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Abstract 1 

 The study of brain network interactions during naturalistic stimuli facilitates a 2 
deeper understanding of human brain function. Intersubject correlation (ISC) analysis 3 
of functional magnetic resonance imaging (fMRI) data is a widely used method that 4 
can measure neural responses to naturalistic stimuli that are consistent across subjects. 5 
However, interdependent correlation values in ISC artificially inflated the degrees of 6 
freedom, which hinders the investigation of individual differences. Besides, the 7 
existing ISC model mainly focus on similarities between subjects but fails to 8 
distinguish neural responses to different stimuli features. To estimate large-scale brain 9 
networks evoked with naturalistic stimuli, we propose a novel analytic framework to 10 
characterize shared spatio-temporal patterns across subjects in a purely data-driven 11 
manner. In the framework, a third-order tensor is constructed from the timeseries 12 
extracted from all brain regions from a given parcellation, for all participants, with 13 
modes of the tensor corresponding to spatial distribution, time series and participants. 14 
Tensor component analysis (TCA) will then reveal spatially and temporally shared 15 
components, i.e., naturalistic stimuli evoked networks, their temporal courses of 16 
activity and subject loadings of each component. To enhance the reproducibility of the 17 
estimation with TCA, a novel spectral clustering method, tensor spectral clustering, 18 
was proposed and applied to evaluate the stability of TCA algorithm. We demonstrate 19 
the effectiveness of the proposed framework via simulations and real fMRI data 20 
collected during a motor task with a traditional fMRI study design. We also apply the 21 
proposed framework to fMRI data collected during passive movie watching to illustrate 22 
how reproducible brain networks are identified evoked by naturalistic movie viewing. 23 
  24 
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Introduction 1 

 There is growing interest in studying brain function during naturalistic stimuli e.g. 2 
film clips, spoken narratives and music as experimental paradigms to investigate 3 
human cognition and behavior in “real-world” (Breakspear and Chang, 2020; Hasson 4 
et al., 2004; Huth et al., 2016; Nishimoto et al., 2011; Sonkusare et al., 2019; Spiers 5 
and Maguire, 2007). Naturalistic stimulus viewing during functional magnetic 6 
resonance imaging (fMRI) is emerging as a powerful tool to define brain 7 
imaging-based markers of psychiatric illness (Eickhoff et al., 2020), with several 8 
advantages in comparison to unconstrained resting state. Namely, studying brain 9 
network function during naturalistic stimulus viewing may facilitate a deeper 10 
understanding of human brain function since the passive state is better constrained and 11 
it reduces participant motion, which greatly increases the quality of the fMRI data. 12 
However, new analytical strategies are needed that assess both the shared rapid 13 
temporally evolving brain responses evoked by the naturalistic stimuli in participants, 14 
as well as the idiosyncrasy in individual participants (Simony and Chang, 2020).  15 
 The most popular approach for analysis of naturalistic fMRI data is assessment of 16 
intersubject correlations (ISC), which quantifies the across-subject consistency of 17 
stimulus-driven responses (Hasson et al., 2004). While evoked brain activity using 18 
traditional fMRI study designs and stimuli is relatively straightforward to model, 19 
naturalistic stimuli are complex and dynamic, and it is much more difficult to generate a 20 
model of evoked activity for analyses. Instead, for dynamic complex stimuli such as 21 
movies, ISC measures shared information across brains by using each individual’s 22 
brain activity measured by fMRI to model another individual’s brain activity. Using 23 
this strategy, the shared brain regions that respond to the same time-locked naturalistic 24 
stimuli across subjects can be estimated, even with stimuli that reflect complex 25 
dynamic real-life contexts (Hasson et al., 2004; Kauppi et al., 2014; Nastase et al., 26 
2019). Modifications to intersubject functional correlation (IFC), temporal intersubject 27 
functional correlation (ISFC) has been proposed that consider the timecourse 28 
correlations between all possible pair-wise combinations of brain parcels across 29 
subjects (Nastase et al., 2019) and spatial ISC is an extension of temporal ISC to 30 
multi-voxel pattern analysis (Haxby et al., 2014; Norman et al., 2006). Generally, the 31 
ISC is implemented with either a leave-one-out framework, in which one subject’s time 32 
course is correlated with the average of all other subjects for each region, or a pairwise 33 
framework, in which correlation analysis is performed between each possible pair of 34 
subjects (Finn et al., 2020). A limitation of this computational procedure is that the 35 
resulting correlations are highly interdependent and violate the assumption of common 36 
parametric tests (Nastase et al., 2019), requiring careful attention to the inference 37 
method. In addition, multiple cognitive and affective processes emerge in brain 38 
response to complex naturalistic stimuli (Bartels and Zeki, 2004; Simony and Chang, 39 
2020). ISC reflects similarity in how each brain region encodes the stimulus across 40 
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participant, not how a brain region(s) may response to different features of the natural 1 
stimuli based on the current ISC model. In order to mitigate these limitations, we 2 
proposed a novel tensor component analysis (TCA) framework that characterizes 3 
shared spatio-temporal patterns as well as idiosyncratic loadings of evoked activity to 4 
naturalistic stimuli across subjects in a purely data-driven manner that assesses all brain 5 
networks simultaneously. 6 
 While a matrix is a 2-D array, multidimensional data with more than 2 dimensions 7 
are referred to as tensors. TCA is a fundamental model for tensor decomposition, also 8 
known as tensor Canonical Polyadic Decomposition (CPD) (Kolda and Bader, 2009), 9 
that has been shown to have superior performance in identifying hidden signal sources 10 
compared with matrix decomposition, e.g. principle component analysis (PCA) and 11 
independent component analysis (ICA), applied to multidimensional data (Williams et 12 
al., 2018). Assuming the data meet the assumption of a mixture model, in which 13 
signal sources undergo a linear mixing process, TCA can more accurately estimate 14 
sources than matrix decomposition algorithms, and without any constraints. FMRI 15 
signals are innately multidimensional property and can be naturally represented in 16 
tensor form. In this study, a third-order fMRI tensor is organized as space × time × 17 
subjects (the order of modes does not impact the estimation). Through TCA analysis, 18 
the spatial and temporal information regarding brain network activity evoked by 19 
different stimuli exists in the first two dimensions. Subject loadings exist in the third 20 
dimension, which are used to investigate subject variability. 21 
 TCA has shown promise in a range of neuroscience researches. In the field of EEG 22 
signal analysis, nonnegative constraint TCA was applied on time-frequency domain 23 
data to identify event-related (Cong et al., 2015a, 2015b; Wang et al., 2018) and 24 
naturalistic stimulus-evoked EEG response (Zhu et al., 2020b). When TCA was applied 25 
for fMRI connectivity analysis, Mokhtari et al. (2019) explored the difference in the 26 
results of different tensor organizations and Zhu et al. (2020b) have explored the 27 
effectiveness of TCA for MEG data analysis. TCA has also been applied for fMRI data 28 
analysis (Andersen and Rayens, 2004) and has been adapted for multi-subject fMRI 29 
data analysis by placing spatial and temporal constraints to address inter-subject 30 
variability (Beckmann and Smith, 2005; Helwig and Hong, 2013; Kuang et al., 2020, 31 
2015; Mørup et al., 2008; Zhou and Cichocki, 2012). We advance TCA for analysis of 32 
multi-subject fMRI data collected during naturalistic stimuli viewing by proposing a 33 
pipeline that does not place any constraints on the data. 34 
 In order to characterize stable shared spatio-temporal components across subjects 35 
with TCA, the reproducibility of TCA components is evaluated using a novel 36 
clustering method, tensor spectral clustering and model order (number of extracted 37 
components) is selected in terms of algorithm stability. The effectiveness of the 38 
proposed framework is demonstrated with simulated and traditional task fMRI in which 39 
we know the ground truth stimulation (and hence brain activity) timecourses. Then we 40 
apply the proposed framework to fMRI data collected during movie watching, in which 41 
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there is no a priori model of brain activity, to identify spatial brain networks engaged 1 
during the task. 2 
 The rest of the paper is structured as follows. In section 2, Materials and Methods, 3 
we present the TCA model that was used to estimate spatio-temporal shared 4 
components, the decomposition algorithm used in this paper, the criteria that were used 5 
to evaluate the reproducibility of estimated components and the model order selection 6 
method, and the test datasets. In section 3, Results, we show the simulation and motor 7 
task fMRI results. After establishing the robustness of the proposed framework, we 8 
show results from applied our analytic approach to a naturalistic stimuli fMRI dataset 9 
from 184 participants, collected by the Human Connectome Project (HCP). In section 4 10 
and 5, Discussion and Conclusions, respectively, we discuss our findings and the 11 
conclusions from our work. The basic principle of tensor spectral clustering that is 12 
used to evaluate the stability of estimated components is introduced in Appendix.  13 

Materials and Methods 14 

TCA model 15 

The full strategy of TCA for naturalistic stimuli fMRI data consisted of three 16 
steps as shown in Fig. 1. Firstly, extract activity timecourses with independent 17 
component analysis (ICA) parcellation scheme; then, stack all subjects’ timecourses 18 
to construct a third-order fMRI tensor; finally, estimate spatio-temporal patterns and 19 
corresponding subject loadings with TCA. 20 

Rather than applying TCA to voxel-wise fMRI data, a whole brain parcellation 21 
scheme is applied to extract node (or region) timecourses for the TCA. This is done for 22 
several reasons. First, intensity of BOLD fMRI data is expected to be smooth across 23 
neighboring voxels and, with an appropriate parcellation method, node timecourses 24 
will have a higher signal noise ratio (SNR) compared with the SNR of timecourses 25 
from dense data  (Glasser et al., 2016). Using ICA with high model orders (>100 to 26 
several hundred) will result in components that feature individual small brain regions, 27 
bilateral brain regions, or sparse sub-networks and can thus be considered as nodes for 28 
use in network analysis (Smith, 2012). Several studies have demonstrated that time 29 
course of spatial independent components can identify intrinsic brain networks (Allen 30 
et al., 2014; Jafri et al., 2008; Smith et al., 2012). Other work has also shown that brain 31 
parcellation with spatial ICA demonstrates better performance for network modeling 32 
compared with other parcellation methods (e.g., anatomical parcellations) and higher 33 
model order leads to better performance (Pervaiz et al., 2020). In this study, a brain 34 
parcellation scheme derived from ICA of the Human Connectome Project (HCP) 35 
resting state fMRI data with model order of 300 (provided by the HCP, Van Essen et al., 36 
(2013)) is used to extract timecourses from nodes for TCA. The timecourses are 37 
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extracted via the first stage of dual regression (Nickerson et al., 2017) in which the full 1 
set of ICA components, 𝐒୍େ୅, are regressed against each participant’s 4D fMRI data 2 
(e.g., multivariate spatial regression) to extract the timecourses. This is different from 3 
how conventional binary parcellation masks are used to extract average timecourses 4 
from each node that are then fed into the TCA in that the multivariate spatial regression 5 
accurately handles any potential spatial overlap among the ICA maps due to individual 6 
brain regions participating in more than one brain network (or sub-network) 7 
represented in the ICA maps. 8 

Figure 1 Tensor component analysis pipeline. (A) Estimating node timeseries with dual regression from standard 

preprocessed dense data. (B) Stacking all subjects’ node data to construct a tensor. (C) Extracting tensor 

components with tensor component analysis. The estimated components of each mode 𝒔ො  ,  𝒄ො  , 𝝈ෝ  correspond to the 

spatial distribution, time course and subject loadings, respectively. 
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Multilinear mixing model 1 
For naturalistic stimuli fMRI we assume, similar to ISC model (Finn et al., 2020; 2 

Nastase et al., 2019), that time courses 𝐂 ∈ ℝ୒×୎ (N is the number of time points, J 3 
is the number of patterns) and spatial patterns 𝐒 ∈ ℝ୑×୎ (M is the number of nodes, 4 
300 in this study) of nodes in the parcellation are stimulus-evoked responses that are 5 
consistent across subject. However, in contrast to the ISC model, there may also be J 6 
patterns that are shared across subjects that correspond to evoked responses associated 7 
with different features of the naturalistic stimuli. Thus, in our TCA-based model, for 8 
each pattern 𝑗, the loading 𝝈௜,௝ for subject 𝑖 is different from other subjects. In this 9 

case, for subject 𝑖, the node timecourses 𝐗௜ ∈ ℝ୑×୒, can be represented as: 10 
 11 

𝐗௜ = 𝐒 × 𝐝𝐢𝐚𝐠൫𝝈௜,:൯ × 𝐂் + 𝐈𝐝௜ + 𝜺௜,                      (1) 12 
 13 

where 𝐈𝐝௜  is the stimulus-evoked response that is idiosyncratic to each subject. 𝜺௜ 14 
corresponds to the spontaneous and noise component, which may reflect spontaneous 15 
neural activity and noise from non-neural physiological and scanner sources.  16 
𝐝𝐢𝐚𝐠൫𝝈௜,:൯ is a square matrix of order J with the elements of 𝝈௜,: on the diagonal and 17 
the other elements of the matrix is zero. 18 

Tensor construction 19 
A tensor is constructed from the multi-subject data, 𝐗 ∈ ℝ୑×୍×୒, which is the data 20 

from each subject's 𝐗௜  stacked in the subject dimension. I is the total number of 21 
subjects. Although the spatial and the temporal patterns are assumed to be shared across 22 
participant, the loadings of the pattern in each participant are different. Of note, the 23 
model also does not place any assumption on the distribution of temporal courses or 24 
spatial distributions. 25 

TCA unmixing model 26 
TCA, also known as CPD, is a basic model for tensor decomposition. With 27 

different constraints, different algorithms can be derived, including non-negative 28 
canonical polyadic decomposition (NCPD) (Zhou et al., 2014) and independent 29 
constrained CPD (e.g. tensor-ICA Beckmann and Smith, 2005). In the TCA model, a 30 
third-order tensor 𝐗 can be represented as the sum of several rank-1 tensors and a 31 
residual tensor 𝐄  (Hitchcock, 1927), which is illustrated in Fig.1 (C). The 32 

mathematical formula is as follow: 33 
 34 

𝐗 = ∑ 𝐬ො௥
ோ
௥ୀଵ ∘ 𝝈ෝ௥ ∘ 𝐜̂௥ + 𝐄 = ∑ 𝐗௥

ோ
௥ୀଵ + 𝐄,                  (2) 35 

 36 
where vectors 𝐬ො௥ ∈ ℝ୑×ଵ , 𝝈ෝ௥ ∈ ℝ୍×ଵ  and 𝐜̂௥ ∈ ℝ୒×ଵ  are 𝑟௧௛  estimated tensor 37 
component (TC) spatial distribution 𝐒, subject loadings 𝝈 and temporal courses 𝐂 38 
respectively. The operator ∘ represents the outer product of vectors. 𝐗௥ represents the 39 

rank-1 tensor that constructed by the corresponding components of each mode. The 40 
idiosyncratic stimulus-evoked responses, spontaneous and noise components are 41 
contained in the residual tensor 𝐄 and 𝑅 represents the number of extracted patterns. 42 
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Ideally, the number of tensor components, or model order, should be equivalent to the 1 
number of patterns, J, shared across subjects. However, in real-world applications, the 2 
number of patterns in the brain is unknown. In this study, model order is determined 3 
according to algorithm stability. For each tensor component, the voxel-level spatial 4 
distribution can be back reconstructed as 𝐒୍େ୅ × 𝐬ො௥, the time course is 𝐜̂௥, which is the 5 
same across subjects. Differences of subjects exist at 𝝈ෝ௥.  6 

TCA estimation algorithm 7 

 The alternating least-squares (ALS) algorithm (Cichocki et al., 2015; Kolda and 8 
Bader, 2009) is used to estimate factor matrices 𝐒, 𝐂 and 𝝈. In ALS algorithm, two 9 
of the factor matrices are fixed to optimize over the third factor matrix. For example, 10 
while time courses 𝐂 is being estimated, the spatial distribution 𝐒  and subject 11 
loadings 𝝈  should be fixed. The spatial distribution can be updated with the 12 
following rules: 13 
 14 

𝐂 ← argmin𝐂෨
ଵ

ଶ
ห𝐗 − ∑ 𝐬ො௥

ோ
௥ୀଵ ∘ 𝝈ෝ௥ ∘ 𝐜̂௥ห

ி

ଶ
,                (3) 15 

   16 
where 𝐹 represents the Frobenius norm. The updating rule can be solved as a linear 17 
least-square problem that is convex and has a closed-form solution. The other factor 18 
matrices can be solved with the same updating rule. Three factor matrices were 19 
alternating updated until one of the stop criteria is met. The stop criteria can be 20 
defined as the absolute different value of data fitting of the adjacent two iterations was 21 
less than 1e-8 or the maximum number of iterations was more than 1000. The ALS 22 
algorithm can be free accessed from tensor toolbox (https://www.tensortoolbox.org). 23 

Algorithm stability analysis 24 

Improving the reproducibility of neuroscience research is one of great concern 25 
(Poldrack, 2019; Poldrack and Farah, 2015). In this study, in order to assess the 26 
reproducibility of estimated rank-1 tensor 𝐗௥ = 𝐬ො௥ ∘ 𝐜̂௥ ∘ 𝝈ෝ௥, a novel clustering method, 27 

tensor spectral clustering, was proposed. In the stability analysis of TCA algorithms, 28 
for the given dataset, the same algorithm with the same parameters will be run 𝐾 times 29 
with different initial conditions. When the number of extracted components is selected 30 
as 𝑅 , for each mode 𝑅 × 𝐾  components can be estimated. Then the similarity 31 

matrices across these components of each mode 𝐖(𝐒), 𝐖(𝛔), 𝐖(𝐂) ∈ ℝோ௄×ோ௄ would 32 
be fed into tensor spectral clustering, which is a co-clustering method that can fuse 33 
and assess the stability information of different modes simultaneously. Details of 34 
formulations of tensor spectral clustering can be found in the Appendix. In tensor 35 
spectral clustering, the number of clusters is defined as exactly same with the number 36 
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 9

of extracted components 𝑅. The stable component would produce a tight cluster. The 1 
stability index is quantified with the average intra-cluster similarities. Ideally, if the 2 
estimation of the component is stable, the inner similarity of the corresponding cluster 3 
is close to 1. The stability index of unstable components is approach to 0. The 4 
algorithm stability is defined as the average of components stability indices.  5 

Model order selection 6 

Same as ICA, model order (number of extracted components) selection is a 7 
significant methodological concern when data driven algorithm is applied for fMRI 8 
data analysis (Abou-Elseoud et al., 2010; Beckmann, 2012; Kuang et al., 2018). When 9 
the selected model order is appropriate to the tensor to be decomposed, the algorithm 10 
would also be stable. In this study, we performed the tensor decomposition algorithm 11 
use a range of model orders. The algorithm stability under each model order was 12 
evaluated. The components under the model order with the highest algorithm stability 13 
index were used for further analysis. 14 

 15 

 16 

Figure 2 Ground truth spatio-temporal sources signal used in simulation. The left figure shows the spatial 17 
distribution of 29 ICA components. The right column shows the time courses to mimic the consistent components 18 
across subjects (the first row, 𝑪), the idiosyncratic components (the second row, 𝑰𝒅) and the spontaneous 19 
components (the third row, 𝜺). 20 

Simulations 21 

In this section, we showcase the effectiveness of the proposed framework using 22 
numerical experiments which is performed in MATLAB. The spatial distribution of 29 23 
ICA components (SimBT (Erhardt et al., 2012) http://mialab.mrn.org/software) and 24 
time courses 𝐂 ∈ ℝଵ଴଴×଼ (http://mlsp.umbc.edu/simulated_fmri_data.html) are shown 25 
in Fig. 2. Four timecourses, as shown in the first row of Fig.2, represent consistent 26 
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components across subjects. There are also three idiosyncratic components for each 1 
subject, which denote the scanner or motion noise consisted in fMRI scanning, as 2 
shown in the second row of Fig 2. These components would randomly circle shift for 3 
each subject. The timecourse in the third row of Fig 2 represents spontaneous brain 4 
activity included in the simulation. The total signal noise ratio (SNR) is controlled to 5 
be 2dB. We randomly generated node weight matrix 𝐒 ∈ ℝଶଽ×଼ and subject loading 6 
matrix 𝝈 ∈ ℝଵ଴×଼ to generate 10 participants’ data. For each subject, the data can be 7 
created with equation (1). Then stack all subject data to construct a three-order tensor 8 

𝐗ୗ୧୫୳୪ୟ୲୧୭୬ ∈ ℝଶଽ×ଵ଴×ଵ଴଴
 
. Then the tensor was decomposed with the model order 9 

range from 2 to 10. Under each model order, the TCA algorithm ran 20 times to 10 
evaluate the stability of the algorithm. The stability index is calculated with tensor 11 
spectral clustering. The correlation coefficient between estimate component and the 12 
corresponding ground truth works as a criterion to evaluate the performance of the 13 
proposed framework.  14 

Motor task fMRI experiment 15 

The effectiveness of the proposed framework is also demonstrated with traditional 16 
motor task fMRI in which we know the ground truth stimulation (and hence brain 17 
activity) timecourses. Randomly selected 100 healthy unrelated subjects (22-36 years) 18 
were utilized from the WU-Minn Human Connectome Project (HCP; Van Essen et al., 19 
2013). During the motor task, participants are presented with visual cues that ask them 20 
to either tap their left or right fingers, or squeeze their left or right toes, or move their 21 
tongue to map motor areas. Each block movement type last 12 seconds and is preceded 22 
by a 3 second cue. For each subject total 284 scans were collected with TR=0.72s in a 23 
3T scanner. Details of motor task of HCP data could be find in Barch et al. (2013). 24 

The collected fMRI data went through the standard preprocessing pipeline 25 
(motion correction, distortion correction, highpass filtering, and nonlinear alignment 26 
to MNI template space (Glasser et al., 2013)) to the standard brain space. Time 27 
courses of visual cues for each type of movement were convolved with Hemodynamic 28 
Response Function (HRF) and went through a low-pass filtering with a high-frequency 29 
cutoff of 0.1Hz. The convolved time courses, as shown red lines in Fig. 4, are used to 30 
identify components extracted with TCA. Following the recommendations of previous 31 
study (Pervaiz et al., 2020), spatial ICA components were used for brain parcellation. 32 
Spatial ICA components are provided by the HCP under number of components of 300 33 
and subject-specific time series for each node were derived using dual regression 34 
(Nickerson et al., 2017), as shown in Fig. 1 (A). Then time courses were detrended 35 
linear, quadratic, and cubic trends, and low-pass filtered with a high-frequency cutoff 36 
of 0.1Hz.  37 

The data for each subject was then stacked on subject dimension to create a tensor 38 
𝐗୑୭୲୭୰ ∈ ℝଷ଴଴×ଵ଴଴×ଶ଼ସ to be decomposed. Then the tensor is decomposed with TCA 39 
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under model order from 2 to 20. And the same decomposition under each model order 1 
would be run 20 time to make sure the reproducibility of the estimated components. 2 
Then the model order is selected with the proposed model order selection method based 3 
on algorithm stability analysis strategy. 4 

Naturalistic stimuli fMRI experiment 5 

The naturalistic fMRI dataset is also from the HCP (Van Essen et al., 2013). 6 
Subjects (healthy, 22-35 years) engaged in a movie-watching paradigm (voxel size = 7 
1.6mm3, TR=1s) functional MR scanning in a 7T scanner. The sample used here (n = 8 
184) reflects all available data for this paradigm. Each subject watched four 15-min 9 
movie runs (MOVIE1-MOVIE4). Each run comprised five video clips presented in a 10 
fixed order. The fMRI data collected during validation clip (the fifth video clip) was 11 
used in this study. The validation clip is consisted of a montage of brief (1min 22s) 12 
moving scenes depicting people and landscapes. The music that along with movie 13 
scene also contains plenty of information that may evoke consistent brain activities 14 
across participants (Alluri et al., 2012). Five music features (Fluctuation Centroid, 15 
Fluctuation Entropy, Key Clarity, Mode and Pulse Clarity) were extracted using the 16 
MIRToolbox (Lartillot, O., 2007). With the proposed framework, dynamic temporal 17 
alteration of brain networks can also be estimated. These music features facilitate the 18 
understanding and interpretation of the estimated tensor components. With the 19 
proposed framework, a component that related to social scene is identified. The 20 
subject loadings of the component were used to investigate the relationship between 21 
behavior data Antisocial Personality Problems Raw Score and brain activities. The 22 
behavior data is a score that evaluates the antisocial personality disorder assessed 23 
using the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA; 24 
BUCHOLZ et al., 1994; Hesselbrock et al., 1999). 25 

All fMRI analyses began with the FIX-denoised data, which includes standard 26 
preprocessing (motion correction, distortion correction, high pass filtering, and 27 
nonlinear alignment to MNI template space (Glasser et al., 2013)) plus regression of 28 
24 framewise motion estimates (six rigid-body motion parameters and their 29 
derivatives and the squares of those 12) and regression of confound components 30 
identified via independent components analysis (Griffanti et al., 2014; 31 
Salimi-Khorshidi et al., 2014). Details of data acquisition and basic data 32 
preprocessing can be found in previous studies (Glasser et al., 2013; T. Vu et al., 2016; 33 
Van Essen et al., 2012). The tensor organization procedure is exactly same with that 34 
of motor task fMRI, as shown in Fig. 1 and the tensor to be decomposed is 35 
𝐗୒ୟ୲୳୰ୟ୪୧ୱ୲୧ୡ ∈ ℝଷ଴଴×ଵ଼ସ×଼ଶ.  36 

In this experiment, our goals are three-fold. Firstly, apply the proposed 37 
framework to all subjects to explore what kinds of brain activity can be evoked with 38 
the movie stimuli. All subjects’ fMRI data went through the proposed framework. 39 
Then the relationship between the estimated components and subjects’ behavior data 40 
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as well as music features was further analyzed. Secondly, to investigate the 1 
reproducibility of the estimated components, the subjects were randomly and equally 2 
divided into two cohorts. And apply the proposed framework on these two cohorts 3 
separately. Then evaluate the consistency of the estimated components from these two 4 
cohorts. Thirdly, two version of movie files compiled as stimuli were used in 5 
MOVIE4. In the posterior movie stimuli, 4 frames were added before the validation 6 
clip, the deviation of two version movie is only 167ms, no more than 1 TR. To 7 
evaluate the performance of the proposed framework on exploring subjects’ 8 
difference, 25 subjects of each type of movie stimuli were randomly selected. Then 9 
these 50 subjects’ fMRI data went through the proposed framework, to probe whether 10 
the conditions’ difference can be detected in subject loadings. And performance of 11 
TCA and ISC are also compared in this experiment in terms of conditions’ difference 12 
detection. In ISC, leave-one out method, in which one subject’s time course is 13 
correlated with the average of all other subjects for each region, was applied to 14 
calculate the subjects’ score. 15 

Results 16 

Simulations 17 

Fig. 3 shows the simulation results. Fig. 3(a) exhibits algorithm stability indices 18 
under different model orders. We could find that the algorithm stability curve reaches 19 
its high at the model order of both 3 and 4. Since the model order selected as 4 means 20 
one more component can be extracted, the tensor components at the model order of 4, 21 
which is exactly same with the number of consistent components across subjects, 22 
were further analyzed. Note that the algorithm stability index at the model order is 1, 23 
which means all components estimated on the model order from different runs are the 24 
same and all these components are repeatable. The spatial distribution, time courses 25 
and subject loadings of each component are exhibited in Fig.3 (b-e). Based on the 26 
correlation coefficient between estimated components and ground truths, we could 27 
find that all four components are successfully estimated. In order to highlight the 28 
activated and deactivated brain regions, the spatial distribution of the estimated 29 
component was exhibited with proportional threshold (10%, Garrison et al. (2015)). In 30 
spatial distribution, warm colors represent activation (relative to global average) while 31 
cool colors represent deactivation within each component.  32 

 33 
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 1 
Figure 3 Simulation results. (a) Algorithm stability under different model orders. The algorithm reaches the highest 2 
stability at the model order of 4, which is exactly same with the number of consistent components. (b) - (e) estimated 3 
components and ground truths. The symbol 𝜌 means the correlation coefficient between estimate component and 4 
the corresponding ground truth. In spatial distribution, proportional threshold (10%, Garrison et al. (2015)) was 5 
used and warm colors represent activation (relative to components global average) while cool colors represent 6 
deactivation (relative to components global average) within each component. 7 

 8 

Figure 4 The spatial distribution (left) and the time courses (right) of estimated components from motor task fMRI 9 
(TC: tensor component). In spatial distribution, warm colors represent activation (relative to within-state global 10 
average) while cool colors represent deactivation (relative to within-state global average) within each state. In time 11 
courses, the black line represents estimated time courses, and the red line represents visual cues after being 12 
convolved with hemodynamic response function. 13 
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Motor task fMRI experiment 1 

For motor task fMRI data, with the proposed framework, the algorithm stability 2 
curve reaches its peak at the model order of 5. Hence, the estimated components at the 3 
model order of 5 were further analysis.  4 

The spatial distribution, time courses of the estimated components are 5 
demonstrated in Fig. 4. The spatial distribution was also proportional thresholded 6 
(10%, Garrison et al. (2015)) and the warm colors represent activation and the cool 7 
colors represent deactivation. For each component, after standardization, both 8 
stimulus timing and estimated time courses are demonstrated in the same subfigure to 9 
identify of the estimated components. In the experiment, the embedded components 10 
that correspond to the tongue (TC#1), foot (TC#2) and total movement (TC#3) are 11 
successfully estimated. However, the components that corresponding to the hand 12 
movement is failed to be detected. For the tensor component that corresponding to the 13 
tongue movement (TC#1), the brainstem plays an important role. The postcentral 14 
gyrus dominates the movement of foot (TC#2). For total movement tensor component, 15 
sensorimotor area is activated (TC#3).  16 

Fig. 5 shows the estimated components with similar time course but different 17 
spatial distribution. It worth note that, even though the time courses are similar 18 
between TC#3 and TC#4, different spatial distribution split them into different 19 
components. Compared with TC#4, sensorimotor area is activated in TC#3, while 20 
visual area plays more important roles in TC#4. We believe that TC#3 is related to 21 
motor decision making and the TC#4 is evoked with stimulus cues. 22 

 23 

Figure 5 The estimated components with similar time course but different spatial distribution. The TC#3 24 
corresponding to the motor decision making and the TC#4 represent the brain activity evoked with visual cues.  25 
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 1 

Figure 6 (a) The spatial distribution, the time course, and the subject loadings of the first estimated tensor 2 
components of naturalistic stimuli fMRI (TC: tensor component). (b) Spatial pattern estimated with ISC. (c) The 3 
scatter plot (left) shows the correlation coefficient of subject temporal courses of lingual gyrus and temporal gyrus 4 
with time course estimated with tensor component analysis (TCA). The bar graph (right) shows the average value of 5 
correlation coefficient. 6 

Naturalistic stimuli fMRI experiment 7 

For naturalistic stimuli fMRI, the TCA algorithm reaches the highest stability at 8 
the model order of 3. The estimated components under the model order are further 9 
analyzed.  10 

The spatial distribution, time courses and subject loadings of the first tensor 11 
component are shown in Fig. 6 (a). Fig. 6 (b) shows the ISC estimated spatial pattern 12 
with the same data. Bilateral occipital fusiform gyrus, lingual gyrus and superior 13 
temporal gyrus are covered by both TCA component and ISC result. However, 14 
bilateral postcentral gyrus and superior parietal lobule and left precentral gyrus are 15 
also found in ISC result but not in TCA component. Bilateral cerebellum and lateral 16 
occipital cortex only exist in TCA component. Fig. 6 (c) shows the correlation 17 
coefficient of subject temporal courses of lingual gyrus and temporal gyrus, which are 18 
both covered by TCA component and ISC result, with time course of the first tensor 19 
component estimated with tensor component analysis. The bar plot of Fig. 6(c) shows 20 
that the time course of lingual gyrus is negative correlated with the estimated time 21 
course, but the time course of temporal gyrus is positive correlated with the estimated 22 
time course, which demonstrates that under the movie stimuli lingual gyrus and 23 
temporal gyrus with opposite activation pattern. TCA component successfully 24 
demonstrate it but ISC fails to.  25 

 26 
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 1 

Figure 7 (a) Timeline of the first tensor component and the onset point of each scene. The trends of the timeline with 2 
landscape and social related scene are different. (b) The subject loadings of the first tensor component significant 3 
(uncorrected) correlated with Antisocial Personality Problems Raw Score (𝜌: correlation coefficient). 4 

For the TC#1, the estimated time course and the onset point in the stimuli movie 5 
is matched to show the relationship of them, as shown in Fig. 7 (a). We have a 6 
preliminary feeling that, the landscape scene will lead the curve goes up while the 7 
social related scene will make the curve goes down. Hence, we test the correlation 8 
coefficient between the subject loadings of this component and the social related 9 
behavior data. We found that it is significant correlated with score of antisocial 10 
personality problem as shown in Fig. 7 (b).  11 

 12 
Figure 8 The second and the third components estimated with tensor component analysis. The red lines in 13 
temporal subfigure (medium) show the time course of music features that correlated with estimated time course 14 
significantly (𝜌: correlation coefficient). 15 
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 1 

Figure 9 Reproducibility of the estimated components. The section#1 and section#2 represent different cohort of 2 
randomly divided subjects (𝜌: correlation coefficient). 3 

Figure 8 shows the second and the third components estimated with tensor 4 
component analysis. The red lines in temporal subfigure (medium) show the time 5 
course of music features that significantly correlated with estimated time course. The 6 
time course of the second tensor component significantly correlated with the music 7 
feature Pulse Clarity and the time course of the third tensor component significantly 8 
correlated with the music feature Key Clarity. For all three estimated tensor 9 
components, bilateral cerebellum, occipital fusiform gyrus, and lateral occipital cortex 10 
are involved in. The lingual gyrus is deactivated in the TC#1 but not in TC#2 and 11 
TC#3. Different from the TC#1, left frontal pole is deactivated in both TC#2 and 12 
TC#3. The bilateral superior temporal gyrus exists in TC#1 and TC#2 but not in 13 
TC#3.  14 

To test the reproducibility of the estimated component, the subjects were equally 15 
divided into two groups. These two groups went through the same TCA framework 16 
separately. As shown in Fig. 9, for both group, algorithm reaches the highest 17 
algorithm stability at the model order of 3. The right column of Fig. 9 demonstrates 18 
the consistency between two decomposition runs. It shows that the TC#1 and TC#3 19 
from both cohorts are highly consistent, which means these components are evoked 20 
by the stimulus movie. We also observed that the consistency of the corresponding 21 
spatial distribution and find that correlation coefficients are also high (not shown in 22 
the paper). However, the consistency of the TC#2 of two cohorts is a little bit low.  23 
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 1 
Figure 10 Comparison of TCA and ISC in terms of detection of individual difference. (a) Spatial distribution of the 2 
first component estimated with TCA. (b) Spatial distribution of ISC estimated consistent map. (c) Subject loadings of 3 
the first TC exhibit difference of experiment conditions (TC: tensor component). (d) Subjects’ score of ISC 4 
calculated with leave-one out method. The red circles represent loadings of subject of the first version movie stimuli. 5 
The blue triangles represent loadings of subject of the second version movie stimuli.  6 

We also evaluated the power of the proposed framework in terms of subjects’ 7 
difference detection. The framework was applied on subjects that went through two 8 
with millisecond deviation movie stimuli and view it as two conditions. The results 9 
shown that subjects with different conditions are successfully distinguished with the 10 
estimated subject loadings, as shown in Fig. 10(c). The subjects at different conditions 11 
can be easily distinguished with a threshold value (dash line of Fig. 10(c)). In contrast, 12 
even though ISC can also identify spatial distribution (Fig. 10 (b)), which is similar 13 
with that of TCA component (Fig. 10(a)), conditions’ difference is destroyed by 14 
subject correlation (Fig. 10(d)).  15 

Discussion 16 

In this study, an analysis framework to discover shared spatio-temporal 17 
components across subjects from naturalistic stimuli fMRI with TCA was proposed. 18 
In the framework, a third-order tensor is constructed from the timeseries extracted from 19 
all brain regions from a given parcellation, for all participants, with modes of the tensor 20 
corresponding to spatial distribution, time series and participants. TCA will then reveal 21 
spatially and temporally shared components, i.e., naturalistic stimuli evoked networks, 22 
their temporal courses of activity and subject loadings of each component. The stability 23 
of the extracted components is evaluated with a novel clustering method, tensor 24 
spectral clustering, to guarantee the reproducibility of the results. Based on the 25 
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algorithm stability under a range of model orders, the most suitable model order that 1 
makes algorithm stable can be recommended. Extensive experiments demonstrate that 2 
the framework is feasible, and the interpreted and reproduced components can be 3 
extracted. 4 

Compared with traditional fMRI study designs, naturalistic stimuli are complex 5 
and dynamic, and it is much more difficult to generate a model of evoked activity for 6 
analyses. Under the movie stimuli, the timecourses of brain activity across subjects 7 
are consistent, which is changing along with movie plots going on. Besides, the 8 
specific shared brain network(s) would also be activated for the same kind of 9 
information processing. Based on this assumption, a TCA framework that can 10 
characterize shared spatio-temporal patterns of evoked activity to naturalistic stimuli 11 
across subjects was proposed. FMRI signals have an innate multidimensional property 12 
and can be naturally represented in tensor form. Then the tensor can be decomposed 13 
with TCA. The estimated components of each mode represent the spatial distribution, 14 
time courses and subject loadings, which exhibit participant difference. This work 15 
demonstrates that TCA can meet the naturalistic stimuli fMRI’s analysis needs and 16 
under the proposed framework, the brain activities evoked with naturalistic stimulus 17 
were extracted and the patterns that corresponding to different stimuli features is also 18 
distinguished (Fig. 6 and Fig. 8). 19 

The proposed framework exhibits several merits. Firstly, different from ISC, the 20 
proposed framework can estimate subject loadings directly, which can be used to 21 
explore participants’ difference (Fig. 7(b)) or conditions’ difference (Fig. 10). 22 
Secondly, the specific brain activities response to features of stimuli can be separated 23 
(Fig. 6). Furthermore, the components that with the same time series but different 24 
spatial distribution can also be distinguished (Fig. 5). Thirdly, the time courses of 25 
estimated components can also be estimated, which facilitate the interpretation of the 26 
estimated components. Fourthly, combined with evaluation of algorithm stability, 27 
reproducibility of the estimation is promoted (Fig. 9). 28 

With the proposed framework, TCA exhibits promising performance. For motor 29 
task fMRI, TCA successfully identify networks evoked by tongue, foot and total 30 
movement (Fig. 4). Even though the temporal courses are similar between visual 31 
stimuli and motor decision, TCA can successfully distinguish them. However, the 32 
algorithm fails to identify the components that evoked with hand movement. This 33 
may because that hand movement is sophisticated and the variance across subjects 34 
makes it difficult to estimate a common spatio-temporal pattern. This also reflects that 35 
the proposed framework can only be applied to extract the components that are highly 36 
consistent across subjects. More advanced method that can extract misalignment 37 
components across participants worth further investigation. Under the naturalistic 38 
stimulus, the various across subjects have attracted more and more attention (Finn et 39 
al., 2020; Nastase et al., 2019). With the proposed framework, individual difference 40 
can successfully be distinguished. Firstly, the component that related to the behavior 41 
data Antisocial Personality Problems Raw Score is identified with the proposed 42 
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framework (Fig.7 (b)). Secondly, TCA successfully identify subjects with millisecond 1 
stimuli difference (Fig. 10 (c)). Compared with ISC, TCA can not only distinguish the 2 
participants’ difference but also the temporal courses of each pattern, which facilitate 3 
the interpretation of the estimated pattern. In terms of spatial distribution, TCA can 4 
not only estimate the naturalistic stimuli evoked spatial distribution but also the 5 
relationship of brain regions that are involved in the same brain network (Fig. 6 (a) 6 
and Fig. 6 (b)). This is because ISC only concern about the consistency across 7 
subjects but ignore the network spatial configuration. 8 

Improving the reproducibility of neuroscience research is one of great concern 9 
(Poldrack, 2019; Poldrack and Farah, 2015). To guarantee the stability of the TCA 10 
algorithm, a novel spectral clustering algorithm was proposed and applied on the 11 
components estimated from multiple runs. In simulation experiment, the model order 12 
selected based on algorithm stability is exactly same with the number of consistent 13 
components across subject, which demonstrates that with the algorithm stability index 14 
appropriate model order can be recommended (Fig. 3(a)). In the naturalistic stimuli 15 
fMRI, the results demonstrate that subjects shared spatial-temporal components are 16 
reproduced with different individuals (Fig. 9). Actually, we also assessed the 17 
test-retest validity of the same subject went through the same naturalistic stimuli. 18 
However, the consistency is poor, which may because the neural processing alters 19 
with repetitive stimuli.  20 

Naturalistic stimuli fMRI is a powerful tool to study brain network interactions 21 
during the daily life. Our results demonstrate that with appropriate movie stimuli and 22 
our proposed processing framework, the brain activity that significant correlated with 23 
Antisocial Personality Problems Raw Score is identified (Fig. 7). This shows the 24 
power of the naturalistic stimuli. The subjects with high antisocial score may fake 25 
their response when they go through the questionnaire or in abstract stimuli paradigm. 26 
However, the brain activity is hard to pretend in the naturalistic stimuli paradigm. 27 
Since the movie stimuli applied in this study is not designed for this purpose and the 28 
correlation coefficient value (Fig. 7(b)) will not significant after correction, a more 29 
suitable movie stimuli to evoke wanted components worth further investigation. 30 
Besides, only three shared spatial-temporal components can be estimated in the 31 
experiment. Even though naturalistic stimuli contain plenty of features, because of 32 
variance of subjects’ attention, there are not much brain activities shared across 33 
subjects. In the further study, the selection/designation of naturalistic stimuli need pay 34 
more attention to. 35 

There are some limitations of this study. In this study, brain template comes from 36 
ICA with settled dimensionality. Several studies (Allen et al., 2014; Jafri et al., 2008; 37 
Pervaiz et al., 2020; Smith et al., 2012) have demonstrate that time course of spatial 38 
independent components can identify intrinsic brain networks. The performance of 39 
TCA with different templates (Glasser et al., 2016; Janes et al., 2019; Shen et al., 40 
2013) was also compared and ICA template performs best. However, several studies 41 
have demonstrated that the model order can greatly impact on the estimated 42 
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components (Abou-Elseoud et al., 2010; Beckmann, 2012; Kuang et al., 2018). We 1 
also tested the back-projection method to get the voxel level spatial distribution. 2 
Limited with selected model order, the ICA template is still not pure, which makes the 3 
voxel-level spatial distribution hard to be thresholded. Our previous study (Hu et al., 4 
2020) has proposed an effective strategy, Snowball ICA, to address the 5 
dimensionality selection issue. In the further study, a more comprehensive template 6 
worth being further investigated with Snowball ICA. Even though the paper 7 
demonstrate that the proposed framework can distinguish subjects that went through 8 
millisecond deviation stimuli, how the framework can be applied on disease diagnosis, 9 
coordinate with appropriate naturalistic stimuli, still need further investigation. 10 

Conclusion 11 

The proposed tensor analysis framework is a powerful method that can extract 12 
embedded components evoked with naturalistic stimuli. With the proposed framework, 13 
meaningful and reproduced tensor components can be extracted and subjects that with 14 
different conditions are successfully distinguished. Three experiments (simulation, 15 
motor task fMRI, naturalistic stimuli fMRI) demonstrated that the proposed 16 
framework is a promising tool to extract brain networks evoked with naturalistic 17 
stimuli. 18 
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Appendix: TCA stability analysis with 25 

tensor spectral clustering 26 

Background of spectral clustering on graph theory 27 

In this study, a novel tensor spectral clustering algorithm is proposed to evaluate the 28 
stability of TCA algorithms. For ease of understanding, background of spectral 29 
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clustering is demonstrated at here. Spectral clustering is a technique that roots from 1 
graph theory. Consider an undirected weighted graph G = (V, E). V is a set of nodes. 2 
E is a set of edges between nodes. The weighted adjacency matrix of G is denoted as a 3 
symmetric matrix 𝐖. The generalized degree of the vertices of G is defined as 𝐃 =4 
diag(𝐖𝒆) , where 𝒆  is an all-ones vector. The combinatorial Laplacian matrix is 5 
defined as 𝐊 = 𝐃 − 𝐖. The transition matrix of the graph 𝐏 = 𝐖୘𝐃ିଵ is a column 6 
stochastic matrix. Thus, the matrix could be interpreted as Markov chain. The 7 
stationary distribution of the Markov chain π = diag(𝐃). 8 

 9 
𝐏diag(𝐃) =  𝐖୘𝐃ିଵdiag(𝐃) = 10 

𝐖୘

⎣
⎢
⎢
⎡
𝑑ଵ

ିଵ 0 0 0

0 𝑑ଶ
ିଵ 0 0

0
0

0
0

⋱ 0
0 𝑑௡

ିଵ⎦
⎥
⎥
⎤

൦

𝑑ଵ

𝑑ଶ

⋮
𝑑௡

൪ = diag(𝐃)             (A1) 11 

 12 
It also means that diag(𝐃) is an eigenvector of 𝐏 and the corresponding eigenvalue is 13 
one (R.Benson et al., 2015). 14 

In the partition of a graph, it is assumed that the graph could be separated two parts S 15 
and Sത. Bottleneck of a graph is the boundary of two clusters. The bottleneck ratio of the 16 
set Ψ is defined as: 17 
 18 

Φ(Ψ) =
௖௨௧(ஏ)

గ(ஏ)
,                                  (A2) 19 

 20 

where 𝑐𝑢𝑡(Ψ) = ∑ 𝐖௜௝୚೔∈ஏ,୚ೕ∈ஏഥ , 𝜋(Ψ) = ∑ 𝜋௜୚೔∈ஏ . Small bottleneck ratio indicates 21 

a good partition of the graph (Levin et al., 2007). 22 
The indicator vector 𝑓 over the nodes in G is defined: 23 

 24 

𝑓௜ = ൜
0 V௜ ∉ Ψ
1 V௜ ∈ Ψ

 .                               (A3) 25 

 26 
The property of Laplacian matrix is leveraged as follow: 27 
 28 

𝑓୘ 𝐊𝑓 =
1

2
෍ 𝑤௜௝൫𝑓௜ − 𝑓௝൯

ଶ
௡

௜,௝ୀଵ

 29 

= ∑ 𝑤௜௝୚೔∈ஏ,୚ೕ∈ஏഥ = 𝑐𝑢𝑡(Ψ).                       (A4) 30 

 31 
Since π = diag(𝐃), 𝜋(Ψ) could be represented as 𝑓୘ 𝐃𝑓. Hence, the objective of 32 
matrix spectral clustering is to find a 𝑓 to minimize 𝑓୘ 𝐊𝑓 𝑓୘ 𝐃𝑓⁄ .  33 
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Both matrices 𝐊 and 𝐃 are positive definite. According to generalized Rayleigh 1 
entropy, the solution is the vector 𝑓 such that 𝐊𝑓 = λ𝐃𝑓. We observed that: 2 

 3 
𝐊𝑓 = λ𝐃𝑓 ⇔ (𝐈 − 𝐃ିଵ𝐖)𝑓 = λ𝑓 4 

⇔  𝐏୘𝑓 = (1 − λ)𝑓                                 (A5) 5 
 6 
So, the problem becomes looking for the eigenvector of 𝐏 (Ng et al., 2002). 7 

Tensor spectral clustering 8 

For multimode tensor spectral clustering, different mode has different transition 9 
matrix. In this appendix, three modes tensor is used as an example for tensor spectral 10 

clustering. 𝐏(ଵ) ,  𝐏(ଶ) ,  𝐏(ଷ)  are three transition matrices for three modes tensor 11 
decomposition. They are calculated as follow: 12 
 13 

𝐏(௠) = 𝐖(௠)୘
𝐃(௠)ିଵ

,                            (A6) 14 

 15 

where 𝐃(௠) is defined exactly same with matrix spectral clustering. The generalized 16 
transition tensor 𝐏 could be defined as: 17 
 18 

𝐏 = 𝐈 ×ଵ 𝐏(ଵ) ×ଶ 𝐏(ଶ) ×ଷ 𝐏(ଷ),                      (A7) 19 
 20 
where 𝐈 ∈ ℝோ௄×ோ௄×ோ௄×ோ௄ is a unit tensor, and the number of modes of 𝐈 is one more 21 

than the number of modes of the tensor to be decomposed. 22 
Same to matrix spectral clustering, generalized singular value decomposition (SVD), 23 

HOSVD (Lieven et al., 2000), is applied on transition tensor 𝐏. For HOSVD of 𝐏, the 24 

essence of the decomposition of the last mode is eigen value decomposition of 25 
covariance matrix of matrix unfolding of tensor 𝐏 on the last mode. The unfolding of 26 
tensor 𝐏 on the last mode is denoted with  𝐏(ୣ୬ୢ), which can be calculated as follow: 27 

 28 

𝐏(ୣ୬ୢ) = 𝐈(ୣ୬ୢ)൫𝐏(ଵ) ⊗ 𝐏(ଶ) ⊗ 𝐏(ଶ)൯
୘
.                (A8) 29 

 30 
The covariance matrix of 𝐏(ୣ୬ୢ) is: 31 

 32 

𝐏(ୣ୬ୢ)𝐏(ୣ୬ୢ)
୘ = 𝐈(ୣ୬ୢ)൫𝐏(ଵ) ⊗ 𝐏(ଶ) ⊗ 𝐏(ଷ)൯

୘
 33 

ቀ𝐈(ୣ୬ୢ)൫𝐏(ଵ) ⊗ 𝐏(ଶ) ⊗ 𝐏(ଷ)൯
୘

ቁ
୘

.                 (A9) 34 

 35 
We defined that:  36 
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 1 

𝐖୘ୗେ = 𝐖(ଵ)𝐖(ଵ) ⊛ 𝐖(ଶ)𝐖(ଶ) ⊛ 𝐖(ଷ)𝐖(ଷ)          (A10) 2 
𝐃୘ୗେ = 𝐃(ଵ)𝐃(ଵ) ⊛ 𝐃(ଶ)𝐃(ଶ) ⊛ 𝐃(ଷ)𝐃(ଷ)              (A11) 3 

𝐊୘ୗେ = 𝐃୘ୗେ − 𝐖୘ୗେ                           (A12) 4 
 5 
𝐖୘ୗେ is a symmetric matrix and represents weighted adjacency matrix of TSC. 𝐃୘ୗେ 6 
is a diagonal matrix. Both matrices 𝐊୘ୗେ and 𝐃୘ୗେ are positive definite. Then the 7 
equation (A9) could be reduced as: 8 
 9 

𝐏୘ୗେ = 𝐃୘ୗେ
ିଵ/ଶ

𝐖୘ୗେ𝐃୘ୗେ
ିଵ/ଶ

= 𝐏(ୣ୬ୢ)𝐏(ୣ୬ୢ)
୘.              (A13) 10 

 11 
Same with matrix spectral clustering, the purpose of tensor spectral clustering is to 12 

find a 𝑓  to minimize 𝑓୘ 𝐊୘ୗେ𝑓 𝑓୘ 𝐃୘ୗେ𝑓⁄ . Based on the generalized Rayleigh 13 
entropy and diagonal property of 𝐃୘ୗେ, the objective function:  14 
 15 

𝑓୘ 𝐊୘ୗେ𝑓 𝑓୘ 𝐃୘ୗେ𝑓⁄ = 𝑓୘ (𝐃୘ୗେ − 𝐖୘ୗେ)𝑓 𝑓୘ 𝐃୘ୗେ𝑓⁄         (A14) 16 
 17 

is equivalent to find a 𝑓 to minimize 𝑓୘ ൫𝐈 − 𝐃୘ୗେ
ିଵ/ଶ

𝐖୘ୗେ𝐃୘ୗେ
ିଵ/ଶ

൯𝑓 = 𝑓୘ (𝐈 − 𝐏୘ୗେ)𝑓. 18 

At this stage, the problem of tensor spectral clustering is reduced to matrix spectral 19 
clustering. So, the last mode eigenvector of HOSVD of transition tensor 𝐏 could be 20 

used for multimode co-clustering.  21 
Given a set of samples that we want to cluster into 𝑘 subsets, each sample has more 22 

than one modality to be considered. The procedure of TSC is as follows: 23 

1. Form the weighted adjacency matrices of each modality: 𝐖(ଵ), 𝐖(ଶ), 𝐖(ଷ), ⋯. 24 

2. Define the transition matrix of each modality: 𝐏(ଵ), 𝐏(ଶ), 𝐏(ଶ), ⋯.  Then the 25 
transition tensor 𝐏 is defined with equation (A7). 26 

3. Find the 𝑘  eigenvectors 𝒗ଵ, 𝒗ଶ, ⋯ , 𝒗௞  corresponding to the 𝑘  largest 27 
eigenvalues of the last mode of transition tensor 𝐏 with HOSVD. Form the 28 

matrix 𝐕 = [𝒗ଵ, 𝒗ଶ, ⋯ , 𝒗௞] by concatenating eigenvectors in columns. 29 

4. Normalize each row of 𝐕 to have unit length 𝐋௜,௝ = 𝐕௜,௝/൫∑ 𝐕௜,୨
ଶ

𝒋 ൯
ଵ/ଶ

.  30 

5. Cluster points, each row of 𝐋, into 𝑘  clusters via Hierarchical clustering 31 

(Gordon, 1987).  32 

6. Find the corresponding row 𝑖  of 𝐋  and original sample, assign the original 33 
sample to the cluster 𝑗 that row 𝑖 assigned. 34 

The TSC software is available at 35 
https://github.com/GHu-DUT/Tensor_Spectral_Clustering. 36 

For the stability analysis of TCA algorithms, for the given dataset, the same 37 
algorithm with the same parameters will be run 𝐾  times. Under the number of 38 
extracted components 𝑅, for each mode, there are 𝑅 × 𝐾 components. When TSC 39 
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was applied in the stability analysis of TCA algorithms, the similarity matrices of 1 

each mode 𝐖(𝐒), 𝐖(𝛔), 𝐖(𝐂) work as weighted adjacency matrices. Furthermore, 2 
eigenvector of last mode of transition tensor 𝐏 would be fed into Hierarchical 3 
clustering. The number of clusters is defined as exactly same with the number of 4 
extracted components R. The stable component would produce a tight cluster. The 5 
stability index is quantified with the average intra-cluster similarities. Ideally, if the 6 
extraction of the component is stable, the inner similarity of the corresponding cluster 7 
is close to 1. The stability index of unstable components is approach to 0. The 8 
algorithm stability is defined as the average of components stability indices. When the 9 
selected model order is appropriate to the tensor to be decomposed, the algorithm 10 
would also be stable. Hence, the hyperparameter such as model order can be 11 
recommended in terms of algorithm stability.  12 
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