from Chen et al. Here, we 
observed that the DTU tool BANDITS29 scales particularly poorly to large numbers of transcripts. More 
specifically, BANDITS did not complete the DTU analysis on the dataset with 7.500 transcripts within 
137 hours on our system (see Methods); therefore, larger analyses were omitted. As such, BANDITS 
had to be omitted from the analyses shown in Figures 1A and 1B. For a performance and scalability 
evaluation of BANDITS on datasets with an (artificial) lower number of transcripts, we refer to Figures 
S1 and S3. 
 
Besides scalability, several other issues arise when porting bulk RNA-seq DTU tools towards scRNA-
seq applications. Indeed, modeling scRNA-seq data often requires multifactorial designs, for instance 
when comparing expression levels across multiple cell types between multiple treatment groups. 
Accounting for multiple covariates, however, is not implemented in BANDITS, NBSplice and 
DoubleExpSeq, jeopardizing their utility for (sc-)RNA-seq DTU analysis. Another issue arises with the 
large numbers of zero counts in scRNA-seq data, which seems to be particularly problematic for 
NBSplice that fails to converge if the gene-level count of any of the samples or cells is zero. As such, 
NBSplice could not be evaluated in Figures 1B and 1C.  
 
Altogether, many of the existing DTU analysis tools are not well suited to analyze large bulk RNA-seq 
and full-length scRNA-seq datasets, leaving the great potential of these data largely unexploited. In 
light of these shortcomings we developed satuRn, which is an acronym for Scalable Analysis of 
differential Transcript Usage for RNa-seq data, a novel method for DTU analysis that (i) is highly 
performant, (ii) provides a good control of the false discovery rate (FDR) (iii) scales seamlessly to the 
large data volumes of contemporary (sc-)RNA-seq datasets, (iv) allows for modelling complex 
experimental designs, (v) can deal with realistic proportions of zero counts and (vi) provides direct 
inference on the biologically relevant transcript level. In brief, satuRn adopts a quasi-binomial (QB) 
generalized linear model (GLM) framework. satuRn provides direct inference on DTU by modelling the 
relative usage of a transcript, in comparison to other transcripts from the same gene, between groups 
of interest. To stabilize the estimation of the overdispersion parameter of the QB model, we borrow 
strength across transcripts by building upon the empirical Bayes methodology as introduced by Smyth 
et al.23. In order to control the number of false positive findings, an empirical null distribution is used 
to obtain the p-values, which are corrected for multiple testing with the FDR method of Benjamini and 
Hochberg30. Our method is implemented in an R package available at 
https://github.com/statOmics/satuRn and will be submitted to the Bioconductor project. 

Results 

 

We first evaluate the performance of our novel DTU method, satuRn, on publicly available simulated 

and real bulk RNA-seq data, as well as on real scRNA-seq data. In general, we found that the 

performance of satuRn was at least on par with the performances of the best tools from the literature. 
In addition, our method controls the FDR closer to the nominal level, on average. Second, we show 

that satuRn scales towards the large data volumes generated by contemporary bulk and single-cell 
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RNA-seq experiments, allowing for a transcriptome-wide analysis of datasets consisting of several 
thousands of cells, in only a few minutes. Finally, we analyze a large full-length scRNA-seq case study 
dataset, where we obtain highly relevant biological results on isoform-level changes between cell 
types that would have remained obscured in a canonical differential gene expression (DGE) analysis. 
 

Performance on simulated bulk RNA-seq datasets 
 
To evaluate the performance of satuRn, we adopt three simulated bulk RNA-seq datasets from 
previous publications. Dataset 1 was obtained from Love et al.18 and contains two groups of twelve 
samples each, which we subsample without replacement to evaluate 3vs3, 6vs6 and 10vs10 two-
group comparisons. Datasets 2 and 3 are the Drosophila melanogaster and Homo sapiens simulation 
studies from Van den Berge et al.31 and Soneson et al.17, which both contain two groups of five samples 
each. In brief, all datasets were constructed by generating sequencing reads based on parameters that 
are estimated from real bulk RNA-seq data. DTU between groups of samples was artificially introduced 
in the data, prior to the quantification of expression using either Salmon2 (dataset 1) or kallisto1 
(dataset 2 and 3). Notably, there are some methodological differences between the simulation 
framework of dataset 1 and that of datasets 2 and 3 with respect to the read generation and the 
simulation of DTU signal (see Methods). In terms of transcript filtering, we adopt two different 
strategies as implemented by edgeR32 and DRIMSeq21, which correspond to a lenient and more 
stringent filtering, respectively (see Methods). 
 
The result of the performance evaluation of satuRn with respect to other DTU methods on the three 
simulated bulk datasets is displayed in Figure 2. Figure 2A shows the average performance over three 
6 versus 6 subsamples for dataset 1, after filtering with edgeR. Figures 2B and 2C display the 
performance on datasets 2 and 3 after edgeR filtering, respectively. In all three datasets, satuRn 
outperforms NBSplice, edgeR diffsplice and limma diffsplice. Intriguingly, the performance of 
DRIMSeq varies strongly between the three datasets. This discrepancy may be explained by the 
different strategies for generating reads and introducing DTU between dataset 1, and, datasets 2 and 
3 (see methods). We furthermore find the performance of satuRn is on par with the best performing 
tools from the literature, DEXSeq and DoubleExpSeq. In addition, both satuRn and DoubleExpSeq 
provide a stringent control of the FDR, while DEXSeq and DRIMSeq are often too liberal, as reported 
previously18. 
 

We also evaluated the effects of sample size and different filtering criteria on the performance of the 
different DTU methods (see Figures S2, S3, S4 and S5). Neither sample size nor filtering criterion had 

a profound impact on the ranking of the performances of the different DTU methods; satuRn, DEXSeq 
and DoubleExpSeq remain the best performing methods overall. In addition, we studied the impact of 
using either raw count estimates or normalized abundance estimates (scaledTPM, see Methods) as 
input data for the DTU algorithms. We observed a slightly higher performance in all datasets when 
providing raw abundance estimates, except for Dataset 1 from Love et al.18. All performance 
evaluations in the body of this publication therefore were generated with raw count estimates as input 
data, except for Figure 2, panel A. For a full overview on the effects of sample size, filtering criteria 
and data input type, we refer to supplementary figures S2-S9.  
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Figure 2: Performance evaluation of satuRn on three simulated bulk RNA-Seq datasets. Each curve visualizes 
the performance of each method by displaying the sensitivity of the method (TPR) with respect to the false 
discovery rate (FDR). The three circles on each curve represent working points when the FDR level is set at 
nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the 
imposed FDR threshold. The performance of satuRn is on par with the best tools from the literature, DEXSeq 
and DoubleExpSeq, for all datasets. In addition, our method consistently controls the FDR close to its imposed 
nominal FDR threshold. 

 

Performance on a real bulk RNA-seq dataset 
 
While simulation studies are common for evaluating the performance of DE analysis methods, there 
is currently no consensus on the simulation strategy that best mimics real (sc)RNA-seq data. In 
addition, simulation frameworks typically generate data according to parametric assumptions on the 
data-generating mechanism, thus potentially favoring DE methods that adopt similar distributional 
assumptions in their statistical model33. An alternative procedure is to non-parametrically modify a 
real dataset. Here, we obtained different subsamples from the large bulk RNA-seq dataset available 
from the Genotype-Tissue Expression (GTEx) consortium34, generating 9 datasets in total, i.e. 3 repeats 
for each of 3 sample sizes; 5 versus 5, 20 versus 20 and 50 versus 50 samples. We then artificially 
introduced DTU in these data by swapping transcript usages between groups of samples (see Methods 
for details). Again, we adopt two different filtering strategies as implemented by edgeR32 and 
DRIMSeq21 (see Methods). 
 
The results of the performance evaluation of satuRn on the real bulk datasets upon edgeR filtering is 
displayed in Figure 3. In agreement with the results obtained from the simulated bulk RNA-seq study, 
we observe that the performance of satuRn is on par with DEXSeq and DoubleExpSeq. Again, satuRn 
provides a conservative FDR control. While the FDR control of DoubleExpSeq is good overall, it appears 

A 
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to become too liberal with increasing sample size. In this evaluation, DRIMSeq performs poorly, in 
contrast to simulated bulk RNA-seq datasets 2 and 3, but in line with the performance evaluation on 
the simulated bulk RNA-seq dataset 1. Note that DEXSeq, DRIMSeq and NBSplice were omitted from 
the analysis of the largest dataset (50 versus 50 samples), as these methods do not scale to such large 
datasets (Figure 1). Adopting the DRIMSeq-based filtering did not have a qualitative impact on the 
performance (Figure S6). 
 

Figure 3: Performance evaluation of satuRn on a real bulk RNA-Seq dataset. Each curve visualizes the 
performance of each method by displaying the sensitivity of the method (TPR) with respect to the false discovery 
rate (FDR). The three circles on each curve represent working points when the FDR level is set at nominal levels 
of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the imposed FDR 
threshold. The performance of satuRn is on par with the best tools from the literature, DEXSeq and 
DoubleExpSeq. In addition, satuRn consistently controls the FDR close to its imposed nominal FDR threshold, 
while DoubleExpSeq becomes more liberal with increasing sample sizes. Note that DEXSeq, DRIMSeq and 
NBSplice were omitted from the larger comparison, as these methods do not scale to large datasets (Figure1). 

Performance on real single-cell data 
 
Finally, we evaluate the performance of satuRn on single-cell RNA-seq data. As with the real bulk 
analysis, the single-cell datasets were generated by subsetting from three different real scRNA-seq 
datasets25,28,35 (see Methods). Again, we subsampled three repeats of different sample sizes, artificially 
introduced DTU with the swapping strategy and applied either the edgeR- or DRIMSeq-based filtering 
criterium (see Methods for details).  
 
By subsampling the Chen et al.28 dataset, we generated three repeats of two sample sizes, i.e. 20 
versus 20 and 50 versus 50 cells.  The results of the performance evaluation of satuRn on this dataset 

upon edgeR filtering is displayed in Figure 4.  The performance of satuRn is slightly better than that of 
the best tool from the literature, DoubleExpSeq. As compared to the evaluations on bulk data, we 
observe a performance drop for DEXSeq relative to satuRn and DoubleExpSeq. This, in combination 
with its poor scalability (Figure 1), greatly compromises the use of DEXSeq for the analysis of scRNA-
seq data. satuRn again provides a stringent control of the FDR, while the inference of DoubleExpSeq 
is too liberal, again becoming more problematic for larger sample sizes. Adopting the DRIMSeq filter 
did not have a qualitative impact on the performances (Figure S7). The results of the performance 
evaluations on the other two scRNA-seq datasets25,35 are in strong agreement with the results 
displayed here, with satuRn performing at least on par with DoubleExpSeq and satuRn additionally 
controlling the FDR around the nominal level (Figures S8 and S9). 
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Notably we found that the theoretical null distribution of the test statistics from satuRn failed to 
provide good FDR control in single-cell analyses (Figure S10). To obtain proper p-values with satuRn in 
single-cell applications, we therefore estimate the null distribution of the test statistic empirically (see 
Methods, satuRn paragraph). Note, that the use of the empirical null distribution in our bulk RNA-seq 
benchmarks does not affect the results because no deviations of the theoretical null distribution 
occur. However, the empirical null resulted in much improved FDR control in scRNA-seq datasets 
(Figure S10).  We therefore adopt the empirical null estimation as the default setting in satuRn. As 
such, all satuRn results in this publication are relying on the empirical null strategy. As a final remark, 
we likewise attempted to improve the FDR control of DoubleExpSeq. However, in all analyses with 
DoubleExpSeq we observed a large spike of p-values equal to 1, which poses a problem when 
estimating the empirical null distribution (Figure S11). Therefore, this strategy could not be used to 
improve the FDR control of DoubleExpSeq. 

 
Figure 4: Performance evaluation of satuRn on a real scRNA-Seq dataset. Each curve visualizes the performance 
of each method by displaying the sensitivity of the method (TPR) with respect to the false discovery rate (FDR). 
The three circles on each curve represent working points when the FDR level is set at nominal levels of 1%, 5% 
and 10%, respectively. The circles are filled if the empirical FDR is equal or below the imposed FDR threshold. 
The performance of satuRn is on par with the best tools from the literature, DEXSeq and DoubleExpSeq. In 
addition, our method provides a stringent control of the FDR, while DoubleExpSeq becomes more liberal with 
increasing sample sizes (see also Figure S6). Note that DEXSeq and DRIMSeq were omitted from the two largest 
comparisons, as these methods do not scale to large datasets (Figure1). NBSplice was omitted from all 
comparisons, as it does not converge on datasets with many zeros, such as scRNA-Seq datasets. 
 

Scalability benchmark 
 
We performed a computational benchmark of satuRn to investigate its scalability with respect to the 
number of samples/cells and the number of transcripts in an RNA-seq dataset. All scalability 
benchmarks were run on a single core of a Linux machine with an Intel(R) Xeon(R) CPU E5-2420 v2 
(2.20GHz, Speed: 2200 MHz) processor and 30GB RAM. The results are displayed in Figure 5. 
 
Figure 5A displays the scalability with respect to the number of cells in the dataset, while keeping the 
number of transcripts in the dataset fixed at 30.000. From the left panel, it is clear that DRIMSeq and 
especially DEXSeq scale very poorly with the number of cells in the dataset, which was already shown 
in Figure 1B. In the right panel, we focus on the four remaining methods. satuRn scales linearly with 
increasing numbers of cells, with a slope comparable to limma diffsplice. As such, satuRn is able to 
perform a DTU analysis on a dataset with two groups of 256 cells each and 30.000 transcripts in less 
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than three minutes. Note that BANDITS29 was not included in this benchmark, as it does not scale to 
datasets with this many transcripts. For a performance and scalability evaluation of BANDITS on 
datasets with a lower number of transcripts, we refer to Figure S1. NBSplice was also omitted as it fails 
to converge on datasets with a large proportion of zero counts. 
 
Figure 5B shows the scalability with respect to the number of transcripts in the dataset, while keeping 
the number of cells in the dataset fixed to two groups of 16 cells. As shown in Figure 1C, BANDITS, 
DEXSeq and DRIMSeq scale poorly to datasets with many transcripts. From the right panel, satuRn 
scales linearly with increasing numbers of transcripts, albeit with a steeper slope than edgeR diffsplice, 
DoubleExpSeq and limma diffsplice. Note, that the scalability of DTU analyses can be improved 
through parallelization, if this is allowed by the underlying algorithm. Parallel execution is 
implemented in satuRn and in all methods from the literature that were discussed in this manuscript, 
except for DoubleExpSeq and NBSplice. 

 
Figure 5: Scalability evaluation of satuRn on scRNA-Seq data.  A: Runtime with respect to the number of cells 
in a scRNA-Seq dataset. Left panel: it is clear that DRIMSeq and especially DEXSeq scale very poorly with the 
number of cells in the dataset. Right panel: Detailed plot of the remaining methods. satuRn scales linearly with 
increasing numbers of cells, with a slope that is comparable to that of limma diffsplice. As such, satuRn is able 
to perform a DTU analysis on a dataset with two groups of 256 cells each and 30.000 transcripts in less than 
three minutes. For all sample sizes, the number of transcripts in the datasets were set at 30.000. Note that 
NBSplice was not included in this analysis as it fails to converge on datasets with a large proportion of zero 
counts. B: Runtime with respect to the number of transcripts in a scRNA-Seq dataset. Left panel: DEXSeq, 

A 
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DRIMSeq and especially BANDITS scale poorly to the number of transcripts in the dataset. Right panel: Detailed 
plot of the remaining methods.  satuRn scales linearly with increasing numbers of transcripts, but with a steeper 
slope than edgeR diffsplice, DoubleExpSeq and limma diffsplice. The number of cells in the dataset was set fixed 
to two groups of 16 cells. All scalability benchmarks were run on a single core. 

 
Altogether, we find that while several methods for DTU analysis exist, none are optimally suited for 
analyzing single-cell datasets. DRIMSeq, NBSplice, edgeR diffsplice and limma diffsplice have a much 
lower overall performance in our benchmarks. DEXSeq does not scale to large datasets. Finally, 
DoubleExpSeq does not support experimental designs that require an analysis with multiple additive 
effects, e.g. randomized complete block designs and designs where batch-effect correction is 
required, which are essential for many practical scRNA-Seq analysis settings36. In addition, it fails to 
control the FDR at the desired level, especially with increasing sample sizes. 

 

Case study 
 
We use satuRn to perform a DTU analysis on a subset of the single-cell (SMART-seq211) RNA-seq 
dataset from Tasic et al.35. In addition, we analyze the same dataset with DoubleExpSeq and limma 
diffsplice, which are the only other DTU methods that scale to large scRNA-seq datasets and have a 
reasonable performance in our benchmarks. In the original publication, the authors studied 
differential gene expression between cell types originating from two areas at distant poles of the 
mouse neocortex; the primary visual cortical area (VISp), which processes sensory information with 
millisecond timescale dynamics37–39 and the anterior lateral motor cortex (ALM), which displays slower 
dynamics related to short-term memory, deliberation, decision-making and planning40,41. Based on 
marker genes, Tasic et al.35 assigned all of the 23.822 cells from the scRNA-seq dataset to one of three 
cell classes; glutamatergic (excitatory) neurons, GABAergic (inhibitory) neurons or non-neuronal cells. 

The authors then further classified the neuronal cells into several subclasses based on their dominant 
layer of dissection and projection patterns (through a retrograde labelling experiment). Finally, these 
subclasses are further classified into cell types based on the expression of specific marker genes.  
 

DGE analysis with edgeR 
 
In their original DGE analysis, Tasic et al.35 obtained the largest number of differentially expressed 
genes between the cell types originating from the ALM and VISp regions of the glutamatergic L5 IT 
subclass (2.739 cells in total), where L5 refers to layer-of-dissection 5 and IT refers to the 
intratelencephalic projection type. Here, we first perform a DGE analysis with an edgeR-based 
workflow (see Methods) on the same comparisons between L5 IT cell types that were assessed by 
Tasic et al. Table 1 shows the number of differentially expressed genes between the groups of interest 
in column 4. 
 

DTU analysis with satuRn 
 
Next, we perform a DTU analysis for the same cell types using satuRn. In column 5 of Table 1, we 
display the number of differentially used transcripts for each comparison. We also show the number 
of unique genes in which we find evidence for changes in usage of at least one transcript (column 6). 
While the number of differentially used transcripts is lower than the number of differentially 
expressed genes in each of the contrasts, we did identify differentially used transcripts in all contrasts 
of interest. Most interestingly, we observe that the overlap between the differentially expressed 
genes and the genes in which we found evidence for DTU is very limited (Table 1, column 7). This 
shows that the information obtained from our DTU analyses are orthogonal to the results from the 
canonical DGE analyses, which has been reported previously for simulated bulk data18.  
 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.14.426636doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426636
http://creativecommons.org/licenses/by-nd/4.0/


10 
 

Table 1: Number of differentially expressed genes and differentially used transcripts in eight comparisons 
between cell types. The first three columns indicate the comparisons between ALM (column 2) and VISp (column 
3) cell types, respectively. Column 4 indicates the number of differentially expressed genes as identified with an 
edgeR analysis. Column 5 displays the number of transcripts that satuRn flagged as differentially used. Column 
6 shows the number of unique genes in which satuRn finds evidence of differential usage of at least one 
transcript. Column 7 displays the absolute number of genes that overlap between columns 4 and 6.  

 

Comparison 
Cell type 1 

(ALM) 
Cell type 2 

(VISp) 
DGE 

DTU 
Tx 

DTU 
Gene 

Overlap 

1 Cpa6 Gpr88 Batf3 203 24 15 1 
2 Cbln4 Fezf2 Col27a1 281 92 53 3 
3 Cpa6 Gpr88 Col6a1 Fezf2 154 7 5 0 
4 Gkn1 Pcdh19 Col6a1 Fezf2 231 33 22 1 
5 Lypd1 Gpr88 Hsd11b1 Endou 331 118 69 4 
6 Tnc Hsd11b1 Endou 595 193 112 10 
7 Tmem163 Dmrtb1 Hsd11b1 Endou 471 90 53 7 

8 Tmem163 Arhgap25 Whrn Tox2 197 63 40 1 

 

Gene set enrichment analysis 
 
We perform a gene set enrichment analysis (GSEA, see Methods) on the three comparisons with most 
DE genes and most genes with evidence for DTU (comparisons 5, 6 and 7). Similar gene ontology 
categories are returned for the set of DGE genes and the set of DTU genes, with many of the enriched 
processes being biologically relevant in the context of this case study. Enriched gene sets include the 
gene ontology classes, synapse, neuron projection, synaptic signaling and cell projection organization. 
This shows that the complementary information brought by the DTU analysis is indeed biologically 
relevant. For an extensive overview of the GSEA of the set of DGE genes and genes with evidence of 
DTU in comparisons 5, 6 and 7, we refer to supplementary table 1.  
 

satuRn identifies biologically relevant DTU transcripts 
 
To display the utility of satuRn for identifying and visualizing DTU transcripts in scRNA-seq datasets, 
we focus on comparison #6 of the DTU analysis and discuss the gene P2X Purinoceptor 4 or P2rx4 
(Ensembl ID ENSMUSG00000029470), a gene which is part of a family of purinergic receptors that 
have been implicated in functions such as learning, memory and sleep. In the DGE analysis, no 
evidence for differential expression of P2rx4 was found at the gene level (FDR-adjusted p-value = 1). 
By contrast, in our DTU analysis the transcripts of P2xr4 displayed the highest statistical evidence for 
differential usage within the set of transcripts that could be assigned to the ontology class ‘neuron 
projection’42. The mean usage of transcript ENSMUST00000081554 is estimated to be 28.9% in Tnc 
cells and 75.9% in Hsd11b1 Endou cells (FDR-adjusted p-value = 1.22E-13). For transcript 
ENSMUST00000195963, the transcript usage changes from 58.2% in Tnc cells and 16.6% in Hsd11b1 
Endou cells (FDR-adjusted p-value = 1.79E-10). For the third transcript of P2rx4 that was assessed in 
our DTU analysis, ENSMUST00000132062, we found no statistical evidence for DTU (FDR-adjusted p-
value = 0.534). In Figure 6, we show the output for the visualization of the transcript usages for P2rx4 
as obtained from satuRn. Interestingly, the majority transcript in the Tnc cell type, 
ENSMUST00000195963, is not protein coding43. By contrast, the majority transcript in the Hsd11b1 
Endou cell type, ENSMUST00000081554, is coding for the P2X purinoceptor protein (UniProt ID 
Q9Z256). As such, the changes in transcript usage between both cell types represent actual biological 
differences in the functionality of the gene products, which may be relevant to the process of neuron 
projection. This functional difference would have remained obscured when only performing a 
canonical DGE analysis. 
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Figure 6: Differential transcript usage in the P2rx4 gene. Each panel shows transcript usage or gene expression 
across cells of the Tnc and Hsd11b1 cell types. For the transcript-level figures, the size of each datapoint is 
weighted according to the total expression of the gene in that cell, i.e. the gene counts per cell. The yellow 
diamonds indicate the estimated mean usage of a transcript for each cell type, as estimated by satuRn. The cyan 
and dark green diamonds indicate mean and median gene expression levels per cell type, respectively. The two 
top panels display the transcript usage across cells of the Tnc and Hsd11b1 Endou cell types of transcripts 
ENSMUST00000081554 and ENSMUST00000195963, respectively. The proportion of usage of the former 
transcript is clearly higher in Hsd11b1 Endou cells, while the latter transcripts is most abundant in Tnc cells. For 
the third transcript, ENSMUST00000132062 (bottom left panel) there is no evidence for differential usage 
between both cell types. In addition, there is no evidence for differential expression of P2rx4 on the gene level 
(bottom right panel). DTU and DGE significance levels are indicated in the figure headers.  

 

Comparison to limma diffsplice 
  
We also analyzed the case study dataset with limma diffsplice23. When running limma diffsplice with 
default settings, a large number of DTU transcripts was returned (Figure S12) and we observe that the 
p-values were shifted towards smaller values (Figures S13 and S14). Therefore, we adopted the same 
empirical null strategy as implemented in satuRn to post-process the results. While this dramatically 
decreased the number of significant DTU transcripts, limma diffsplice still identified more transcripts 
(i.e. true or false positives) than our method. However, when we inspected the transcripts that were 
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highly ranked in the top DTU list of limma diffsplice but lowly ranked in our top list, we found that 
most of these transcripts either originate from genes that are lowly expressed, or they are transcripts 
with a large fraction of zero counts (i.e. zero expression in a large percentage of cells). Limma diffsplice 
thus claims differential usage more often for transcripts that only contain little information for 
assessing DTU. This is depicted in Figure 7. 

Figure 7: Global comparison between DTU transcripts uniquely identified by satuRn, uniquely identified by 
limma diffsplice or by both methods. Left panel: Boxplots on the average gene-level count for the DTU genes 
identified by the respective methods. Transcripts uniquely identified by satuRn originate from genes that have 
a much higher gene-level count (averaged over cells) as compared to transcripts uniquely identified by limma 
diffsplice. Note that the y-axis is displayed on a log10 scale. Right panel: Violin plots indicating the fraction of 
cells in which the transcripts are expressed. Transcripts uniquely identified by satuRn are expressed, on average, 
in a much larger fraction of the cells. Conversely, transcripts identified as DTU uniquely by limma diffsplice often 
have no expression in a large fraction of the cells. The dark green diamond indicates the median fraction of cells 
in which the DTU transcripts are expressed. 

 
This behavior can be expected. Limma diffsplice tests for DTU by comparing the log-fold change in 
expression of transcript t with the average log-fold change in the expression of all transcripts 
belonging to the same gene as transcript t. As such, limma diffsplice does not incorporate any 
information on the absolute gene expression levels. In contrast, our quasi-binomial GLM framework 
models the log-odds of drawing a particular transcript t from the pool of transcripts in the 
corresponding gene. As a consequence, transcripts belonging to lowly expressed genes are correctly 
considered less informative in satuRn and are thus less likely to be picked up. For example, in Figure 
8A, we show that while our method estimates a mean usage of 7% in Tnc cells and 26% in Hsd11b1 
Endou cells (indicated by the gold diamond), the transcript is not identified as differentially used, given 
the low abundance of the corresponding gene and the highly variable single-cell level observations.  
 
Conversely, by looking at the transcripts that were highly ranked in our DTU list but lowly ranked in 
the top list of limma, we observe that our model is more likely to capture small changes in transcript 
usage that are stable across all cells and belong to genes that are highly expressed. An example of 
such a transcript is shown in Figure 8B. satuRn estimates a mean usage of 3% in Tnc cells and 6% in 
Hsd11b1 Endou cells. While this is only a minor change in transcript usage, satuRn still identifies this 
transcript as differentially used because the gene is highly expressed and the small change in usage is 
supported by a large number of cells. In case such small differences in usage are not considered 
biologically meaningful, it is possible to set a threshold on the minimal desired difference. Finally, by 
not taking into account gene abundances, limma is more influenced by outlying observations that have 
a low gene-level abundance (Figure 8C). Indeed, DTU claims by limma are driven by differences in raw 
mean usages of transcripts. In Figure 8C, the raw mean usage of the transcript is 77% in Tnc cells and 
45% in Hsd11b1 Endou cells, as indicated by the cyan diamonds. By contrast, the mean usage estimate 
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by satuRn, which takes into account that the Hsd11b1 Endou cells expressing the transcript at 0% 
usage have low gene-level count, is 83% for Tnc cells and 75% for Hsd11b1 Endou cells, as indicated 
by the gold diamonds. 
 
We therefore argue that, given the above observations, the transcripts identified by satuRn should be 
considered more reliable, as they generally originate from genes containing more information for 
assessing DTU. 

 
Figure 8: Three examples displaying DTU transcripts that are uniquely identified by satuRn or limma diffsplice. 
Each panel shows transcript usage across cells of the Tnc and Hsd11b1 cell types. The size of each datapoint is 
weighted according to the total expression of the corresponding gene in that cell, i.e. the total gene count per 
cell. The yellow diamonds indicate the estimated mean usage of a transcript for each cell type, as estimated by 
satuRn. The cyan diamonds indicate the mean transcript expression levels per cell type. The header of each 
panel indicates the FDR-adjusted p-value and the rank of the DTU finding in the top lists by limma diffsplice and 
satuRn analyses. Panel A: Transcript uniquely identified as differentially used by limma diffsplice. The DTU claim 
by limma is driven by the difference in mean transcript usage between cell types. Given the low abundance of 
the corresponding gene and the highly dispersed single-cell level observations, satuRn doesn’t identify the 
transcript as differentially used. Panel B: Transcript uniquely identified as differentially used by satuRn. Even 
though the mean difference in transcript usage between cell types is estimated to be 3%, satuRn claims 
significance given that the difference is stably supported by many cells with high gene-level expression levels. 
Panel C: Transcript uniquely identified as differentially used by limma diffsplice. The DTU claim by limma is driven 
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by the raw mean difference in transcript usage between cell types. In contrast, satuRn takes into account that 
the Hsd11b1 Endou cells expressing the transcript at 0% usage have low gene-level count. The size of the dots 
(which represent individual cells) is weighted according to the total expression of the gene in that cell, i.e. the 
total gene count per cell. The yellow diamonds indicate the estimated mean usage of a transcript for each cell 
type, as estimated by satuRn. The cyan diamonds indicate the raw mean transcript usage levels per cell type. 
 

Comparison to DoubleExpSeq 

 
We additionally analyzed the dataset by Tasic et al. with DoubleExpSeq20. DoubleExpSeq identified a 
large number of DTU transcripts in all eight comparisons between cell types, ranging from 335 to 4580 
DTU transcripts (Figure S12). This is consistent with our performance benchmarks, which already 
suggested that DoubleExpSeq becomes overly liberal in single-cell datasets with a large number of 
cells (Figures 4, S7, S8 and S9). We therefore expect many of these transcripts to correspond to false 
positives. Furthermore, this is reflected in the pathological distribution of p-values obtained by 
DoubleExpSeq, where p-values have a tendency to be small and therefore the analysis too liberal 
(Figure S15). Furthermore, as discussed in the benchmark studies, we could not adopt the empirical 
null strategy to improve the FDR control of DoubleExpSeq. Again, a large number of p-values equal 1 
poses a problem for estimating the empirical null distribution (Figure S16). 
 
While the results of DoubleExpSeq are likely to be overly liberal, the ranking of the transcripts (based 
on the p-values of the DTU analysis) might still be reasonable. In Figure 9, we observe a large overlap 
between the top 200 transcripts identified by satuRn in comparison #6 of the case study and the top 
200 transcripts of DoubleExpSeq in that comparison. This overlap is considerably smaller with a limma 
diffsplice analysis. 

 
Finally, we note that while DoubleExpSeq could still be used in this case study given the simple factorial 
design (using a single factor to assign each cell to a cell type), DoubleExpSeq cannot be used in 
multifactorial designs, for instance to compare expression levels across multiple cell types between 
multiple samples or treatment groups. 

 

 

 
 
 

Figure 9: Venn diagram displaying the degree of overlap of the 
top 200 transcripts in comparison #6 of the case study in three 
DTU analysis tools. We observe that in the set of the top 200 
transcripts identified by satuRn, 149 transcripts overlap with the 
top 200 list from DoubleExpSeq. In the top 200 list of limma 
diffsplice, 108 transcripts are present that were not in the top 
lists of satuRn or DoubleExpSeq. 
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Discussion 
 
In this manuscript, we have proposed satuRn, a new software tool for DTU analysis. satuRn adopts a 
quasi-binomial GLM framework and obtains direct inference on DTU by modelling the relative usage 
of a transcript, in comparison to other transcripts from the same gene, between conditions of interest. 
We evaluated the performance of satuRn with respect to 7 other DTU methods on three simulated 
bulk RNA-seq datasets, a real bulk RNA-seq dataset and three real scRNA-seq datasets. These 
benchmarks underscored the strong performance of satuRn, as well as its ability to control the FDR 
close to the nominal level. In addition, we showed that satuRn scales seamlessly to the large data 
volumes that are produced in contemporary (sc-)RNA-seq experiments. Furthermore, given the 
underlying GLM framework, our method can handle complex experimental designs that are 
commonplace in scRNA-seq experiments. Finally, satuRn can extract biologically relevant information 
from a large scRNA-seq dataset that would have remained obscured in a canonical DGE analysis. 
 
Since most sequencing reads map to multiple transcripts, quantification tools such as Salmon or 
kallisto only provide an estimate of the expected number of fragments originating from each 
transcript. Incorporating quantification uncertainty has recently been shown to improve results in 
differential expression analysis of single-cell RNA-seq datasets44. Currently, satuRn and all other DTU 
methods discussed in this manuscript, except for BANDITS29, neglect the uncertainty on this 
abundance estimate. BANDITS models the abundance uncertainty, however, it had a markedly lower 
performance than our method in our benchmark evaluation (Figure S1). 
   
One challenge common to all DTU methods is that the power to detect differentially used transcripts 
depends strongly on the quality of the scRNA-seq dataset. This becomes clear when comparing the 
performances for the three different scRNA-seq benchmarks in this manuscript. The performances on 
the Darmanis25 dataset (Figure S9) are markedly lower than the performances on the other two 
datasets (Figures 4 and S8). A closer inspection of the Darmanis dataset showed that, after filtering, 
the transcript-level counts matrix contains a much larger percentage of zero counts than the other 
datasets. We also more frequently observed the scenario where the expression level of a gene could 
be attributed to a single isoform. This effectively causes the transcript usage to appear binary, with 
either 0% or 100% usages of a certain transcript. We argue that while this may reflect the true 
underlying biology, for instance through the process of transcriptional bursting45,46, it is more likely to 
be a technical artefact as a consequence of more shallow sequencing, given the lower percentage of 
binary usage profiles in the Chen and Tasic datasets. The supposedly binary expression of transcripts 
due to coverage-dependent bias and the use of more stringent filtering criteria to reduce this bias has 
already been comprehensively reported by Najar et al.47. 
 
We conclude with the following recommendations for DTU analysis from an applied perspective. In 
case of small bulk RNA-seq datasets, satuRn, DEXSeq and DoubleExpSeq can be used interchangeably. 
In case of datasets with more complex designs that require the DTU model to incorporate additional 
covariates, e.g. batch effects, DoubleExpSeq cannot be used. For single-cell datasets, using DEXSeq 
will become infeasible in terms of scalability and DoubleExpSeq may give overly liberal results. As such, 

we recommend satuRn for performing DTU analyses in large bulk and single-cell RNA-seq datasets. 
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Methods 
 

satuRn model  

As input, satuRn requires a matrix of transcript-level expression counts, which may be obtained either 
through pseudo-alignment using, e.g., , kallisto1, salmon2 or by classical alignment-based tools 
followed by transcript-level quantification (e.g. STAR48,49 and RSEM50). Let Ygti denote the observed 

expression value for a given transcript t = 1, …, Tg of gene g = 1, ..., G in cell or sample i = 1, …, n. The 
total expression of gene g in sample i can then be expressed as 

𝑌𝑔.𝑖  =   ∑ 𝑌𝑔𝑡𝑖

𝑡 ∈ 𝑇𝑔

    (1), 

i.e. by taking the sum of expression values for all Tg transcripts belonging to gene g in sample i. The 
usage of transcript t in sample or cell i can then be estimated as 

𝑈𝑔𝑡𝑖 =  
𝑌𝑔𝑡𝑖

𝑌𝑔.𝑖
    (2). 

Next, we adopt a quasi-binomial (QB) generalized linear modelling (GLM) strategy to model DTU. As 
opposed to canonical maximum likelihood models, this quasi-likelihood modelling strategy only 
requires the specification of the first two moments of the response distribution, i.e. the mean and the 
variance. We define the mean of the QB model as 

𝐸[𝑈𝑔𝑡𝑖|𝑿𝒊, 𝑌𝑔.𝑖]  =   𝑔𝑡𝑖  

log (
𝑔𝑡𝑖

1 − 𝑔𝑡𝑖

)  =   
𝑔𝑡𝑖

 


𝑔𝑡𝑖

 =   𝑿𝑖
𝑇

𝑔𝑡
  

 
In this notation, 𝜋gti is the expected probability of observing transcript t within the pool of transcripts 
(1, …, Tg) belonging to gene g in sample i and, as such, corresponds to its expected usage for that 
sample. We model 𝜋gti using a logit link function, where 𝛽t is a p x 1 column vector of regression 
parameters modeling the association between the average usage and the covariates for transcript t. 

Finally, 𝑿𝑖
𝑇  is a row in the n x p design matrix X that corresponds with the covariate pattern of sample 

i, with p the number of parameters of the mean model, i.e. the length of vector 𝛽t. 
 
The variance of the QB model can be described as 

𝑉𝑎𝑟[𝑈𝑔𝑡𝑖|𝑿𝑖 ,  𝑌𝑔.𝑖]  =   
𝑔𝑡𝑖(1 − 𝑔𝑡𝑖)

𝑌𝑔.𝑖
 𝑔𝑡     (4) 

with 𝑌𝑔.𝑖𝑔𝑡𝑖(1 − 𝑔𝑡𝑖) the canonical variance of the binomial distribution and 𝜙gt a transcript-specific 

overdispersion parameter to describe additional variance in the data with respect to the binomial 
variance. We adopt the empirical Bayes procedure from Smyth et al.23, as implemented in the 
squeezeVar function of the limma Bioconductor R package, to stabilize the estimates of 𝜙gt by 
borrowing information across transcripts, which is adopted in the default edgeR quasi-likelihood 
workflow for bulk RNA-seq data22 Note that stabilizing the dispersion estimation is particularly useful 
in datasets with a small sample size.  

(3) 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.14.426636doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426636
http://creativecommons.org/licenses/by-nd/4.0/


17 
 

Taken together, the quasi-binomial thus allows us to model the log-odds of drawing a particular 
transcript t from the pool of transcripts in the corresponding gene g across samples. The intercept also 
has an interpretation of a log-odds and the remaining mean model parameters are log-odds ratios, 

which may thus be interpreted in terms of differential transcript usage. We adopt t-tests that are 
computed based on the log-odds ratio estimates of the QB model and the posterior variance, as 
obtained from the empirical Bayes procedure. P-values are computed assuming a t-distribution under 
the null hypothesis with posterior degrees of freedom calculated as the sum of the residual degrees 
of freedom and the prior degrees of freedom from the empirical Bayes procedure. 

For bulk analyses, the implementation of satuRn as described above provides a high performance and 
a good control of the FDR. However, for single-cell datasets we observed that our inference is too 
liberal (Figure S10), which could suggest that the theoretical null, the t-distribution, is no longer valid. 
Indeed, in large-scale inference settings, failure of the theoretical null distribution is often observed. 
Efron52 (Chapter 6) describes four reasons why the theoretical null distribution may fail; failed 
mathematical assumptions, correlation across features (transcript expression), correlation across 
subjects (samples or cells), and unobserved confounders in observational studies. To avoid these 
issues, Efron proposes to exploit the massive parallel data structure of omics datasets to empirically 
estimate the null distribution of the test statistics53. To this end, Efron converts the test statistic to z-
scores, which should follow a standard normal distribution under the theoretical null, and then 
proposes to approximate the empirical null distribution with a normal distribution with unknown 
mean (𝜇∗) and standard deviation (𝜎∗), which can be estimated by maximum likelihood on a subset of 
the test statistics near zero. 

As such, we first convert the two-sided p-values to z-scores according to 

𝑧𝑔𝑡  =   −1 (
𝑝𝑔𝑡

2
) ∗ 𝑠𝑖𝑔𝑛(𝑆),    (5) 

with Ф the cumulative distribution function for the standard normal distribution, pgt the original two-
sided p-value indicating the statistical significance of differential usage of transcript t from gene g 
between the conditions of interest, sign(S) the sign of the t-test statistic S and zgt the resulting z-score. 
Next, we adopt the maximum likelihood procedure, implemented in the locfdr function of the locfdr 
R package from CRAN54, to estimate the mean 𝜇∗ and standard deviation 𝜎∗of the empirical null 
distribution. Based on these estimates, we recompute the z-scores and corresponding p-values as 
follows 

𝑧𝑔𝑡
∗  =   

(𝑧𝑔𝑡 − 𝜇∗)

𝜎∗     (7) 

𝑝𝑔𝑡
∗  =   2 ∗ (−𝑎𝑏𝑠(𝑧𝑔𝑡

∗ ))   (8). 

Finally, the resulting (empirical) p-values are corrected for multiple testing with the FDR method of 
Benjamini and Hochberg30. As opposed to the original p-values that were calculated based on the 
theoretical null distribution for the t-statistics, we found that this procedure allows for a better FDR 
control in single-cell applications. 

DTU tools literature 
 
Below we provide a brief description of each of the DTU methods from the literature that were 
included in the performance benchmarks of this paper. For more details, we refer to the respective 
original publications. Note that all methods were run with the current default settings. 
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DEXSeq 
 
DEXSeq19 (R package version 1.32.0) takes as input a transcript-level expression matrix Yti, with T 
transcripts (rows) and n samples or cells (columns). Next, a matrix of complementary counts Cti is 
calculated, which defines how many reads map to any of the other transcripts of the same gene as 
respective transcript t in cell i. DEXSeq then augments the original expression matrix Yti by 
concatenating it with the complementary counts Cti, hence doubling the number of columns of the 
original count matrix. A negative binomial generalized linear model (GLM) is fitted to each transcript 
in the augmented count matrix as follows 
 

{𝑌𝑡𝑖 , 𝐶𝑡𝑖} ~ 𝑁𝐵(𝜇𝑡𝑖 , 𝑡) 

log(𝜇𝑡𝑖) ~ 
𝑡𝑖

 


𝑡𝑖

 ~ 𝑿𝑖
𝑇

𝑡
 . 

In the specification of the GLM, 𝑿𝑖
𝑇  corresponds to row i of design matrix X, which defines a covariate 

pattern that (i) links the transcript-level count matrix to the complementary counts through sample-
level intercepts, and (ii) specifies the design of the experiment. Inference on DTU is obtained by testing 
an interaction effect that assesses if the log fold change between transcript t and all other transcripts 
in its corresponding gene changes between the conditions of interest (e.g. treatment) with a likelihood 
ratio test.  It is important to note that the estimation of sample-level intercepts is required because of 
the concatenation of the two count matrices. As a consequence, DEXSeq scales quadratically with the 
number of samples or cells in the data. The lack of scalability is thus inherent to the parametrization 
of DEXSeq, putting a severe burden on the utility of DEXSeq for DTU analysis in large datasets, as 
displayed in Figure 1. 

 

DoubleExpSeq 
 
DoubleExpSeq20 (R package version 1.1) assumes a double binomial distribution for each transcript. 
The double binomial distribution is a member of the double exponential family of distributions 
described by Efron55, which are extensions of one-parameter exponential family distributions that 
allow for a more flexible variance structure through introduction of an additional dispersion 
parameter. DoubleExpSeq adopts a bespoke empirical Bayes procedure for computing shrinkage 
estimates of the dispersion parameter of the double binomial distribution. The double binomial 
models the log-odds of drawing a particular transcript t from the pool of transcripts in the 
corresponding gene g across samples. The intercept thus has an interpretation of a log-odds and the 
remaining mean model parameter(s) are log-odds ratios, which may thus be interpreted in terms of 
differential transcript usage. The significance of the mean model parameter(s) are tested using a 
likelihood ratio test. Importantly, the current implementation of DoubleExpSeq does not allow for 
modeling multifactorial designs and cannot make use of parallel computing. 

 

DRIMSeq 
 
DRIMSeq21 (R package version 1.14.0) assumes that the transcript-level expression counts marginally 
follow  a Dirichlet multinomial distribution (DM), where the Dirichlet conjugate prior is used to account 
for overdispersion with respect to the multinomial distribution. The most important consequence of 
treating transcript expression as a realization of a multinomial distribution, is that the correlations 
between expression of transcripts derived from the same gene are directly accounted for. In the 
DRIMSeq framework, the total count for a gene is considered fixed, and the quantity of interest is the 
change in proportion of each transcript within a gene between groups of samples or cells. More 
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specifically, DRIMSeq uses a likelihood ratio test to determine if the transcript ratios of a gene, which 
are modelled by the multinomial, are different between conditions of interest.   

 

Limma diffsplice 
 
Limma diffsplice (limma, R package version 3.42.2) is a built-in functionality described in the current 
user’s guide of the limma Bioconductor R package23. Limma was originally devised for analyzing 
microarray data but can also be used for RNA-Seq data with the limma-voom method56. Limma-voom 
fits a linear model to the log-transformed (normalized) transcript-level count matrix, while adjusting 
for heteroskedasticity via weighted regression, where the observation weights are computed from the 
observed variance-mean relationship. Limma diffsplice then uses a series of t-tests to assess DTU at 
the transcript level by comparing the log-fold change in expression of transcript t with the average 
log-fold change in the expression of all transcripts belonging to the same gene as transcript t. 

 

EdgeR diffsplice 
 
EdgeR diffsplice (edgeR, R package version 3.28.1) is a built-in functionality described in the vignettes 
of the edgeR Bioconductor R package, which was last revisited by Chen et al.22. The edgeR diffsplice 
function fits a negative binomial GLM for each transcript and tests for differential transcript usage by 
comparing the obtained log-fold changes for each respective transcript within a gene with the log-fold 
change of the entire gene. If the log-fold change for a certain transcript is significantly different from 
those of the other transcripts in the gene, it is flagged as differentially used. Note that the negative 
binomial GLMs can be fit using a canonical likelihood-based approach or using a quasi-likelihood. We 
adopted the likelihood-based approach as it consistently displayed higher performances (data not 
shown). In this setting, inference is obtained using a likelihood ratio test. 

 

NBSplice 
 
NBSplice24 (R package version 1.4.0) fits a negative binomial GLM for each transcript in the dataset. In 
contrast to e.g. DEXSeq, the mean transcript-level expression (i.e. the mean parameter of the negative 
binomial model) is taken as the product of the mean gene-level expression value and the observed 
percentual usage of the transcripts within its corresponding gene. The GLM framework of NBSplice is 
structured such that DTU between groups of interest can be tested using a likelihood ratio test, where 
the full model contains an isoform-condition interaction term that is omitted in the null model. Note 
that in our benchmarks the NB GLM estimation procedure of NBSplice fails to converge when there is 
a large fraction of zero counts in the data. As a consequence, NBSplice was omitted from the 
performance benchmarks on single-cell data and from the scalability benchmarks, as the latter also 
make use of single-cell data. 

 

BANDITS 
 
BANDITS29 (R package version 1.3.2) adopts a Bayesian hierarchical model with a Dirichlet-multinomial 
to explicitly model the sample-to-sample variability between biological replicates. In addition to the 
transcript-level count matrix, equivalence class counts are used as input to the BANDITS algorithm. As 
described by Bray et al.1, an equivalence class for a (transcriptomics) read is a multi-set of transcripts 
associated with that read. As such, an equivalence class represents the transcripts from which a read 
could have originated. BANDITS leverages the information conveyed by the equivalence class counts 
to model the uncertainty arising from reads mapping to multiple transcripts. In brief, the allocation of 
reads to transcripts is treated as a latent variable that is sampled jointly with the parameters of the 
Dirichlet-multinomial; sampling of these parameters is done with a Markov chain Monte Carlo 
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algorithm. As such, BANDITS allows for modeling the mean relative usage of each transcript within its 
corresponding gene across samples/cells, while accounting for quantification uncertainty. In addition, 
BANDITS also accounts for differences in transcript length. Finally, BANDITS tests for DTU (at the 
transcript level) by performing univariate Wald tests. 

 

Filtering 
 
We adopted two different strategies for filtering transcripts in each of the RNA-seq datasets in the 
performance benchmarks.  
 
The first filtering strategy uses the filterByExpr function implemented in edgeR57. This filtering strategy 
only retains transcripts that have at least an expression level of min.count counts-per-million (CPM, 
calculated as the number of read counts divided by the total number of reads in the dataset and 
multiplied by one million) in at least n samples or cells. In addition, the sum of the CPM of the 
transcript across all cells or samples must be at least min.total.count. For the bulk RNA-seq datasets, 
we use the default settings (min.count = 10, n = min(10, 0.7*sample size of the smallest group in the 
comparison) and min.total.count = 10). For the scRNA-seq datasets, the settings are adjusted to; 
min.count = 1 (as requiring a transcript to be expressed in all single-cells is a stringent criterium), n = 
0.5*sample size of the smallest group in the comparison and min.total.count = 0. In addition, if only 
one transcript of a gene passes this filtering criterion, it is omitted from the analysis, as DTU analysis 
is meaningless when only one transcript is retained. As such, we specifically set the parameters to 
generate a very lenient filtering criterium. 
 
The second filtering strategy uses the dmFilter function implemented in DRIMSeq21. This filter is more 
stringent and specifically designed for DTU analysis. The filtering process can be thought of as 
proceeding in three steps. Let ns be the number of samples or cells in the smallest group. The first step 
requires the transcripts to have a count of at least 10 in at least ns samples. The second filtering step 
requires the transcript to make up at least 10% of the total count of its corresponding gene in at least  
ns samples. The third filtering step removes all transcripts for which the corresponding gene has a 
count below 10 in any of the samples or cells in the dataset. Again, if only one transcript of a gene 
passes this filtering criterion, it is omitted from the analysis. 

 

Bulk simulation study 
 
To evaluate the performance of the different DTU analysis methods, we first adopt three simulated 
bulk RNA-seq datasets from previous publications: the simulated dataset from Love et al.18 (dataset 
1) and both the Drosophila melanogaster (dataset 2) and Homo sapiens (dataset 3) simulation studies 
from Van den Berge et al.31. All three datasets were generated based on parameter values obtained 
from real RNA-seq samples, to mimic real RNA-seq data as close as possible.  
 
Notably, there is a subtle difference in how DTU is introduced between the two simulation 
frameworks. For dataset 1, the origin of DTU is twofold: On the one hand, DTU was specifically 
introduced by swapping the transcript-per-million (TPM) abundances between two expressed 
isoforms. On the other hand, DTU was also obtained as a consequence of introducing DTE, where a 
single expressed isoform was induced to be differentially expressed at a certain log fold change, which 
leads to DTU if this transcript belongs to a gene expressing multiple isoforms. For datasets 2 and 3, 
there is only one source of DTU. The number of differentially used transcripts within a gene was 
sampled ranging from a minimum of 2 up to a random number drawn from a binomial distribution 
with size equal to the number of transcripts and success probability 1/3. DTU was introduced by 
swapping the TPM abundances between the differentially used transcripts. As such, the latter 
framework allows for differential usage of multiple transcripts of the same gene, which is not possible 
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with the framework used for generating dataset 1. Additionally, dataset 1 uses salmon2 (version 1.1.0) 
for estimating transcript-level abundances, whereas datasets 2 and 3 were quantified with kallisto1 
(version 0.46.2). 
 

Real bulk study 
 
We evaluate the performance of the different DTU methods on real bulk RNA-seq data, by 
subsampling a homogeneous set of samples from the large bulk RNA-seq dataset available from the 
Genotype-Tissue Expression (GTEx) consortium34 release version 8. Nine datasets were generated 
non-parametrically. More specifically, we first selected samples from adrenal gland tissue that were 
extracted with the RNA extraction method “RNA Extraction from Paxgene-derived Lysate Plate Based”. 
From the remaining samples we subsampled 9 datasets, comprising 3 repeats for each of 3 sample 
sizes; 5 versus 5, 20 versus 20 and 50 versus 50 samples. Next, DTU is artificially introduced with the 
swapping strategy that is described in the bulk simulation study paragraph of the Methods section of 
this paper. The GTEx data was quantified with RSEM50 version 1.3.0. 
 

Real single-cell study 
 
We evaluate the performance of the different DTU methods on real scRNA-seq datasets. These scRNA-
seq datasets were generated non-parametrically by subsampling a homogeneous set of cells from 
three real scRNA-seq datasets25,28,35, after which DTU is artificially introduced by the swapping strategy 
that is described in the bulk simulation study paragraph of the Methods section of this paper.  
 
For the dataset of Chen et al.28, which was used to construct Figures 4 and S7, we selected a 
homogeneous population of cells by considering only the EpiStem cells of female mice, resulting in a 
dataset of 120 cells. From this homogeneous population of cells, we then subsampled 6 datasets, 
comprising 3 repeats for each of 2 sample sizes: 20 versus 20 and 50 versus 50 cells. Next, DTU was 
artificially introduced with the swapping strategy that is described in the bulk simulation study 
paragraph of the Methods section of this paper. Finally, we adopted either edgeR or DRIMSeq for 
filtering. 
 
The other two scRNA-seq datasets were generated analogously. For the dataset of Tasic et al.35, which 
was used to construct Figure S8 in the main manuscript, we selected a homogeneous population of 
cells by considering only the Lamp5 cells in the anterior lateral motor cortex of mice without any eye 
conditions, resulting in a dataset of 897 cells. After introducing DTU, we randomly subsampled 20, 75 
or 200 cells from each group. For the dataset of Darmanis et al.25, which was used to construct Figure 
S9, we selected the immune cells that clustered together in tSNE cluster 8 of the original publication, 
resulting in a dataset of 248 cells. After introducing DTU, we randomly subsampled 20, 50 or 100 cells 
from each group. 
 

Case study DGE analysis 
 
We perform a DGE analysis on a subset of the Tasic single-cell dataset35, i.e. between different the cell 
types originating from the ALM and VISp regions of the glutamatergic L5 IT subclass. We use the quasi-
likelihood method of edgeR32 to model the gene expression profiles and additionally adopt the edgeR 
glmTreat function to test differential expression against a log2-fold change threshold (log2-fold 
change = 1). Statistical significance was evaluated at the 5% FDR level. 

 

Performance assessment 
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We assess the performance of different DTU methods on a bulk simulation dataset with scatterplots 
of the true positive rate (TPR) versus the false discovery rate (FDR), according to the following 
definitions: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
      (9) 

 

𝐹𝐷𝑃 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑃
      (10) 

 
𝐹𝐷𝑅 = 𝐸[𝐹𝐷𝑃]      (11) 

 
where FN, FP and TP denote the numbers of false negatives, false positives and true positives, 
respectively. The FDR-TPR curves are constructed using the Bioconductor R package ICOBRA58. 
 

Scalability benchmark 
 
The scalability benchmark was run on subsets of the Chen scRNA-seq dataset28, which contains 617 
cells in total. For the scalability benchmark with respect to the number of cells in the dataset, we 
randomly subsample a certain number of cells (8, 16, 32, 64, 128 or 256 cells per group) from the 
dataset (without introducing DTU or selecting specific homogeneous cell populations). Next, we filter 
this subsample using the edgeR-based filtering criterion. This was done to remove very lowly abundant 
transcripts, which may otherwise cause problems in the parameter estimation procedure. From the 
remaining transcripts, we randomly subsampled to a total of 30.000 transcripts before running the 
DTU analysis. To allow for a scalability benchmark of BANDITS, which scales poorly to the number of 
transcripts (Figure 5B), we also generated a dataset with only 1.000 transcripts (Figure S1).  
 
For the scalability benchmark with respect to the number of transcripts, we randomly sampled two 
groups of 16 cells from the dataset. After applying the edgeR-based filter, we sampled 8 distinct 
numbers of transcripts: 1.000, 2.000, 5.000, 10.000, 15.000, 20.000, 25.000, 30.000 and 35.000 prior 
to the DTU analysis. 
 
All scalability benchmarks were run on a single core of a virtual machine with an Intel(R) Xeon(R) CPU 
E5-2420 v2 (2.20GHz, Speed: 2200 MHz) processor and 30GB RAM. 
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Data and code availability 
 
satuRn is implemented in an R package that is available at https://github.com/statOmics/satuRn and 
will be submitted to the Bioconductor project. All the scripts that are required to reproduce the 
analyses and figures that are used for this publication can be retrieved from 
https://github.com/statOmics/satuRnPaper. On this GitHub page, a Zenodo link will provided from 
which the raw data and intermediate results of our analyses can be downloaded. 
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Supplementary Figures 
 

 
Figure S1: Performance and scalability evaluation on a subset of the Love et al. dataset. To allow for a 
performance and scalability evaluation of BANDITS, which does not scale to datasets with a large number of 
transcripts, we here perform a DTU analysis for the 6 versus 6 samples dataset of Love et al. with only 1000 
transcripts. Left panel: performance evaluation. The results are in line with those of Figure 1A. The performance 
of BANDITS is indicated in pink. Right panel: Scalability evaluation. BANDITS scales linearly with respect to the 
number of cells (or samples) in the dataset. The slope of the linear trend, however, is considerably larger than 
those of the other DTU methods that scale linearly. Note that the profiles of limma diffsplice, edgeR diffsplice 
and DoubleExpSeq overlap in this figure. 
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Figure S2: Performance evaluation of satuRn on different subsamples of the simulated bulk RNA-Seq dataset 
by Love et al. FDR-TPR curves visualize the performance of each method by displaying the sensitivity of the 
method (TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent working 
points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the 
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empirical FDR is equal or below the imposed FDR threshold. We subsampled two-group comparisons according 
to three different samples sizes; a 3 versus 3, 6 versus 6 and 10 versus 10 comparison, as denoted in the panel 

titles. The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled transcripts-per-million 

(TPM) (rows 3 and 4) as imported with the Bioconductor R package tximport59.  We additionally adopted two 
different filtering strategies: an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-based filtering (rows 2 and 
4). Overall, the performance of satuRn is on par with those of the best tools in the literature, DEXSeq and 
DoubleExpSeq. In addition, satuRn achieves a better control of the FDR on all datasets. For extremely small 
sample size, i.e. the 3 versus 3 comparison, the performance is slightly below that of DEXSeq, and inference does 
become slightly too conservative. Note that, as expected, the performances increase with increasing sample 
size, and a higher performance is achieved with the more stringent DRIMSeq filtering criterion (see Methods), 
which goes at the cost of retaining fewer transcripts for DTU analysis. Finally, we note that the performances 
and FDR control are consistently higher for the scaled TPM data as compared to the raw counts. Note that this 
was only observed for this particular dataset. 
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Figure S3: Performance evaluation on different subsamples of the simulated bulk RNA-Seq dataset by Love et 
al. with a reduced number of transcripts to allow for a comparison with BANDITS. FDR-TPR curves visualize the 
performance of each method by displaying the sensitivity of the method (TPR) with respect to the false discovery 
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rate (FDR). The three circles on each curve represent working points when the FDR level is set at nominal levels 
of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the imposed FDR 
threshold. We subsampled two-group comparisons according to three different samples sizes; a 3 versus 3, 6 

versus 6 and 10 versus 10 comparison, as denoted on top of the panels. The benchmark was performed both on 

the raw counts (rows 1 and 2) or on scaled transcripts-per-million (TPM) (rows 3 and 4) as imported with the 
Bioconductor R package tximport59.  We additionally adopted two different filtering strategies: an edgeR-based 
filtering (rows 1 and 3) and a DRIMSeq-based filtering (rows 2 and 4). Note that, in contrast to Figure S2, we 
additionally randomly subsampled 1000 genes (~3000-5000 transcripts) after filtering, in order to reduce the 
number of transcripts in the data and thereby allowing for a DTU analysis with BANDITS. In concordance with 
Figure S2, the performance of satuRn is on par with the best tools of the literature with a better control of the 
FDR in general. While the performance of BANDITS is good for the settings for which it was originally developed, 
(i.e., small datasets with a stringent filtering criterium), its performance is reduced in larger, more leniently 
filtered datasets and inference is also overly liberal in these settings. In addition, while all other methods perform 
much better on the scaledTPM data (rows 3 and 4) than on the raw count data (rows 1 and 2), BANDITS has a 
similar performance on both input data types. This can be explained by the fact that BANDITS inherently corrects 
for differences in transcript length, even when raw counts are used as an input.   
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Figure S4: Performance evaluation of satuRn on the “Dmelanogaster” simulated bulk RNA-Seq dataset by Van 
den Berge et al. FDR-TPR curves visualize the performance of each method by displaying the sensitivity of the 
method (TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent working 
points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the 

empirical FDR is equal or below the imposed FDR threshold. The benchmark was performed both on the raw 

counts (row 1) and on scaled TPM (row 2) as imported with the Bioconductor R package tximport59.  We 
additionally adopted two different filtering strategies; an edgeR-based filtering (column 1) and a DRIMSeq-based 
filtering (column 2). Overall, the performance of satuRn is on par with those of the best tools in the literature, 
DEXSeq and DoubleExpSeq. In contrast to the performance evaluation on the dataset by Love et al. (Figures 1A 
and S2), there is a limited difference in performances based on the data input type (i.e., counts versus scaled 
TPM), and DRIMSeq also performs well on these datasets. 
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Figure S5: Performance evaluation of satuRn on the “Hsapiens” simulated bulk RNA-Seq dataset by Van den 
Berge et al. FDR-TPR curves visualize the performance of each method by displaying the sensitivity of the 
method (TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent working 
points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the 

empirical FDR is equal or below the imposed FDR threshold. The benchmark was performed both on the raw 

counts (row 1) and on scaled TPM (row 2) as imported with the Bioconductor R package tximport59.  We 
additionally adopted two different filtering strategies; an edgeR-based filtering (column 1) and a DRIMSeq-based 
filtering (column 2). Overall, the performance of satuRn is on par with those of the best tools in the literature, 
DEXSeq and DoubleExpSeq. In contrast to the performance evaluation on the dataset by Love et al. (Figures 1A 
and S2), ), there is a limited difference in performances based on the data input type (i.e., counts versus scaled 
TPM), and DRIMSeq also performs well on these datasets. 
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Figure S6: Performance evaluation of satuRn on the GTEx bulk RNA-Seq dataset. FDR-TPR curves visualize the 
performance of each method by displaying the sensitivity (TPR) with respect to the false discovery rate (FDR). 
The three circles on each curve represent working points when the FDR level is set at nominal levels of 1%, 5% 
and 10%, respectively. The circles are filled if the empirical FDR is equal or below the imposed FDR threshold. 

The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled transcripts-per-million (TPM) 

(rows 3 and 4) as imported with the Bioconductor R package tximport59.  We additionally adopted two different 
filtering strategies; an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-based filtering (rows 2 and 4).  The 
performance of satuRn is on par with the best tools from the literature, DEXSeq and DoubleExpSeq. In addition, 
satuRn consistently provides a stringent control of the FDR, while DoubleExpSeq becomes more liberal with 
increasing sample sizes. Note that DEXSeq, DRIMSeq and NBSplice were omitted from the largest comparison, 
as these methods do not scale to large datasets (Figure1). 
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Figure S7: Performance evaluation of satuRn on the real scRNA-Seq dataset by Chen et al. FDR-TPR curves 
visualize the performance of each method by displaying the sensitivity of the method (TPR) with respect to the 
false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is set at 
nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the 
imposed FDR threshold. The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled 
transcripts-per-million (TPM) (rows 3 and 4) as imported with the Bioconductor R package tximport59.  We 
additionally adopted two different filtering strategies; an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-
based filtering (rows 2 and 4). The performance of satuRn is at least on par with the best tools from the 
literature. Note that the performance of DEXSeq is clearly lower. In addition, our method consistently controls 
the FDR close to its imposed nominal FDR threshold, while DoubleExpSeq becomes more liberal with increasing 
sample sizes. DEXSeq and DRIMSeq were omitted from the largest comparison (two groups with 50 cells each), 
as these methods do not scale to large datasets (Figure 1). NBSplice was omitted from all comparisons, as it does 
not converge on datasets with many zeros, such as scRNA-Seq datasets. 
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Figure S8: Performance evaluation of satuRn on the real scRNA-Seq dataset by Tasic et al. FDR-TPR curves 
visualize the performance of each method by displaying the sensitivity of the method (TPR) with respect to the 
false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is set at 
nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the 
imposed FDR threshold. We generated three two-group comparisons of 20, 75 and 200 cells each (left, middle 
and right panel, respectively). The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled 
transcripts-per-million (TPM) (rows 3 and 4) as imported with the Bioconductor R package tximport59. We 
additionally adopted two different filtering strategies; an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-
based filtering (rows 2 and 4). Overall, satuRn slightly outperforms DoubleExpSeq, the best tools from the 
literature. Note that the performance of DEXSeq is clearly lower. In addition, our method consistently controls 
the FDR close to its imposed nominal FDR threshold, while DoubleExpSeq becomes more liberal with increasing 
sample sizes. DEXSeq and DRIMSeq were omitted from the largest comparison (two groups with 75 cells and 
200 cells each, respectively), as these methods do not scale to large datasets (Figure 1). NBSplice was omitted 
from all comparisons, as it does not converge on datasets with many zeros, such as scRNA-Seq datasets. 
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Figure S9: Performance evaluation of satuRn on the real scRNA-Seq dataset by Darmanis et al. FDR-TPR curves 
visualize the performance of each method by displaying the sensitivity of the method (TPR) with respect to the 
false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is set at 
nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the 
imposed FDR threshold. We generated three two-group comparisons of 20, 50 and 100 cells each (left, middle 
and right panel, respectively). The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled 
transcripts-per-million (TPM) (rows 3 and 4) as imported with the Bioconductor R package tximport59. We 
additionally adopted two different filtering strategies; an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-
based filtering (rows 2 and 4). Overall, the performance of satuRn is similar to DoubleExpSeq, the best tools 
from the literature. In addition, our method consistently controls the FDR close to its imposed nominal FDR 
threshold, while DoubleExpSeq becomes more liberal with increasing sample sizes. On the dataset with the 
smallest sample size, the FDR control of satuRn does become too strict. 
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Figure S10: The effect of using an empirical null distribution on the false discovery control of satuRn. 
Panel A: Empirical distribution of the satuRn test statistics in one of the bulk transcriptomics 
benchmark datasets adapted from Love et al. The test statistics are z-scores, calculated from satuRn 
p-values as described in formula 5 (see Methods). As this benchmark dataset is constructed to have 
15% DTU transcripts and thus 85% non-DTU or null transcripts, most of these z-scores are expected to 
follow a standard normal distribution (mean = 0, standard deviation = 1). This is reflected in the 
maximum likelihood estimates for the mean and variance of the empirical null distribution (mean = -
0.002, standard deviation = 1.029). Panel B: Corresponding FDP-TPR curve for the bulk transcriptomics 
benchmark dataset. As the theoretical null distribution and the empirical null distribution are virtually 
identical, we observe a negligible difference between both strategies, both in terms of performance 
and FDR control. Panel C: Empirical distribution of the satuRn test statistics in one of the single-cell 
benchmark datasets adapted from Chen et al. Again, most of these z-scores are expected to follow a 
standard normal distribution as this benchmark dataset is also constructed to have 15% DTU 
transcripts and thus 85% non-DTU or null transcripts. However, the empirical distribution is 
considerably wider than expected (standard deviation = 1.236). We additionally observe a small shift 
of the distribution (mean = 0.072). Panel D: Corresponding FDP-TPR curve for the single-cell 
benchmark dataset. While the inference for satuRn is overly liberal when working under the 
theoretical null, FDR control is restored by adopting the wider empirical null distribution. Note that 
the performance will only be affected when the empirical null distribution is strongly shifted with 
respect to the theoretical null (i.e., a large mean in absolute value), which was not the case in this 
example nor in any other dataset from our analyses. 
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Figure S11: Adopting an empirical null distribution to improve FDR control is infeasible for 
DoubleExpSeq. Panel A: Distribution of the p-values from a DoubleExpSeq analysis in one of the 
single-cell benchmark datasets adapted from Chen et al. We immediately observe the large spike of 
p-values equal to 1, which distorts the p-value distribution. In addition, the p-values in the mid-range 
(e.g., from 0.1 to 0.9), which are expected to be uniformly distributed, are skewed towards smaller 
values, which underlies the overly liberal results of DoubleExpSeq in our single-cell benchmarks. Panel 
B: The corresponding empirical distribution of the DoubleExpSeq test statistics. The test statistics are 
z-scores, calculated from the original DoubleExpSeq p-values as described in formula 5 (see Methods). 
As all our benchmark datasets are constructed to have 15% DTU transcripts and thus 85% non-DTU or 
null transcripts, most of these z-scores are expected to follow a standard normal distribution (mean = 
0, standard deviation =1). However, given the pathological distribution of the p-values it is not feasible 
to properly estimate the empirical null distribution, as also clearly shown by the widely different 
parameter estimates obtained using the two estimation frameworks implemented in the locfdr R 
package; compare the estimates between MLE (maximum likelihood estimation) and CME (central 
matching estimation). 
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Comparison 
Cell type 1 

(ALM) 
Cell type 2 

(VISp) 
DoubleExpSeq 

FDR 
Limma  

FDR 
Limma 

Empirical FDR 

1 Cpa6 Gpr88 Batf3 2142 3602 169 

2 Cbln4 Fezf2 Col27a1 644 468 297 

3 Cpa6 Gpr88 Col6a1 Fezf2 335 1029 77 

4 Gkn1 Pcdh19 Col6a1 Fezf2 1878 2861 58 

5 Lypd1 Gpr88 Hsd11b1 Endou 829 1411 249 

6 Tnc Hsd11b1 Endou 4580 4819 341 

7 
Tmem163 

Dmrtb1 
Hsd11b1 Endou 3388 5603 176 

8 
Tmem163 
Arhgap25 

Whrn Tox2 455 1387 166 

 
Figure S12: Number of differentially used transcripts as identified by DoubleExpSeq and limma 
diffsplice. The first three columns indicate the comparisons between ALM cell types (column 2) and 
VISp cell types (column 3), respectively. Column 4 indicates the number of differentially used 
transcripts as identified by DoubleExpSeq. Column 5 indicates the number of differentially used 
transcripts as identified by a limma diffsplice analysis with default settings. Column 6 displays the 
number of differentially used transcripts found by limma diffsplice after correcting for deviations 
between the theoretical and empirical null distributions. 
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Figure S13: Histograms of the p-values from limma diffsplice. From these histograms, the huge 
number of DTU transcripts identified by limma diffsplice become apparent. Note that the general 
tendency of limma diffsplice for smaller p-values is better visible when converting the p-values into z-
scores (see Figure S13) 
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Figure S14: Empirical distribution of the limma diffsplice test statistics. The test statistics are z-scores, 
calculated from limma diffsplice p-values as described in formula 5. Theoretically, these z-scores are 
expected to follow a standard normal distribution (mean = 0, standard deviation =1). Here, however, 
the empirical distributions are considerably wider (standard deviation > 1), as indicated underneath 
the plots. This indicates that the results returned by limma diffsplice in this case study are overly 
liberal. 
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Figure S15: Histograms of the p-values from DoubleExpSeq. From these histograms, the huge number 
of DTU transcripts identified by limma diffsplice become apparent. In addition, we observe a gradual 
decrease of p-values over the interval [0.05 < p < 0.95], with a very large spike of p-values that are 
exactly 1 in all comparisons or contrasts of interest. 
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Figure S16: Empirical distribution of the test statistics in comparison #6 of the case study with 
DoubleExpSeq. The test statistics are z-scores, calculated from DoubleExpSeq p-values as described 
in formula 5 (see Methods). Theoretically, the bulk of these z-scores are expected to follow a standard 
normal distribution (mean = 0, standard deviation =1), i.e., assuming that most transcripts are not 
differentially used. However, the large spike of p-values equal to 1 (See Figure S14) results spike of z-
scores equal to zero, which poses a problem when estimating the empirical null distribution (blue 
dashed curve). 
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