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Abstract— In this study, we determined the feasibility of
modeling the relationship between robot control parameters
and propulsion mechanics as a Gaussian process. Specifically,
we used data obtained in a previous experiment that used pulses
of torque applied at the hip and knee joint, at early and late
stance, to establish the relationship a 3D control parameter
space and the resulting changes in hip extension and propulsive
impulse. We estimated Gaussian models both at the group
level and for each subject. Moreover, we used the estimated
subject-specific models to simulate virtual human-in-the-loop
optimization (HIL) experiments based on Bayesian optimization
to establish their convergence under multiple combinations of
acquisition functions and seed point selection methods.

Results of the group-level model are in agreement with
those obtained with linear mixed effect model, thus establishing
the feasibility of Gaussian process modeling. The estimated
subject-specific optimal conditions have large between-subject
variability in the metric of propulsive impulse, with only 31%
of subjects featuring a subject-specific optimal point in the
surrounding of the group-level optimal point. Virtual HIL
experiments indicate that expected improvement is the most
effective acquisition method, while no significant effect of seed
point selection method was observed. Our study may have
practical effects on the adoption of HIL robot-assisted training
methods focused on propulsion.

I. INTRODUCTION
Robot assisted gait training is becoming a common method

for rehabilitation after neurological injury [1]. With the
option of mechanical assistance to multiple joints, and sev-
eral open parameters for the timing of assistance at each
joint, controllers for gait training robots are defined by a
large number of open parameters, each corresponding to
highly variable outcomes of robotic training. To deal with
the large number of open parameters in robot-assisted gait
training, real-time optimization methods, or Human-In-the-
Loop (HIL) optimization methods, have been introduced [2].
In human-robot interaction, HIL methods are used to identify
parameters of a robot controller that are optimal in the sense
of a specific cost function. In general, this is done by testing
the value of the cost function, collecting data to quantify the
subject response at those points, and then iteratively updating
the controller parameters in real-time to optimize the cost
function.

Several successful implementations of HIL optimization
exist, many using different optimization algorithms [3]-[4],
with one-dimensional (1D) gradient descent method [5], 4D
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Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[4], and Bayesian optimization [3], [6] used in recent studies
using exoskeletons supporting walking function. However,
most previous HIL optimization experiments focused on
reducing metabolic cost to tune control parameters which
results limited applicability in robot-assisted gait training,
since the major objective of gait training is to induce
desired changes in subjects’ motor coordination with the
ultimate goal of improving their motor function. Moreover,
on-going research about optimization algorithm is focused on
improving performance of Bayesian optimization based on
hyperparameter tuning [7], noise modeling [8], acquisition
function definition [9], [10], [11], and definition of seed
points [3], but it is currently unclear how these methods apply
to HIL optimization methods in biomechanics.

In this work, we seek to apply HIL to establish the
subject-specific relationship between exoskeleton control
parameters and resulting features of gait, such as those
describing propulsion mechanics, a crucial component of
walking function [12], [13], [14]. We address the feasibility
of modeling previously collected data on the effects of the
application of pulses of torque to the hip and knee joint
on propulsion mechanics using Gaussian process modeling
[15]. Specifically, we establish the relationship between pulse
torque conditions and propulsion mechanics at the group and
subject-specific level, and evaluate how these relationships
differ across subjects. Moreover, we run simulations using
the estimated subject-specific Gaussian process models to
establish convergence in virtual HIL experiments based on
Bayesian optimization. Specifically, in our analysis we estab-
lish the effect of two important factors, seed point selection
method and acquisition function, in the speed and accuracy
of convergence of Bayesian optimization targeting propulsion
mechanics.

II. METHODS
A. Data Collection

In previous research, sixteen healthy subjects participated
in an experiment based on the application of pulses of torque
to the hip and knee joint to modulate propulsion mechanics
[15]. Torque conditions were defined as a combination of
three parameters: pulse timing, hip pulse amplitude, and knee
pulse amplitude. Two levels were used for pulse timing:
pulses were applied at 10% of the estimated gait cycle period
(early stance), or 45% of the estimated gait cycle period
(late stance). Levels for hip and knee pulse amplitude were
defined as either zero torque, flexion, or extension (amplitude
was set to 15 N·m for the hip joint, and 10 N·m for the
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knee joint for both flexion and extension). Sixteen conditions
were tested, including all combinations of the factors above,
with the exclusion of the combination of zero knee and
hip torque. When pulses were applied to both joints, they
were applied simultaneously. Each condition was repeated
ten times per subject, with a random sequence. Pulses were
applied to the right leg during single strides, and spaced by
at least eight strides of no pulse application. Hip extension
(HE) and propulsive impulse (PI) were assessed at multiple
strides: prior to pulse application (stride -1), during pulse
application (stride 0), and during the three strides following
pulse application (stride 1, 2, 3). In previous work, our
group used a linear mixed model to establish the relationship
between factors including pulse pattern parameters (pulse
timing, amount of torque pulses applied to hip and knee
joints), subjects, and stride with propulsion mechanics, as
defined by HE and PI [15].

B. Gaussian Process Modeling

Our first goal is to model the relationship between pulse
torque conditions and propulsion mechanics as a Gaussian
process. Each subject has 10 measurements of each outcome
measure (HE and PI), resulting in a total of 160 data points
per stride condition, and thus 800 data points per subject
(12800 total measurements), referred to as measurements
yHE and yPI . These measurements can be indexed as a
function of factors: pulse timing (T ), amplitude of hip and
knee torque pulses (K and H), stride (S), subject (Sbj), trial
index (Rep), as

yHE = yHE(T,K,H, S, Sbj,Rep), (1)

yPI = yPI(T,K,H, S, Sbj,Rep), (2)

where T ∈ (10, 45), K ∈ (-10, 0, 10), H ∈ (-15, 0, 15),
S ∈ (-1, . . . , 3), Sbj ∈ (1, . . . , 16), and Rep ∈ (1, . . . , 10).

We assumed that the Gaussian process model linking
control parameters with the outcome measures of propulsion
should follow the characteristics listed below:
• noise from outcome measures is normally distributed

with zero mean (ε ∼ N (0, σ2
ε ));

• noise is independent of the human response;
• the distribution of the human response under repeated

exposure to the same pulse condition is normal;
• the variance of the human response will be constant

under different pulse conditions.
1) Group-level Model Formulation: Data in variables

(1) and (2) are concatenated along the subject dimension
obtaining variables ỹHE(T,K,H, S,RepG) for HE, and
ỹPI(T,K,H, S,RepG) for PI, with 160 repetitions available
for factor RepG.

The modified outcome measures (ỹHE and ỹPI ) can be
expressed as the sum of an unknown Gaussian process G,
and noise (ε) as follows:

ỹHE(T,K,H, S,RepG) = GHE(T,K,H, S) + εHE , (3)

ỹPI(T,K,H, S,RepG) = GPI(T,K,H, S) + εPI . (4)

The average in the measurements ỹ can be derived by
average value among 160 repetitions per each condition.
Since noise is assumed to have zero mean, the average value
of the unknown Gaussian process G is equal to the average in
the measurements ỹ. The variance in the measurements ỹ are
expressed as a sum of model variance (variations in the true
output arising from repeated exposure to the same conditions
σ2
G), and measurement error (variations in the measurements

that are not associated to changes in the true value of the
output σ2

ε ). Since the noise is constant for all values of pulse
torque factors, the following relationships hold true:

σ2
ỹHE = σ2

GHE + σ2
εHE , (5)

σ2
ỹPI = σ2

GPI + σ2
εPI . (6)

These relationships are used to specify values for the
model variance σ2

G used for the Gaussian process covariance
function. Values of σ2

ỹHE
and σ2

ỹPI
are calculated as the

maximum variance of ỹHE(T,K,H, S,RepG) along the
RepG dimension, i.e. the one resulting from the combination
of pulse parameters associated with the largest variance
across subjects and repetitions.

2) Group-level Model Estimation: A Gaussian process
model is estimated from eq. (3) and (4) to approximate
the mean and variance of data ỹα. In a Gaussian process,
the variance is defined based on a covariance (or kernel)
function kα(xi, xj), which defines how variance propagates
within a dimension, or in different dimensions of the model.
In this work, we defined the covariance function (automatic
relevance determination squared exponential kernel) as:

kα(xi, xj) = (σ2
ỹα − σ

2
εα) exp

[
−

4∑
m=1

x̃>mx̃m
2 ∗ l2m,α

]
, (7)

where x is set of pulse torque input parameters, x =
(T,K,H, S), x̃m = xim − xjm, lm,α is the m-th length
scale hyperparameter, α ∈ (HE,PI). (i, j) are indices
corresponding to two arbitrary points in the 4D domain
of the parameters. Using the covariance function (7), the
estimated mean value and variance of a point xn+1, based
on n measurements, are

µα(xn+1) = p>α (Kα + σ2
εαI)

−1Yα,1:n, (8)

σ2
α(xn+1) = kα(xn+1, xn+1)− p>α (Kα + σ2

εαI)
−1p, (9)

pα = [kα(xn+1, x1) kα(xn+1, x2) . . . kα(xn+1, xn)],
(10)

Yα,1:n = [yα,1 . . . yα,n]
>, (11)

and

Kα =

kα(x1, x1) . . . kα(x1, xn)
...

...
...

kα(xn, x1) . . . kα(xn, xn)

 . (12)

In our case, n = 80, referring to the fact that all observations
(Yα,1:n) are used to estimate a Gaussian process model for
GHE and GPI . After a model is estimated given the available
n measurements, the estimated average value µ(xn+1) of all
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points in the domain is defined as the mean function m(x)
of input x.

As discussed above, (3) and (4) define the relationship
between control parameters and output using Gaussian pro-
cesses, i.e., GHE(x) ∼ GP(m(x), k(x, x′)), where k(x, x′)
is the kernel function. As such, the Gaussian processes can
be estimated by solving the following least-squares problems
in terms of the hyperparameters lm,α and σ2

εα :

Find lm,α, σ
2
εα s.t. min

n∑
i=1

(ỹα,i −Gα(xi))2. (13)

To align our fitted model with observations emerging from
our previous linear mixed model analysis, we set constraints
on the hyperparameters optimized in (13) (Table I).

3) Subject-specific Model Formulation: Similarly as the
group data, the outcome measures for each subject (ySbj,HE
and ySbj,PI ) can be expressed as the sum of an unknown
subject-specific Gaussian process GSbj , and noise (εSbj):

ySbj,HE = GSbj,HE(T,K,H, S) + εSbj,HE , (14)

ySbj,PI = GSbj,PI(T,K,H, S) + εSbj,PI . (15)

Measurements collected from each subject correspond to
the ten repeated measurements, collected at all combinations
of the factors, resulting in 800 measurements. Similarly
as done in the group-level model, noise is assumed to
be constant for all values of pulse torque factors, hence
variances of data and processes are linked by:

σ2
ySbj,HE

= σ2
GSbj,HE

+ σ2
εSbj,HE

, (16)

σ2
ySbj,PI

= σ2
GSbj,PI

+ σ2
εSbj,PI

. (17)

4) Subject-specific Model Estimation: Similarly as done
for group-level model estimation, a Gaussian process is
estimated from (14) and (15). The same kernel function
defined in (7) was used for the definition of the subject-
specific Gaussian models, with the difference that σ2

ỹα
was

defined as the variance resulting from the combination of
pulse parameters with the largest within-subject variance
across the ten repetitions. Because it is usually impractical to
collect a sufficient number of observations from an individual
subject to properly estimate subject-specific length-scale
hyperparameters, we proceeded to specify for individuals
the same values of parameters lm,α estimated for the group.
In these conditions, the subject-specific Gaussian processes

TABLE I
LOWER AND UPPER BOUNDS FOR ESTIMATED NOISE STANDARD

DEVIATION AND FOUR LENGTH SCALE HYPERPARAMETERS

T [% gait cycle] S [] K [N·m] H [N·m] σεα
LB 12 0 6 7 0
UB 40 1 15 20 max(σỹα )

GSbj,α are estimated solving the following least-squares
problem:

Find σ2
εSbj ,α

s.t. min
n∑
i=1

(ySbj,α,i −GSbj,α(xi))2. (18)

5) Quantifying Variability of Maxima in Subject-specific
Models: To quantify the variability of the optimal points
in the estimated subject-specific Gaussian process models
GSbj,HE and GSbj,PI , we calculated the vectors x∗sbj as
the values of T , K, and H that maximized the estimated
process value at stride 0 for different subjects, and δx∗sbj
as the values of T , K, an H that maximized the estimated
change in outcome measure between stride 0 and stride -1 for
different subjects. We thus established for how many subjects
(nw) the subject-specific optimal points fell within a sphere
of radius r centered around the optimal points estimated
using the group-level model (x∗ and δx∗). The optimal point
analysis is conducted on the non-dimensional domain where
all coordinates are comprised between 0 and 1 using a min-
max normalization. The functions nw(r) are compared to
establish variability of maxima in the two outcome measures.

C. Bayesian Optimization Simulation

Virtual HIL experiments are conducted to determine the
convergence of Bayesian optimization for each subject-
specific Gaussian process model, under different settings of
the optimization algorithm. Each subject-specific Gaussian
process model is assumed to be the human response (i.e.,
data generating process) when pulse torque assistance is
applied. Three robotic control parameters (T , K, and H) are
used as input parameters. In all conditions, the optimization
algorithm does not have any knowledge about the subject-
specific model at the beginning of each optimization. Two
algorithm components are tested using a factorial design:
i) acquisition function (three levels), and ii) and seed point
selection method (three levels) are evaluated in terms of the
number of iterations required for convergence. In total, the 9
combinations of the two components are tested in simulation,
with twenty simulations repeated for each combination for
each subject.

1) Acquisition Function: Expected Improvement (EI),
Probability of Improvement (PoI), and Lower Confidence
Bound (LCB) are used in this study. EI finds the next point
which maximizes mean value improvement. This expected
improvement is defined as

EI(x) = E[max(0,m(x+)− f(x))], (19)

where x+ is the best point from data points explored so far
and m(x+) is mean value of Gaussian process model value
at point x+. PoI finds the next point which has the maximum
probability of improvement as

PoI(x) = P[max(f(x) < m(x+)− γ)], (20)

where γ is margin. The LCB acquisition function selects the
next point which maximizes the lower bound as

LCB(x) = max(m(x)− β · σx), (21)
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Fig. 1. Gaussian process model of group-level Hip Extension (HE) data.
Pulse factors are indexed by the horizontal panel coordinate (hip torque),
vertical panel coordinate (knee torque), x axis within a panel (pulse timing).
The two lines in each panel indicate different levels of factor stride. Red
dashed line: model at the stride before intervention (stride −1); blue line:
model at the stride of intervention. Hip and Knee indicate the amplitude
of torque pulses applied to hip joint and knee joint respectively. Extension
torques are positive in hip and knee. At each point, shaded areas extend one
standard deviation beyond the mean.

where σx is standard deviation at point x, and β > 0 is a
heuristic trade-off (β = 2 in this work).

2) Seed Point Selection Method: Three seed point se-
lection methods are used in this work. In the first method
(divide), eight points are selected by dividing the parameter
search space in eight regions (the domain for each parameter
is divided into two equal parts), and then each of the eight
points are selected randomly within each of the eight regions.
In the second method (random), eight points are randomly
defined in the search space. In the third method (optimal), the
set of eight seed points is composed of seven random points
in the search space, plus the optimal point of the group-level
Gaussian process model.

3) Virtual Optimization: Virtual Bayesian optimization is
conducted to maximize HE and PI at the stride of pulse
application, and the outcome measure is defined as the
number of iterations nx and ny required to achieve one of
two convergence criteria.

If x̂opt,i is the normalized coordinates optimal point esti-
mated via virtual optimization after i iterations, and xopt is
the known optimal point for that subject, nx is defined as the
minimum value of i where the normalized difference xdiff
between the two quantities is smaller than 10%, where

xdiff,i =

√√√√1

3

3∑
q=1

(
x̂opt,i − xopt

pq,max − pq,min

)2

, (22)

where p is the range of each component of x.
The second criterion is based on the value of the estimated

outcome after a certain number of iterations. Specifically, ny
is defined as the minimum number of iterations where the
normalized estimation error fdiff (xi) is smaller than 5%

Fig. 2. Gaussian process model of group-level Propulsive Impulse (PI)
data.

of the known subject-specific model maximum Gsbj,α(x
∗),

where

fdiff (xi) =

√√√√( f̂(xi)−Gsbj,α(x∗)
Gsbj,α(x∗)

)2

, (23)

All simulations were run for 80 iterations. For each crite-
rion, if no convergence was achieved within 80 simulations,
n was set to 80.

Four two-way ANOVA, one for each outcome measure
(combination of convergence criterion – n(x) and n(y))
– and propulsive metric – HE and PI – were conducted
to quantify the effects of the two factors (i.e., acquisition
function, three levels, and seed point selection methods, three
levels) on convergence speed.

III. RESULTS

A. Gaussian Process Modeling

1) Group-level Model: Results for group-level Gaussian
process modeling are shown in Fig. 1 and Fig. 2. The
process variances σ2

G calculated from group-level propulsion
are equal to 4.31 deg2 for HE and 2.12 N2s2. Estimated noise
standard deviation and hyperparameter values are listed in
Table II.

2) Subject-specific Results: The mean of the distribution
of subject-specific process variances σ2

Gsbj
were equal to

69.04 deg2 and 33.86 N2s2 for HE and PI, respectively. The
number of optimal points for subject-specific models within

TABLE II
LENGTH SCALE HYPERPARAMETER VALUES AND ESTIMATED NOISE

STANDARD DEVIATION

T [% gait cycle] S [] K [N·m] H [N·m] σεα
HE 26.71 0.73 6.17 7.43 0.21 deg
PI 12.18 0.50 8.66 11.73 0.78 Ns
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Fig. 3. Distribution of the optimal points of subject-specific models (circles)
and of the group-level model (asterisks) for HE. The 20% range is indicated
by a sphere centered around the optimal point of the group-level model.

percentage difference of the group-level model is shown in
Fig. 5. The optimal points are for maximal outcomes during
stride 0 and maximum change in outcome (between stride 0
and stride -1) for each subject-specific model. The optimal
points for the subject-specific models are shown in Fig. 3
and Fig. 4 for HE and PI, respectively. 12 subject-specific
Gaussian process models have optimal points that have a
percentage difference of less than 20 % compared to the
optimal point of group-level Gaussian process model for
HE (Fig. 3). For propulsive impulse case (Fig. 4), only 5
optimal points of subject-specific Gaussian process model
are located within 20% difference from the optimal point
of group-level Gaussian process model. For PI, the minority
of subjects exhibited subject-specific optimal points within
a reasonable neighborhood of the group-level optimal point.
In fact, more optimal points of subject-specific models in PI
case are located in late stance (45 %) than early stance (10
%) where optimal point of group-level model is located.

B. Bayesian Optimization Simulation

Virtual Bayesian optimization experiments achieved con-
vergence within 80 iterations in 80.58 % of runs (94.40 ±
6.06 % when using EI, 85.57 ± 13.94 % when using PoI,
61.77 ± 26.66 % when using LCB). The results of the
ANOVA analysis are reported in Table III and Fig. 6. Based
on the ANOVA analysis, the seed point selection method
had no significant effect on the outcome measure in any
condition. Instead, the choice of an acquisition function
showed to be associated with the number of iterations
required for convergence (p < 0.001 in all conditions tested).
Specifically, EI was the only acquisition function type that
was estimated to have negative coefficient in the linear
model when using random method and PoI as neutral level
of the factors, indicating that its effect is to decrease the
number of iterations to obtain convergence. Post-hoc tests
are conducted to distinguish the significant difference among
groups under different combinations of acquisition functions
and seed point selection methods (Fig. 6). Post-hoc tests
indicate that within the same group of acquisition function
types, there exist no significant differences (p > 0.001 for all
comparisons). Moreover, post-hoc tests comparing different

Fig. 4. Distribution of the points of sixteen subject-specific models (circles)
and of the group-level model (asterisk dots) for PI. 20 % difference are
indicated by grid sphere around optimal point of group-level model.

acquisition functions showed that EI was significantly better
than LCB in all conditions tested, and afforded a significantly
greater accuracy in identifying optimal control parameters
compared to PoI.

IV. DISCUSSION AND CONCLUSIONS

In this study, we determined the feasibility of using Gaus-
sian process modeling to establish modeling the relationship
between three exoskeleton control parameters (hip torque
pulse amplitude, knee torque pulse amplitude, and timing of
the pulses), and outcome measures relevant for propulsion.
To estimate parameters of a Gaussian process, we estimated
the noise variance and tuned the hyperparameters of a Gaus-
sian process describing the response at the group level. Based
on the group-level Gaussian process model, we estimated
16 subject-specific models and used those as data-generating
process for virtual HIL Bayesian optimization simulations.
In the virtual Bayesian optimizations, we established how
many iterations would be required for convergence of a hy-
pothetical experiment, and quantified the effects of different
acquisition functions and seed point selection methods on
convergence speed.

Our results of group-level Gaussian process model (Fig. 1
and Fig. 2) demonstrate that it is feasible to construct a model
between the 3D space of control parameters and outcomes
using a Gaussian process with estimated noise variance.
Based on previous predictions using linear mixed model [15],
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group-level Gaussian process models for both HE and PI are
expected to have a similar response when pulses are applied
to the knee and hip joints. In agreement with the results of
the previous study [15], hip extension torque increases HE in
late stance but decreases HE in early stance; knee extension
and hip extension pulse torque increase PI in early stance;
knee extension pulse torque decreases PI in late stance. The
variability of optimal points for subject-specific models is
moderate in HE and high in PI. Specifically for the PI
case, the maxima of subject-specific models fell within 20%
normalized distance from the optimal point for group-level
model only in the minority of cases (5/16). This indicates that
the optimal point for group-level model is likely to be distant
from the optimal point for subject-specific models. In this
case, in fact, optimal points for subject-specific models are
separated to make two clusters of optimal points in early and
late stance. Our analysis in HE case is aligned with previous
work targeting reduction in metabolic cost, indicating that
one subject’s optimal point can be optimal for another subject
[3].

In contrast with previous research selecting seed points
by dividing the search space in N regions and randomly
selecting seed points from all the N regions [3], seed point
selection method is not estimated to make a significant dif-
ference in a single pulse torque application experiment (p >
0.12 for the different conditions tested, Table III). This results
are consistent in both HE and PI cases. Since we included
optimal method in seed point selection method, this results
also indicate that optimal point location relationship between
group-level optimal point and subject-specific optimal points
in HE case do not effect results of simulations. However,
the type of acquisition function used for optimization did
significantly contribute to the number of iterations required
to achieve convergence in all cases of outcome measures
(HE and PI) and point locations (p < 0.001). Since the
interaction term between types of acquisition function and
seed point selection methods is not significant (p > 0.1 for
all conditions tested), the optimal acquisition function (in
terms of convergence speed) of HIL Bayesian optimization
is estimated to be EI. Therefore, our expectation toward
HIL Bayesian optimization setting is that LCB will require
the largest number of iterations to establish convergence,
while EI will require the smallest number for iterations for

TABLE III
TWO WAY ANOVA TEST RESULTS FOR NUMBER OF ITERATIONS TO

ESTABLISH CONVERGENCE

HE Point location (HE)
Source F ratio Prob> |F | F ratio Prob> |F |

Acq. func. 27.9950 < 0.001 150.1179 < 0.001
Seed pt. 0.0702 0.9322 0.2270 0.7969

Interaction 0.2350 0.9187 1.2166 0.3017
PI Point location (PI)

Source F ratio Prob> |F | F ratio Prob> |F |
Acq. func. 100.9153 < 0.001 137.0745 < 0.001
Seed pt. 0.2063 0.8136 0.1297 0.8784

Interaction 0.1021 0.9818 0.5217 0.7198
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and R in x-axis indicate the divide method, optimal method, and random
method for seed point selection method respectively. Pairs of groups that
share the same letter label are not significantly different.

convergence regardless of seed point selection methods.
This study has limitations. Since virtual HIL Bayesian

optimization rely on our assumption that subject-specific
Gaussian process models can fully represent actual human
response, the validity of these models directly relates to
the validity of the results of Bayesian optimization obtained
in this study. Another limitation is that noise is not fully
eliminated to construct a model that relate control input
parameters and propulsive mechanics. As shown in Fig. 1
and Fig. 2, the model at the stride before intervention (red
dashed line) have changes with control input parameters,
which is impossible as a change in output cannot anticipate
a change in input. This result indicates that our optimization
procedure for estimating hyperparameters and noise variance
may need to be improved, or that the relationship between
input parameters and improvement of outcome measures (HE
and PI) should be considered to cancel out noise from stride
at intervention (stride 0) and stride before intervention (stride
-1) Gaussian process models.

Overall, our study identified a new method based on
Gaussian process modeling to estimates the relationship
between exoskeleton control parameters and specific gait
features (HE and PI), and established the effects of seed point
selection method and acquisition function types in number
of iterations for convergence. These results make foundation
of promising approach for planning further HIL robotic gait
training experiment by focusing on specific gait features to
target with training.
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