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Abstract 

Quantifying changes in DNA and RNA levels is an essential component of any molecular biology toolkit. 

Quantitative real time PCR (qPCR) techniques, in both clinical and basic research labs, have evolved to become 

both routine and standardized. However, the analysis of qPCR data includes many steps that are time 

consuming and cumbersome, which can lead to mistakes and misinterpretation of data. To address this 

bottleneck, we have developed an open source software, written in Python, to automate the processing of csv 

output files from any qPCR machine, using standard calculations that are usually performed manually. Auto-

qPCR is a tool that saves time when computing this type of data, helping to ensure standardization of qPCR 

experiment analyses. Unlike other software packages that process qPCR data, our web-based app 

(http://auto-q-pcr.com/) is easy to use and does not require programming knowledge or software installation. 

Additionally, we provide examples of four different data processing modes within one program: (1) cDNA 

quantification to identify genomic deletion or duplication events, (2) assessment of gene expression levels 

using an absolute model, (3) relative quantification, and (4) relative quantification with a reference sample. 

Auto-qPCR also includes options for statistical analysis of the data. Using this software, we performed analysis 

of differential gene expression following an initial data processing and provide graphs of the findings prepared 

through the Auto-qPCR program. Thus, our open access Auto-qPCR software saves the time of manual data 

analysis and provides a more systematic workflow, minimizing the risk of errors when done manually. Our 

program constitutes a new tool that can be incorporated into bioinformatic and molecular biology pipelines 

in clinical and research labs. 
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Introduction 

Polymerase chain reaction (PCR) is a temperature cycle-based DNA polymerization technique that helps 

identify a nucleic acid fragment of interest by increasing its proportion relative to others (Saiki et al., 1985). 

Initially the technique was primarily used to visualize DNA fragments for cloning (Scharf et al., 1986; Magnuson 

et al., 1996) or genotyping (Saiki et al., 1986; Mullis and Faloona, 1987; Beggs et al., 1990), but can now be 

used to investigate genetic polymorphisms and mutations (Ye et al., 2001; De la Vega et al., 2005), copy 

number variants (CNVs) (D'Haene et al., 2010), single nucleotide variants (SNVs), point mutations, and genetic 

deletion/duplication events (Charbonnier et al., 2000). With the development of fluorogenic probes and dyes 

capable of binding newly synthesized DNA, PCR became more quantitative, leading to innovative tools for 

quantifying relative transcript levels for one or more genes, now referred to as quantitative PCR or qPCR. With 

these technological advancements, qPCR is now used to quantify messenger RNA (mRNA) (Wong and 

Medrano, 2005), long non-coding RNA (Gupta et al., 2010), and microRNAs (Shi and Chiang, 2005; Varkonyi-

Gasic et al., 2007). Preceded by chromatin immunoprecipitation, DNA-protein interactions (Mukhopadhyay et 

al., 2008) or epigenetic modifications (Dahl and Collas, 2007; Milne et al., 2009) at specific DNA loci can be 

detected through qPCR. qPCR has also become an essential tool, routinely used in clinics for diagnosis, and in 

research labs. For instance, with induced pluripotent stem cell (iPSC) research, qPCR provides a critical test to 

assess the genomic stability of the iPSCs at key hotspot sites (Artyukhov et al., 2017; Yoshihara et al., 2017) . 

Thus, the advent of PCR has revolutionized our ability to analyze and quantify nucleic acids and has made qPCR 

a standard technique. 

Although qPCR experiments are already automated at the data acquisition stage, with thermocycler 

software providing “by default” pre-processing procedures (Pabinger et al., 2014) , data analysis is still highly 

time consuming and error prone, especially when processing large numbers of data points. The user must 

intervene at multiple steps: raw data exclusion, identification of outliers, normalization(s) and differential 

expression analyses. Without guidelines or standardized procedures, such manual analysis can potentially 

introduce “user-dependent” variation and errors. To both simplify and accelerate this data analysis step for 

qPCR datasets, we have created a Python-based, open source, user-friendly web application “Auto-qPCR” to 

process exported qPCR data and to provide visual representations of the data, with accompanying  statistical 

analysis. The program can be found at the website http://auto-q-pcr.com/ and can treat csv files from 

exported qPCR datasets in line with the two commonly used molecular biology approaches: (i) absolute 

quantification where all estimations rely on orthogonal projection of the samples of interest onto a calibration 

curve (Bustin, 2000), and (ii) relative quantification that relies on difference of cycle threshold (CT) values 

between the gene of interest and endogenous controls (Pfaffl, 2001). 
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In this manuscript we present datasets generated from qPCR experiments that illustrate four distinct 

computational modes to assess the presence of deletion or duplication events in DNA (genomic instability) 

and to quantify normalized RNA expression levels across several experiments. In addition, statistical analyses 

and graphs of the findings are generated by Auto-qPCR. Together, Auto-qPCR provides an all-in-one solution 

for the user, going from datasets to graphs, all within one web-based software package. While other open 

source qPCR analysis software programs and web apps (Rancurel et al., 2019; Zanardi et al., 2019; Krahenbuhl 

et al., 2020) are available, they are only able to normalize, compare and display qPCR data generated with one 

of the two models of quantification (Bustin, 2000; Pfaffl, 2001). In contrast, Auto-qPCR provides a 

comprehensive data analysis package for qPCR experiments. Using the web app does not require any 

programming knowledge, account creation or desktop installation. Additionally, the program has been 

designed to assist the user at each step of the analysis, once the exported data files have been collected from 

the qPCR system. 

Auto-qPCR can be used to analyse qPCR data in a reproducible manner, simplifying data analysis, 

avoiding potential human error and saving time. In this manuscript, we describe some of the uses of the 

software and outline the steps required from entering an individual dataset to complete statistical analysis 

and graphical presentation of the data. 
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Material and Methods 

Culture of iPSC lines 

In order to illustrate the four different models of quantification by qPCR, managed by the Auto-qPCR program, 

we used 11 different iPSC cells lines described in Table S1. Briefly, the GM25953, GM25974, GM25975 and 

GM25952 IPS cell lines were obtained by reprogramming of fibroblasts using episomal vectors. NCRM1 is an 

iPSC line generated by episomal reprogramming of CD34+ cord blood cells and was obtained from the NIH. 

The AJG001-C4 iPSC were reprogrammed from PBMCs using episomal vectors. The other iPSC cells lines were 

reprogrammed with transducing retrovirus from PBMCs (AIW001-2; AIW002-2), fibroblasts (AJC001-5, KYOU-

DRX0190B) or lymphocytes (522-2666-2). Quality control profiling for the iPSCs used was outlined in a previous 

study (Chen et al., 2021). 

The iPSCs were seeded on Matrigel-coated dishes and expanded in mTESR1 (Stemcell Technologies) 

or Essential 8 (ThermoFisher Scientific) media. On the first day of culture, cells were seeded at 10 to 15% 

confluency and incubated at 37°C in a 5% CO2 environment. The media was changed daily until the cultures 

reached 70% confluency. Cells harbouring irregular borders, or transparent centres were manually removed 

from the dish prior to dissociation with Gentle Cell Dissociation media (Stemcell Technologies) for 6 minutes 

at room temperature to obtain small aggregates of colonies. The IPSCs were then seeded and differentiated 

into cortical or dopaminergic neuronal progenitors or neurons. 

 

Generation of cortical and dopaminergic neurons 

The induction of cortical progenitors was performed as described previously (Bell et al., 2017). The neural 

progenitor cells were dissociated, then purified by culturing in suspension for 48 hours in expansion medium: 

(DMEM/F12 with Glutamax supplemented with N2, B27 (ThermoFisher Scientific), NEAA (Gibco), laminin 

(1µg/ml) (Sigma) plus the growth factors EGF (20 ng/ml) and FGF (20 ng/ml) (Peprotech). The media used for 

cortical differentiation is described in the standard operating procedure published on the Early Drug Discovery 

Unit (EDDU) website (Chen et al., 2021) Briefly, purified NPCs were replated on Matrigel-coated dishes 

(Thermo-Fisher). Once cells attained 100% confluency, NPCs were passaged and seeded on a Poly-Ornithine-

laminin coated dishes to be differentiated into neurons. Cells were switched for 24 hours to 50% Neurobasal 

(NB) medium, and 24 hours later placed in 100% NB medium with AraC (0.1µM) (Sigma) to reduce levels of 

dividing cells. After the third day of differentiation, cells were maintained in 100% NB medium without AraC 

for four days before being collected in lysis buffer for RNA extraction. IPSCs were induced into dopaminergic 

NPCs (DA-NPCs) according to methods previously described (Kriks et al., 2011), modified according to methods 

used within the group (Chen et al., 2019b). DA-NPCs were subsequently differentiated into dopaminergic 
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neurons (DANs), with immunostaining and qPCR analysis performed at four and six weeks of maturation from 

the NPC stage (Chen et al., 2019a). 

 

Cell collection for DNA or RNA extraction 

IPSCs were dissociated with Gentle Cell Dissociation Reagent (Stem Cell Technologies) while Accutase® Cell 

Dissociation Reagent (Thermo Fisher Scientific) was used to dissociate NPCs and iPSC-derived neurons. After 

5 minutes incubation at 37°C with the indicated dissociation agent, cells were collected and harvested by 

centrifugation for 3 minutes at 1200 rpm. Cell pellets were resuspended in lysis buffer and stored at -80°C 

before DNA or total RNA extraction with the Genomic DNA Mini (Blood/Culture Cell) (Genesis) or mRNAeasy 

(Qiagen) kits, respectively. 

 

cDNA synthesis and Quantitative PCR 

Reverse transcription reactions were performed on 400ng of total RNA extract to obtain cDNA in a 40 μl total 

volume containing, 0.5μg random primers, 0.5mM dNTPs, 0.01M DTT and 400 U/µl-MMLV RT (Carlsbad, CA, 

USA). The reactions were conducted in singleplex, in a 10µl total volume containing 2X Taqman Fast Advanced 

Master Mix (5µl), 20X Taqman primers/probe set (0.5µl) (Thermo Fisher Scientific), 1µl of diluted cDNA and 

H2O. Real-time PRC (RT-PCR) was performed on a QuantStudio 3 machine (Thermo Fisher Scientific). 

Primers/probe sets used were from Applied Biosystems and selected from the assays available on Thermo 

Fisher Scientific web site. The primers/probe sets were chosen to cover the most important number of 

alternative transcripts for a given gene. Two endogenous controls (beta-actin and GAPDH) were used for 

normalization (Table S2). With the exception of the assay for GAPDH, the amplicons overlapped two exons, 

avoiding amplification of genomic DNA that could remain from incomplete DNAse digestion. A refseq 

sequence used for designing the primer/probe set assay has also been reported. 

 

Collection of external data set 

An external qPCR data set was provided from an earlier published study (Kelai et al., 2008), which quantified 

levels of Nrxns and Nlgn transcripts in the subcortical areas of the brains from mice submitted to conditioned 

place preference (CPP) with cocaine. Briefly, the mouse brain was sectioned with a cryostat (Leica CM3050S) 

and subcortical areas (subthalamic nucleus, globus pallidum and substantia nigra) isolated by laser capture 

microdissection (Leica ASLMD instrument with LMD 5.0 and IM1000 software (Leica). RNA was extracted with 

the Arcturus PicoPure kit and reverse transcription performed as described above. The qPCR experiments 
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were performed according to an absolute quantification design on the Opticon 2 PCR machine (Biorad) 

connected to the Opticon monitor 2 software. Β2Microglobulin (B2M) was used as endogenous control. For 

the current manuscript, data were re-extracted from the Opticon monitor 2 files as csv files and analyzed by 

Auto-qPCR. 

 

Program development 

The program was written in Python using Pandas and NumPy. The structure consists of a script main.py which 

reads in and formats the raw csv data and calls the next scripts. The script Auto-qPCR.py processes the data 

(transforms data, identifies controls and removes outliers) and then calls the model selected in the web-

interface to quantify the RNA concentration. The models are contained within separate scripts (absolute.py, 

relative.py and stability.py). The relative model with two normalizations (delta-delta CT) is the same 

calculation used for the genomic instability test. The program calls the script ‘stability.py’ when either the 

stability or relative dd-CT is selected by the user. The processed results with all samples (separate technical 

replicates) and a summary (mean values) spreadsheet is created and saved in csv format. 

We also provide options within the program to perform statistics for Student’s t-test, one-way and 

two-way ANOVAs followed by multiple-t-test with FDR correction and equivalent non-parametric test. The 

scripts were written in Python using Pingouin, Scipy and Pandas and can be found in statistics.py. The user 

inputs the number of groups for multiple comparisons based on the annotation present in the input data. The 

program will format the data, run the selected statistical model and then provide a results spreadsheet in the 

form of a csv file for the t-tests, a csv file for the ANOVA results and a separate csv file for the posthoc test 

results. All the output tables and plots are combined into a zip file that the end user can download from the 

website. All the input and output data are cleared after processing and no user data is stored in the web app. 

Table S3 summarizes the organization and function of the script files for the program. 

 

Program function - input data processing and quantification 

The Auto-qPCR program reads the raw data in the form of csv files (comma-delimited) from the PCR machine 

and reformats it into a data frame in Python. The csv files are selected from the dropdown arrow that allows 

the user to find files using their computer’s file navigator. The user enters information into the web-app to 

match the experimental design of the data to be analyzed and these are read as arguments by the software. 

See Table S4 for a list of all the user inputs. The raw data in the form of a csv file is read into Python by P 

searching for the first line with multiple column names and a data frame is created containing all the raw data 

and sample information. The values for the reference genes/targets (GAPDH, ACTB) are calculated for each 
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sample and technical replicate (cell line, time point, treatment condition) separately. To detect outliers, the 

standard deviation (std) of the technical replicates for a given sample is calculated, if the std is greater than 

the cut-off (the default value is 0.3), then the technical replicate furthest from the sample mean is removed. 

The process occurs recursively until the std is less than the cut-off or only the value of “max outliers” is 

reached. Max outliers is set to 0.5 by default which means that outliers will be removed until two technical 

replicates remain. The number of technical replicates included in each final sample mean is indicated in the 

‘summary_data.csv’ output file. The ‘preserve highly variable replicates’ option adds a second criteria before 

a replicate is removed. If the CT-std is less than 0.3, but the absolute (mean-median)/median is less than 0.1, 

replicates are preserved. This helps to account for a lack of a clear outlier, where two of three replicates are 

close to equally distributed around the mean. The next processing steps are model dependent: The absolute 

model calculates the ratio between the gene of interest and each control. For each gene/target of interest the 

normalized value is calculated against the mean of each control target separately, then the mean value from 

normalized to controls is calculated. The relative model ΔCT (delta CT), without a calibration sample, 

calculates the ΔCT by subtracting the log2 control CT value from the log2 CT value for the target for each 

control and then takes the mean value of the resulting deltas. The relative model ΔΔCT (delta-delta CT), with 

a calibration sample and the genomic stability model, individually calculates the ΔCT for the target in test 

sample and the reference/calibration sample then calculates the ΔΔCT by subtracting the reference ΔCT from 

the test sample. For all models the mean value of technical replicates is calculated for each target. 

For the relative models the values for the reference genes are calculated separately for each csv file. 

The data from one csv file will not be applied to another csv file. For the absolute model, qPCR output for each 

gene is found in a separate csv file and the selected endogenous controls will be applied to all the data input 

in one analysis. For all models, two spreadsheets are outputted as csv (comma-delimited) files that can be 

opened in Excel, LibreOffice or any text editor. The user will receive “clean_data.csv” where delta CT is 

calculated for every technical replicate, the outliers are included and indicated by “TRUE” in the column 

“Outlier”. The summary output contains the mean, standard deviation (std) and standard error (SE)for each 

sample technical replicates. The table of the data, “summary_data.csv”, is appropriate for further analysis in 

another statistical program (R, SASS, Prism). 

 

Program function – statistical analysis 

For testing differential gene expression, the user selects the statistic option and files in a form to indicate the 

conditions of the experiment. Either paired test (t-test) or multiple comparisons (one-way ANOVA or 2-way 

ANOVA) to investigate interaction effects is selected. The number of groups to compare is inputted by the 

user, if a two-way ANOVA is selected the total number of conditions is entered. The names of the variables to 
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be grouped by must be within either the ‘sample names’ column of the raw csv data or an additional column 

(which is created when entering the experimental design into the thermal cycler). Users can also add a column 

to their data after exporting the csv file, although this will add a risk of copy/paste errors and add additional 

time to the analysis process. The user selects using independent or repeated measures as well as the normality 

of the distribution of the data, then the appropriate statistical test will be applied. See Table S5 for the list of 

which analysis is applied for each setting. All default setting are maintained for statistical functions (for details 

see the Pingouin documentation at https://pingouin-stats.org/, the output has been reformatted to be more 

easily read and interpreted by users and for consistency across statistical outputs. 

 

Program function – visualization 

The plotting scripts were written using the Matplotlib bar chart function. The labels and axis settings were all 

adjusted directly within the script. If users want to change the visualization, they can do so in the plot.py script 

on a local server. The labels and colours cannot be adjusted within the web app. The user can dictate the 

gene/target order and the sample order (cell lines, treatments, time points) in the web app by entering the 

orders into the appropriate input box. The order variables (for example, cell lines or time points) appear in the 

grouped data for the summary plots and can also be set in the statistical analysis by the user. The user 

designates the variable order by entering the variable names in the web-form bar charts for each gene, for all 

genes grouped by sample, and for all samples grouped by genes (with and without endogenous controls) are 

automatically generated and saved as png files. If statistics are applied, two summary bar charts of the mean 

values are generated, grouped by the selected variable. For two-way ANOVA analysis, the summary bar chart 

will group the first variable on the x-axis and the second variable will be visualized in different colours and 

indicated in the legend. 

 

Interface development and web app 

The graphical user interface (GUI) was created using Flask, a package for integrating HTML and Python code. 

The GUI is written in JavaScript, CSS, HTML and Bootstrap4, a framework for building responsive websites. On 

our GitHub repository (https://github.com/neuroeddu/Auto-qPCR), we include the original command line 

version of the program and a version of the GUI that can be installed locally to run on a computer. A complete 

list of package dependencies and instructions to install and run the package app locally are posted in the 

GitHub repository. For users who wish to work offline, they may adapt any of the python scripts for their local 

server. The program was developed using git version control with multiple contributors. This study can be 

cited for analysis performed on the web app, local server installation and any incorporation and adaption of 
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our scripts in customized scripts. The web app is hosted by the Brain Imaging Centre at the Montreal 

Neurological Institute-Hospital (The Neuro) and was installed in a virtual machine directly from the public 

GitHub repository. When updates are available the changes will be applied to the web app using GitHub. 

 

Data availability and reproducibility 

All raw csv data files and output files used in plots are available at https://github.com/neuroeddu/Auto-qPCR, 

along with a user guide. The example input and output files in the paper are all available and organized by 

Figure names. The raw data used in the manuscript is found in the “Input Data” along with a document 

describing how the data was entered into the Auto-qPCR program “Notes_on_Datasets.docx”. The example 

output folders are found under “Output Data” along with a description of the output files present in each 

folder. The “Notes_on_Datasets.docx” file contains all the parameters used in Auto-qPCR to obtain the plots 

in the manuscript from the “Input Data” used for each figure. The example output will be replicated identically 

if the same conditions are entered. 

 

Illustrations 

The schematic representation in Figure 1 and simplified versions in Figures 2-4 were created in Adobe 

Illustrator Creative Cloud 2020, with icons inserted from BioRender.  
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Results 

The Auto-qPCR program functions with the workflow of a qPCR experiment 

Auto-qPCR is a program conceived to process and analyse data generated using a qPCR thermo cycler. A qPCR 

experiment includes multiple steps that can be divided into two categories: (1) sample preparation to conduct 

the qPCR reaction, and (2) data analysis, visually represented in the schematic in Figure 1. For all experiments 

designed to quantify gene expression levels, RNA is extracted from biological samples and converted into 

cDNA. Similar extraction techniques are used to collect genomic DNA, whose amplification facilitates the 

detection of deletions, duplications or single nucleotide polymorphisms. DNA or cDNA are then combined with 

reagents for amplification of target regions proportional to the quantity of the original region of interest. Prior 

to performing qPCR in vitro, the user must generate the in-silico experimental layout using software that 

monitors the biochemical reaction. The user defines the experimental design (absolute or relative 

quantification), the method for detecting DNA synthesis (Taqman or SybrGreen) and the location of each 

sample within the plate. Finally, at the end of the qPCR process/cycle/program, the recorded data is exported 

and then would normally be analyzed manually. 

We created Auto-qPCR to assist the user in data normalization, visualization and differential 

expression analyses. The program was designed for the most common uses of qPCR: detecting DNA fragment 

duplications or deletions, and quantifying gene expression levels according to the absolute or relative 

quantification models. With the aim of saving time for the user and avoiding copy-paste mistakes, missed 

numbers or inconsistency in application of data inclusion and inclusion rules, Auto-qPCR provides output 

datasheets of the processed data, graphical visualization of the data and statistical analysis based on the user 

defined experimental design. Here we provide examples of four different use cases for Auto-qPCR using real-

life experimental datasets. 

 

Genomic instability 

A relatively new application for qPCR detects small changes within the genome from a deletion to a duplication 

of a DNA segment. DNA regions known to be highly susceptible to such events can be quantified using a 

genomic instability qPCR test. In the field of induced pluripotent stem cell (iPSC) research, genomic instability 

tests are critical for quality control to screen for these duplication/deletion events that can arise during 

reprogramming and prolonged cell passaging (Tosca et al., 2015; Yoshihara et al., 2017). We performed a qPCR 

test for genomic stability, where for each cell line, the signal from each DNA region of interest was compared 

to the endogenous control region. Next, each of the samples (cell lines GM25953, GM25975, GM25974, 

GM25952) were compared to a control sample of DNA, known to not have any changes within the regions 

that were tested for genomic instability. 
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We uploaded the data into the Auto-qPCR web app and selected the genomic instability model (Figure 

2A). For the endogenous control, we used a region on chromosome 4 (CHR4) as the target for normalization, 

a region of the genome known not to contain any instabilities, and for the reference sample we used DNA 

known not to have any instabilities as the calibrator, which we indicate as “normal” (Figure 2A). The genomic 

instability model has two steps of normalization for its general formula. This formula and the variables used 

in the example calculation are outlined in Figure 2C. First, the CT values from the control region (i.e. CHR4) for 

each cell line are subtracted from each region of interest. Next, the ∆CT from the “normal” DNA control is 

subtracted from the ∆CT calculated for each cell line sample. Finally, the mean is calculated from the average 

of multiple technical replicates included with the plate design for each sample. Thus, the ∆∆CT values are 

expressed as “Relative Quantification” according to the following formula: RQ=2-∆∆CT. If the sample has no 

abnormalities (deletions or duplications) the values obtained should be equal or close to 1, except for targets 

in the X chromosome in a male individual in which the ratio would be expected to be at 0.5. As the DNA used 

for PCR amplification may come from a mixed population of cells, where only some cells carry a deletion or 

duplication, we set an acceptable range of variation as 0.3 above and below the expected value of 1: DNA 

regions with RQ values between that 0.7 and 1.3 are considered normal. Values below 0.7 indicate a deletion 

and values above 1.3 indicate an insertion. For ease of analysis, we have included a column in the output file 

from the Auto-qPCR program that indicates normal, insertion or deletion (Table S6). We found that all seven 

chromosomal regions in the four cell lines tested were between 0.7 and 1.3 and we concluded that no 

duplications or deletions were present (Figure 2D and S1B). Overall, we demonstrated how Auto-qPCR can be 

used to analyse the data from a genomic instability qPCR assay, and that the app effectively processed the 

data, creating a summary table and graph of the data.  

 

Absolute Quantification 

For absolute quantification experiments, the quantities of RNA transcripts for a gene of interest and the 

endogenous controls are first estimated with a calibration curve (Figure 3A) to provide a mathematical 

relationship between the CT values and the RNA concentration or quantity. The relationship is described by 

the equation CT=alog2[RNA] + b, where “a “is the slope and b is the Y-intercept (Figure 3C) (Ovstebo et al., 

2003). The expression levels of the RNA molecule of interest are then given by the ratio of the estimated 

amount of RNA for a select transcript and the estimated amounts of endogenous controls (Figure 3B). 

Consequently, the values given as “Normalized Expression Levels” depend on the levels of transcript within 

the biological material used to set the calibration curves. The absolute quantification design is very powerful 

for comparing expression levels of a given gene of interest between two or more biological conditions or 

groups. We investigated the expression of 3 gene transcripts across six different cell lines (AIW001-2, AIW002-

02, AJC001-5, 522-266-2, AJG001C4, NCRM1) at four different stages in the differentiation of neurons from 
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iPSCs. We wanted to determine if the cell lines acquired the desired phenotype based on the presence of 

specific dopaminergic and neuronal markers as they differentiated into DANs, and measured gene expression 

levels of KCNJ6, SYP, and GRIA1, markers of neuronal differentiation and synapse formation. We compared 

transcript levels in iPSCs with cells differentiated into DA-NPCDA, and NPC cultured in final DANs in neuronal 

differentiation media for 4 and 6 weeks (DA4W and DA6W). The calibration curve was made from a mix of the 

cDNAs generated from the reverse-transcribed RNA reactions from the four timepoints in the differentiation 

process and made of eight four-time serial dilutions to cover a linear relationship in a dynamic range from 1 

to 16384-fold dilution (Figure 3A). Raw data was normalized with two endogenous controls (GAPDH and 

βACTB) (Figure 3D to 3H). We measured expression levels of the three transcripts (KCNJ6, SYP and GRIA1) in 

iPSCs, iPSC-derived DA-NPC and iPSC-derived DANs differentiated for four and six weeks, all across 6 control 

cell lines and calculated the normalized RNA levels using Auto-qPCR (Figure 3D to 3H). The Auto-qPCR app 

provides several graphical representations of the normalized expression data. The normalized expression data 

is shown as the mean of the technical replicates with error bars indicating the divergence observed between 

wells of a replicate for a given condition. The Auto-qPCR app will generate one bar chart for each gene 

measured; the output for KCNJ6 is shown in Figure 3D. Two more bar charts were generated for each gene 

and sample observations plotted together (grouped by gene Figure 3E and by sample Figure 3G), allowing for 

an overview of the data and visualization of the biological variation between cell lines at a given stage.  

To test for changes in gene expression over the different stages of neuronal differentiation, the cells 

lines were considered as six biological replicates for a given condition (Figures 3E and 3G). We have included 

a statistical module in our software that allows user-defined groups to be compared. We used the statistics 

option in the app to determine if there was significant differential expression of KCNJ6, SYP or GRIA1 

transcripts over the four developmental time points, treating cell lines as biological replicates. The groups to 

compare were defined as the differentiation time points (four groups) and considered as repeated measures. 

As there are more than two groups, the Auto-qPCR software runs a one-way-repeated measures ANOVA for 

each gene. Two summary plots (Figure 3F and 3H) and two statistical output tables were generated: one for 

the ANOVAs and one for the secondary measures (Tables S7 and S8). We found there was a significant effect 

of the differentiation stage on the expression of synaptic markers. The t-tests with false discovery rate (FDR) 

correction for pairwise comparisons of each stage showed that iPSCs have significantly less expression of each 

synaptic marker than DAN differentiated for 4 and 6 weeks (Table S8), indicating that the differentiation 

protocol is successful for all cell lines tested, with each iPSC differentiating into progenitors and ultimately 

DAN (Figure S2). The expression at 4- and 6-weeks of differentiation does not differ, indicating these markers 

cannot distinguish maturation levels. We found that raw absolute qPCR data was effectively processed by 

Auto-qPCR creating summary data, visualization and statistics for differential gene expression between 

conditions. 
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Relative quantification 

In addition to Absolute quantification, the Auto-qPCR software also enables the processing of qPCR data 

obtained according to a relative quantification design. Contrary to absolute quantification, relative 

quantification does not require a calibration curve, and quantification (of transcripts) is based on the CT 

difference between a transcript of interest and one or more endogenous controls (Figure 4A). Relative qPCR 

is optimal for two kinds of comparisons: (1) detecting a difference in gene expression between two different 

conditions, and (2) detecting a difference between two transcripts within the same condition. Relative 

quantification can be expressed either as RQ=2-∆CT, where samples are normalized to internal control(s), or RQ 

=2-∆∆CT, where a given sample is considered as a calibrator for the unknown samples (Figure 4B and 4C). 

To illustrate the functions of the program, we compared the expression levels of two different control 

cell lines at two developmental stages, indicated as D0 and D7, where D0 represents NPCs and D7 indicates 7 

days of differentiation into cortical neurons. We measured the expression levels of the progenitor marker 

PAX6 (paired box protein 6), two markers of neuronal differentiation, GRIN1 (a subunit of the NMDA receptor) 

and CAMK2A (a subunit of calcium calmodulin kinase), and two housekeeping genes, GAPDH and β-actin as 

endogenous controls. 

We used the Auto-qPCR app to process the same data twice, for a direct comparison of the two distinct 

relative quantification options. Figure 4D shows the mean expression from technical triplicates calculated by 

selecting the RQ=2-∆CT (indicated as delta CT in the web app). The ∆CT approach (not using a sample as 

calibrator) allows a comparison of the expression levels for the three different transcripts. We observed that 

relative to the endogenous controls, the D0 expression values for each transcript varied widely between the 

two cell lines tested. However, as expected for both cell lines, PAX6 expression is higher at the D0 stage 

compared to D7. Conversely, both GRIN1 and CAMK2A exhibited higher expression at the D7 stage compared 

to D0. Using the statistics module in the Auto-qPCR app, we compared the mean levels of each gene transcript 

at D0 and D7 using paired t-tests for each gene (Figures 4E and 4F). We found that although there were clear 

differences in expression, they were not significant between D0 and D7, likely a result of there only being two 

samples for each time point (Table S9). Interestingly, we found that the CAMK2A RQ∆CT was twice the level of 

GRIN1 at D7 RQ∆CT (Figure 4F). 

We next analysed this dataset with the RQ∆∆CT model (indicated as delta delta CT in the web app) where 

transcript levels are compared to both control gene expression (in this case β-actin and GAPDH) and a 

calibration sample; in this case we set one sample, AIW002-02-D0 arbitrarily as the reference sample (Figure 

4G). Here we can easily compare expression in a test condition relative to a control condition by displaying the 

results as fold change in expression. All decreases are displayed as between 0 and 1 and all the increased 

expression levels are above 1 (Figure 4C). With the double normalization (RQ∆∆CT), all  values were expressed 

as a variation compared to the calibrator (AIW002-2-D0) as seen in Figures 4G-I. As in the RQ∆CT model, the 
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changes in gene expression from D0 to D7 were not significant (Table S10). Although the ratio of expression 

for a given gene in each cell line between DO and D7 remained unchanged, differential expression between 

genes can no longer be analysed. The RQ∆∆CT shown in Figure 4H showed that PAX6 expression was higher at 

D0 than D7 and that CAMK2a and GRIN1 expression were both higher at D7 than D0, as seen in Figure 4E using 

the RQ∆CT model. However, with the double normalization, the increase in GRIN1 expression from D0 to D7 

appears much larger than the increase in CAMK2a expression (Figures 4H and I), which was the opposite result 

from the single normalization model (RQ∆CT) (Figure 4E and 4F). Our findings highlight the need to analyze data 

with attention to the biological question. Using only the RQ∆∆CT
 one might mistakenly believe the increase in 

GRIN1 expression is greater than that of CAMK2a. With Auto-qPCR we provide a quick easy option to process 

the exported qPCR data with two different relative models.  In our case, we found the same gene expression 

ratios between the two time points, but different expression gene levels using the different relative 

quantitation models.   

 

Auto-qPCR can reprocess a published data set with the same results as manual processing 

One of our objectives was to provide a tool for analyzing data from quantitative PCR experiments that had 

been generated with different machines. We took advantage of having the raw data from a set generated by 

the Gorwood lab, on a different machine (Opticon 2, Biorad). The original study measured gene expression in 

three sub cortical areas (subthalamic nucleus (STN), substantia nigra (SN) and globus pallidus (GP) of mice 

submitted to a place preference paradigm to cocaine (Kelai et al., 2008). Manual processing shows a significant 

increase in Nrxn3 expression in the cocaine-treated group compared to control, specifically in the GP (Figure 

5A). 

We next used the raw data from this study (Kelai et al., 2008) to validate the Auto-qPCR software. We 

processed the data using the Auto-qPCR web app absolute quantification pipeline and normalized to B2M. 

The mean values of the technical replicates are shown for each biological replicate (mouse) Figure 5B. This 

summary data closely matched the manually calculated data (Table S11). The standard method of removing 

outliers from technical replicates is to remove the replicate most different from the mean, if the CT standard 

deviation (std) is above 0.3. We have given the user the option in the Auto-qPCR software to adjust this 

threshold, termed ‘cut-off’ in the app. When data is processed manually, each CT-std value is analysed. In 

some cases, when the std value is close to 0.3, one replicate is clearly different from the other two, meaning 

that this divergent value will be removed. There are also instances in manual processing where no replicates 

are removed when the std is greater than 0.3, because the triplicate values are evenly distributed. Auto-qPCR 

has an option to account for this type of data when the user selects ‘preserve highly variable values’. With this 

option a replicate is only removed if the median is far from the mean. We processed the Nrxn3 expression 

data with a range of std cut-off values to display the difference in outcomes and with or without preserving 
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highly variable replicates (Table S11). We compared the variances generated by the differences between the 

dataset from manual treatment and the datasets collected (i) after application of a cut-off at 0.3, or (ii) after 

application of the same cut-off, with the possibility of preserving the outliers. We found that the preservation 

of highly variable value combined with a cut-off at 0.3 generate a 20% decrease in the variance between 

manual and automatic treatments (Table S12). With this treatment, the software also preserved a value that 

was falsely estimated as an outlier by manual processing, which illustrates the subjectivity of the user with 

respect to the decision to retain or exclude a value based on criteria of divergence, especially when working 

with low numbers. Together, our analysis suggests that applying two rules of data filtering provides a more 

systematic data analysis method and minimizes interindividual bias. Here we applied the standard cut-off of 

0.3 and preserved highly variable replicates, appropriate for the highly variable and RNA level experimental 

samples we are analyzing. 

Auto-qPCR  also permits statistical groups to be designated in the sample name or in a specific group 

column, which can be added into the qPCR data during the plate set up. To allow for statistical analysis of this 

data, we added a grouping columns into the raw data files: ‘Treatment’ (Control, Cocaine), ‘Region’ 

(STN,GP,SN) and both together, ‘T_R’ (STN_Control, STN_Cocaine, GP_Control, GP_Cocaine, SN_Control, 

SN_Cocaine) and using the Auto-qPCR statistics module, we reanalysed the effect of drug treatment and brain 

regions on expression of Nrxn3 across several parameters. We first compared the overall effect of cocaine on 

expression after pooling the three brain regions and found that although the expression of Nrxn3 was 

increased across brain regions with cocaine treatment, there was no overall significant effect of drug 

treatment (Figure 5C and Table S13). Comparing the three brain regions while pooling together control and 

cocaine treatment showed a significant difference in expression across brain regions. Post-hoc analysis 

revealed Nrxn3 expression in the STN was significantly lower than in the GP and SN (Figure 5D and Table S14). 

When we considered each brain region with and without treatment as independent conditions, and individual 

mice as biological replicates and used a one way ANOVA followed by posthoc tests using multiple t-test with 

a correction for multiple comparisons we find cocaine significantly increased Nrxn3 expression specifically in 

the GP and not in the SN or STN (Figure 5E and Table S15). This was in agreement with the previous manual 

analysis (Kelai et al., 2008). To apply the identical statistical treatment as originally presented, we performed 

a two-way ANOVA followed by a repeated measures t-tests with FDR correction on the interaction variable 

between treatment and brain region, using Auto-qPCR and found the same results as the one-way ANOVA 

(Figure 5F and Table S16) and a t-test of the GP alone (Figure 5G). Together the data shows that the Auto-

qPCR software is capable of processing data generated by another machine and the results match those 

processed manually.   
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Discussion 

Auto-qPCR – a web app for Q-PCR data analysis and visualization 

This paper presents a new software for qPCR analysis, and we provide examples of the functionalities for the 

web app and how it can be applied with qPCR experimental datasets generated from DNA (genomic instability 

assay) or cDNA amplification of RNA transcripts (absolute and relative quantification data). We have also 

summarized the computational bases of relative and absolute quantifications performed by Auto-qPCR, which 

is important for users to understand when selecting an experimental design. Additional functionalities 

included with the Auto-qPCR web app is a statistical module that will (1) be applicable to the majority of qPCR 

analysis experiments, and (2) provide a correction across multiple tests to mitigate against false positives. As 

not all experimental designs require differential analyses, we also provide the user with a choice of statistical 

analyses or simply calculating normalized RNA concentrations. Furthermore, the web app can be used with no 

installation or login requirements. We have created an easy to use program that is completely free and open 

source, able to process data from different qPCR machines and all common experimental designs, beneficial 

to any lab performing qPCR experiments. 

 

A comparison of Auto-qPCR relative to available to qPCR analysis software 

Several steps are required for qPCR experiments, from the design to the presentation of the differential 

expression analysis. We have created Auto-qPCR to process all major types of qPCR designs. Given the 

importance of qPCR in molecular biology, other programs are available to perform many steps of the qPCR 

data treatment (Pabinger et al., 2009; Pabinger et al., 2014; Rancurel et al., 2019; Zanardi et al., 2019; 

Krahenbuhl et al., 2020). The Q-PCR and PIPE-T programs were designed to treat and display qPCR data 

generated according to a relative quantification model (Pabinger et al., 2009; Zanardi et al., 2019) . SATQPCR 

is a web app that treats qPCR data using the relative quantification model and performs differential analyses. 

However, it does not take the exported csv qPCR data and requires preformatted data that has already been 

manually manipulated in txt file format (Rancurel et al., 2019). Finally, ELIMU-MDx, is a web-based interface 

conceived to collect specific information regarding qPCR assays for diagnostic purposes. EILMU-MDx functions 

as a data management system, processes qPCR data generated using the absolute quantification method and 

requires an account and login information (Krahenbuhl et al., 2020).  

Reviewing different software published to serve similar purposes as ours highlights the unique 

characteristics of Auto qPCR, as no other web app combines all the features we have included in our software. 

First as a web app, Auto-qPCR does not require installation or a user login and can be accessed from any device 

connected to internet. We also provide the option for users to install the program onto their computer if they 
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want to work on their analysis off-line. Second, data processed by Auto-qPCR does not require any 

preformatted file to be generated manually. Instead, once the qPCR experiment is complete, our program 

takes the csv export file directly from the thermocycler so there is no copy/paste or formatting step to be done 

by the user. Third, Auto-qPCR can manage the data from a single or from multiple separate absolute files at 

once, as well as batch process multiple csv files from a relative quantification. The program creates a clean 

data set and summary data table. Fourth, unlike the other software mentioned above, Auto-qPCR includes 

three different models, conceived to support qPCR data generated from absolute and two methods of relative 

quantification designs. No other program provides the option of choosing between the two relative 

quantification methods. Fifth, we provide normalization to multiple reference genes and calculate the mean 

normalized value for each replicate, and not the sample mean, an important feature implemented in relatively 

few other programs. This avoids the RNA quantity value being influenced by extreme values. Sixth, we extend 

the use of the program to suit qPCR data from DNA quantification. Finally, we provide an extensive statistics 

module for calculating differential gene expression that requires no additional input files. Options are included 

for experimental designs that include two or more sample comparisons (t-test, one- and two-way ANOVA and 

the equivalent non-parametric tests) and automatically generates bar charts for data visualization. We have 

created a unique, easy to use qPCR analysis program that can benefit any researcher or lab that needs to 

analyze qPCR data on a regular basis, by saving time, avoiding errors and generating reproducible, figure-ready 

plots. 

 

Calculating gene expression using two “relative quantification” methods 

Auto-qPCR provides users the option for relative quantification by two methods: expression relative to 

endogenous control genes only (∆CT method) or relative to endogenous genes and also normalized to a 

control condition (∆∆CT method). Although the ∆∆CT method is considered the gold standard  to express, in 

one number, the variation in gene expression between two conditions and the amplitude of that change in 

expression (Schmittgen and Livak, 2008), it does not account for inter gene expression variation within the 

control condition (Yuan et al., 2006). The differences between quantifying relative expression with or without 

a control condition used as a calibrator, are clearly demonstrated above (Figure 4). Expression levels of GRIN1 

and CAMK2a calculated with either relative quantification model were increased at seven days of 

differentiation (D7) compared to day zero (DO). However, we also found that GRIN1 and CAMK2A had different 

levels in the baseline condition (∆CT), thus we observe that information is lost when using a ∆∆CT 

normalization. For relative quantification using a ∆∆CT normalization we measured a fold change of variation 

compared to a control condition for a given gene (Rao et al., 2013), but information about differences of 

expression between two genes in control condition were not observed (Figure 4F). We have provided both 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2021. ; https://doi.org/10.1101/2021.01.14.426748doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426748
http://creativecommons.org/licenses/by/4.0/


the gold standard method of relative quantification and a method to calculate gene expression without a 

reference sample, to allow users to quickly determine expression changes without loosing information about 

the level of expression levels in control conditions. 

 

Improving efficiency of data processing and reproducibility of analyzes between users 

Reprocessing the external dataset highlighted two main advantages of treating qPCR dataset with a program. 

First, manual analysis of qPCR data is time consuming. Second, comparing both data treatments (manual and 

program-assisted) has shown that one important source of variation between results of manual analysis is the 

inconsistent rules used for data exclusion. Although, removing one outlier from technical replicates, in the 

vast majority of cases, improves the CT standard deviation (std) by decreasing it under the commonly accepted 

threshold of 0.3; in many cases researchers decide to keep a technical replicate even if the CT-std value is 

above 0.3. These judgement calls frequently occur when transcripts have low expression levels and the high 

variance between technical replicates does not permit a decision based on the adjustment of the CT std. To 

account for these situations, we incorporated a second rule for data inclusion/exclusion based on the distance 

between the arithmetic mean and the median value of technical replicates to determine the most acceptable 

set of technical replicates. Applying such an algorithm to the user’s judgement removes variability and 

potential bias in the resulting normalized gene expression levels. We were able to reprocess external data 

using Auto-qPCR and acquired the same summary output, reaching the same conclusions as the initial study. 

We showed that Auto-qPCR can process data from different PCR machines and matched the expected 

outcome from manual processing without the risk of bias or errors. Using a double rule for data 

inclusion/exclusion for highly variable signal between technical replicates, the program provides a unique 

treatment that will considerably reduce the risk of variability and mistakes generated by and between users 

during manual data processing. 

 

Additional uses of the Auto-qPCR software  

The Auto-qPCR program has many other potential uses not including in this manuscript, and one such use is 

for analyzing data from a chromatin immunoprecipitation experiment followed by specific DNA amplification. 

There are several ways of normalizing outputs of chromatin immunoprecipitation ChiP assays. DNA 

amplification of a region of interest in an immunoprecipitated sample can either be compared to the 

amplification of non-immunoprecipitated fraction (Nagaki et al., 2003); or a fold enrichment of DNA 

amplification estimated by comparing the amplification level of a candidate region for protein binding to a 

DNA region that is known to be unbound (Mathieu et al., 2005). In a previous study we chose the second 

approach (Maussion et al., 2015), however thedata could be treated using Auto-qPCR and analyzed using 
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either the absolute or the relative quantification models. The absolute quantification method would permit 

testing the primer efficiency through the calibration curve (Brankatschk et al., 2012), and the DNA target 

amplification would be normalized to an unbound DNA. Alternatively, the level of DNA/protein interaction can 

be estimated using the relative quantification models. One or several regions, known to be unbound by a 

protein of interest, can be defined as endogenous control(s). DNA/protein interactions can be quantified and 

compared using either ∆CT or ∆∆CT delta CT methods depending on whether the experimental design has a 

reference condition.  

By providing the absolute and two relative models to process qPCR data, Auto-qPCR is flexible enough to let 

the user choosing the most appropriate model to use, based on the information available on the DNA regions 

to amplify and analyze. 

 

Standardizing and automating data processing allows for better experimental design 

The Auto-qPCR program was conceived to treat, analyze and display qPCR data generated using either relative 

or absolute quantification designs, while limiting errors related to manual processing. The absolute and 

relative quantification procedures provides distinct information about gene expression and DNA integrity. 

Absolute quantification is accurate when the biological question is examining changes in individual gene 

expression over various experimental conditions. The relative model without a reference sample can detect 

differences in expression levels between genes within a given condition. When the variation of gene 

expression between two or more conditions is addressed, the relative quantification model using a reference 

sample is suitable. Data processing tools will never replace or supplement appropriate experimental design 

and statistical power. The conditions included with the design and interpretation of the results still remain in 

the user’s hand. We have provided a tool that will provide easy, reproducible analysis without user errors for 

unlimited samples. Although, we cannot computationally remove the need for replication and controls, 

analysis time will no longer be a limitation. Auto-qPCR can also assist the user in larger experimental designs. 

The elements required to support qPCR data generated in duplex (from two probes) data across several plates 

using relative quantification designs are already present in the program. All these possibilities were included 

to allow the user to focus on determining the most accurate experimental design to answer biological 

questions. 
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Figure Legends 

Figure 1: Workflow of a qPCR experiment 

Schematic representation of common qPCR assays: genomic stability assay to detect DNA deletions or 

duplication events (green line), two methods to quantify RNA (cDNA) using either absolute (red line) or relative 

quantification designs (blue lines). qPCR experiments can be sub divided in two parts: the sample preparation 

and running the PCR machine (Experimental Work-Flow) and the data analyses (Auto QPCR Program). The 

preparation of the experiment includes nucleic acid extraction followed by a cDNA synthesis step (for RNA) 

and the in silico design of the PCR plate layout. Nucleic acid preparations must be accurately diluted. For the 

absolute model, a standard curve must be created. The experimental design of the PCR plate, including the 

chemistry (fluorophore, primer mix), the status of the samples, and the transcripts or DNA region that are 

going to be amplified, must be generated in silico. After having defined the parameters of the qPCR reactions 

(number of PCR cycles and length of the different steps (denaturation, hybridization and elongation), and the 

temperatures), the PCR is run. The exported data from the thermocycler, converted to csv, is entered into the 

Auto-qPCR software and the model matching the experimental design and parameters for analysis are 

selected. The software will reformat the data, quantify each sample normalized to controls, and create 

spreadsheets and graphs to visualize the data analyses, all of which will be included in a zip file for the user to 

save. 

 

Figure 2: Auto-qPCR can process PCR genomic stability data. A) Screen capture of the Auto-qPCR web-app. 

B) Simplified schematic of PCR workflow showing the analysis for genomic instability in green. The DNA copy 

number is quantified with the same formula as the delta-delta CT relative quantification model. C) The 

calculations carried out for genomic instability testing (delta-delta CT). Top, the general formula used where 

the CT values for each chromosome were normalized to a region of interest and then to a reference sample. 

Middle, the reference DNA region (CHR4) and the reference sample (Normal) used in this dataset. Bottom, the 

confidence interval for determining a genomic instability, insertion or deletion event. D) Bar chart showing 

the output from Auto-qPCR program running the genomic instability model. Four different iPSC cell lines are 

indicated and compared to the control sample. Normalized signals for all four cell lines are in the confidence 

interval defined by the control sample. 

 

Figure 3: Auto-qPCR can process quantitative qPCR data using a standard curve to perform statistical 

analysis. Output of Auto-qPCR processing using the absolute model. A) Illustration of a calibration curve 

displaying 8 serial dilution points of four-time dilution which covers cDNA quantities from 0.003053 to 50 ng 
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and establishes the linear relationship between CT values (y-axis) and the log2[RNA]. B) Schematic of PCR 

workflow showing the pipeline for the absolute quantification using a standard curve in red. C) Formula used 

to process a real-time PCR experiment using an absolute quantification design. Top, general formula where 

the linear relation between the logarithm of RNA concentration and the CT value is provided by the calibration 

curve. The normalized quantification is expressed as a ratio between concentrations for the gene of interest 

and the endogenous control(s) estimated from their respective calibration curves. Bottom, the variables 

specific to this dataset are shown in the general formula. D) Bar chart showing the output from Auto-qPCR 

program using the absolute model for the normalized expression of the gene KCNJ6 for 6 cell lines at 4 different 

developmental stages (iPSC: induced pluripotent stem cells; NPC, Neural progenitor cells; DA4W, 

dopaminergic neurons at 4 weeks, DA6W: Dopaminergic neurons at 6 weeks). E) and G) Bar charts showing 

the average expression levels obtained from the three technical replicates for each cell line and time point for 

the three genes (SYP, KCNJ6 and GRIA1), normalized with two housekeeping genes (ACTB: beta-actin, GAPDH). 

E) Mean RNA expression grouped by genes on the x-axis, cell lines and time points are indicated in legend. G) 

Mean RNA expression grouped by cell lines and time points; the gene transcripts quantified are indicated in 

the legend. F) and H) Bar charts showing the mean expression levels of SYP, KCNJ6 and GRIA1 for four 

developmental stages (n=6 cell lines). F) Grouped by genes (x-axis), time points are indicated in the legend. H) 

Grouped by time points (x-axis), the genes are indicated in the legend. One way ANOVAs across differentiation 

stages for KCNJ6, SYP and GRIA1 (p < 0.001, p < 0.001, p = 0.002). 

 

Figure 4: Auto-qPCR can process quantitative PCR data using two different relative models. Output of Auto-

qPCR using the relative quantification with both the ∆CT and ∆∆CT models. A) Amplification curves illustrating 

a difference of cycle threshold values (∆CT) between a gene of interest and an endogenous control. B) 

Schematic of PCR workflow showing the two methods to calculate relative RNA quantity, ∆CT in dark blue and 

∆∆CT in light blue. C) Formula used to perform a qPCR using relative quantification models, according the ∆CT 

(right), or the ∆∆CT methods (left). D-F) Bar charts showing the output of the delta-CT model (RQ∆CT). G-I) Bar 

charts showing the output from the delta-delta-CT model (RQ∆∆CT). D) and G) Mean normalized gene 

expression values from technical replicates for the genes PAX6, CAMK2A and GRIN1 indicated on the x-axis for 

2 cell lines at two stages of differentiation (D0: Neural progenitor cells, and D7: cortical neurons at 7 days of 

differentiation) as indicated. E) and H) Statistics output showing the mean gene expression from two cell lines 

at two stages of differentiation indicated, for the three genes indicated on the x-axis. F) and I) Statistics output 

showing the mean expression values for two cell lines at two time points on the x-axis and the three genes 

indicated. Differential expression between D0 and D7 is not significant (PAX6 p = 0.40, CAMK2A p=0.18, GRIN1 

p=0.16), t-tests, n=2. 
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Figure 5: Auto-qPCR can process data from different thermocyclers and produce the same results as manual 

processing. A) Bar chart showing the mean Nrxn3 expression level normalized to B2M levels assessed with an 

absolute quantification design manually processed and plotted in Prism, grouped by brain regions (STN: 

subthalamic nucleus, GP: globus paladus, SN: substantia nigra) on the x-axis, with and without cocaine 

treatment. B) Output of Auto-qPCR processing the same dataset. Nrxn3 normalized expression levels from 

technical replicates for each biological sample. The treatment conditions are indicated below the x-axis. C) 

Statistics output of Auto-qPCR program comparing cocaine and control groups. Nrxn3 normalized expression 

levels in the combined brain regions. Expression is not significantly different, p=0.113, t-test, n=13. D) Auto-

qPCR statistical output showing mean Nrxn3 expression combining treatments and comparing the three brain 

regions. One way ANOVA shows significant effect of brain regions, FDR adjusted p < 0.001, n=9 for GP and SN, 

n= 10 STN. E) Bar chart of Nrxn3 expression shown as six groups distinguished by brain region and treatment 

generated by Auto-qPCR program after a one-way ANOVA, p < 0.001, n=4 or 5. Posthoc analysis using multiple 

t-test with FDR correction comparing treatment at each brain region: SNT p=0.990, GP p=0.033 , SN p=0.413. 

F) Bar chart of Nrxn3 average normalized by brain region (x-axis) and treatment, generated by Auto-qPCR 

program after a two-way ANOVA, brain region p < 0.001, treatment p= 0.2265, n=4 or 5.Posthoc analysis using 

multiple t-test with FDR correction comparing  each brain region with and without cocaine: SNT p=0.0.998, GP 

p=0.053 and p-unadjusted = 0.017, SN p=0.619 G) Bar chart of the average Nrxn3 normalized expression levels 

in the GP compared between the two groups with a t-test (p = 0.0176). 
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Figure S1: Example output from Auto-qPCR using the genomic instability model. A) The Log.txt output from 

the file generated by Auto-qPCR. The file lists the steps completed by the program and the inputs from the 

web interface. This example is from the genomic instability analysis. The selection for statistical analysis is also 

shown in the text file. Using the log file, the exact analysis can be repeated because all the settings are 

recorded. B) Bar chart showing an alternative visualization for the genomic instability assay where the data is 

grouped by cell lines on the x-axis and colours indicated in the legend represent the regions of chromosomes 

tested. 

 

Figure S2: Example images of AJG001-C4 at four stages of development (iPSCs, NPCs, as well as  4 and 6 

week DANs). A) iPSCs stained for pluripotency markers (Nanog, Tra1-60, SSEA4, OCT3-4 as indicated), together 

with Hoechst and shown as merged images on the right. B) Neural precursor cells (NPCs) expressing 

dopaminergic lineage (SOX1 and OTX2), proliferation (Ki67) and neural progenitors (Nestin) markers. C) 

Dopaminergic neurons after 4 and 6 weeks of differentiation stained with neuronal marker Tuj1 in all images 

and dopaminergic markers FOXA2, GIRK2 and TH as indicated. 
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Supplemental Tables 

 

Table S1: Overview of cell lines: Human-derived induced pluripotent stem cells used. 

 

Cell line Donor Age Sex Cell Type Reprogramming 

Method 

GM25952 10 F Fibroblast Episomal 

GM25953 43 F Fibroblast Episomal 

GM25974 7 F Fibroblast Episomal 

GM25975 37 F Fibroblast Episomal 

522-2666-2 NA NA  Lymphocytes Retrovirus 

AIW001-2 48 F PBMCs Retrovirus 

AIW002-2 37 M PBMCs Retrovirus 

NCRM1 NA M Cord Blood Episomal 

AJG001-C4 37 M PBMCs Episomal 

AJC001-5 37 M Fibroblast Retrovirus 

KYOU-

DRX0190B 

36 F Fibroblast Retrovirus 
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Table S2: Taqman primers/probe sets. The primer/probe sets listed were used to generate the data presented 

in Figures 3 and 4 and test the absolute and relative quantification models to assess gene expression levels by 

Auto-qPCR web app. The primer/probe sets were selected from the assays available on the Thermo Fisher 

Scientific web site and chosen to cover the most important number of alternative transcripts for a given gene. 

With the exception of the assay for GAPDH, the amplicons overlap two exons, avoiding amplification of 

genomic DNA that could remain from incomplete DNAse digestion. The refseq sequence used for designing 

the primer/probe set assay is shown. 

 

Gene 

Symbol 
Gene Name Location Assay Reference 

Exon 

Boundaries 

Reference 

Accession 

ACTB Actin beta 7p22.1 Hs01060665_g1 2-3 NM_001101 

GAPDH 

Glyceraldehyde-3-

phosphate 

dehydrogenase 

12p13.31 Hs02786624_g1 7 NM_001256799 

KCNJ6 

Potassium voltage-gated 

channel subfamily J 

member 6 

21q22.13 Hs01040524_m1 3-4 NM_002240 

SYP Synaptophysin Xp11.23 Hs00300531_m1 3-4 NM_003179 

CAMK2A 

Calcium/calmodulin-

dependent protein 

kinase II 

5q32 Hs00947041_m1 17-18 NM_015981 

PAX6 Paired box 6 11p13 Hs01088114_m1 7-8 NM_000280 

GRIN1 

Glutamate ionotropic 

receptor NMDA type 

subunit 1 

9q34.3 Hs00609557_m1 1-2 NM_000832 
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Table S3: Contents and file structure of Python scripts. The file structure will be maintained if the Auto-

qPCR program is downloaded from GitHub and run locally. These files will be found inside the ‘website’ 

folder if the GitHub repo is pulled or the zip file is downloaded. Folder Name indicates the parent folder and 

the subfolder containing the program files. File name indicates the file name for each Python script and 

Function indicates what processes are performed by each script. 

 

Folder Name File name Function 

Auto-qPCR main.py calls app 

application 

AUTOqPCR.py inputs data  

 inputs conditions 

 removes outliers 

 calls model 

absolute.py runs normalization for absolute model 

relative.py 

runs relative quantification with delta-CT 

normalization 

stability.py 

runs relative quantification with delta-delta-CT 

normalization and genomic instability test 

plot.py creates all graphs 

statistics.py runs all statistics 

regex_rename.py function to allow flexible naming 

application/template all html interface files creates the web form  
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Table S4: List of all the user inputs for the Auto-qPCR program and purpose of the expected user inputs. 

Section indicates the spot in the web app where the input box is located. User Input indicates the input box 

or options as they appear in the web app. Selections and Values indicates possible options for the user to 

select and the purpose of the input. 

Section  User Input Selections and Values 

Main Select model Choose the analysis model to run 

 Upload your data Select your csv files 

 File information  Choose yes if your file doesn’t contain gene names 

or you want to filter out data from a second probe. 

Options Endogenous control Genes/targets for normalization 

 Cut-off The threshold for which the standard deviation is 

above and outliers from technical replicates will be 

removed. Default = 0.3 

 Max Outliers The proportion of replicates that can be removed. 

Default = 0.5. With 0.5, if there are 3 replicates, 

only 1 can be removed 

 Preserve highly variable 

replicates 

If set to yes, a second condition is added before a 

replicate is removed. The difference between the 

mean and median must be greater than 10 % of 

the mean 

 Calibrator/reference sample This is the gene/target that is the second 

normalization in the ∆∆CT model 

Visualization 

Options 

Target order Genes are entered in the order they will appear on 

the graph 

 Sample order Sample names are entered in the order they will 

appear on the graph 

 Columns for statistics If a group column is present in the raw data, it 

must be indicated here to be available for the 

statistics 
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Table S5: Description of the statistical tests using each possible selection criteria. The number of groups to 

compare, ‘#G’ indicates the number of conditions to compare with the variables. The number of variables, 

‘#Var’ indicates the number of experimental conditions to compare. The distribution of the data determines 

if a parametric test will be used, for normally distributed data, or a non-parametric test will be used by the 

software. ‘Measure’ indicates if the data was collected on independent samples or on the same samples at 

different time points. ‘Test’ indicates the name of the test used by the software based on the user’s sections 

from the other four criteria. Auto-qPCR always uses the same post-hoc test except when only two groups are 

being compared and no post-hoc test is performed. 

# G # V Distribution Measure Test Posthoc 

2 1 parametric (normal) Independent student t-test two 

tailed, un-paired 

none 

2 1 parametric (normal) Repeated measures 

(dependent) 

student t-test two 

tailed, paired 

none 

2 1 non-parametric Independent Wilcoxon test none 

2 1 non-parametric Repeated measures 

(dependent) 

Mann-Whitney U test none 

> 2 1 parametric (normal) Independent one-way ANOVA pairwise t-tests with 

FDR correction 

> 2 1 parametric (normal) Repeated measures 

(dependent) 

one-way ANOVA pairwise t-tests with 

FDR correction 

> 2 1 non-parametric Independent Kruskal-Wallis test pairwise t-tests with 

FDR correction 

> 2 1 non-parametric Repeated measures 

(dependent) 

Friedman test pairwise t-tests with 

FDR correction 

> 2 2 parametric (normal) Independent two-way ANOVA pairwise t-tests with 

FDR correction 

> 2 2 parametric (normal) Repeated measures 

(dependent) 

two-way ANOVA pairwise t-tests with 

FDR correction, for 

conditions 1,2 and the 

interaction 
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Table S6: Results of Auto-qPCR summary output found in summary_data.csv. The DNA region is indicated in 

Target Name, cell lines are indicated in Sample Name, Indel indicates if there is a duplication or deletion event 

calculated by the web app, Rep is the number of technical replicates included for analysis, RQ is the relative 

quantification, Std is the standard deviation and SEM is the standard error of the mean. RQ values from the 

technical replicates. 

 

Target 

Name 
Sample 

Name 
Indel Rep RQ Std SEM 

CHR1 GM25953 Normal 3 0.958 0.028 0.016 
CHR1 GM25975 Normal 3 1.009 0.036 0.021 
CHR1 GM25974 Normal 3 1.026 0.011 0.006 
CHR1 GM25952 Normal 3 0.962 0.058 0.033 
CHR1 Normal Normal 3 1.000 0.032 0.019 
CHR4 GM25953 Normal 3 1.000 0.006 0.003 
CHR4 GM25975 Normal 3 1.000 0.012 0.007 
CHR4 GM25974 Normal 3 1.000 0.016 0.009 
CHR4 GM25952 Normal 3 1.000 0.024 0.014 
CHR4 Normal Normal 3 1.000 0.017 0.010 
CHR8 GM25953 Normal 3 1.026 0.035 0.020 
CHR8 GM25975 Normal 3 1.027 0.053 0.031 
CHR8 GM25974 Normal 3 1.102 0.006 0.003 
CHR8 GM25952 Normal 3 1.007 0.028 0.016 
CHR8 Normal Normal 3 1.000 0.009 0.005 
CHR10 GM25953 Normal 3 0.913 0.040 0.023 
CHR10 GM25975 Normal 3 0.998 0.024 0.014 
CHR10 GM25974 Normal 3 0.976 0.044 0.026 
CHR10 GM25952 Normal 3 0.979 0.061 0.035 
CHR10 Normal Normal 3 1.000 0.008 0.005 
CHR12 GM25953 Normal 3 0.935 0.038 0.022 
CHR12 GM25975 Normal 3 1.094 0.005 0.003 
CHR12 GM25974 Normal 3 1.140 0.023 0.013 
CHR12 GM25952 Normal 3 1.080 0.053 0.031 
CHR12 Normal Normal 3 1.000 0.012 0.007 
CHR17 GM25953 Normal 3 0.921 0.054 0.031 
CHR17 GM25975 Normal 3 1.061 0.061 0.035 
CHR17 GM25974 Normal 3 1.220 0.041 0.024 
CHR17 GM25952 Normal 3 1.088 0.202 0.116 
CHR17 Normal Normal 3 1.001 0.049 0.028 
CHR18 GM25953 Normal 3 0.938 0.021 0.012 
CHR18 GM25975 Normal 3 0.991 0.028 0.016 
CHR18 GM25974 Normal 3 0.972 0.032 0.019 
CHR18 GM25952 Normal 3 0.988 0.010 0.006 
CHR18 Normal Normal 3 1.000 0.015 0.009 
CHR20 GM25953 Normal 3 0.992 0.045 0.026 
CHR20 GM25975 Normal 3 1.104 0.007 0.004 
CHR20 GM25974 Normal 3 0.927 0.025 0.014 
CHR20 GM25952 Normal 3 0.874 0.021 0.012 
CHR20 Normal Normal 3 1.000 0.037 0.021 
CHRX GM25953 Normal 3 0.963 0.030 0.018 
CHRX GM25975 Normal 3 0.931 0.019 0.011 
CHRX GM25974 Normal 3 0.975 0.007 0.004 
CHRX GM25952 Normal 3 0.985 0.069 0.040 
CHRX Normal Normal 3 1.000 0.027 0.016 
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Table S7: Statistical results for the absolute quantification found in file ANOVA_results.csv. Target Name 

indicates the genes compared, DF: degrees of freedom, F is the statistic to determine the p-value, MS: mean 

squares, SS: sums of squares, measure indicates if the tests were dependent measures for example, in a time 

course, where cell lines were matched across samples. Dist indicates the distribution is normal (parametric). 

 

Target 

Name 

DF F MS SS p-value p-value 

corrected 

Measure Dist 

GAPDH 3 5.491 0.046 0.137 0.00951 0.04753 dependent parametric 

ACTB 3 6.958 0.038 0.115 0.00372 0.01859 dependent parametric 

KCNJ6 3 22.923 20.729 62.188 0.00001 0.00004 dependent parametric 

SYP 3 114.917 58.478 175.433 0.00000 0.00000 dependent parametric 

GRIA1 3 11.24 10.081 30.243 0.0004 0.00201 dependent parametric 
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Table S8: Post-hoc results from the statistical analysis of the absolute quantification from the one-way 

ANOVA. These results are found in file Posthoc_result.csv. The comparisons between individual stages for 

each gene is show. Target Name indicates the gene of interest. A and B show the two groups being compared. 

DF: degrees of freedom, p-value correct is the value corrected for multiple comparisons, p-value before 

correction for a paired t-test. Parametric, True means a normal distribution was selected. 

Target Name A B DF p-value 

corrected 

p-value Paired Parametric 

KCNJ6 IPSC NPC 5 0.85667 0.73431 TRUE TRUE 

KCNJ6 IPSC DA4W 5 0.00845 0.00282 TRUE TRUE 

KCNJ6 IPSC DA6W 5 0.00845 0.00253 TRUE TRUE 

KCNJ6 NPC DA4W 5 0.01157 0.00705 TRUE TRUE 

KCNJ6 NPC DA6W 5 0.01157 0.00771 TRUE TRUE 

KCNJ6 DA4W DA6W 5 0.85667 0.85667 TRUE TRUE 

SYP IPSC NPC 5 0.18543 0.171 TRUE TRUE 

SYP IPSC DA4W 5 0.0001 0.00002 TRUE TRUE 

SYP IPSC DA6W 5 0.00018 0.00009 TRUE TRUE 

SYP NPC DA4W 5 0.00018 0.00012 TRUE TRUE 

SYP NPC DA6W 5 0.00018 0.00011 TRUE TRUE 

SYP DA4W DA6W 5 0.18543 0.18543 TRUE TRUE 

GRIA1 IPSC NPC 5 0.06779 0.05649 TRUE TRUE 

GRIA1 IPSC DA4W 5 0.03575 0.01192 TRUE TRUE 

GRIA1 IPSC DA6W 5 0.03575 0.01137 TRUE TRUE 

GRIA1 NPC DA4W 5 0.06779 0.03449 TRUE TRUE 

GRIA1 NPC DA6W 5 0.06779 0.0519 TRUE TRUE 

GRIA1 DA4W DA6W 5 0.35174 0.35174 TRUE TRUE 
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Table S9: Example of output from the relative delta-CT analysis from the file clean_data.csv showing the top 

10 rows of data. Target Name indicates the gene analyzed, Sample Name indicates the cell line, rq is the 

relative quantification for each replicate, rq-mean is the mean value of the replicates, rqSD is the standard 

deviation of the replicates, rqSEM is the standard error of the replicates, Outliers indicates if each outlier is a 

replicate, Group indicates the group used for statistics for the summary data. 

Target Name Sample Name rq rqMean rqSD rqSEM Outliers Group 

PAX6 AIW002-2- 0.0187 0.0223 0.0032 0.0018 FALSE D0 

PAX6 AIW002-2- 0.0248 0.0223 0.0032 0.0018 FALSE D0 

PAX6 AIW002-2- 0.0235 0.0223 0.0032 0.0018 FALSE D0 

PAX6 AIW002-2- 0.0072 0.0073 0.0004 0.0002 FALSE D7 

PAX6 AIW002-2- 0.0069 0.0073 0.0004 0.0002 FALSE D7 

PAX6 AIW002-2- 0.0077 0.0073 0.0004 0.0002 FALSE D7 

PAX6 KYOU-- 0.1261 0.1193 0.0065 0.0038 FALSE D0 

PAX6 KYOU-- 0.1131 0.1193 0.0065 0.0038 FALSE D0 

PAX6 KYOU-- 0.1187 0.1193 0.0065 0.0038 FALSE D0 

PAX6 KYOU-- 0.0202 0.0210 0.0007 0.0004 FALSE D7 
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Table S10: Statistical results from the relative quantification comparing the delta-CT and delta-delta-CT 

using student t-tests. Target name indicate the gene being compared, DF: degrees of freedom, tail; two tail t-

test, paired FALSE indicated an unpaired t-test. The p-values are shown under p-val. Model indicates if the 

delta-CT or the delta-delta-CT method was used. 

 

Target 

Name 

DF T tail paired p-value model effect 

size 

power Bayes 

factor 

PAX6 1 1.361 two-sided FALSE 0.40342 delta CT 1.449 0.129 0.847 

CAMK2A 1 -3.277 two-sided FALSE 0.18855 delta CT 1.405 0.125 1.359 

GRIN1 1 -3.744 two-sided FALSE 0.16616 delta CT 1.836 0.162 1.454 

PAX6 1 1.361 two-sided FALSE 0.40342 delta delta CT 1.449 0.129 0.847 

CAMK2A 1 -3.277 two-sided FALSE 0.18855 delta delta CT 1.405 0.125 1.359 

GRIN1 1 -3.744 two-sided FALSE 0.16616 delta delta CT 1.836 0.162 1.454 
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Table S11: Manual processing compared to Auto-qPCR processing with a range of cut-off values for std to 

exclude replicates, with or without preserving highly variable outliers. Calculations are all using the absolute 

model to quantify NRXN3 expression with and without cocaine treatment in three brain regions. Values that 

differ across processing conditions are highlighted in bold. Left, the sample information for Region, Treatment 

and code name of each mouse (biological replicate) are listed. The processing methods, Manual or Auto-qPCR, 

are labelled. The std cut-off is the value for which std exceeded for outliers to be moved. The settings for 

preserving highly variable technical if the ration of mean-media/media is less than 0.1 is indicated by ‘yes’. 

RNA indicates the RNA quantification values. 
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   Manual Auto-qPCR 

Preserve high variation replicates yes no no no yes yes 

Std cut-off 0.29 0.3 0.275 0.2 0.3 0.275 

Region Treatment Mouse RNA RNA RNA RNA RNA RNA 

STN Saline B4bis 0.2564 0.2564 0.2564 0.2817 0.2564 0.2564 

STN Saline B6 0.1933 0.1933 0.1933 0.1933 0.1933 0.1933 

STN Saline R6 0.3290 0.3290 0.3290 0.3055 0.3290 0.3290 

STN Saline V3 0.2845 0.2845 0.2845 0.3357 0.2845 0.2845 

STN Saline V4 0.3259 0.3259 0.3259 0.3259 0.3259 0.3259 

STN Cocaine R5Bis 0.4570 0.4570 0.4570 0.4570 0.4116 0.4116 

STN Cocaine R6bis 0.1708 0.1708 0.1708 0.1708 0.1708 0.1708 

STN Cocaine R8bis 0.4253 0.4253 0.4253 0.4253 0.4253 0.4253 

STN Cocaine V2 0.2538 0.1659 0.1659 0.1659 0.1987 0.1987 

STN Cocaine V8 0.1818 0.1818 0.1818 0.1818 0.1818 0.1818 

GP Saline B4bis 0.2541 0.2541 0.2541 0.2541 0.2541 0.2541 

GP Saline R6 0.7107 0.7107 0.7107 0.7107 0.7107 0.7107 

GP Saline V3 0.4125 0.4125 0.4125 0.4125 0.4125 0.4125 

GP Saline V4 0.2991 0.2991 0.2991 0.2991 0.2991 0.2991 

GP Cocaine R5Bis 0.5021 0.5021 0.5021 0.5021 0.4988 0.4988 

GP Cocaine R6bis 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 

GP Cocaine R8bis 1.0169 1.0169 1.0169 0.9455 1.0169 1.0169 

GP Cocaine V2 0.8538 0.8538 0.8538 0.7797 0.8538 0.8538 

GP Cocaine V8 0.9486 0.9486 0.9486 0.9486 0.9486 0.9486 

SN Saline B4bis 0.7854 0.8745 0.7854 0.7854 0.7317 0.7317 

SN Saline R6 0.8751 1.0784 1.0784 1.0784 0.8751 0.8751 

SN Saline V3 1.3306 1.3306 1.3306 1.3306 1.1553 1.1553 

SN Saline V4 1.0575 1.0575 1.0575 1.0575 0.8940 0.8940 

SN Cocaine R5Bis 1.2379 1.2379 1.2379 1.2379 1.2379 1.2379 

SN Cocaine R6bis 1.0016 1.1607 1.1607 1.2982 1.0016 1.0016 

SN Cocaine R8bis 0.4393 0.4393 0.4393 0.4393 0.4393 0.4393 

SN Cocaine V2 1.0196 1.0196 1.0196 1.0971 1.0196 1.0196 

SN Cocaine V8 2.2979 2.2979 2.2979 2.2979 2.2979 2.2979 
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Table S12: Comparison of variance between manual processing and Auto-qPCR. The variance between RNA 

quantity values calculated manually or with Auto-qPCR were calculated between each mean value found in 

table S11. For each brain region the sum of the variance was calculated. The same comparison was performed 

between manual processing and Auto-qPCR with the standard cut-off of 0.3 and the standard cut-off together 

plus the preserve extreme values option. 

 

Region Cut-off 0.3 Cut-off 0.3 + 

Preserve 

STN 0.004 0.003 

GP 0.000 0.000 

SN 0.037 0.030 

All regions 0.037 0.033 

 

Table S13: Results of the statistical analysis of control vs. cocaine treatment for all brain regions. The results 

of an unpaired, two tailed students t-test performed in Auto-qPCR using the statistic selections. The table is 

found in the file ‘ttest_results.csv’. 

 

Target 

Name 

DF T tail paired p-val 

B2M 18.54 0 two-sided FALSE 1.000 

NRXN3 22.74 -1.555 two-sided FALSE 0.134 
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Table S14: Posthoc results after one-way ANOVA comparing brain regions. Control and cocaine treatment 

samples were pooled together. Target name indicates the gene tested. A and B indicate the two regions being 

compared. DF: degree of freedom.  

Target 

Name 

A B DF p-value 

corrected 

p-value correction 

method 

B2M STN GP 9 1.0000 1.0000 fdr_bh 

B2M STN SN 12 1.0000 1.0000 fdr_bh 

B2M GP SN 16 1.0000 1.0000 fdr_bh 

NRXN3 STN GP 9 0.0071 0.0047 fdr_bh 

NRXN3 STN SN 8 0.0048 0.0016 fdr_bh 

NRXN3 GP SN 16 0.0549 0.0549 fdr_bh 

 

 

Table S15: One-way ANOVA and posthoc test comparing groups of brain region and treatment. The ANOVA 

results are shown for both B2M and NRXN3 for the overall effect of treatment and brain region together (One-

way ANOVA. The post-hoc tests for the relevant comparisons are shown for each brain region with and without 

cocaine treatment (post-hoc).  

Target Name Comparison DF p-value 

corrected 

p-value Test 

B2M Treatment and region 5 0.3885 0.7771 One-way 

ANOVA 

NRXN3 Treatment and region 5 0.0006 0.0011 One-way 

ANOVA 

NRXN3 STN_Control vs 

STN_Cocaine  

8 0.9977 0.9977 post-hoc 

NRXN3 GP_Control vs 

GP_Cocaine 

7 0.0176 0.0334 post-hoc 

NRXN3 SN_Control vs 

SN_Cocaine 

5 0.4127 0.4762 post-hoc 
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Table S16: Two-way ANOVA and posthoc tests comparing brain region, treatment and interaction. The 

relevant information was selected from the output files ‘ANOVA_results.csv’ and ‘Posthoc_results.csv’. The 

2-way ANOVA results are shown for NRXN3 for the overall effect of brain region (Group1), treatment (Group2) 

and the interaction effect of region and treatment (Group1*Group2) (upper table). The post-hoc tests for the 

relevant comparisons are shown for each brain region with and without cocaine treatment for each brain 

region indicated under contrast. The 2-way ANOVA results are shown on top and the post-hoc multiple t-test 

comparisons are shown on the bottom, indicated in the Test column 

 

Target 

Name 

Contrast DF p-value 

corrected 

p-value Test 

NRXN3 Group1: Region 2 0.0004 0.0001 ANOVA 

NRXN3 Group2: Treatment 1 0.2265 0.0755 ANOVA 

NRXN3 Group1 * Group2 2 1.0000 0.3513 ANOVA 

NRXN3 
all: Control vs 

Cocaine 
23 NA 0.1337 post-hoc 

NRXN3 
STN: Control vs 

Cocaine 
8 0.9977 0.9977 post-hoc 

NRXN3 
GP: Control vs 

Cocaine 
7 0.0529 0.0176 post-hoc 

NRXN3 
SN: Control vs 

Cocaine 
5 0.6190 0.4127 post-hoc 
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