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BACKGROUND. Quantitative imaging of epithelial tissues
prompts for bioimage analysis tools that are widely applicable
and accurate. In the case of imaging 3D tissues, a common post-
processing step consists in projecting the acquired 3D volume on
a 2D plane mapping the tissue surface. Indeed, while segment-
ing the tissue cells is amenable on 2D projections, it is still very
difficult and cumbersome in 3D. However, for many specimen
and models used in Developmental and Cell Biology, the com-
plex content of the image volume surrounding the epithelium in
a tissue often reduces the visibility of the biological object in the
projection, compromising its subsequent analysis. In addition,
the projection will distort the geometry of the tissue and can
lead to strong artifacts in the morphology measurement.

RESULTS. Here we introduce DProj a user-friendly tool-
box built to robustly project epithelia on their 2D surface from
3D volumes, and to produce accurate morphology measurement
corrected for the projection distortion, even for very curved tis-
sues. DProj is built upon two components. LocalZProjector is
a user-friendly and configurable Fiji plugin that generates 2D
projections and height-maps from potentially large 3D stacks
(larger than 40 GB per time-point) by only incorporating the
signal of interest, despite a possibly complex image content.
DeProj is a MATLAB tool that generates correct morphology
measurements by combining the height-map output (such as
the one offered by LocalZProjector) and the results of the cell
segmentation on the 2D projection. In this paper we demon-
strate DProj effectiveness over a wide range of different biolog-
ical samples. We then compare its performance and accuracy
against similar existing tools.

CONCLUSIONS. We find that LocalZProjector performs well
even in situations where the volume to project contains spurious
structures. We show that it can process large images without
a pre-processing step. We study the impact of geometrical dis-
tortions on morphological measurements induced by the pro-
jection. We measured very large distortions which are then cor-
rected by DeProj, providing accurate outputs.

Image analysis | Morphology | 3D imaging | Tissue imaging

Correspondence: jean-yves.tinevez@pasteur.fr

Background
Epithelia are key multicellular structures constituted of one or
several layers of cells. Their organisation ensures the proper
animal development and the good functioning of adult or-
gans. They can be constituted of hundreds to millions of cells
that are carefully regulated in number, organisation and ge-
netic identity. The cell mechanical and biochemical proper-
ties are tightly regulated and their dynamics affect the organ
development and functioning. Conversely, large scale forces
at the tissue level can determine individual cell fate. For
instance, during drosophila pupal development, local cell-
to-cell interactions through adhesion forces ensure tissue in-
tegrity, control cell shape and cell division orientation and af-
fect cell death probability (1, 2). In the avian embryo during
gastrulation, local mechanical properties of cells are involved
in the behaviour of the whole tissue and the dynamic forma-
tion of the first folding event (3). In vertebrate adult brains,
neural stem cells (NSCs) are organized in a pool forming an
epithelium. The coordination of their behavior, such as divi-
sion or differentiation, are in part regulated via local cell-cell
interactions (4) but is also regulated via large-scale coordi-
nation (5). Thus, the elucidation of biological questions re-
lated to processes involving complex epithelia now require
the imaging of large tissues, while reaching single cell reso-
lution and single cell shape quantitation.

Modern microscopy technologies can fulfill this imaging
challenge and microscopes that can acquire fluorescence im-
ages of the embryo and generate volumetric, multi-channel,
time-lapse datasets of a live sample are now used routinely.
They offer single-cell resolution on a field-of-view large
enough to encompass a significant part of the tissue stud-
ied. However, because of the large size of the data generated
and the limited image signal-on-noise ratio (SNR) imposed
by preservation of the tissue health in a live-imaging experi-
ment, new challenges downstream of imaging appears which
require the development of better image analysis tools.

Epithelia are a continuous layer of cells on a typically
non-flat, smooth surface. When cells are labeled with a junc-
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Fig. 1. Presentation of DProj. The DProj toolbox is made of two tools, LocalZProjector a Fiji tool that generates 2D projections from 3D, multi-channel time-lapse images, and
DeProj, a MATLAB function that uses the height-map output of LocalZProjector and the segmentation results on the projection output to measure accurately the morphology
metrics of the cells in the projected tissue.

tion marker (e.g. cadherin, ZO1), the tissue resembles a man-
ifold wrapped on a 3D surface. A simple approach to visu-
alization and analysis is to perform a projection of the tis-
sue 3D surface on a 2D plane. This dimensionality-reduction
approach proves to be particularly convenient: First the re-
sulting data size is considerably diminished. Second the vi-
sualization of the tissue layer content is immediate in 2D.
Finally, most of the segmentation algorithms that can extract
cell shapes have a better robustness and accuracy in 2D than
in 3D so far, and manual corrections can still be reasonably
performed in 2D.

The biological significance of the information extracted
from these manifolds prompted for the development of sev-
eral tools that can perform 2D projection. MorphoGraph-
X (6) and ImSAnE (7) belong to a first class of tools, where
a reference surface is built as a mesh mapping the sample
boundary. The fluorescence intensity is then collected at or
a few microns away from the boundary into the sample, in a
direction perpendicular to the surface. This approach is par-
ticularly adequate for images of samples with complex, pos-
sibly closed boundaries. A second class of tools perform a
projection of the 3D volume along the Z-axis of the 3D im-
age. The resulting projection created by these tools is a 2D
plane that has the same width and height as the source 3D
volume. They cannot harness samples where the tissue layer
folds, since there must be at most one surface Z value per
(X, Y) position. They are however particularly convenient
with classical confocal microscopy, for the axis of projection
is the one where the point-spread-function (PSF) is the most
elongated. The most simple projection technique in this class
consists in taking the largest pixel value along a Z column for
each (X, Y) position. As noted in (8), this maximum-intensity

projection (MIP) technique is the most used by biologists.
An important drawback is that this projection incorporates
noise from throughout the sample, in particular inside cells,
and will compromise segmentation based on the membrane
signal. To address this limitation, several projection tools
have been developed that aim at including in the projection
only the signal coming from the tissue layer. Among them
there is StackFocuser (9), PreMosa (10), Extended Depth of
Field (EDF) (11), SurfCut (12), MinCostZSurface (13–15),
the Smooth Manifold Extraction (SME) tool (8) and a new
implementation of the latter: FastSME (16). In (17), au-
thors also proposed an approach based on Deep-Learning for
the projection along the Z-axis, but it requires a set of im-
ages along with their already computed projections for its
training (see Supplementary Information for descriptions).
While these approaches have been proven to work well for
tissue imaging, they left open some challenges. First, bright
or noisy structures outside of the cell layer might compro-
mise the extraction of a meaningful reference surface, in turn
strongly affecting the quality of the projection. Second, most
of those approaches will not be working when the volume to
project has a size larger than the available computer mem-
ory, and might take long when they can. Third, the tissue
surface and the XY plane may have in some regions a large
angle. Beyond 30º, the morphological features of cells mea-
sured on the 2D projection will be significantly altered, as
noted in (12).

DProj is a toolbox that fits into this second class of tools,
and builds upon them to address several challenges they left
open. LocalZProjector is the first component of DProj, and
is a user-friendly and widely configurable projection tool that
can be tuned to detect the right reference surface. Its ma-
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Fig. 2. The LocalZProjector component. a. Comparing the output of the maximum intensity projection (MIP) output with the LocalZProjector output on the drosophila pupal
notum dataset. The MIP incoroporates spurious signal in the projection that compromises its subsequent analysis. The use of a local projection that only includes the signal
around a reference surface yields better quality projections. b. Example Z-plane in this dataset acquired from with E-cad::GFP (green) and UAS-RFP (red). This section
crosses the cell layer in a region of high-curvature. Only a band of two cell diameters can be seen in focus in this slice. The red and green stripe at the bottom left corresponds
to the auto-fluorescence of the cuticle layer. The white line is used to generate the sagital section in c. c. Illustration of the LocalZProjector method. A 2D filter applied on
each Z-plane is configured to generate a strong response at the layer of interest. Here the filter is a standard-deviation filter of window size 21×21. For each (X, Y) position,
the Z-plane at which this filter has the strongest response is used to build a reference surface (white segmented line) around which intensity will be collected, possibly with an
offset and a Z-range. All scale bars are 10 µm.

noeuvrability makes it amenable to a wide range of samples
and image qualities, as well as to images of large size be-
yond the size of the available computer memory. DeProj, its
second component, can correct for the distortions induced by
the projection of tissue even if they are very curved. We il-
lustrate below these capacities using three different samples:
the drosophila pupal notum, the quail embryo and the adult
zebrafish telencephalon. We also compare DProj features,
performance and accuracy to existing tools.

Implementation
DProj is a software toolbox for accurate morphology mea-
surements on epithelial tissues. It is made of two compo-
nents: LocalZProjector and DeProj (Figure 1).

LocalZProjector performs the projection of a curved sur-
face in a 3D image on a 2D plane, including only the signal of
interest (Figure 2a). It is an ImageJ2 (18) plugin distributed
within Fiji (19) that focuses on usability and is designed to
be adaptable to many different cases and image quality (Fig-
ure 2b). It can work with 3D time-lapses with multiple color
channels, takes advantage of computers with multiple cores,
can be used in scripts and can process images too large to fit
in memory. The local Z projection processes as follow: First
it extracts a reference surface that maps the epithelial layer
(Figure 2c, Supplemental Figure 1). The reference surface is
represented by the height-map, which consists in a single 2D
image per time-point of the source image, that specifies for
every (X, Y) position the Z position of the layer of interest.
Second, the height-map is used to extract projections of the
different channels from the 3D image, according to their rel-
ative, sometimes different, offset with this reference surface.

LocalZProjector relies on a few parameters set by the

user. The height-map is determined by applying a 2D filter on
each plane of the 3D source image, chosen and configured to
yield a strong response for the layer of interest (either mean
or standard deviation filter). To speed-up computation and
reduce the effect of pixel noise, each 2D plane can be first
binned and filtered with a Gaussian kernel. The height-map
is then regularized using a median filter with a large window
and rescaled to the original width and height. It is then used
to extract a projection from the 3D image. A fixed offset
can be specified separately for each channel, and is used to
collect intensity in planes above or below the reference sur-
face. Several planes, specified by a last parameter ∆z, can
be accumulated to generate a better projection, averaging the
pixel values or taking the maximum value of these planes
(Figure 2c, Supplemental Movie 1).

Once the 3D volume has been projected on a single 2D
plane, many tools are available that can segment the indi-
vidual cells in the tissue. Several of them offer an intuitive
user interface, allowing for immediate usage and user inter-
action. For instance, EpiTools (20) is a toolbox with MAT-
LAB and Icy (21) components built to study the dynamics of
drosophila imaginal discs. Its segmentation algorithm relies
on region growing from seeds determined automatically and
merged based on region areas. SEGGA (22) is a standalone
application written with MATLAB proposed for the investi-
gation of drosophila embryo germband epithelium. Recog-
nizing that a small number of mistakes in segmentation can
have major negative impact on cell tracking accuracy for long
time-lapses, the authors propose several approaches to in-
crease the robustness of segmentation and have a near perfect
tracking results. TissueAnalyzer (23) is a tissue segmentation
tool, distributed along TissueMiner (24) and the combination
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Fig. 3. DeProj. a. DeProj is the second part of Droj and works by combining the height-map (gray line) and the segmentation of cells obtained on the 2D projection (green)
to make measurements on the real cell contour in 3D (red). b. Example DeProj outputs, from left to right and top to bottom: the local mean curvature of the epithelium
experienced by the cells; a 3D visualization of the epithelium 2D projection mapped on its 3D surface; the cell eccentricity measured in their oblique apical surface plane; the
error (1− l2D/l3D) comparing the cell perimeter measured on the 2D projection versus its real value inferred by DeProj. Scale bar: 10 µm.

of these two softwares offers a framework that let end-users
implement their own analyses using the R software and cus-
tom commands. EPySeg, a Python software that relies on
deep-learning for the segmentation was recently made avail-
able in (25).

But these tools operate on 2D images only, which implies
that the epithelium is a flat plane and parallel to XY. When
this is not the case, any morphological measurements made
on the segmentation results will be corrupted by geometrical
distortions induced by the projection (Figure 3a). Indeed, al-
most all morphology metrics, such as area, eccentricity and
orientation will be erroneous when they are measured on the
2D projection. The second component of the DProj toolbox
aims at correcting these artifacts. DeProj is a MATLAB tool
that combines segmentation results and height-maps to cor-
rect morphology measurements made on the 2D projection.
DeProj returns corrected metrics, as if they were measured on
the reference surface in the original 3D image (Figure 3b).

Results
LocalZProjector is an accurate, fast and convenient
tool to generate projections of 3D manifolds on 2D
planes. One of our recent study involves long-term 3D time-
lapses imaging of a drosophila pupal notum (2, 26). To fol-
low the cells dynamics in the tissue, we relied on generating
an accurate 2D projection of the cell monolayer (E-Cadherin
signal, Ecad-GFP), taken from the epithelium surface, and at
the same time collecting the RFP signal from cell nuclei a
few µm below this surface (nls-RFP). This tissue amounts to
a few difficulties. First, the epithelium is not flat. Imaging
it requires the acquisition of about 40-60 µm thick optically-
sectioned volumes. Second, a layer of extracellular matrix
called the cuticle can be found apically to the epithelium.
This cuticle is auto-fluorescent in the green, red and far-red
spectra. Third, below the epithelial layer are large cells called
fat bodies which are also highly fluorescent. In the GFP chan-
nel, the resulting 3D images display mainly two layers. The
top one (low Z values) corresponds to the auto-fluorescent
signal collected from the cuticle. The middle one corre-

sponds to the cell layer, where the cell membranes build a
manifold with a large curvature (Figure 2b). Below these two
layers, the fat bodies generate punctate, bright structures. If
not properly excluded from the projection, these unwanted
structures in the imaged volume will degrade its quality and
complicate or even forbid the subsequent segmentation task.

As the problem introduced here with the pupal notum
is frequent in epithelium tissue imaging, we used it to vali-
date the performance of the LocalZProjector plugin by com-
paring it to currently available projection tools (Table 1).
We generated a ground-truth for the desired projection im-
age by manually selecting the Z value of the cell layer
at each (X, Y) location (see Supplemental Note 1). We
then calculated several metrics measuring the accuracy and
performance of the projection generated by the LocalZ-
Projector tool, and compared the results to 7 other meth-
ods (Supplemental Note 2): the standard maximal-intensity-
projection (MIP), the StackFocuser tool (9), SurfCut (12),
PreMosa (10), the Extended-Depth-of-Field (EDF) tool (11),
the Mininum-Cost-Z-Surface (MinCostZ) approach of (13,
14), implemented in (15) and the Smooth Manifold Extrac-
tion tool (8, 16). We first assessed how close the resulting
projection was to the ground-truth projection using the root-
mean square error (RMSE). This metrics proves useful in two
aspects. First, because it allows for quantitatively compar-
ing several methods and assessing how useful the projections
will be in a subsequent analysis step. Second, because it of-
fers a way to systematically search for optimal parameters
for the 8 methods tested, by minimizing the RMSE over a
wide range of parameters (Supplemental Note 2A). Compar-
ing the optimal projection of each method, we find that the
LocalZProjector projection is favored (Table 1, Supplemen-
tal Figure 3a and Supplemental Note 2B), because it is ro-
bust against noise and can be configured to deal with regions
of high-curvature. The accuracy of the height-map output
is important for the subsequent correction of the cell mor-
phology measurements made by DeProj in the second step
of the DProj process. We therefore calculated the RMSE
of the height-maps compared with the ground-truth (Supple-
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MIP ImageJ plugin ø + + + 304 0.06 0.538

StackFocuser (9) ImageJ plugin heuristics - - - 168 0.82 16.6 0.302

SurfCut (12) ImageJ macro heuristics - - - 129 6.0 0.187

PreMosa (10) Standalone heuristics + + - 144 0.51 4.3 0.208

EDF (11) ImageJ plugin heuristics - - - 236 7.24 127 0.405

MinCostZ (13–15) ImageJ plugin energy minimization - - - 114 1.25 6.2 0.198

FastSME (8, 16) ImageJ plugin, MATLAB energy minimization + - - 127 0.887 16.6 0.178

LocalZProjector This work Fiji update site heuristics + + + 81.5 0.428 4.3 0.117

Table 1. Features and performance of several end-users projection tools compared in this work. Most of the tools that are distributed within a framework like Fiji or MATLAB
can be scripted or modified to harness the extra time and channel dimensions. This table reports whether they can do it without extra effort from the user. For the MIP
technique we took the implementation in ImageJ. PreMosa has a separate command (ExtendedSurfaceExtraction) that can deal with multi-channel images. The 4 last
columns relate the performance metrics of the tool measured with the drosophila pupal notum image, and plotted in Supplemental Figure 3. Lower values indicate better
performance. The OCE segmentation column reports the accuracy of the cell segmentation using object-consistency error metrics (see Supplemental Note 3). The color
scheme is determined from the range of results, splitting the range in 4 tiers, excluding the largest values for the height-map RMSE and timing metrics. The MIP does not
return a height-map. On this image, SurfCut did not detect the epithelium, but the auto-fluorescent cuticle. By indicating a large shift in Z in the parameter, it could be made
to return a usable projection nonetheless, but the height-map is aberrant and its RMSE measure is therefore not included in this table.

mental Note 2C), for the projection tools that can return a
height-map of the cell layer (LocalZProjector, StackFocuser,
PreMosa, EDF, MinCostZ and FastSME). We find again
that LocalZProjector offers the height-map with the lowest
RMSE (Supplemental Figure 3b). Because DProj aims at be-
ing a tool possibly used on very long time-lapse movies, the
time needed to generate a projection is important, we con-
firmed it is fast in comparison to most of the other methods
(Supplemental Figure 3c). Finally, the projection accuracy of
such a dataset is relevant mainly for its use in a subsequent
analysis. We chose to focus on cell segmentation, as DeProj
will be used to measure accurate and unbiased cell morphol-
ogy. We therefore derived a simple, fully automated segmen-
tation workflow on the projections, and compared segmenta-
tion results against a ground-truth segmentation (Supplemen-
tal Figure 3d, Supplemental Note 3). These results exemplify
the usefulness of LocalZProjector, both for accuracy and per-
formance.

Finally, in this study, we wanted to generate projections
of the E-cadherin channel but also needed to visualise the nu-
clei reporter of some of these cells localised a few microme-
tres just below the reference surface. This was easily fea-
sible as LocalZProjector can handle multiple-channel long
time-lapse images in a user-friendly manner. We compared
some of the LocalZProjector features with other tools in Ta-
ble 1. We also proved qualitatively that LocalZProjector can
be used on wide-range of images coming from very different
samples and we especially validated it on a large set of exam-
ple images introduced in (16), taken from samples ranging
from Neuroscience to Cell Biology and synthetic images. In
Supplemental Figure 12 we present the projections obtained
successfully with LocalZProjector on this dataset.

Projecting large images with LocalZProjector. In toto
imaging of developing embryos allows for investigating the
dynamics of tissues at a large spatial scale. For instance ana-

lyzing gastrulation in entire avian embryos, we showed that it
is driven by the graded contraction of a large-scale supracel-
lular actomyosin ring at the margin between the embryonic
and extraembryonic territories (3). For this study we relied
on particle image velocimetry (PIV) to measure the tissue
displacement field. This technique does not require the seg-
mentation and tracking of individual cells. However, several
key mechanisms at large scales emerge from the dynamics
of single cells (27). The ability to segment all the cells in
a whole embryo prompts for imaging at high resolution and
special microscopes (28). But such acquisition setups gen-
erate in turn very large images. Also some imaging modal-
ities that enable imaging large specimen at high resolution,
such as Light-Sheet Fluorescence Microscopy (LSFM), may
bring additional distortions in the image. In order to image
a quail embryo at high resolution, we relied on LSFM using
an inverted selective plane illumination microscope (28, 29).
While the light-sheet is held stationary at 45º of the em-
bryo surface, the embryo is translated horizontally through
the light-sheet. The 2D planes acquired for each translation
are then concatenated in a 3D stack. Because the axis of the
embryo translation and the light-sheet plane are at a 45º an-
gle, the stack needs to be post-processed to remove the skew
induced by this angle. The resulting is a 8669 ×2285 ×1067
image, amounting to a 42 GB file for a single time-point.

The 2D projection of such an image is very pertinent as
the epithelium of interest is a smooth thin cell layer within
a large 3D volume. It would also reduce the image size by
1067 and make it much more amenable to analysis and com-
pact storage. To tackle the challenges coming with such large
datasets, we use the Fiji Virtual Stack importer, which only
loads one Z-slice in memory at a time. This allows for the
opening and to some extent the processing of images much
larger than RAM. While the MIP works well with virtual
stacks, the resulting projection is corrupted by projection ar-
tifacts. Moreover, in such images the point-spread function
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Fig. 4. Projection of a large quail embryo (Coturnix japonica) imaged with LSFM.
Projection results using the maximum intensity projection (a.) and the LocaLZ-
Projector plugin (b.). Bottom: details of the two insets outlined in yellow in the top
panels. Scale bars: top: 100 µm, bottom: 20µm. The two dark horizontal lines
correspond to bleaching happening during the setup phase of the experiment. The
intensity display range is the same on the 6 images.

(PSF) is not aligned with Z-axis of the image. The elonga-
tion of the PSF generates marked distortions and blurs the
membrane signal in the projection, up to the point where cells
cannot be outlined by eye (Figure 4a), even on a source image

with little signal coming from spurious structures.
To improve the projection quality, we developed the

LocalZProjector so that it can work with virtual stacks as
well, granting it the ability to project images larger than the
available memory amount and without having to do any pre-
processing or resaving of the image. LocalZProjector works
with two passes through the image data, one to compute the
reference surface, one to perform the local projection (Sup-
plemental Movie 2), ensuring that individual planes are read
from disk at most twice. This still comes at a time penalty.
LocaLZprojector takes 8.5 minutes per time-point, against
1.3 minutes for the MIP. But the LocalZProjector result is
completely devoid of the defects observed with the MIP and
is amenable to segmentation and quantification (Figure 4b).

Accurate measurements of cell morphology: DeProj.
In vertebrates, adult neural stem cells (NSCs) are responsible
for adult neurogenesis (30) and, in some vertebrates, regen-
eration post-injury (31). NSCs are organized as an epithelial-
like structure lining ventricles that has to be maintained func-
tional for very long periods of time (often over years). To
understand NSC populattion homeostasis it is essential to in-
tegrate large-scale and long-term imaging of the NSC pool
and the zebrafish telencephalon has recently emerged as a
unique model for these studies (5, 32). To study cellular
and mechanical functions of NSC over the entire over the
entire dorsal telencephalon (pallium) we can image whole-
mount immunostainings against ZO1 (4), highlighting apical
domains of the NSCs. However, since the pallial hemispheres
are highly curved we so far could not extract the geometrical
parameters of many NSCs (falling in periphery, in sulci, etc.).

DeProj is a MATLAB app specifically built to address
this issue. DeProj exploits the reference surface for the pro-
jected tissue to assign a Z position to each point of a cell con-
tour, effectively "deprojecting" it on the tissue surface. The
reference surface can be specified as the height-map which is
the secondary output of LocaLZProjector and several others
projection tools, or as a mesh that extends over the epithelium
surface. The cells segmentation can be specified as a black
and white mask, or as a the specialized structure coming
from the tool of (33). Several morphological metrics (area,
perimeter, orientation, eccentricity, ... ) are then computed
and saved, along with the cell contour mapped on the tissue
surface. The generated DeProj data object is used to store
the analysis results and offer exporting facilities and several
visualisations of the results. On the telecephalon image, a 3D
view generated by DeProj shows the shape of the epithelium.
We can see several regions where the tissue is very curved,
particularly at its borders and in the sulcus separating the re-
gions (Figure 5a). A visual representation of the cell area
does not show a salient difference between a measurement
made on the proper 3D epithelium surface (Figure 5b) or on
the 2D projection (Figure 5c). However the histogram of the
error metric ea = (1 − a2D/a3D) between these two quanti-
ties shows that for a large number of cells, using the 2D mea-
surement induces an error greater than 20% (Figure 5d, 22%
of the 3000 cells in this epithelium have an error larger than
20%). The cells with a large error are found at the epithelium
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Fig. 5. Getting accurate cell morphology measurements in non-flat samples with
DeProj. a. 3D visualization of the NSC population on the zebrafish telencephalon
generated by DeProj. The cells are drawn with their approximate contour, their color
encoding the number of neighbor cells (from dark blue to yellow: 2 to 16 neighbors).
b. Cell apical area, measured on the 3D surface, a3D. c. Cell apical area measured
on the 2D projection, a2D. The color scale is identical in b and c. d. Histogram of
the error metric on area (1−a2D/a3D) for all the cells of the epithelial-like surface.
e. Rendering of this error on the epithelial-like surface. f. Rendering of the slope of
the apical plane of each cell with the XY plane. g. Correlation between the slope of
the apical plane and the error on cell area for all cells of the epithelial-like surface.
Red line: 100× (1− cosθ).

border and in the sulcus (Figure 5e), which are regions where
the angle between the cell apical planes and the XY plane is
large too (Figure 5f). Without surprise, we find that a large
slope correlates with a large error (Figure 5g). If a cell would
be a square of side a, with one side making an angle θ with
the XY plane, then its real area measured in 3D is a2. The
2D projection of this cell contour on the XY plane generates a
rectangle of sides a and a×cosθ, so that the error ea is equal
to 1 − cosθ for this cell. Because real cells have complex
shapes and have a contour that is not necessarily contained in
a plane, we find that this expression constitutes a lower bound
for ea (Figure 5g, red line).

Conclusions
As can be noted in the comparative study of this work, there
exists already several tools that perform projection of tis-
sues in 2D from a 3D image. Their number demonstrates
the importance of the information that can be extracted from

the resulting images. This, and the still popular usage of
MIP despite its shortcomings, also points out the difficulty
of having a tool that can address all types and qualities of im-
ages to project, despite the similarity in tissues staining and
shape. Yet the quality of projection dictates the subsequent
step in analysis, as demonstrated in Supplemental Figure 3d.
Some of these tools have the advantage of being parameter-
free (8, 13–16). LocalZProjector takes another approach and
requires several parameters to be tuned. In turn, this config-
uration step allows it to work even with difficult 3D images
containing spurious structures and confers it a greater adapt-
ability. It is also to our knowledge the only one that can pro-
cess large images without pre-processing.

DeProj allows for the correction of geometrical distor-
tions caused by the projection on morphological measure-
ments. These artifacts remain often overlooked, despite pos-
sibly compromising the measurements accuracy when the lo-
cal angle of the tissue with the XY plane is large. It works as
the final step in our bioimage analysis pipeline and combine
the cell segmentation results with the original shape of the
sample, such as a height map, to yield various corrected tis-
sue visualizations and accurate morphological measurements
on cells. Typically microscopists prepare samples in such a
way that the orientation of the tissue is favorable for imaging,
with its main orientation parallel to the XY plane. Yet, we
found that in a tissue like the pallium, the slope can exceed
40º in the regions of interest. But even a more moderate slope
yields dramatic errors on measurements taken directly on the
2D projection (Figure 5g). DeProj offers robustness against
these distortions, and makes it possible to accurately access
the morphology of cells in highly curved samples while tak-
ing advantage of a simplified 2D dimensionality to segment
the tissue morphology.

Availability and requirements
The project homepages contain the source code, installation in-
structions, documentations and extra implementation details. For
DeProj, the homepage also contains 3 example scripts and data to
reproduce some panels in Figures 1, 2 and 5.

Local Z Projector.

• Project name: LocalZProjector.
• Project homepage: https://gitlab.pasteur.fr/
iah-public/localzprojector

• Operating systems: Platform independent.
• Programming language: Java.
• Other requirements: Runs from Fiji (19).
• License: BSD 3
• Any restrictions to use by non-academics: None.

DeProj.

• Project name: DeProj.
• Project homepage: https://gitlab.pasteur.fr/
iah-public/DeProj

• Operating systems: Platform independent.
• Programming language: MATLAB.
• Other requirements: at least MATLAB R2019b.
• License: BSD 3
• Any restrictions to use by non-academics: None.
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Data availability. The data of this study is available upon reason-
able request.
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