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Abstract

We analyze the evolution of a multidimensional quantitative trait in a class structured focal

species interacting with other species in a wider metacommunity. The evolutionary dynamics in

the focal species as well as the ecological dynamics of the whole metacommunity is described as a

continuous time process with birth, physiological development, dispersal, and death given as rates

that can depend on the state of the whole metacommunity. This can accommodate complex local

community and global metacommunity environmental feedbacks owing to inter- and intra-specific

interactions, as well as local environmental stochastic fluctuations. For the focal species, we derive a

fitness measure for a mutant allele affecting class-specific trait expression. Using classical results from

geometric singular perturbation theory, we provide a detailed proof that if the effect of the mutation

on phenotypic expression is small (“weak selection”), the large system of dynamical equations needed

to describe selection on the mutant allele in the metacommunity can be reduced to a single ordinary

differential equation on the arithmetic mean mutant allele frequency that is of constant sign. This

invariance on allele frequency entails the mutant either dies out or will out-compete the ancestral

resident (or wild) type. Moreover, the directional selection coefficient driving arithmetic mean allele

frequency can be expressed as an inclusive fitness effect calculated from the resident metacommunity

alone, and depends, as expected, on individual fitness differentials, relatedness, and reproductive

values. This formalizes the Darwinian process of gradual evolution driven by random mutation and

natural selection in spatially and physiologically class structured metacommunities.

Keywords: Evolutionary biology, invasion implies substitution, fitness, selection gradient, struc-

tured populations, relatedness, stochastic fluctuations

∗E-mail: tadeas.priklopil@unil.ch

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.01.15.426821doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426821
http://creativecommons.org/licenses/by-nc-nd/4.0/


Invariance that had appeared in the

criterion for altruism with respect to gene

frequency in the case of sibs had seemed a

gift from God, and I did not expect to see it

repeated in the more complex trial cases I

had moved on to. So it was with joy and

almost with incredulity that I at last found

emerging out of acres of my tedious and

usually wrong algebra for the case of uncles,

and then for the case of cousins, the same

invariance as I had found before.

(Hamilton, 1988, p. 189)

1 Introduction

Darwinian evolution – the gradual, step-by-step transformation of traits due to random mutation and

non-random cumulative natural selection – is the central mechanism of adaptation (Dawkins, 1986,

1997). A proof of principle of Darwinian evolution is given by selective sweeps, in that mutations that

increase in frequency also tend to fix in the population as a result of natural selection. Each fixation

thus displays invariance in the direction of selection with respect to gene frequency, and repeated

fixations under the constant influx of mutations enable gradual phenotypic evolution and adaptation.

Such invariance with respect to gene frequency is, however, not expected to hold under general

biological processes. In particular, social as well as ecological interactions can lead to survival and

reproduction being frequency-dependent, and this may result in genetic polymorphisms preventing

allelic fixation. Furthermore, in spatially and physiologically structured populations, it is not obvious

to identify the conditions under which selective sweeps occur owing to the complications arising from

genetic correlations at local spatial scales and across physiological classes.

In this paper we provide sufficient conditions for selective sweeps when evolution occurs in an asexual

focal species that resides in a wider metacommunity (Wilson, 1992; Leibold et al., 2004), and where

socially interacting individuals are structured into discrete classes that determine their physiological

state, such as age and size, as well as their local biotic and abiotic environment. We provide these

conditions in terms of an “invasion implies substitution”-principle, which is a formal characterization

of the invariance of selection with respect to a population-wide frequency of a mutant allele that

affects quantitative traits in the context of density- and frequency-dependent selection (Hamilton,

1964; Rousset, 2004; Meszéna et al., 2005; Dercole and Rinaldi, 2008; Lehmann and Rousset, 2014;

Dercole, 2016; Cantrell et al., 2017; Ito et al., 2020; Cai and Geritz, 2020; Priklopil and Lehmann,

2020). The principle consists of two propositions (Priklopil and Lehmann, 2020). The first says

that if a mutation in the focal species results in a phenotype with a closely similar expression to its

ancestral resident (wild)-type, a successful invasion of the mutant allele will generically lead to its

fixation. In the present metacommunity model, moreover, the dynamical process for some weighted

population-wide mutant frequency in the focal species p(t) ∈ [0, 1] is supposed to take the form of a

scalar-valued ordinary differential equation

d

dt
p(t) = p(t)(1− p(t))δSη(z) +O(δ2). (1)

Here, δ is a small parameter characterizing the distance between the mutant phenotype z + δη and

the resident phenotype z = (zA)A∈C, with zA denoting the phenotype produced by a carrier of the

resident allele in class A ∈ C where C is the set of relevant classes individuals can be in, and where

η = (ηA)A∈C is the mutant phenotypic deviation. The expression δSη(z) in (1) is the so-called
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directional selection coefficient, and because it is frequency-independent the allele frequency affects

the evolutionary dynamics only via the term p(t)(1 − p(t)). Since Sη(z) is independent of time

t, a successful invasion of the mutant allele implies its substitution and thus a selective sweep is

obtained in the focal species. This in turn implies that in longer timescales recurrent mutation and

invasion events will gradually transform the phenotype z of interest until the phenotype reaches the

boundary of its feasible values or Sη(z) becomes zero, which allows to identify singular points where

the selection on z changes from directional to either stabilizing or disruptive (e.g. Geritz et al., 1998;

Rousset, 2004).

The second proposition says that the rate of substitution of the invading mutant allele is model

independent, and that it can be expressed in terms of an inclusive fitness effect as

Sη(z) =
∑

A,B∈C

vA

[
∂hAB

∂zB
ηB +

∑
C∈C

∂hAB

∂zC
rBCηC

]
uB, (2)

where all quantities are calculated from the resident population. Here, hBA is an element of a

resident growth-rate matrix H giving the rate at which a single individual in class A ∈ C that

expresses phenotype zA produces individuals in class B ∈ C. The first partial derivative inside the

brackets is taken with respect to the phenotype of the focal individual whose growth-rate we are

considering and measures the (direct fitness) effect of the mutation on its own growth-rate, where

the mutational effect is of magnitude ηB. The second partial derivative is taken with respect to

the phenotype of an individual of class C inhabiting the same group as the ‘focal’ individual, and

measures the (indirect fitness) effect that mutant individuals in class C have on the growth-rate

of the focal individual. This derivative is weighted with the relatedness coefficient rBC giving the

probability that an individual in class C ∈ C and the focal individual in class B ∈ C have a common

ancestor, that is, their lineages coalesce backward in time. The vector r = (rBC)B,C∈C collecting all

these relatedness coefficients thus gives the conditional probability of group members inheriting the

same allele, and captures the effect of limited genetic mixing on the evolutionary dynamics (r = 0 in

spatially well-mixed species). Finally, the vectors u = (uA)A∈C and v = (vA)A∈C are the right and

left dominant eigenvectors of H and are normalized to give class frequencies and reproductive values,

respectively. Expressions taking broadly the form (2) and special cases thereof are routinely applied

in evolutionary biology to ascertain the directions of selection and evaluate singular points, be it in

the kin selection, quantitative genetics, life-history, demography, and adaptive dynamics literatures

(e.g., Charlesworth, 1994; Frank, 1998; Caswell, 2000; Rousset, 2004; Dercole and Rinaldi, 2008;

Lynch and Walsh, 2018 for textbook treatments).

In this paper, we extend our earlier result on the “invasion implies substitution”-principle (1)-(2)

derived for well-mixed ecological communities (Priklopil and Lehmann, 2020) to spatially structured

metacommunities where local communities are of finite size and follow an island model of dispersal.

For such spatial structure, the “invasion implies substitution”-principle has been previously consid-

ered in Roze and Rousset (2003, 2004); Rousset and Ronce (2004); Rousset (2004); Van Cleve et al.

(2010) [see also closely related results in Rousset, 2006; Lion and Gandon, 2009 for lattice spatial

structure and Cantrell et al., 2017 where dispersal follows a diffusion model], and our approach and

results here extend and complement this earlier work in various aspects. First, we formulate our

model in continuous time and for several interacting and stochastically reproducing species that are

physiologically class structured. Second, we provide a step-by-step proof of (1)-(2) by singularly

perturbing the limiting metacommunity model where δ = 0 (Fenichel, 1979; Hek, 2010; Kuehn,

2015; Priklopil and Lehmann, 2020). Third, we pay particular attention to tie up all underlying

concepts needed to prove gradual evolution in metacommunities, from the individual based demo-

graphic processes to the dynamics of moments of allelic states and the fast-slow analysis of all the

relevant dynamical variables. We find that the approximation (1)-(2) holds for small but non-zero δ
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where the perturbation of steady states caused by the invasion is taken into account, a result given

without proof previously. More importantly, we sharpen earlier representations of (1) in terms of

the reproductive value weighted average frequency (Roze and Rousset, 2004; Rousset and Ronce,

2004; Rousset, 2004; Van Cleve et al., 2010; Priklopil and Lehmann, 2020) by allowing p(t) to be

defined as any population-wide average mutant frequency, with special cases being the reproductive

value weighted mutant frequency as well as the arithmetic mean mutant frequency. In terms of the

arithmetic mean, equation (1) becomes functionally equivalent to the standard and widely applied

textbook representation of natural selection under additive gene action in spatially and physiolog-

ically homogeneous populations without social interactions nor ecological feedback (e.g., Crow and

Kimura, 1970; Gillespie, 2004; Hartl et al., 1997).

The rest of the paper is organized as follows. In Section 2 we introduce the main modeling as-

sumptions and in Section 3 we detail the specifics of the purely resident (ecological) metacommunity

model. All the species dynamical variables and growth-rates that are present in the directional

selection coefficient δSη(z) as characterised in (2) are derived in this section. The remainder of

the paper is then dedicated in proving the “invasion implies substitution”-principle (1)-(2) for the

metacommunity model. To do this, we first present in Section 4 a mutant-resident metacommunity

model for arbitrary mutant and resident phenotypes and thus arbitrary strength of selection. Then,

in Sections 5-6, we will derive several results for the limiting metacommunity processes where δ = 0,

and the formal proof of the “invasion implies substitution”-principle where δ is small but non-zero is

given in Section 7. In Section 8 we will conclude the paper by discussing the results and a particular

focus is given in relating our results to the theory of adaptation and gradual evolution.

2 Outline of the model

We consider a metacommunity consisting of an infinite number of local communities connected to

each other by random uniform dispersal. Each local community, which we will generally refer to as

a local group, consists of a finite number of interacting asexual species and we assume each local

community to be bounded in size. We focus on the ecological and evolutionary dynamics occurring

in some focal species of interest and assume a continuous time demographic process.

At each moment in time, each individual in the focal species is assumed to be in one of a finite

number kP of individual-level (i-level) physiological states, such as of certain age and size, and we

denote the set of physiological states of the focal species with P. All the other non-focal species can

be similarly structured, and in addition each group is characterized by a set of abiotic factors such

as the temperature or quality of the habitat. An abiotic factor is defined as any factor outside of

the focal and non-focal species, be it a factor that is affected by the species or not, in which case we

call it an external factor. Each group of individuals will therefore be in one of a finite number kS

of group-level states, defined as a union of physiological states of each and every individual of every

species inhabiting the group, including any abiotic factors. The set of all group states (g-state) is

denoted with S. As each element of S prescribes exactly the size distributions of all species, including

the focal, we will use Nas to denote the number of individuals a ∈ P in the focal species inhabiting

a group in g-state s ∈ S.

Each group in the metacommunity changes its state in S due to individual processes (i-processes) of

the focal and non-focal species, as well as due to processes of abiotic factors such as changes in the

temperature or quality of the habitat. The i-processes of the focal species are birth, where offspring

of any physiological state is being produced, and dispersal, where each offspring either disperses

randomly to other groups or stays in its natal group. Individuals may also undergo physiological

development defined as a transition from one physiological state to another, as well as death. When-

ever a group s ∈ S transitions to u ∈ S due to an event where an individual a ∈ P is produced into
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or removed from the group, we have the identities Nas + 1 = Nau or Nas − 1 = Nau, respectively,

and otherwise Nas = Nau. Individuals of the other non-focal species may undergo similar i-process.

All the processes are assumed stochastic occurring on a Poissonian basis (e.g., Kingman, 1992), and

can depend in an arbitrary way on the physiological state of the individual, the g-state of the group

it inhabits as well as the state of all the other non-focal groups.

Because the i-procesess of individuals may differ not only due to their physiological state but also the

g-state of the group they inhabit, we will use the notion of a class of an individual. This is defined

such that whenever any two individuals are identical in terms of their i-processes, they belong to the

same class (Taylor, 1990; Rousset, 2004; Grafen, 2015). In the present model, individuals are in the

same class whenever they are in the same physiological state and inhabit a group that is in the same

g-state. The class space is denoted with C = P × S and it is of size kC = kP × kS .

Finally, individuals in the focal species express a genetically evolving phenotype that may affect the

i-processes of any individual in the metacommunity. We assume that phenotypic expression is a

class-specific function. For example, the phenotype may depend on the physiological state of the

individual as well as the abiotic factors of the group that it inhabits. An individual in class as ∈ C
expresses phenotype zas ∈ R such that z = (zas)as∈C ∈ Z denotes the vector-valued phenotypic

profile across classes and where Z ⊂ RkC is the phenotype space. We assume that offspring inherit

faithfully the phenotype of their parent and that two alleles that can result in different phenotypic

expression segregate in the focal species, a mutant allele M and a resident allele R. We assume that

the mutation rate is exceedingly small so that no other alleles interfere with the mutant-resident

dynamics (this assumption can be mildly relaxed, see Section 8). Characterizing the spread of the

mutant allele is the focus of our analysis.

We note that many closely connected ecological or evolutionary models allowing for various hetero-

geneities within and/or between groups have been considered before for both continuous or discrete

time processes e.g. by Chesson (1981, 1985); Grey et al. (1995); Frank (1998); Gandon and Micha-

lakis (1999); Ronce et al. (2000); Metz and Gyllenberg (2001); Arrigoni (2003); Cadet et al. (2003);

Barbour and Pugliese (2004); Rousset (2004); Rousset and Ronce (2004); Martcheva and Thieme

(2005); Lehmann et al. (2006); Martcheva and Thieme (2006); Martcheva et al. (2006); Alizon and

Taylor (2008); Wild et al. (2009); Ronce and Promislow (2010); Wild (2011); Peña (2011); Rodrigues

and Gardner (2012); Parvinen (2013); Massol and Débarre (2015); Lehmann et al. (2016); Rodrigues

(2018); Parvinen et al. (2018); Kuijper and Johnstone (2019); Ohtsuki et al. (2020). No prior model

has however considered metacommunities with multiple interacting species where individuals and

groups are characterized by arbitrary states and as such all these previous models, as well as models

with finite class-structure in panmictic populations, can be conceptually subsumed to the present

analysis.

3 Resident dynamics in the metacommunity

The aim here is to describe the population dynamics (ecology) of the focal species in the metacom-

munity assuming that the focal species is monomorphic for the resident allele. For this, we need to

characterize the dynamics of the entire resident metacommunity. We define the state of the resident

monomorphic metacommunity as a discrete probability (frequency) distribution over the state space

of groups S. The metacommunity state space is therefore the space of frequency distributions ∆(S)

on S, which is the simplex in RkS . We will represent the frequency distribution of the metacom-

munity at time t ∈ R with the vector x := x(t), where x = (xs)s∈S ∈ ∆(S) and where xs is the

frequency of groups in state s ∈ S with
∑
s∈S xs = 1, and next we track the dynamics of this vec-

tor. While the upcoming characterization may at first appear lengthy, we fully work it out as (i) it
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plays a central role in the analysis of selection and (ii) it is of interest in the formulation of purely

metacommunity ecological models.

3.1 Individual-level processes

To construct dynamical equations for the metacommunity dynamics, we start from i-processes of

the focal species. To that end, we introduce four elementary individual-level rates (i-rates). First,

the rate γa←bs at which an individual in physiological state b ∈ P inhabiting a group s ∈ S, that

is, an individual in class bs ∈ C, transitions into physiological state a 6= b ∈ P. By construction,∑
a6=b∈P γa←bs then stands for the total rate at which an individual in class bs ∈ C undergoes a

transition and γa←bs is undefined as a transition rate for a = b ∈ P. Second, the rate µbs at which

an individual in class bs ∈ C dies. Third, the rate βp
a←bs at which an individual in class bs ∈ C

produces by reproduction an offspring individual in physiological state a ∈ P that stays in the focal

group (hence superscript ‘p’ for philopatry), and finally, the rate βd

a
w←bs

at which an individual in

class bs ∈ C produces by reproduction an offspring individual a ∈ P into a non-focal group w ∈ S,

conditional on offspring landing in that group (hence superscript ‘d’ for dispersal). We further assume

that dispersed offspring land into a group w ∈ S with probability xw, and this assumption allows

us to write βd
a←bs =

∑
w∈S xwβ

d

a
w←bs

giving the total rate at which bs ∈ C gives birth to a ∈ P into

non-focal groups (Figure 1). By convention we assume that whenever Nbs = 0 then γa←bs = 0,

µbs = 0, βp
a←bs = 0 and βd

a
w←bs

= 0, and if group s ∈ S is at its maximum size then βp
a←bs = 0 and

βd

a
s←bw

= 0 for all a, b ∈ P, s, w ∈ S.

Formally, we can express the four basic rates of the focal species as the mappings

γa←bs, µbs, β
p
a←bs, β

d

a
w←bs : ZC ×Z × S × Z ×∆(S)→ R+ for all a, b ∈ P, s ∈ S, (3)

such that, for instance, the first argument in γa←bs(zbs,z, s, z,x) indicates the class-specific phe-

notype zbs ∈ ZC expressed by the focal individual who undergoes the i-process, and the remaining

arguments describe the group of the focal individual and the rest of the metacommunity that affect

these i-processes. That is, the second argument z ∈ Z indicates the phenotypic profile of resident

individuals of the focal species that inhabit the group of the focal individual and the third argument

s ∈ S gives the state of the entire focal group, namely, the distribution of the focal and non-focal

species as well as abiotic factors (Section 2). Likewise, the fourth argument z ∈ Z indicates the

phenotypic profile of resident individuals in the focal species outside of the group of the focal indi-

vidual and the final argument gives the g-state distribution of the entire metacommunity x ∈ ∆(S).

Moreover, in calculations involving the i-rates (3), it will be useful to use the short-hand notation

γa←bs(x) = γa←bs(zbs,z, s, z,x) for all a, b ∈ P, s ∈ S, (4)

indicating the dependence on the state of the metacommunity. The arguments and the short-hand

notation of functions µbs, β
p
a←bs and βd

a
w←bs

, as well as other individual-level functions introduced

henceforth, are interpreted identically. Note that the mapping for the total birth rate via dispersal

βd
a←bs can be obtained by using βd

a
w←bs

.

For ease of presentation and calculation, we will further use a single symbol for all the i-rates (3), and

in addition indicate the g-state of the group after the focal individual has undergone the i-process.

To this end, and for all au, bs ∈ C, the class-specific physiological transition rate satisfies

λT
au,bs(x) =

γa←bs(x) for a 6= b and Nau = Nas + 1 and Nbu = Nbs − 1

0 otherwise,
(5)
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the class-specific death rate satisfies

λD
au,bs(x) =

µbs(x) for a = b and Nbu = Nbs − 1

0 otherwise,
(6)

and the class-specific philopatric birth rate satisfies

λpB
au,bs(x) =

β
p
a←bs(x) for Nau = Nas + 1

0 otherwise.
(7)

The class-specific conditional birth rate via dispersal satisfies

λdB
au,w,bs(x) =

β
d

a
w←bs

(x) for Nau = Naw + 1

0 otherwise,
(8)

and so the total birth rate via dispersal is

λd
au,bs(x) =

∑
w∈S

xwλ
dB
au,w,bs(x). (9)

3.2 Group state dynamics

The dynamics of the frequency of g-states in the metacommunity x ∈ ∆(S) can now be expressed as

a system of ODE’s

ẋ = Q(x)x, (10)

where the dot represents the time derivative and Q(x) = (qu,s(x))u,s∈S ∈ RkS×kS is a group

transition-rate matrix where qu,s(x) is the rate at which a group in state s ∈ S transitions to state u ∈
S. Consistency requires that

∑
u∈S qu,s(x) = 0 for all s ∈ S and hence qs,s(x) = −

∑
w 6=s∈S qw,s(x)

gives the rate at which a group transitions from s ∈ S to any other g-state (Figure 1). Due to the

independence of the i-processes (Section 3.1), we can write

qu,s(x) = qp
u,s(x) + qd

u,s(x) + qmc
u,s(x), (11)

where the group transitions due to philopatric i-processes of the focal species as

qp
u,s(x) =

∑
a,b∈P

λp
au,bs(x)Nbs, (12)

with

λp
au,bs(x) = λpB

au,bs(x) + λT
au,bs(x) + λD

au,bs(x), (13)

and that due to dispersal as

qd
u,s(x) =

∑
a,c∈P

∑
w∈S

λdB
au,s,cw(x)Ncwxw. (14)

This sums both over all physiological states of the parents and their possible progeny as well, and

recall that Nas is a constant specifying the number of individuals a ∈ P in group s ∈ S (Section

2). Finally, all other non-focal species processes affecting the metacommunity state dynamics are

captured by the rate qmc
u,s(x).

We note that there are two biologically relevant perspectives on the process generated by (10). First,

one can interpret x as the frequency distribution of an infinite collection of groups and which is taken
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as the state of the metacommunity (as discussed above). In this view the ODE in (10) describes

a deterministic processes on how the state of an infinite collection of groups changes in time. We

will call it the deterministic perspective. Second, one can look at a single group and interpret

the vector x = x(t) as a probability distribution over the state space S, each element giving the

probability of the state the group is in at time t. The rates (11) are then interpreted as the rates at

which the group transitions from one state in S to another state in S. Taking this perspective, all

groups in the metacommunity are assumed to undergo a non-homogeneous continuous time Markov

chain (Iosifescu, 2007, chap. 7) with transition matrix Q(x) that is a function of the state x of the

metacommunity (hence the non-homogeneity). We call this the probabilistic perspective. In the

main text, we follow for ease of presentation the deterministic perspective and for the final results

in Section 7 we discuss the probabilistic perspective.

3.3 Resident population and reproductive value dynamics

We now describe the population dynamics of the focal species, which needs to be done in the backdrop

of the full metacommunity state dynamics (10). Let n = (nas)as∈C ∈ RkC+ denote the density vector

of individuals of the focal species in a monomorphic metacommunity, where nas = Nasxs defines

the density of individuals in class as ∈ C. Because groups are assumed to be well-mixed in the

meta-community, the density of individuals refers to the number of individuals per unit space on the

scale of groups. The vector n ∈ RkC+ satisfies the system of ODEs

ṅ = H(x)n, (15)

where H(x) = (hau,bs(x))au,bs∈C ∈ RkC×kC is the resident individual growth-rate matrix. The

elements of this matrix are

hau,bs(x) = λd
au,bs(x) + λpB

au,bs(x) + λT
au,bs(x) + δa,b

[
qu,s(x)−

∑
c∈P

λT
cu,bs(x)− λD

bu,bs(x)

]
, (16)

for all au, bs ∈ C, which is the rate at which a focal ‘parent’ individual in class bs ∈ C produces or

removes an ‘offspring’ individual of class au ∈ C (see for a derivation Appendix A, Section A.1).

Equation (16) gives a representation of the class-specific individual growth-rate, or individual fitness,

whose arguments are identically interpreted to those of the i-rates (3)-(4) and it consists of four

terms. The first three terms describe the rate at which a parent individual bs ∈ C produces offspring

individuals au ∈ C via dispersal, philopatric birth and physiological transition as detailed in Section

3.1, and in the case of physiological transition the parent and offspring individuals are interpreted as

one and the same individual. The final term in (16) describes the ‘survival’ of the parent individual

bs ∈ C in a changing local environment, where δa,b is the Kronecker delta taking value 1 when

a = b ∈ P and otherwise 0. More specifically, for s 6= u ∈ S, the final term in (16) gives the rate at

which the parent a = b ∈ P survives the group transition from s ∈ S to u ∈ S, and because qu,s(x)

contains the i-processes of all individuals including the focal parent, the physiological transition and

death of the parent are being subtracted in (16). For s = u ∈ S, the survival term reduces to

qss(x) = −
∑
w 6=s qw,s(x) and gives the rate at which the parent au = bs ∈ C is removed from class

au = bs ∈ C due to any event that causes the group to transition from s = u ∈ S to any other state

in S, including events caused by the focal individual (and note that in contrast to other processes

dispersal may also contribute to fitness for s = u ∈ S). The first term in (16) thus contributes to

the rate of offspring production through dispersal while the second, third and fourth term together

gives the net philopatric fitness. We note that in order to study the dynamics of n, the ODE (15)

needs to be coupled with the dynamics for the metacommunity state x in (10).

The dispersal and net philopatric fitness contributions of individual fitness (16) corresponds to
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those of previous discrete time models, which are not expressed in terms of individual and group

transition rates but directly in terms of the two net fitness contributions (Lehmann et al., 2016,

eq. 6, Ohtsuki et al., 2020, eq. 38, and see Appendix A, Section A.1.1). By using (16), we can

also represent the individual fitness for models that have been previously considered in the lit-

erature. For instance, supposing that the metacommunity is composed only of the focal species

that is physiologically unstructured and where groups are identical in terms of abiotic factors, the

individual fitness (16) reduces to hN′
,N (x) = λd

N
′
,N

(x) + λpB

N
′
,N

(x) +
(
q
N

′
,N

(x)− λD
N,N (x)

)
with

q
N

′
,N

(x) =
(
λpB

N
′
,N

(x) + λD
N

′
,N

(x)
)
N +

∑
K∈S λ

dB
N

′
,N,K

(x)KxK , for all N,N
′
∈ S, where the set of

g-states S = {0, 1, 2, . . . , Nmax} specifies the number of individuals inhabiting a group and where

Nmax is the maximum group size (Appendix A, Section A.1.1). Thus, the only processes occur-

ring in each group are death, philopatric birth and birth via dispersal of individuals in the focal

species, which is conceptually similar to a number of previous models (Metz and Gyllenberg, 2001;

Cadet et al., 2003; Rousset and Ronce, 2004; Lehmann et al., 2006; Alizon and Taylor, 2008; Parvi-

nen, 2013). Further, for well-mixed populations where each ‘group’ is either empty or is inhabited

by a single physiologically structured individual of the focal population, the individual fitness re-

duces to ha,b(n) = λd
a,b(n) + λT

a,b(n)− δa,b
(∑

c∈P λ
T
c,b(n) + λD

b,b(n)
)
, for all a, b ∈ C, where we have

S = {0} ∪ P and where the population demographic state can be characterized directly in terms of

the vector n = (na)a∈P of class densities (Appendix A, Section A.1.1). Now, the only processes are

physiological transition, death and birth via dispersal because each ‘group’ can contain only a single

individual, and which is similar to that of the spatially well-mixed model of Lion (2018a,b, eq. 1) and

Priklopil and Lehmann (2020, eq. 3) and conceptual equivalent to standard discrete models of only

physiologically structured populations (e.g., Caswell, 2000). This model reduces to an age structured

model with T discrete age groups by setting P = {1, 2, .., T} and where newborns are individuals of

age group 1 ∈ P produced at rate βb by an individual of age group (class) b ∈ P so that λd
a,b(n) = βb

when a = 1 and zero otherwise, and where λT
a,b(n) = γb is the constant rate at which an individual

in age group b ∈ P progresses to age group a ∈ P and where the (average) unit of time an individual

spends in an age class b ∈ P is 1/γb (e.g., Li and Brauer, 2008). Setting γb = γ for all b ∈ P where

age progresses at a steady rate is conceptually similar to the classic discrete-time age-structured

models (e.g. Charlesworth, 1994; Caswell, 2000).

Because we are eventually interested in the asymptotic resident species population dynamics, we

will utilize the concept of a reproductive value (Fisher, 1930; Taylor, 1990; Rousset, 2004; Grafen,

2006; Lion, 2018b) and use the following population dynamical definition of reproductive values

vn = (vnas)as∈C ∈ RkC+ :

−v̇n = vnH(x), (17)

normalized such that vn · n = 1 for all t. Because (17) is the adjoint equation (backward in time

counterpart) to (15), the superscript in vn indicates that the reproductive value is an adjoint variable

to n. Adjoint variables are useful in the analysis of dynamical systems because, by definition, the

product of a variable with its adjoint variable is constant in time (e.g. Greiner et al., 1994; Inaba,

2017 in the context of age-structured populations) and one can readily check by applying (15) that

vn · n indeed stays constant in time. Similarly to (15), in order to study the dynamics of vn, the

ODE (17) needs to be coupled with the dynamics for the metacommunity state x in (10). We note

that the above definition of reproductive values departs slightly from the standard definition (Taylor,

1990; Lion, 2018b) given as an adjoint to the class frequencies, see further discussion in Section 7.2.

The biological interpretation of vn is obtained from (17) and is tied to a final value problem where

(17) is coupled with a final condition vn(tf) where tf ∈ [t,∞] is some final time: the reproductive value

vnas(t) is the probability that a randomly sampled individual at tf descends from a single individual
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of class as ∈ C at time t. Or alternatively, considering an individual of class as ∈ C at time t, vnas(t)

is the frequency of individuals at the final time tf who are its descendants. In most previous use of

reproductive value in evolutionary analysis, as well as in the present paper later on, the final time

is usually the distant future (tf →∞) so that vnas(t) is interpreted as an asymptotic contribution to

fitness.

3.4 Relatedness dynamics

The remaining variable that appears in (2) and whose dynamics we aim to characterize in the

resident population is relatedness. We define relatedness between two different individuals a, b ∈ P
inhabiting the same group s ∈ S at time t as the probability rabs = rabs(t) that the two individuals

have a common ancestor. In other words, it is the probability that the ancestral lineages of the two

individuals coalesce in a common ancestor, and because we assume an infinite number of groups the

probability that two individuals sampled from two different groups share a common ancestor is 0.

This could be calculated by studying the purely resident i-processes backwards in time (see Michod

and Hamilton, 1980 for the original definition and Rousset, 2004 for an analysis of relatedness under

a large class of different discrete time scenarios in the island model), but we will here derive it from

the forward perspective of the demographic process so as to treat all variables in a similar fashion.

Two individuals that inhabit the same group are related if they either share a parent, who is their

common ancestor, or if any of their ancestors shared a parent. Note that in a continuous time

Poisson-based model with one birth per unit of time, one of the two individuals that share a parent

must be the parent through survival. To find a dynamical equation for relatedness we thus only need

to keep track of the ancestors of local parents and to that end we focus on densities of local pairs.

We denote a pair of individuals in physiological states a, b ∈ P that inhabit the same group that is

in state s ∈ S with (as, bs) := (abs) ∈ B, where B := P2 × S is the space of local pairs and whose

size is denoted with kB. Then,

nrabs =rabsnabs (18)

is the density of pairs of individuals who are related and where

nabs = Nabsxs (19)

is the total density of pairs abs ∈ B in that group. Here,

Nabs =

NasNbs for b 6= a

Nas(Nas−1)
2

for b = a
(20)

is the number of pairs abs ∈ B.

We start by deriving ODEs’ for nabs and nrabs, which in turn will allow us to determine rabs. Because

we are interested in the ancestry of each pair we will pay special attention to the state and location

of ‘parent’ individuals associated to each ‘offspring’. By differentiating (19) we obtain an ODE for

the pair dynamics

ṅabu = Nabuẋu = Nabu
∑
s∈S

qu,s(x)xs

= Nabu
∑

s6=u∈S

qu,s(x)xs − nabu
∑

w 6=u∈S

qw,u(x), for all abu ∈ B,
(21)

where we used (10), (19) and the fact that
∑
u∈S qu,s(x) = 0 (Section 3.2). By substituting (11)-(14)
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into (21) and using the relationship nas = Nasxs, we get

ṅabu =
∑

s6=u∈S

[∑
d∈P

αCA
abu,ds(x)nds +

∑
d∈P

αIM
abu,ds(x)nds +

∑
c,d∈P

αDP
abu,cds(x)ncds

]
−

− nabu
∑

w 6=u∈S

qw,u(x), for all abu ∈ B,
(22)

which depends on three rates. First,

αCA
abu,ds(x) =


λpB
au,bs(x) for d = b,

λpB
bu,as(x) for d = a,

0 otherwise,

(23)

which is the rate at which a single parent individual ds ∈ C produces offspring pairs abu ∈ B by

philopatric birth and its own survival and is thus said to be the common ancestor to these pairs

(hence the superscript). Second,

αIM
abu,ds(x) =


∑
w∈S

∑
e∈P λ

d
au,s,ew(x)Newxw for d = b,∑

w∈S
∑
e∈P λ

d
bu,s,ew(x)Newxw for d = a,

0 otherwise,

(24)

which is the rate at which a single local parent individual ds ∈ C is being paired up with an immigrant

offspring (hence the superscript) to produce an offspring pair abu ∈ B. Recall from Section 3.1 that

the probability for an immigrant offspring to land in the group of the individual ds ∈ C depends on

the state of the entire group s ∈ S. Finally,

αDP
abu,cds(x) = αpB,T

abu,cds(x) + δab,cdα
S
abu,abs(x), (25a)

which is the rate at which a local parent pair cds ∈ B (two different parents, hence the superscript)

produces an offspring pair abu ∈ B and this depends on two processes. First,

αpB,T
abu,cds(x) =



λpB
au,bs(x) + λT

au,bs(x) for d = b and c 6= b,

2(λpB
au,bs(x) + λT

au,bs(x)) for d = b and c = b,

λpB
bu,as(x) + λT

bu,as(x) for c = a and d 6= a,

2(λpB
bu,as(x) + λT

bu,as(x)) for c = a and d = a,

0 otherwise,

(25b)

which is the rate at which the local parent pair cds ∈ B produces an offspring pair abu ∈ B by

birth and physiological transition. Because these rates are given for parent pairs, a factor 2 appears

whenever both parents can undergo the i-processes that contribute to the birth of the considered

offspring pair. Second,

αS
abu,abs(x) = qu,s(x)− [λD

au,as(x) + λD
bu,bs(x)]−

∑
c∈P

[λT
cu,as(x) + λT

cu,bs(x)], (25c)

which is the rate at which each existing pair abs ∈ B survives upon any i-process occurring in the

group (note the similarity of this expression with the ‘survival’ term in (16)). The minus term

appears here because parents a, b ∈ P that die or transition contribute negatively to the formation

of offspring pairs abu ∈ B. Note that all these rates for production of offspring pairs depend on the

rates (5)-(9) at which single individuals undergo demographic i-processes.

The dynamics of nrabs is obtained from (22) by subtracting the immigration term, because immigrants
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are not related, and by only considering the fraction of local pairs that are related and we get

ṅr
abu =

∑
s6=u∈S

∑
d∈P

αCA
abu,ds(x)nds +

∑
s6=u∈S

∑
c,d∈P

αDP
abu,cds(x)nrcds − nrabu

∑
w 6=u∈S

qw,u(x), (26)

for all pairs abu ∈ B. We see from the first two terms in (26) that the density of related pairs

abu ∈ B increases due to a single local parent producing pairs anew, or, due to two related local

parents producing offspring-pairs. From the last term in (26) we see that the density of related pairs

abu ∈ B decreases due to any event that changes the state of the focal group u ∈ S. The ODE for the

vector of relatedness r = (rabs)abs∈B ∈ [0, 1]kB can be given in terms of its elements rabs = nrabs/nabs

and is obtained by differentiation

ṙabu =
1

nabu

[ ∑
s6=u∈S

∑
d∈P

αCA
abu,ds(x)nds +

∑
s6=u∈S

∑
c,d∈P

αDP
abu,cds(x)ncdsrcds − rabuNabu

∑
s6=u∈S

qu,s(x)xs

]
(27)

for all abu ∈ B, and where we have used (21), (26) and nrcds = rcdsncds. Notice that the rates that

appear in (21) and (26) at which pairs abu ∈ B are removed due to the group u ∈ S changing its

state, cancel in (27). Hence, the rate at which relatedness changes is the relative rate of producing

pairs abu ∈ B by a common parent or by parents that share an ancestor, relative to an average rate

of producing pairs abu ∈ B. We note that similarly to (15) and (17), in order to study the dynamics

in (27) it needs to be coupled with the dynamics for the metacommunity state x in (10).

By ignoring physiological structure in the focal species, the dynamics in (27) reduces to the expression

given in Wild et al. (2009, Supplementary Information, equation S4 and Table S1). Moreover,

assuming no class-structure so that all groups consists only of the focal species of constant size N

and where the vector x plays no role, the continuous time dynamical equation for relatedness (27)

is simplified further to

ṙ =
2

N(N − 1)

[
αCAN + αDPN(N − 1)

2
r − rqN(N − 1)

2

]
, (28)

where q is the total rate at which events happen in a group. When each birth event is coupled with

a death event (i.e., the Moran process, Ewens, 2012), the rates in (28) can be written as

αCA = (1−m)
1

N

(
N − 1

N

)
q

αDP =

[
2(1−m)

1

N

(
N − 1

N

)
+

(
1− 2

N

)]
q,

(29)

where m is the probability that upon a birth event the offspring disperses. Here, αCA is interpreted

as the rate at which events happen in the group q times the probability that the parent individual

reproduces locally (1−m) 1
N

and does not die N−1
N

. The rate αDP is interpreted as the rate at which

events happen in the group q times the probability that either individual in the pair reproduces

locally and does not die 2(1−m) 1
N
N−1
N

, or, the probability that neither individual in the pair dies

1− 2
N

.

3.4.1 The jump process for relatedness

Next we represent the continuous time dynamics of relatedness (27) as a discrete time jump-process,

with jumps occurring whenever an event changes the state of the group. This representation is useful

when only the steady state is considered and also in connecting our result to previous models that

have mostly been formulated in discrete time. We thus consider a jump chain (or embedded Markov

chain, e.g., Iosifescu, 2007, chapter 8.3) associated to the continuous time Markov chain given in
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(10) (see further details in Appendix B, Section B.1). An embedded Markov chain is a discrete time

Markov chain that records state transitions upon jump times T1, T2, . . . , where each jump time Tk is

a random variable at which the focal group undergoes an event either due to local or non-local (via

immigration) i-processes. The jump process for relatedness is given in vector form as

r′ = c(x) + D(x)r, (30)

where r = (rabs)abs∈B ∈ [0, 1]kB and where r′ = r(Tk+1) and r = r(Tk). Here, c(x) = (cabs(x))abs∈B ∈
[0, 1]kB is a vector where entry cabs(x) is the probability that a randomly sampled offspring-pair

abs ∈ B has a common parent in the same group, and hence a common ancestor. This is the

coalescence probability and is computed as cabu(x) =
∑
ds∈C Cabu,ds(x) with

Cabu,ds(x) =
αCA
abu,ds(x)Nds

Nabu

xs
qu
, (31)

for s 6= u ∈ C and 0 otherwise, and where qu =
∑
w 6=u∈S qu,w(x)xw is the rate at which groups

transition to state u ∈ S. Equation (31) was obtained using the rates (23), and qu is obtained from

the first expression on the right hand side of (21). Equation (31) gives the probability, conditional on

the occurrence of a group transition to u ∈ S, that the group was in state s ∈ S before the transition

and a randomly sampled offspring-pair abu ∈ B was produced anew by a local parent individual in

class ds ∈ C. The matrix D(x) = (Dabu,cds(x))abu,cds∈B ∈ RkB×kB has entries

Dabu,cds(x) =
αDP
abu,cds(x)Ncds

Nabu

xs
qu
, (32)

for all s 6= u ∈ C and 0 otherwise, and gives the probability that, conditional on the occurrence of a

group transition to u ∈ S, that the group was in state s ∈ S before the transition and a randomly

sampled offspring-pair abu ∈ B was produced by a local parent-pair cds ∈ B (and where we used

(25)). Note that the probabilities (31)–(32) are both defined to be 0 whenever Nabu = 0.

The recursion (30) along with (31)–(32) reduces to recursion (A.5) of Alizon and Taylor (2008)

who considered group size as the only class-structure and hence C = S. The recursion (30) is

also conceptually analogous to the recursion for relatedness in the presence of class-structure in the

discrete time island model (e.g., Ronce et al., 2000, A.9 for C = P×S, Ohtsuki et al., 2020, eq. 33 for

C = S). Yet owing to the continuous time nature of our model, expressions (31)–(32) do not exactly

match those of the discrete time process since only one individual-level event can occur per unit

of time in a continuous time process, while two or more events can occur in discrete time models.

Finally, note that in a model with no class-structure and thus no dependence on x, the recursion

(30) simplifies to

r′ = c+Dr, (33)

where

c =
2αCAN

N(N − 1)

1

q
=

2

N2

D =
αDP

q
= 2(1−m)

1

N

(
N − 1

N

)
+

(
1− 2

N

)
,

(34)

and where the expressions and the interpretation for αCA, αDP and q are given in (28)-(29).

3.5 Steady states

In the evolutionary analysis that follows we assume that a non-trivial steady state of the metacom-

munity state dynamics (10) satisfying 0 = Q(x̂)x̂ exists, and that it is hyperbolically stable. A
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steady state is said to be hyperbolically stable if the real part of the dominant eigenvalue of the

linearized version of the dynamical system, evaluated at the steady state, is negative and bounded

away from zero (Hirsch et al., 1974). This implies that there exists a neighborhood of x̂ such that

for any initial condition x(t0) in this neighborhood where t0 is some initial time, the vector x(t)→ x̂

as t→∞.

Because in (15) the population densities of the focal species satisfy nas = Nasxs for all as ∈ C
where Nas is a constant, then n(t) → n̂ whenever x(t) → x̂ as t → ∞. Since n̂ must also satisfy

0 = H(x̂)n̂, the vector n̂ is the dominant right eigenvector of H(x̂). Moreover, because (17) is linear

in vn, we have vn(t) → v̂n whenever x(t) → x̂ as t → ∞ and the steady state for vn can be found

by solving 0 = v̂nH(x̂). Due to the constraint v̂n · n̂ = 1, the vector v̂n is the (unique) dominant

left eigenvector of H(x̂). Finally, the steady-state for relatedness r can be found by either solving

the system of ODEs (27) or the jump-process in (30). By a direct calculation we get

r̂ = (I−D(x̂))−1c(x̂), (35)

where I is the identity matrix and (I−D(x̂))−1 is the inverse matrix of I−D(x̂) evaluated at x̂ thus

allowing to compute relatedness explicitly in terms of resident i-processes (Section 3.1). Because its

growth-rate is at most linear in r and the vector c(x) and D(x) depend only on x, we have that

r(t) → r̂ whenever x(t) → x̂ as t → ∞. In summary, we have that whenever x(t) converges to the

hyperbolically stable steady state of interest x̂ as t → ∞, the vectors (n(t),vn(t), r(t)) converge to

their unique steady state (n̂, v̂n, r̂) as t→∞.

As a check of the recurrence equations for relatedness, we note that for the homogeneous island

model we obtain r̂ = c/(1−D) = (1−m)/(1−m+Nm) from (34), which recovers, as it should, the

relatedness for the discrete time Moran process in the island model (Lehmann et al., 2015, eq. 8-e).

Note that at the steady state the relation c = (1−D)r̂ must hold, saying that the probability c that

two randomly sampled offspring have a common parent must be equal to the probability 1−D that

two randomly sampled individuals have two different parents times the probability r̂ that they are

related.

4 Mutant-resident dynamics in the metacommunity

We now study the full mutant-resident system and to that end we need to consider that phenotypic

expression depends, in addition to class, on the genetic state of the individual. We denote with

zθ ∈ Z the phenotypic profile of a carrier of allele θ ∈ {M,R}. Whenever allele θ is in an individual

in class as ∈ C the expression of the phenotype is zθ,as ∈ ZC ⊂ R. We thus need to expand the

group state space of the metacommunity since the different alleles can be distributed in any way

across groups. Following the construction of Section 2, it will be convenient to define the state space

of groups for the mutant-resident system as Ω = S × I. The set I = {Is}s∈S gives the set of size

distributions of mutants of the focal species over all g-states, where each element Is ∈ I denotes

the set of all possible size distributions in a group s ∈ S. This is defined as Is = {Ias}a∈P with

Ias = {ias}0≤ias≤Nas where ias is the number of mutants in physiological state a ∈ P that inhabit

a group s ∈ S. We note that an element i ∈ Is is a vector giving the number of mutants in each

physiological state in a group s ∈ S (the set Is has potentially many elements because a group s ∈ S
can be in different genetic states). The number of residents in a group can be obtained simply by

subtracting the number of mutants from the total number of individuals e.g. Nas− ias is the number

of residents a ∈ P in a group s ∈ S. We note that while S gives the demographic structure of

the entire group including non-focal species and abiotic factors, the set I refers only to the genetic

structure of the focal species.
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Similarly to Section 3, we need to track the dynamics of mutant-resident group state frequencies

in order to characterize the mutant-resident dynamics. We represent the mutant-resident state of

the metacommunity with a vector y = (ysi)si∈Ω ∈ ∆(Ω) of length kΩ, where ysi is the frequency

of groups in mutant-resident state (s, i) := si ∈ Ω and hence
∑
si∈Ω ysi = 1 and xs =

∑
i∈Is ysi

for all s ∈ S where x = (xs)s∈S ∈ ∆(S). All the upcoming rates describing the mutant-resident

metacommunity dynamics are identical to those given for the resident dynamics (Section 3), the only

difference is that it takes into account the genetic structure of the group and the metacommunity at

large.

4.1 Individual-level processes

The rates at which i-processes of the focal species in the mutant-resident metacommunity occur are

defined, similarly to the resident metacommunity in Section 3.1, as mappings

γθa←bsi, µ
θ
bsi, β

θ,p
a←bsi, β

θ,d

a
w←bsi

: ZC ×Z2 ×Ω×Z2 ×∆(Ω)→ R+ for all au, bs ∈ C, i ∈ Is, (36)

where θ ∈ {M,R} specifies whether it is a mutant or a resident who undergoes the process. We

also use a shorthand notation γθa←bs(y) := γθa←bs(zθ,bs,zM,zR, si, zM,zR,y) where the arguments

are interpreted similarly to Section 3.1, and the interpretation and shorthand notation for the other

rates in (36) is similar. Moreover, we assume that dispersed offspring land into a group wi ∈ Ω

with a probability xw, that is, independent of its genetic state, and hence we will write βθ,da←bsi(y) =∑
w∈S xwβ

θ,d

a
w←bsi

(y). The constrains for the i-rates (36) are also analogous to Section 3.1. Finally,

and for all au, bs ∈ C and j ∈ Iu, i ∈ Is, the class-specific physiological transition rate satisfies

λM,T
auj,bsi(y) =

γ
M
a←bsi(y) for a 6= b and jau = ias + 1 and jbu = ibs − 1

0 otherwise,
(37)

the class-specific death rate satisfies

λM,D
auj,bsi(y) =

µ
M
bs(y) for a = b and jbu = ibs − 1

0 otherwise,
(38)

and the class-specific philopatric birth rate satisfies

λM,pB
auj,bsi(y) =

β
M,p
a←bsi(y) for iau = ias + 1

0 otherwise.
(39)

The class-specific conditional birth rate via dispersal satisfies

λM,dB
auj,w,bsi(y) =

β
M,d

a
w←bs

(y) for iau = iaw + 1

0 otherwise,
(40)

and so the total birth rate via dispersal is

λM,d
auj,bsi(y) =

∑
w∈S

xwλ
M,dB
auj,w,bsi(y). (41)

The rates for resident individuals are defined similarly, one only needs to replace the number of

mutants ias with the number of resident Nas − ias for all as ∈ C.
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4.2 Group state dynamics

The mutant-resident metacommunity dynamics is expressed analogously to the resident metacom-

munity dynamics (10) as a system of ODEs’

ẏ = P(y)y, (42)

where P(y) = (πuj,si)uj,si∈Ω(y) ∈ RkΩ×kΩ is the group transition-rate matrix with

πuj,si(y) = πp
uj,si(y) + πd

uj,si(y) + πmc
uj,si(y), (43)

giving the rate at which a group in state si ∈ Ω transitions to state uj ∈ Ω, and where
∑
uj∈Ω πuj,si =

0 for all si ∈ Ω. Here, πp
uj,si(y) are the philopatric and πd

uj,si(y) the dispersal group transition rates

of the focal species, and where all other transition rates due to other species and abiotic factors

are given in πmc
uj,si(y). The transition rates due to the focal species can be expressed in terms of i-

processes given in (37)-(41) by summing over all physiological states of the parents and their possible

progeny, that is, we have

πp
uj,si(y) =

∑
a,b∈P

λ̄p
auj,bsi(y)Nbs

πd
uj,si(y) =

∑
a,c∈P

∑
wk∈Ω

λ̄d
auj,s,cwk(y)Ncwywk,

(44a)

for all au, bs ∈ C, j ∈ Iu, i ∈ Is and θ ∈ {M,R}, where

λ̄p
auj,bsi(y) = λM,p

auj,bsi(y)
ibs
Nbs

+ λR,p
auj,bsi(y)

Nbs − ibs
Nbs

λ̄d
auj,s,cwk(y) = λM,d

auj,s,cwk(y)
kcw
Ncw

+ λR,d
auj,s,cwk(y)

Ncw − kcw
Ncw

(44b)

with

λθ,pauj,bsi(y) = λθ,pB
auj,bsi(y) + λθ,Tauj,bsi(y) + λθ,Dauj,bsi(y) (45)

are the rates of an average individual where the average is taken over the allelic states M and R.

4.3 Mutant-resident population dynamics

Consider the focal species in the metacommunity and let nM = (nM,as)as∈C ∈ RkC+ denote the mutant

density vector where nM,as =
∑
i∈Is iasysi is the density of mutant individuals in class as ∈ C, and

let nR = (nR,as)as∈C ∈ RkC+ denote the resident density vector where nR,as =
∑
i∈Is(Nas − ias)ysi is

the density of resident individuals in class as ∈ C. The mutant-resident density dynamics is given by

ṅM = GM(y)nM

ṅR = GR(y)nR,
(46)

where GM(y) = (gM
au,bs(y))au,bs∈C ∈ RkC×kC is the mutant fitness matrix with elements

gM
au,bs(y) =

∑
j∈Iu

∑
i∈Is

[
λM,d
auj,bsi(y) + λM,pB

auj,bsi(y) + λM,T
auj,bsi(y)+ (47)

+ δa,b

(
πuj,si(y)−

∑
c∈P

λM,T
cuj,asi(y)− λM,D

auj,asi(y)

)]
yM,bsi|M,bs, (48)
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giving the rate at which a single mutant in class bs ∈ C produces mutants in class au ∈ C, and where

GR(y) = (gR
au,bs(y))au,bs∈C ∈ RkC×kC is the resident fitness matrix with elements

gR
au,bs(y) =

∑
j∈Iu

∑
i∈Is

[
λR,d
auj,bsi(y) + λR,pB

auj,bsi(y) + λR,T
auj,bsi(y)+ (49)

+ δa,b

(
πuj,si(y)−

∑
c∈P

λR,T
cuj,asi(y)− λR,D

auj,asi(y)

)]
yR,bsi|R,bs, (50)

giving the rate at which a single resident in class bs ∈ C produces residents in class au ∈ C. Here,

yM,bsi|M,bs = (ibsysi)/nM,bs denotes the probability that a mutant bs ∈ C inhabits a group in genetic

state i ∈ Is and yR,bsi|R,bs = ((Nbs − ibs)ysi)/nR,bs denotes the probability that a resident bs ∈ C
inhabits a group in genetic state i ∈ Is (Appendix A, Section A.2.1). Note that similarly to the

resident species population dynamics, all the densities of all species are functions of the mutant-

resident metacommunity state y and hence in order to study the dynamics of nM and/or nR in (46)

they need to be coupled with the dynamics of y in (42).

4.4 Relative mutant-resident population dynamics

To analyse the spread of the mutant allele, it is convenient to rewrite the mutant-resident population

dynamics (46)-(49) by using two new vectors. First, with a slight abuse of notation, we use a

vector n = (nas)as∈C ∈ RkC+ of total densities where nas = Nasxs for all as ∈ C is the total density of

mutant and resident individuals in class as ∈ C. Second, we use a vector p = (pM,as)as∈C ∈ [0, 1]kC to

describe the within-class mutant frequencies where pM,as = nM,as/nas for all as ∈ C is the proportion

(frequency) of mutants within class as ∈ C. Note that the pair of vectors (nM,nR) can be expressed

in terms of (n,p), and vice versa, because (nM,as, nR,as) = (pM,asnas, (1− pM,as)nas) for all as ∈ C
and (nas, pM,as) = (nM,as +nR,as, nM,as/(nM,as +nR,as)) for all as ∈ C. The latter representation is

common in population genetics (e.g., Nagylaki, 1992).

The vector of density dynamics satisfies

ṅ = Ḡ(y)n, (51)

where Ḡ(y) = (ḡau,bs(y))au,bs∈C ∈ RkC×kC is the average mutant-resident fitness matrix where each

element

ḡau,bs(y) =
∑
j∈Iu

∑
i∈Is

[
λ̄d
auj,bsi(y) + λ̄pB

auj,bsi(y) + λ̄T
auj,bsi(y)+ (52)

+ δa,b

(
πuj,si(y)−

∑
c∈P

λ̄T
cuj,asi(y)− λ̄D

auj,asi(y)

)]
ysi|s (53)

gives the rate at which an average individual in class bs ∈ C produces individuals of class au ∈ C.
The average is taken over the allelic states M,R and over all the genetic states the group it inhabits

can be in, so that ysi|s = ysi/xs is the probability that the group s ∈ C that the average individual

inhabits is in genetic state i ∈ Is (see Appendix A, Section A.2.2). The vector of within-class mutant

frequency dynamics satisfies

ṗ = F(y)p, (54)

where

F = Fsel(y) + F̄(y). (55)
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Here, Fsel(y) = (f sel
au,bs(y))au,bs∈C ∈ RkC×kC and F̄(y) = (f̄au,bs(y))au,bs∈C ∈ RkC×kC have elements,

respectively, given by

f sel
au,bs(y) =

nbs
nau

[
gM
au,bs(y)− ḡau,bs(y)

]
, (56)

and

f̄au,bs(y) =


nbs
nau

ḡau,bs(y) for bs 6= au

−
∑
cw 6=au

ncs
nau

ḡau,cw(y) for bs = au.
(57)

Because the rate in (56) describes differential growth due to different individuals having different

phenotype it captures the effect of selection on allele frequency change (hence the superscript). And

because the rate in (57) depends only on the average phenotype it captures effects on allele frequency

change due to individuals in different classes having different average growth rates. We have added

a bar analogously to (51) as it depends only on the average phenotype where the average is taken

over the allelic states (see further discussion in Section 8). A similar partitioning of F was given

for well-mixed populations in Lion (2018b, Appendix 3), and Priklopil and Lehmann (2020, eq. 8a)

and the changes due to non-selective forces have been referred to as changes due to “transmission”

in population genetics (Kirkpatrick et al., 2002). We note that because n and p are functions of

the state of the mutant-resident metacommunity y, in order to study the relative mutant-resident

population dynamics of n and/or p, (51) and/or (57) need to be coupled with the dynamics of y in

(42).

4.5 Average mutant frequency

The total proportion (frequency) of mutants in the metacommunity given as an arithmetic mean is

defined as

p =
nM

n
(=

1

n
· nM), (58)

where nM =
∑
as∈S nM,as is the total mutant density, n =

∑
as∈S nas is the total mutant and resident

density in the focal species (with a slight abuse of notation) and 1 is a vector of all 1 of length kC .

The dynamics of p in (58) is obtained by differentiation and by using Sections 4.2-4.4, and it can be

written as

ṗ =
1

n
·
[
GM(y)nM − Ḡ(y)np

]
=

1

n

∑
au,bs∈C

[
gM
au,bs(y)pM,bs − ḡau,bs(y)p

]
nbs.

(59)

In order to study its dynamics it must be coupled with the dynamics of y in (42).

5 Mutant-resident dynamics for similar phenotypes

We now study mutant-resident dynamics for closely similar phenotypes, with a particular focus on

the change in the arithmetic mean allele frequency (58). To that end, we set zM = zR + δη where

the vector η = (ηas)as∈C ∈ RkC gives the direction of the deviation (where zR = z ∈ Z) and δ is

a small parameter. To evaluate the mutant-resident dynamics for small δ, we Taylor expand about

δ = 0 the dynamical equations for y,n and p in (42), (51) and (54), respectively. To facilitate

the Taylor expansion, we use the following consistency relation relating mutant-resident i-processes
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(Section 3.1) to the resident i-processes (Section 4.1):

λθ,ξauj,bsi(y)
∣∣∣
δ=0

= λξau,bs(x), for all au, bs ∈ C, i ∈ Is, j ∈ Iu and θ ∈ {M,R}, (60)

and for ξ ∈ {d,pB,T,D}, and we will also use λθ,dB
auj,w,bsi(y)

∣∣∣
δ=0

= λdB
au,w,bs(x). These consistency

relations say that whenever mutants and residents express identical phenotypes, the i-processes are

independent of the genetic structure of the metacommunity. From (60), it directly follows that

πuj,si(y)

∣∣∣∣∣
δ=0

= qu,s(x), for all u, s ∈ S, i ∈ Is, j ∈ Iu, (61)

and

gθau,bs(y)

∣∣∣∣∣
δ=0

= hau,bs(x), for θ ∈ {M,R} and for all au, bs ∈ C, (62)

and consequently the growth-rates in (51) and (54) satisfy

ḡau,bs(y)
∣∣∣
δ=0

= hau,bs(x)

fau,bs(y)
∣∣∣
δ=0

= f◦au,bs(x) =


nbs
nau

hau,bs(x) for bs 6= au

−
∑
cw 6=au

ncs
nau

hau,bs(x) for bs = au

(63)

for all au, bs ∈ C.

It follows from the above relations that the dynamics for y,n and p for small δ can be written as

ẋ = Q(x)x +O(δ)

ṅ = H(x)n +O(δ)

ṗ = F◦(x)p +O(δ),

(64)

where we used (61) and (63) and where F◦(x) = (f◦au,bs(x))au,bs∈C is the relative fitness matrix for

mutants (when δ = 0) with elements as defined in (63). Note that because the dynamics of n and

p depend only on x up to order O(1), we have represented the dynamics of the genetically explicit

vector y by using the genetically implicit vector x whose dynamics in (64) up to order O(1) follows

from (42), (61) and xs =
∑
i∈Is ysi (the dependency on y in (64) comes only via the terms of order

O(δ)). The dynamics of the arithmetic mean mutant frequency p in (58) for small δ is obtained by

Taylor expansion and by using (62)-(63), in which case (59) reduces to

ṗ =
1

n
·H(x)

[
nM − np

]
+O(δ)

=
1

n

∑
au,bs∈C

hau,bs(x)
[
pM,bs − p

]
nbs +O(δ),

(65)

which must be coupled with the dynamics for p and x in (64) and where the dependency on y comes

only via O(δ).

The remaining aim of this paper is to prove the “invasion implies substitution”-principle by way

of applying geometric singular perturbation theory developed for fast-slow ODE systems in Fenichel

(1979). A fast-slow ODE system in a standard form (Fenichel, 1979; Kuehn, 2015; Wechselberger,

2020), which is relatively easy to analyze, is a system of ODEs where a model parameter tunes the

rate at which the various dynamical variables operate: for small parameter values δ some variables

are fast variables in that their Taylor expansion about δ = 0 is dominated by O(1), while others

are slow variables and their Taylor expansion about δ = 0 is dominated by O(δ). We see from (64),

however, that for small δ the dynamics of the vectors x,n and p, as well as the arithmetic mean
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mutant frequency p in (65), are all dominated by the terms O(1) thus all having a phase of fast

dynamics. As a consequence, the mutant-resident system is not readily in the desired (standard)

fast-slow form.

In order to construct an appropriate fast-slow system, we proceed in three steps. First, we study the

purely fast dynamics of the within-class mutant frequency vector p where δ = 0, and find its steady

state p̂ (Section 5.1). Second, by using the properties of p̂ we find a slow variable that can be used,

on a suitably chosen slow timescale, as a proxy for the arithmetic mean mutant frequency (Section

5.2). Finally, we study the slow dynamics of this slow variable and calculate all the necessary fast

variables (Section 5.3) that define the complete mutant-resident fast-slow system which will be then

studied in Section 6.

5.1 Fast dynamics of the within-class mutant frequency

To study the fast dynamics of the vector p we set δ = 0 in the third equation in (64), which gives

ṗ = F◦(x)p. (66)

Because the rows of F◦ sum to 0 it is well-known that the steady state satisfies

p̂ = 1pc (67)

for some constant pc ∈ R (e.g., Lessard and Soares, 2018). This implies that the within-class mutant

frequencies at the steady state are all equal p̂M,as = pc for all as ∈ C. For biologically meaningful

values we need pc ∈ [0, 1], and the exact value of pc that pM,as(t) for all as ∈ C converges to as t→∞
depends on the initial condition (x(t0),p(t0)) for some initial time t0. The system (66) thus contains

infinite number of steady states (equilibria) and the biologically meaningful values lie on a line [0, 1].

This has two important consequences. First, any linear combination of within-class frequencies, at

the steady state (67), is equal to pc. More specifically, every arbitrarily weighted average mutant

frequency

pφ = φ · nM (=
∑
as∈C

φasnaspM,as), (68)

where φ = (φas)as∈C is some arbitrary vector of weights normalized such that φ ·n = 1, must satisfy

p̂φ = pc (69)

at the steady state where p̂M,as = pc for all as ∈ C. This is in particular true also for the arithmetic

mean frequency p in (58) where φ = 1/n. This implies that every average mutant frequency pφ(t)→
pc as t→∞, and where the exact value of pc depends on the initial condition (x(t0),p(t0)). Second,

the kC-dimensional vector p is, at the steady state (67), a 1-dimensional vector p̂ = 1pc because it

can be spanned by using a single vector 1pc (Hirsch et al., 1974). This will play an important role in

the proof of the “invasion implies substitution”-principle (Section 7). Finally, we want to note that

so far we have analyzed the fast dynamics of p and pφ dominated by O(1) only; in later sections we

will see that these variables have also a phase of slow dynamics and this will be analyzed in later

sections (see in particular Section 6).

5.2 Reproductive value weighted mutant frequency

In the previous Section 5.1 we found that for δ = 0 and for any weights φ, the average mutant

frequency (68) satisfies pφ(t) → pc as t → ∞ with the exact value of pc depending on the initial

condition (x(t0),p(t0)). If one were then to find weights φ for which pφ(t) = pc for all t ≥ t0,
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then such an average frequency would stay constant in the fast dynamics where δ = 0, and hence

would be a slow variable for a system where δ is small but non-zero (a pre-requisite to construct

a standard fast-slow system). We can achieve this by setting φ = vn where the weights vn for

non-zero δ are (with a slight abuse of notation) defined as average reproductive values, where the

average is taken over allelic states (Priklopil and Lehmann, 2020, see also Lion, 2018a,b), and is thus

the mutant-resident reproductive value analogue to the one defined for the resident population in

Section 3. Such average individual reproductive values satisfy

−v̇n = vnḠ(y), (70)

for any δ, with the normalization vn · n = 1 where n is given by (51). By defining a reproductive

values weighted mutant frequency (see (68)) as

pv = vn · nM =
∑
as∈C

vnasnaspM,as, (71)

its dynamics is obtained by differentiation and satisfies

ṗv = vn ·
[
GM(y)− Ḡ(y)

]
nM

=
∑

au,bs∈C

vnau

(
gM
au,bs(y)− ḡau,bs(y)

)
pM,bsnbs,

(72)

for any δ. Indeed, because GM(y)−Ḡ(y) = 0 for δ = 0 (62)-(63), the Taylor expansion of (72) about

δ = 0 is dominated by O(δ) and hence the reproductive value weighted average mutant frequency

pv is a slow variable. We note that since (72) is valid for arbitrary δ and thus arbitrary strength of

selection, it must be coupled with the dynamics of y in (42).

5.3 Slow dynamics of the weighted mutant frequency

We here study the slow dynamics of the weighted mutant frequency pv in (71)-(72), with a specific

aim to identify all the dynamical variables that it depends on in order to construct a complete fast-

slow mutant-resident system. To that end, we Taylor expand (72) about δ = 0 and then change the

timescale to slow time while letting δ go to 0. To this end, we introduce a slow time variable τ , set

τ = δt from which we get the relation d
dt

= δ d
dτ

, and by letting δ go to 0 we get

d

dτ
pv =

d

dδ

[ ∑
au,bs∈C

vnau

(
gM
au,bs(y)− ḡau,bs(y)

)
pM,bsnbs

]
δ=0

, (73)

giving the rate at which the reproductive valued weighted frequency changes in a pure slow time

τ where δ = 0. Note that in the fast timescale t, the above expression is nothing else than the

O(δ)-term of the Taylor expansion.

Next, we take the derivative in (73) in such a way that it allows us to arrive at an expression for the

directional selection coefficient as given in (2). To do this, we must take separate (partial) derivatives

with respect to phenotypes of individuals according to the ‘spatial’ relationship between the focal

individual and other individuals from the focal species who affect its fitness either via interactions

or directly (the effect on itself). For ease of presentation, we label the phenotypes and write the

individual fitness (16) as

hau,bs(x) = hau,bs(zfoc,bs,zloc, s, zpop,x), (74)

where zfoc,bs (and zfoc) indicates the phenotype of the focal individual (hence the subscript), zloc

indicates the phenotype of the local group members of the focal individual (hence the subscript)
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but excluding the focal individual, and zpop indicates the phenotype of individuals outside of the

group of the focal individual (i.e. population/species at large, hence the subscript). We empha-

sise that all individuals in the resident metacommunity express the resident phenotype z ∈ Z and

that these are just labels to distinguish the spatial relationship of individuals to the focal indi-

vidual according to which the different partial derivatives will be taken in Section 5.3.1. Like-

wise, we write gau,bs(y) = gau,bs(zM,bs,zM,loc,zR,loc, si, zM,pop,zR,pop,y) for a focal mutant and

ḡau,bs(y) = gau,bs(zM,loc,zR,loc, si, zM,pop,zR,pop,y) for an average individual where the notation

and interpretation of zMfoc ,zMloc and zMpop (and zRfoc ,zRloc and zRpop) for the mutant-resident

metacommunity is similar.

5.3.1 Properties of fitness

To take the derivative in (73) we apply a property that relates, for small δ, mutant-resident fitnesses

(47)-(49) to the resident fitness (16). This property follows from the so-called generalized law of mass

action in situations where weak selection results from small differences in phenotype (Diekmann et al.,

2001; Meszéna et al., 2005; Dercole, 2016, for discussion on the different forms of weak selection see

Wild and Traulsen, 2007; Lehmann and Rousset, 2014). The generalized law of mass action says

that the first-order perturbation of the mutant phenotype of all mutant individuals in a spatially

well-mixed mutant-resident species, is equal to the first-order perturbation of the phenotype of all

individuals in a purely resident species when multiplied by the frequency of mutant individuals. This

is computationally convenient because instead of considering full distributions of individuals only

population means need to be calculated. This property holds for non-linear environmental feedbacks

and is secured by assuming that all individuals undergo pairwise interactions in continuous time and

that individuals with the same phenotype are exchangeable (Dercole, 2016). Below we will provide

an analogue of this property for the present metacommunity model.

For small but non-zero δ, the mutant fitness matrix GM(y) is related to the resident fitness matrix

H(x) in the following way. First,

∂gM
au,bs(y)

∂zMfoc,bs

∣∣∣
δ=0

=
∂hau,bs(x)

∂zfoc,bs
for all au, bs ∈ C (75)

and where all other partial derivatives with respect to zMfoc,cw for cw 6= bs ∈ C are 0. Second,

∂gM
au,bs(y)

∂zMloc,cs

∣∣∣
δ=0

=
∂hau,bs(x)

∂zloc,cs
pM,cs|M,bs for all au, bs ∈ C, c ∈ P (76)

where all other partial derivatives with respect to zMloc,cw for w 6= s ∈ S are 0, and finally,

∂gM
au,bs(y)

∂zMpop,cw

∣∣∣
δ=0

=
∂hau,bs(x)

∂zpop,cw
pM,cw for all au, bs, cw ∈ C. (77)

In (76) we introduced the conditional within-group mutant frequency pM|M = (pM,as|M,bs)abs∈B ∈
[0, 1]kB defined as

pM,as|M,bs =
pMM,abs

pM,bs
, for all a, b ∈ P, s ∈ S, (78)

where pMM,abs is an element of the vector of (within-group) mutant-pair frequencies pMM = (pMM,abs)abs∈B ∈
[0, 1]kB defined as

pMM,abs =
nMM,abs

nabs
, for all abs ∈ B. (79)

Here, nMM,abs =
∑
i∈I iasibsysi denotes the density of mutant-pairs abs ∈ B and nabs is the total

density (with a slight abuse of notation) of pairs abs ∈ B, that is, the total density of pairs inde-
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pendent of their phenotype. The conditional mutant frequencies pM|M thus give the frequency of

mutants conditional that another (randomly sampled) individual in the group is a mutant.

In (75), the partial derivative is taken with respect to the focal individual itself and because any

mutant individual is (trivially) a mutant with probability 1, the proportionality coefficient is simply

1. In other words, the ‘frequency’ of a mutant allele in a single mutant individual is 1. The derivative

on the right-hand-side measures (when multiplied by δ) the additional offspring the focal individual

produces per unit of time due to the focal individual itself expressing the mutation (‘direct fitness

effect’). In (76), the partial derivative with respect to all local individuals is proportional to the

conditional within-group mutant frequency in class cs ∈ C, pM,cs|M,bs, conditional on the focal

individual being a mutant bs ∈ C. This property reflects the fact that genetic correlations between

conspecifics build up within groups of finite size, and the derivative on the right-hand-side measures

(when multiplied by δ) the additional offspring the focal individual produces per unit of time due to

interactions with all local individuals that express the mutation (‘indirect fitness effect’). Finally, the

partial derivative with respect to non-local individuals in (77) is proportional to the (unconditional)

within-class mutant frequency because no genetic correlations build up between members in different

groups in the infinite island model (see, e.g., Rousset, 2004 for the finite island model).

Using (75)-(77) and analogues properties for (mutant-resident) resident fitness (not shown here), the

average fitness matrix Ḡ(y) is related to the (pure resident) resident fitness matrix H(x) as

∂ḡau,bs(y)

∂zMfoc,bs

∣∣∣
δ=0

=
∂hau,bs(x)

∂zfoc,bs
pM,bs

∂ḡau,bs(y)

∂zMloc,cs

∣∣∣
δ=0

=
∂hau,bs(x)

∂zloc,cs
pM,cs

∂ḡau,bs(y)

∂zMpop,cw

∣∣∣
δ=0

=
∂hau,bs(x)

∂zpop,cw
pM,cw for all au, bs, cw ∈ C,

(80)

and where all other partial derivatives with respect to zMfoc,cw for cw 6= bs ∈ C and with respect

to zMloc,cw for w 6= s ∈ S are all 0. Notice that all proportionality coefficients are (unconditional)

within-class mutant frequencies. In the first relation in (80) this is because an average individual is

a mutant with probability given by the within-class mutant frequency, in the second relation this is

because no genetic correlations arise for an average individual and in the final relation this is because

no genetic correlations arise between non-group members.

5.3.2 Slow dynamics of the weighted mutant frequency and the fast variables

Taking the derivative in (73) and partitioning it according to the different individuals as discussed

above, we obtain

d

dτ
pv =

∑
au,bs∈C

vnau

[∂hau,bs(x)

∂zfoc,bs
ηbspM,bs(1− pM,bs)+

+
∑
cs∈C

∂hau,bs(x)

∂zloc,cs
ηcs(pMM,bcs − pM,bspM,cs)

]
nbs,

(81)

where we used the definition for directional derivatives, the properties (75)-(77), (80) and (78). We

can see from (81) that the dynamics of the slow weighted mutant frequency pv depends on the

dynamics of x,n,p,vn and pMM. This is convenient because instead of analyzing the dynamics of

the large system for y it is enough to study the simpler dynamics of x,n,p,vn and pMM (and as

will be shown below). Because we have already derived dynamical equations for x,n and p, and in

(64) showed that they are dominated by O(1) and so is vn because under the consistency relation

(62) its dynamics reduces to (17), the next task is to find the equation for a vector of mutant-pair

frequencies pMM (Section 5.3.3).
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5.3.3 Mutant-pair frequencies

In order to see whether pMM defined in (79) is a fast or slow variable, we study its dynamical equation

for δ = 0 (Appendix B, Section B.2). The dynamics of pMM = (pMM,abs)abu∈B is given as

ṗMM,abu =
∑

s6=u∈S

∑
d∈P

nds
nabu

[
αCA
abu,ds + αIM

abu,ds

]
pM,ds +

∑
s6=u∈S

∑
c,d∈P

ncds
nabu

αDP
abu,cdspMM,cds−

− pMM,abu
Nabu
nabu

∑
s6=u∈S

qu,sxs for all abu ∈ B,
(82)

which can be written in vector form as

ṗMM = E(p,pMM,x). (83)

Here, E(p,pMM,x) ∈ RkB is a vector of rates at which pMM changes, and because the elements

are non-zero the vector of mutant-pair frequencies pMM is dominated by terms of order O(1) and is

hence a fast variable (it is to be seen whether it changes also in slow time, Section 6).

To characterise for δ = 0 the steady state of pMM we focus for convenience on the equivalent discrete

time jump-process dynamics, which is given by

p′MM =
[
C(x) + M(p,x)

]
p + D(x)pMM, (84a)

where C(x) and D(x) are as in (30), and M(p,x) = (Mabu,ds(p,x))abu∈B,ds∈C ∈ RkB×kC where

Mabu,ds(p,x) =
∑
ew∈CMabu,ds,ew(x)pM,ew and

Mabu,ds,ew(x) =
1

Nabu

αIM
abu,ds,ew(x)NdsxsNewxw∑

w 6=u∈S qu,w(x)xw
(84b)

gives the conditional probability that a randomly sampled mutant-pair abu ∈ B was produced when

a local mutant parent bs ∈ C paired up with a new immigrant mutant offspring ew ∈ C (note the

dependency on the mutant frequency in (84)). For all pairs abu ∈ B we have

∑
ds∈C

Cabu,ds(x) +
∑
ds∈C

∑
ew∈C

Mabu,ds,ew(x) +
∑
cds∈B

Dabu,cds(x) = 1, (85)

saying that with probability 1 each pair of individuals has either a common parent, different local

parents, or non-local parents (the rows of the matrices C(x), D(x) and M(p,x) sum to 1).

The steady state solution p̂MM for δ = 0 is obtained by solving p̂MM = [C(x̂)+M(p̂, x̂)]p̂+D(x̂)p̂MM

in (84) evaluated at p̂ and x̂, and we get

p̂MM = (I−D(x̂))−1C(x̂)p̂ + (I−D(x̂))−1M(p̂, x̂)p̂

= (I−D(x̂))−1C(x̂)1pc + (I−D(x̂))−1(I−D(x̂)−C(x̂))1p2
c

= (I−D(x̂))−1c(x̂)pc + (1− (I−D(x̂))−1c(x̂))p2
c

= r̂pc + (1− r̂)p2
c

(86)

where we used (67), (85) and (35), respectively, and where pc ∈ [0, 1] is a constant that depends on

the initial condition as discussed in Section 5.1 (we can also obtain this solution by solving (82)-(83)).

We have thus obtained that whenever x(t) → x̂ as t → ∞ (Section 3.5), then pMM(t) → p̂MM =

r̂pc + (1 − r̂)p2
c as t → ∞. Moreover, p̂MM can be expressed in terms of the steady state value for

relatedness r̂ (Section 3.5) and pc (Section 5.1), and hence its general solution consist of infinite

(curve of) steady states (equilibria) because it is a quadratic function of pc ∈ [0, 1]. Finally, we note

that we have made no assumptions on the relationship between within-group mutant pair frequencies

pMM(t), relatedness r(t) and the average mutant frequency pφ(t) for t <∞: their relationship given
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in (86) is obtained only as a limit when t→∞.

6 Mutant-resident dynamics as a fast-slow system

We are now ready to analyse the fast-slow ODE system where mutant and resident individuals have

closely similar phenotypes (δ is small). Owing to Section 5, the complete fast-slow system for the

mutant-resident dynamics is given in fast time t as

ẋ = Q(x)x +O(δ)

ṅ = H(x)n +O(δ)

−v̇n = vnH(x) +O(δ)

ṗ = F◦(x)p +O(δ)

ṗMM = E(p,pMM,x) +O(δ)

ṗv = δ
∑

au,bs∈C

vnau

[∂hau,bs(x)

∂zfoc,bs
ηbspM,bs(1− pM,bs)+

+
∑
cs∈C

∂hau,bs(x)

∂zloc,cs
ηcs(pMM,bcs − pM,bspM,cs)

]
δ=0

nbs +O(δ2),

(87)

which, on using d/ dt = δ d/ dτ can be equivalently written in slow time τ = δt as

δ
d

dτ
x = Q(x)x +O(δ)

δ
d

dτ
n = H(x)n +O(δ)

−δ d

dτ
vn = vnH(x) +O(δ)

δ
d

dτ
p = F◦(x)p +O(δ)

δ
d

dτ
pMM = E(p,pMM,x) +O(δ)

d

dτ
pv =

∑
au,bs∈C

vnau

[∂hau,bs(x)

∂zfoc,bs
ηbspM,bs(1− pM,bs)+

+
∑
cs∈C

∂hau,bs(x)

∂zloc,cs
ηcs(pMM,bcs − pM,bspM,cs)

]
δ=0

nbs +O(δ).

(88)

The two systems (87) and (88) are equivalent, the only difference is the notation. Next we study the

fast and slow subsystems of (87) and (88) by setting δ = 0, respectively, and then in Section 7 we

will join the two subsystems together.

6.1 Fast subsystem and the critical manifold

We obtain the fast subsystem by setting δ = 0 in (87), which yields

ẋ = Q(x)x

ṅ = H(x)n

−v̇n = vnH(x)

ṗ = F◦(x)p

ṗMM = E(p,pMM,x)

ṗv = 0.

(89)
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The fast variables (x,n,vn,p,pMM) thus change in the fast subsystem while the purely slow vari-

able pv stays constant. More specifically, whenever x(t) → x̂ as t → ∞ (Section 3.5), then also

(n(t),vn(t),p(t),pMM(t))→ (n̂, v̂n, p̂, p̂MM). Recall that the vectors n̂ and v̂n describe the unique

steady state of the size and class structure (Section 3.5), and p̂ = 1pc and p̂MM = r̂pc +(1− r̂)p2
c give

its genetic structure at the steady state of the fast subsystem. Because pv(t) = pc for all t (Section

5.1), the variable pv is a constant in the fast subsystem (89) and we can identify pc with pv. Thus,

as t → ∞, the general solution of (x,n,vn,p,pMM, pv) converges to a curve (x̂, n̂, v̂n, p̂, p̂MM, pv)

that is parametrized by pv ∈ [0, 1], and a specific ‘initial value problem’ with an initial condition

(x(t0),p(t0)) for some initial time t0 converges to a single point on this curve.

We collect all the steady states of the fast subsystem into a single set

M0 = {(x,n,vn,p,pMM, pv) ∈ RkS × RkC × RkC × RkC × RkB × R :

x = x̂, n = n̂,vn = v̂n, p = 1pv, pMM = r̂pv + (1− r̂)p2
v, pv ∈ [0, 1]},

(90)

which defines the critical manifold of the system (e.g., Kuehn, 2015 for general considerations and

Priklopil and Lehmann, 2020 in the context of the “invasion implies substitution”-principle). The

critical manifold thus gives the steady states of the general solution of (89) and is a curve consisting

of an infinite number of steady states (equilibria) parametrized by pv ∈ [0, 1] (see Figure 2, panels

(a)-(c) for a graphical representation in). Because x̂ is assumed to be hyperbolically stable (Section

3.5) the critical manifold is said to be a normally hyperbolically stable invariant manifold. For such

manifolds the dynamics near the manifold is dominated by the hyperbolicity condition (i.e. in the

normal direction to the manifold) while the fast dynamics on the manifold is constant (in the fast

subsystem). Indeed, all the variables are constant on M0 and because pv is defined on an interval

[0, 1] the manifold is a 1-dimensional manifold in a (3kC+kS +kB+ 1)-dimensional space and can be

seen as the state space for the pure slow dynamics where δ = 0 in (88) (studied in detail in Section

6.2). This manifold plays an important role in the proof of the “invasion implies substitution”-

principle: in the fast-slow mutant-resident system where δ is small but non-zero the critical manifold

persists as a so-called slow manifold (Fenichel, 1979), and, the dynamics of the fast-slow mutant-

resident system (87)-(88) on and near the slow-manifold is equivalent to the dynamics of pv on and

near M0 in the slow subsystem (Section 6.2).

6.2 Slow subsystem on the critical manifold

We obtain the slow subsystem by setting δ = 0 in (88). However, motivated by Section 6.1, we are

in fact not interested in every possible slow subsystem of (88), only the one associated to x̂ and the

critical manifoldM0 (90). Indeed, there may be other steady states satisfying 0 = Q(x)x and hence

other critical manifolds and slow subsystems. The slow subsystem of interest is then given jointly by

the critical manifold M0 in (90) and the dynamics of the weighted mutant frequency pv restricted

to this manifold,

d

dτ
pv =

∑
au,bs∈C

[
vnau

[∂hau,bs(x)

∂zfoc,bs
ηbspM,bs(1− pM,bs)+

+
∑
cs∈C

∂hau,bs(x)

∂zloc,cs
ηcs(pMM,bcs − pM,bspM,cs)

]
nbs

]
M0

= pv(1− pv)Sη(x̂),

(91a)

where

Sη(x̂) =
∑

au,bs∈C

v̂n
au

[∂hau,bs(x̂)

∂zfoc,bs
ηbs +

∑
cs∈C

∂hau,bs(x̂)

∂zloc,cs
r̂bcs ηcs

]
n̂bs (91b)
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is evaluated at the critical manifold M0. To obtain equation (91) we have taken the limits δ → 0

and t → ∞ and recall that throughout we have assumed that the total population size is infinity.

Equation (91) can thus be seen as the first moment of change in the reproductive value weighted allele

frequency of the diffusion approximation for slow subsystems (Ethier and Nagylaki, 1980, 1988).

6.3 Solution of the slow subsystem

Given that the dynamics of the weighted mutant frequency pv can be solved from a single ODE

given in (91), we can express this in the context of an initial value problem as follows. First, recall

that the fast subsystem (89) converges to M0 as t → ∞, and that the exact point on M0 that the

fast subsystem converges to depends on the given initial condition (x(t0),p(t0)) which determines

pv = pc ∈ [0, 1] that parametrizes M0 (Section 6.1). We will assume that this point is an initial

condition for the slow subsystem, and to this end we define pv(τ0) = pc for some initial slow time

τ0, and let

(x(τ0),n(τ0),vn(τ0)) = (x̂, n̂, v̂n) (92)

and

(p(τ0),pMM(τ0)) = (1pv(τ0), r̂pv(τ0) + (1− r̂)pv(τ0)2). (93)

Note that the dependency of (92)-(93) on (x(t0),p(t0))) comes only through (93). Then, in slow

time τ , the weighted mutant frequency pv(τ) changes according to (91) for all τ ≥ τ0, and for the

initial condition (92)-(93) its solution is

pv(τ | x(t0),p(t0)) =
1

1 + 1−pv(τ0)
pv(τ0)

exp[−τSη(x̂)]
, (94)

where Sη(x̂) is given in (91b) and where we have indicated that the initial condition pv(τ0) = pc

depends on (x(t0),p(t0)).

It is important to note, that while (x(τ),n(τ),vn(τ)) = (x̂, n̂, v̂n) stay constant for all τ ≥ τ0, the

genetic structure changes according to p(τ) = 1pv(τ) and pMM(τ) = r̂pv(τ) + (1 − r̂)pv(τ)2 for all

τ ≥ τ0 and where pv(τ) = pv(τ | x(t0),p(t0)) is the solution in (94). Because p and pMM change

also in the fast subsystem (Section 6.1), they are both fast and slow variables. Moreover, because

every average mutant frequency pφ in (68) in the fast subsystem converges to pc as t→∞ (Section

5.1), we will also define

pφ(τ0) = pv(τ0). (95)

Then, pφ(τ) = pv(τ) for all τ ≥ τ0, and the solution of pφ and thus also the solution of the arithmetic

mean mutant frequency p in (58), is identical to the solution (94). See Figure 2, panels (a)-(c) for a

graphical representation.

7 Invasion implies substitution

We are now ready to state and prove the “invasion implies substitution”-principle for the metacom-

munity model.

Invasion implies substitution - principle. Suppose that resident individuals express phenotype

z ∈ Z and that the resident dynamics of the metacommunity is given as in (10). Suppose further

that the metacommunity is near a hyperbolically stable steady state x̂ that satisfies 0 = Q(x̂)x̂, and
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that a mutation generates a mutant phenotype z+δη where η gives the direction of the deviation and

δ characterizes the distance between mutant and resident phenotypes. Then, for sufficiently small δ

and/or large time t ≥ t0 where t0 is some initial time, the dynamics of the arithmetic mean mutant

frequency p can be approximated as

ṗ = p(1− p)δSη(x̂) +O(δ2) (96)

with solution

p(t) =
1

1 + 1−pc
pc

exp[−tδSη(x̂)]
+O(δ), (97)

where

Sη(x̂) =
∑

au,bs∈C

v̂nau

[∂hau,bs(x̂)

∂zfoc,bs
ηbs +

∑
cs∈C

∂hau,bs(x̂)

∂zloc,cs
r̂bcs ηcs

]
n̂bs. (98)

The constant pc in (97) is the asymptotic mean mutant frequency of the fast subsystem where δ = 0

and it depends on the initial condition (x(t0),p(t0)) where p(t0) is the initial distribution of within-

class mutant frequencies. In Sη(x̂), the density distribution vector n̂ and the reproductive value vector

v̂n are the right and left dominant eigenvectors of H(x̂) with a scaling v̂n · n̂ = 1 where H(x̂) is the

resident fitness matrix in (15). The relatedness vector r̂ satisfies r̂ = c(x̂) + D(x̂)r̂ where c(x̂) is a

vector giving the probabilities that a pair of individuals have a common parent and D(x̂) is a matrix

giving the probabilities that this pair has two distinct parents within the same group (Section 3.4.1).

7.1 Proof of the principle

Here we give a poof of the “invasion implies substitution”-principle stated above. First, recall that

in Section 4 we set up a mutant-resident metacommunity model for arbitrary δ, and in Section 5

we showed that in order to study the spread of a mutant allele for small δ we can study the fast-

slow dynamics of five fast variables (x,n,vn,p,pMM) dominated by O(1) and a single slow variable

pv dominated by O(δ). To do this, in Section 6 we set up a fast-slow mutant-resident system for

(x,n,vn,p,pMM, pv) and then analyzed its fast and slow subsystems where δ = 0. In the fast

subsystem (Section 6.1), we found that whenever x converges to x̂, all the remaining fast variables

(n,vn,p,pMM) of interest converge to the critical manifold M0 at which (x,n,vn) = (x̂, n̂, v̂n) are

isolated steady state points and (p,pMM) = (1pv, r̂pv+(1−r̂)p2
v) take values on a curve parametrized

by pv ∈ [0, 1] which is a constant in the fast subsystem (and hence is onM0 by definition). The exact

point pv = pc ∈ [0, 1] on M0 that the fast subsystem converges to depends on the initial condition

(x(t0),p(t0)) where x(t0) is chosen sufficiently close to x̂.

In the slow subsystem (Section 6.2), we found that the slow variable pv changes according to an ODE

given in (91) and when coupled with an initial condition its solution is given by (94). Consequently,

the fast variables (x,n,vn) = (x̂, n̂, v̂n) stay constant in the slow subsystem and are thus purely fast

variables, and the two moments of allelic states (p,pMM) = (1pv, r̂pv + (1− r̂)p2
v) change due to pv

and are hence both fast and slow variables. Next, we perturb the fast and slow subsystems using

classical results from geometric singular perturbation theory (Fenichel, 1979; Hek, 2010; Kuehn, 2015;

Priklopil and Lehmann, 2020), which proves the “invasion implies substitution”-principle for small

but nonzero δ. To this end, we proceed in two steps. In step 1 we apply ‘Fenichel’s first theorem’

(e.g. Priklopil and Lehmann, 2020, Appendix A.4., Fenichel’s invariant manifold theorem 1) saying

that becauseM0 is a normally hyperbolic invariant manifold, for small but non-zero δ there exists a

so-called slow manifoldMδ that is (i) O(δ)-close and diffeomorphic toM0, and, (ii) invariant under

the fast-slow mutant resident dynamics (87)-(88). Property (i) says that for any point onM0 there
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is a point on Mδ that is O(δ)-close. We will state this in terms of an initial condition of the slow

subsystem as

(x(τ0),n(τ0),vn(τ0))|Mδ = (x(τ0),n(τ0),vn(τ0))|M0 + O(δ) = (x̂, n̂, v̂n) + O(δ) (99a)

and

(p(τ0),pMM(τ0))|Mδ = (1pv(τ0), r̂pv(τ0) + (1− r̂)pv(τ0)2)|M0 + O(δ), (99b)

and which is valid for any initial condition (i.e., any point on M0) and where O(δ) is a vector of

O(δ). The property (ii) says that for all τ ≥ τ0, the solutions starting on Mδ will remain on Mδ.

Importantly, the two properties (i) and (ii) together imply that for all τ ≥ τ0 the ODE’s (or vector

fields) and their solutions on Mδ are small perturbation of the ODE’s (vector fields) and solutions

on M0. More precisely, because the dynamics of pv(τ) on M0 denoted as pv(τ)|M0 can be written

as an ODE (91) and when coupled with an initial condition its solution is given as in (94) for all

τ ≥ τ0 (Section 6.2), the dynamics of pv on Mδ can be written as an ODE

d

dτ
pv

∣∣∣
Mδ

= pv(1− pv)Sη(x̂) +O(δ), (100)

and when coupled with an initial condition given in (99), its solution is

pv(τ)
∣∣∣
Mδ

=
1

1 + 1−pc
pc

exp[−τSη(x̂)]
+O(δ) (101)

where pc = pv(τ0) is the initial weighted mutant frequency in the slow subsystem. The equations

(100)-(101) are the first order approximations of the dynamics on Mδ.

So far we focused on the dynamcis of pv(τ). But since on M0 we have pv(τ) = pφ(τ) for all τ ≥ τ0
(Section 6.3), and because δ is nonzero in (100)-(101), we can re-write (100)-(101) in fast time t = τ/δ

and in terms of pφ as

d

dt
pφ

∣∣∣
Mδ

= δpφ(1− pφ)Sη(x̂) +O(δ2) (102)

and

pφ(t)
∣∣∣
Mδ

=
1

1 + 1−pc
pc

exp[−tδSη(x̂)]
+O(δ). (103)

Equations (100)-(103) thus establish the first order approximation for any average mutant frequency

in the fast-slow mutant resident system (87)-(88) restricted to the slow manifold Mδ. We note that

while the solutions pv and pφ onMδ are both O(δ)-distance away from their solutions onM0, they

are also O(δ)-distance away from each other (Figure 2 panel (f), see further discussion below).

It now remains to investigate whether the first order approximations (100)-(103) on Mδ are generic

in the sense that any other solution nearby is a small perturbation away, which is a necessary

requirement for us to be able to choose initial conditions away fromMδ. This leads to step 2 of the

proof in which we apply Fenichel’s results on the persistence of the stability properties of manifolds

(e.g. Priklopil and Lehmann, 2020, Appendix A.4., Fenichel’s invariant manifold theorems 2 and

3). These results say that because M0 is attracting so is Mδ, and moreover, all the variables near

Mδ converge to Mδ exponentially fast. The exact rates can be estimated as given in Priklopil and

Lehmann (2020, Appendix A.4., Corollaries 1 and 2). Therefore, a solution pφ(t) with an initial

condition pφ(t0) near Mδ, for some initial time t0, will become arbitrarily close to (102)-(103) in

finite time that depends on δ. See Figure 2 panels (d)-(f) for a graphical representation of the proof.

�
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Using the weighted mutant frequency pv and geometric singular perturbation theory (Fenichel, 1979;

Hek, 2010; Kuehn, 2015), we showed that the “invasion implies substitution”-principle holds for our

metacommunity model, saying that the dynamics of any average population-wide mutant frequency

pφ can in fact be approximated for sufficiently small δ and/or large fast time t by a single scalar valued

dynamical equation (96)-(98). Moreover, the rate at which change in mutant frequency occurs in

the ‘normal’ population dynamical time t is characterized by δSη(x̂) giving the number of additional

mutant alleles produced per unit of time by the focal mutant allele (see further discussion in Section

7.2). This can be expressed purely in terms of quantities obtained from the resident metacommunity

dynamics evaluated at their steady states, and are thus constant over the relevant timescales. We

note that because the rate of mutant frequency change is measured per unit of time, this rate is of

order O(δ) slower in fast time t than in slow time τ because 1/t = δ/τ (compare e.g. (100) and (102)),

and thus Sη(x̂) characterized the rate of mutant frequency change in the slow evolutionary time τ .

In contrast, the solution of the average mutant frequency pφ of the fast-slow system where δ is small

is O(δ)-distance away from the solution of the slow subsystem (where δ = 0), and this distance is

independent of the timescale (compare e.g. (101) and (103)). This implies that the per unit time

change in the arithmetic mean mutant frequency is δ-distance away from the asymptotic change in

the reproductive value weighted frequency. Moreover, as δ approaches 0 but remains non-zero, the

slow subsystem (94) gives an increasingly good approximation to (97).

7.2 Inclusive fitness effect and singular points

An alternative representation of the directional selection coefficient δSη(x̂) as characterised in (98)

can be obtained by considering a class-frequency vector u = (uas)as∈C = n/n where n =
∑
as∈C nas

is the total density of the focal species. Because each individual can be identified with the allele it

carries, we will interpret n as the total number of mutant and resident alleles in the focal species

and u as the distribution of the context they find themselves in (Kirkpatrick et al., 2002), and recall

that the distribution of mutants and residents is given by p. In other words, given we randomly

sample a carrier of the mutant allele (or resident allele) at the steady state for a process where δ = 0,

ûas is the probability that this allele finds itself in class as ∈ C. Then, by re-scaling the critical

manifold (90) as n̂ = n̂û and n̂v̂n = v̂u such that v̂u · û = 1 where vu is the adjoint variable

associated to u (and corresponds to the standard scaling of reproductive value, e.g., Taylor, 1990),

the directional selection coefficient δSη(x̂) characterised in (98) can be written and interpreted as

given in (2) (by adding a superscript u to v). Note that in (2) we write Sη(z) thus using z instead of

x̂ as the main argument because it is commonly used as such to study phenotype evolution and we

shall follow this notational change henceforth. We emphasise that under both scalings, (2) and (98),

the directional selection coefficient measures the ‘additional’ mutant alleles produced by a randomly

sampled carrier of the mutant allele, i.e., a focal mutant individual. This is true in particular in the

second summation in (2) and (98) where the contribution of group members is accounted for.

We can now further change the perspective on the contribution of group members by swapping

indices in the second summation in (2), and using ucs = (Ncs/Nbs)ubs for all bs, cs ∈ C, we then

obtain the representation

Sη(z) = S̃(z) · η =
∑
bs∈C

Sbs(z)ûbsηbs, (104)

with S̃(z) = (Sbs(z)ûbs)bs∈C where

Sbs(z) =
∑
au∈C

v̂u
au

[
∂hau,bs(x̂)

∂zfoc,bs
+
∑
cs∈C

∂hau,cs(x̂)

∂zloc,bs

Ncs
Nbs

r̂bcs

]
(105)
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is the selection pressure on phenotypic component zbs ∈ ZC . Similarly to (2) and (98), the first

term in the brackets ∂hau,bs(x̂)/∂zfoc,bs, when multiplied by δ, gives the ‘additional’ number of gene

copies (or offspring number owing to asexual reproduction) in class au ∈ C produced per unit of time

by an individual of class bs ∈ C as a consequence of it bearing the mutant instead of the resident

allele. In contrast to (2) and (98), however, the second term [(∂hau,bs(x̂)/∂zloc,cs)(Ncs/Nbs)] in the

second summation, when multiplied by δ, gives the ‘additional’ number of class au ∈ C gene copies

produced per unit of time by all non-focal local individuals of class cs ∈ C (group members of the

focal individual) as a consequence of a focal individual of class bs ∈ C bearing the mutant instead

of the resident allele. The weight r̂bcs ensures that we only count those non-focal individuals cs ∈ C
who have a common ancestor with the focal individual bs ∈ C and are thus likewise mutants. Each

such additional mutant gene copy in class au ∈ C is then weighted with its reproductive value v̂uau

that gives the expected asymptotic number of descendants, and we finally sum over all classes of the

offspring au ∈ C. The directional selection coefficient δSη(z) thus gives the number of additional

mutant alleles produced either directly (the first term in (105)) or indirectly (via related individuals,

the second term in (105)) per unit of time by a focal mutant allele that is distributed according

to û. That is, in (104)-(105), the individual fitness ‘belongs’ to the focal individual in the first

term in (105) (as in (2) and (98)) whereas in the second term in (105) it belongs to non-focal but

related individuals (in contrast to (2) and (98)) that are affected by the focal’s trait(s), whereby

the focal individual can be taken as the actor of all fitness changes as according to inclusive fitness

theory (Hamilton, 1970). Hence, (104) separates mutational step size from structure of selection by

associating all fitness consequences of an allele that would induce an unilateral phenotypic change

ηbs into Sbs(z) for all bs ∈ C in (105).

It then follows from (104) that a singular point z∗ ∈ Z needs to satisfy

Sbs(z
∗) = 0 for all bs ∈ C, (106)

since at a singular point no unilateral deviation in phenotype should result in a change in fitness,

that is, (104) needs to be 0 for all η. Whether such a singular point will be approached by gradual

evolution from within its neighbourhood hinges on the concept of convergence stability (Eshel, 1983;

Lessard, 1990; Christiansen, 1991; Leimar, 2009). However, because convergence stability along with

other properties of singular points (e.g. evolutionary branching Geritz et al., 1998; Ajar, 2003) is a

‘second order’ property we leave such further analysis for future work. Here we simply state that

while in the context of multidimensional phenotypic evolution the direction of change of phenotype

can depend on the mutation process, the covariance of the class-specific mutational increments are

unlikely to interfere with the convergence stability of singular points when the mutation matrix is

positive definite (Leimar, 2005, 2009).

8 Discussion

We have proved the “invasion implies substitution”-principle ((96)-(98), Section 7) for the evolution

of a multidimensional quantitative trait expressed by the individuals of a focal species that is phys-

iologically class structured e.g. by age, size and stage, and that resides in a metacommunity with

finite local community size where reproduction, dispersal, survival, and development are stochastic

and frequency- and density-dependent.

8.1 Evolutionary dynamics across multiple timescales

The evolutionary dynamics discussed in this paper are driven by three qualitatively different evo-

lutionary forces (processes): mutation, selection and class-transmission. Mutation-driven changes
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in the metacommunity are caused by the apparently random modification of the expression of the

phenotype. And while selection is classically driven by the differential survival and reproduction

due to differences in phenotypes among individuals, class-transmission is driven by the differential

survival and reproduction due to individuals residing in different classes. Mutant frequency can thus

change not only due to selection but also transmission, even in the absence of selection (see (55)). In

the following we will examine all these processes in detail and how they contribute to the adaptive

dynamics of a quantitative trait.

In the mutant-resident metacommunity model with arbitrary phenotypic effects (Section 4), both

selection and class-transmission are arbitrarily strong and intertwined. They together drive the

change in mutant allele frequency at all times, a change that can involve complex density-dependent

and frequency-dependent dynamics potentially leading to allelic coexistence (polymorphism). In

Section 5, however, we showed (as expected) that under the assumption (i) of phenotypic closeness,

the effect of selection on the mutant frequency dynamics is much weaker than the effect of class-

transmission. Hence, the large system of mutant frequency dynamics can be partitioned into two

simpler limiting subsystems (Section 6), one that is driven only by class-transmission on a fast

population dynamical timescale (fast subsystem, Section 6.1) and the other driven only by selection

on a slower micro-evolutionary timescale (slow subsystem, Section 6.2). One can further analyze

these subsystems in isolation and join them together using geometric singular perturbation methods

(Fenichel, 1979; Hek, 2010; Kuehn, 2015) eventually leading to the “invasion implies substitution”-

principle (96)-(98) (Section 7). In order to follow these steps, however, we had to overcome the

difficulty that in class structured populations there does not exist a priori a purely slow variable

driven by selection only and that can be used as a proxy for mutant frequency (e.g. Rousset, 2004;

Priklopil and Lehmann, 2020). Such a variable can nevertheless be constructed by weighting the

distribution of mutants by reproductive values (Taylor, 1990; Rousset, 2004; Grafen, 2015; Lion,

2018b; Priklopil and Lehmann, 2020), because by definition such weights scale away any changes

due to class-transmission. Hence, the assumption of small phenotypic differences and the use of

the weighted frequency together lead to the separation of timescales and the consequent separation

of evolutionary dynamics into frequency changes caused by class-transmission and selection, which

in turn underlies arithmetic mean allele frequency change (96)-(98) whose sign is independent of

frequency. Our result thus extends earlier work whose representation of (1) was given in terms of

a reproductive value weighted mutant frequency and not the arithmetic mean (Roze and Rousset,

2004; Rousset and Ronce, 2004; Rousset, 2004; Van Cleve et al., 2010; Priklopil and Lehmann, 2020).

We must stress that the arithmetic mean allele frequency change (96)-(98) holds not only in the

limiting slow subsystem where δ → 0 and where the population dynamical time t → ∞ (Section

6.2), but also for small but non-zero δ in the ‘normal’ population dynamical time t∗ ≤ t ≤ ∞
where t∗ is some finite time after which (96)-(98) hold (Section 7). In this respect, our results

complement earlier work on the mutant allele dynamics in slow subsystems (e.g. Wakeley, 2003;

Roze and Rousset, 2003; Rousset, 2004; Wakeley and Takahashi, 2004; Lessard, 2009, and see for

well-mixed but age and/or class structured populations Lessard and Soares, 2018; Soares and Lessard,

2019, 2020). In this work, the strength of selection δ is inversely proportional to the system size

that tends to infinity while δ → 0 but keeping their product finite, and it invokes a two timescale

method of Ethier and Nagylaki (1980). Our result (1)-(2) for small but nonzero δ holds whenever

one can show that the metacommunity is ‘structurally stable’ in the sense that the steady state of

the metacommunity and its stability properties persist under the small perturbation caused by the

invasion of the mutant, that is, when δ deviates from 0. In the present metacommunity model, this

is guaranteed by the assumption of hyperbolicity (ii), and jointly with the assumption on phenotypic

similarity (i) and the weighted frequency pv fully justify the “invasion implies substitution”-principle
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(96)-(98). Recurrent invasion-substitution events thus cause the seemingly gradual changes in the

structure of the metacommunity and the gradual evolution of the phenotype of interest.

The final question is whether and how is the process of gradual evolution affected by the mutation

processes. For scalar-valued phenotypes, recurrent invasion-substitution events will always either

increase or decrease the phenotypic value until the phenotype becomes a singular point and the same

should hold for multidimensional traits under mild assumptions on the mutation matrix when the

singular point is convergence stable (see section 7.2). Interestingly, a mutation rate that results in

several competing mutations in the metacommunity does not interfere with the qualitative nature of

this gradual process. This is because any finite number of overlapping mutations perturb the struc-

ture of the resident species only to order O(δ) (Meszéna et al., 2005). Therefore, if the mutation of

interest results in a positive selection coefficient δSη(z) in a resident metacommunity, the selection

coefficient remains positive upon the arrival of any new mutations, provided the assumption (i) for

small phenotypic effects holds. Naturally, this is also true for the other ‘overlapping’ mutations: any

mutation that results in a positive selection coefficient δSη(z) will go to fixation upon a successful

invasion event. A mutation rate that generates several overlapping mutations thus only affects the

rate of evolution but not its direction. Furthermore, it is important to emphasise that the “inva-

sion implies substitution”-principle (96)-(98) is valid also for polymorphic resident metacommunities

(Priklopil and Lehmann, 2020). In such a case the “invasion implies substitution”-principle holds

along each “morph” of the polymorphic resident species requiring as many directional selection co-

efficients as there are morphs. Therefore, provided we stay away from singular points and mutations

have small phenotypic effects, the “invasion implies substitution”-principle (1)-(2) gives a complete

description of the gradual evolutionary process.

8.2 Evolutionary dynamics across multiple fluctuations

Because we have formulated the metacommunity dynamics as a stochastic processes that can depend

on the state of the group and the metacommunity at large, our model captures frequency- and

density-dependent environmental feedbacks both at the group- as well as metacommunity-level. Our

model also applies to situations where reproduction, dispersal, survival and physiological development

depends on locally fluctuating external factors, defined as any factors that are not contained in the

environmental feedback, and can thus generate the effect of environmental stochasticity on a local

(group) scale and whenever the external factors can be expressed as discrete variables. Extending

our model to capture globally fluctuating external factors would require to introduce an additional

“environmental” state space E whose elements would affect all quantities used in this paper but

not change their functional form, that is, all rates used in this paper would also be functions of E
(in the context of this present paper but for well-mixed populations see a recent approach in Cai

and Geritz, 2020). Yet, we expect that by taking an appropriate average over the ergodic path of

environmental states including such environmental change is unlikely to change the generic shape of

the selection coefficient, a point illustrated by Lenormand et al. (2009), proven more generally by

Lion (2018b, eq. 23) for panmixia, and implied by the analysis of Svardal et al. (2015, eq. B.8) for

spatial structure. Moreover, in metacommunity models where the total size of the focal species is

finite, our dynamical equations can in principle be used to construct a diffusion approximation with

two timescales to analyze the effect of genetic drift on the evolutionary dynamics (e.g., Wakeley, 2003;

Roze and Rousset, 2004; Rousset, 2004; Soares and Lessard, 2020). Here, the infinitesimal mean of

the diffusion is given by the mean change (91) and the infinitesimal variance is obtainable from the

recurrence equations for relatedness (Rousset, 2004, chapter 9-11). Finally, we formulated our model

only in the context of haploid reproduction. Still, allowing for diploidy and sexual reproduction

under additive gene action within individuals should only require changing the scaling of the mean

change in allele frequency (96) and to interpret relatedness in the directional selection coefficient

33

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.01.15.426821doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426821
http://creativecommons.org/licenses/by-nc-nd/4.0/


(98) in a diploid context (as per simpler models with diploidy and class structure, Roze and Rousset,

2004; Van Cleve et al., 2010). In conclusion, while we have left several biological questions to be

settled in future work, we believe that the present model contributes to the understanding of adaptive

evolution of structured natural populations.
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A Appendix: Individual fitness

A.1 Resident individual fitness

In this section we detail the steps to obtain individual fitness (16) from the resident group and

metacommunity dynamics (10). Using nau = Nauxu, we have

ṅau = Nauẋu

= Nau
∑
s∈S

[
qp
u,s(x) + qd

u,s(x) + qmc
u,s (x)

]
xs

=
∑
s∈S

Nau

 ∑
c,b∈P

λp
cu,bs(x)Nbs +

∑
c∈P

∑
dw∈C

λdB
cu,s,dw(x)Ndwxw + qmc

u,s (x)

xs,
(A.1)

where we have applied Section 3.2. Whenever an individual a ∈ P is produced or removed from

group s ∈ S so that this group transitions to u ∈ S, the number of a ∈ P in the group changes and

Nau is either equal to Nas + 1 or Nas − 1, otherwise Nau = Nas. This motivates us to re-write the

above as

ṅau =
∑
s∈S

(Nau −Nas +Nas)

 ∑
c,b∈P

λp
cu,bs(x)Nbs +

∑
c∈P

∑
dw∈C

λdB
cu,s,dw(x)Ndwxw + qmc

u,s (x)

xs
=
∑
s∈S

(Nau −Nas)

[∑
b∈P

λpB
au,bs(x)Nbs + λT

au,bs(x)Nbs +
∑
dw∈C

λdB
au,s,dw(x)Ndwxw

]
xs+

+
∑
s∈S

(Nau −Nas)

[∑
c∈P

λT
cu,as(x)Nas + λD

au,as(x)Nas

]
xs+

+
∑
s∈S

Nas

 ∑
c,b∈P

λp
cu,bs(x)Nbs +

∑
c∈P

∑
dw∈C

λdB
cu,s,dw(x)Ndwxw + qmc

u,s (x)

xs

(A.2)

where in the second equality we have applied Sections 3.1-3.2, and by relabeling the indices on the

second line in (A.2) we get

ṅau =
∑
s∈S

∑
b∈P

[
(Nau −Nas)

(
λpB
au,bs(x) + λT

au,bs(x)
)

+

+
∑
w∈S

(Nau −Naw)xwλ
dB
au,w,bs(x)

]
Nbsxs+

+
∑
s∈S

(Nau −Nas)

[∑
c∈P

λT
cu,as(x)Nas + λD

au,as(x)Nas

]
xs+

+
∑
s∈S

qu,s(x)Nasxs.

(A.3)

Now, for all s 6= u ∈ S, we have Nau − Nas = 1 and Nau − Naw = 1 on the first and second line

in (A.3), respectively, because an offspring a ∈ P is produced by birth into a group that transitions

to u ∈ S, and Nau − Nas = −1 on the third line in (A.3) because a parent a ∈ P is removed by

physiological transition or death from a group that transitions to u ∈ S. In all other situations where
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s ∈ S transitions to u ∈ S we have Nau = Nas. We thus get, after some reorganization,

ṅau =
∑
s∈S

∑
b∈P

[
λpB
au,bs(x) + λT

au,bs(x) + λdB
au,bs(x)

]
Nbsxs−

−
∑
s∈S

[∑
c∈P

λT
cu,as(x) + λD

au,as(x)

]
Nasxs +

∑
s∈S

qu,s(x)Nasxs

=
∑
bs∈C

[
λpB
au,bs(x) + λT

au,bs(x) + λdB
au,bs(x)

]
nbs+

+
∑
s∈S

[
qu,s(x)−

∑
c∈P

λT
cu,as(x)− λD

au,as(x)

]
nas

=
∑
bs∈C

hau,bs(x)nbs,

(A.4)

where for u 6= s ∈ S we can then write

hau,bs(x) =

λ
d
au,bs(x) + λpB

au,bs(x) + λT
au,bs(x) for a 6= b

λd
bu,bs(x) + λpB

bu,bs(x) + qu,s(x)−
∑
c 6=a∈P λ

T
cu,bs(x)− λD

bu,bs(x) for a = b,

(A.5a)

and for u = s ∈ S we have

has,bs(x) = λd
as,bs(x) + δa,bqs,s(x) = λd

as,bs(x)− δa,b
∑

w 6=s∈S

qw,s(x), (A.5b)

for all a, b ∈ P. Alternatively, we can represent (A.5) with a single equation

hau,bs(x) = λd
au,bs(x) + λpB

au,bs(x) + λT
au,bs(x) + δa,b

[
qu,s(x)−

∑
c∈P

λT
cu,as(x)− λD

au,as(x)

]
, (A.6)

for all au, bs ∈ C, and which is the expression for individual fitness (16) given in Section 3.

A.1.1 Individual fitness: connection to previous models and formulations

Physiologically unstructured metapopulation model. Here we consider a single physiologically unstruc-

tured species and suppose that groups are identical in terms of abiotic factors. The set of g-states can

then be represented with S = {0, 1, 2, . . . , Nmax} specifying the number of individuals of this focal

species inhabiting a group, and the only processes occurring in each group are death, philopatric birth

and birth via dispersal, which is conceptually similar to models with local group demographic fluc-

tuations considered previously (Metz and Gyllenberg, 2001; Cadet et al., 2003; Rousset and Ronce,

2004; Lehmann et al., 2006; Alizon and Taylor, 2008; Parvinen, 2013). The individual fitness (16)

then reduces to

hN′
,N (x) = λd

N
′
,N

(x) + λpB

N
′
,N

(x) +
(
q
N

′
,N

(x)− λD
N,N (x)

)
for all N,N

′
∈ S, (A.7)

where

q
N

′
,N

(x) =
(
λpB

N
′
,N

(x) + λD
N

′
,N

(x)
)
N +

∑
K∈S

λdB
N

′
,N,K

(x)KxK for all N,N
′
∈ S, N 6= N

′
.

(A.8)

Here,

λD
N

′
,N

(x) =

µN (x) for N
′
= N − 1

0 otherwise,
(A.9)
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and

λpB

N
′
,N

(x) =

β
p
N (x) for N

′
= N + 1

0 otherwise,
(A.10)

and λd
N

′
,N

(x) =
∑
K∈S xKλ

dB
N

′
,K,N

(x) where

λdB
N

′
,K,N

(x) =

β
d

N
′K←N

(x) for N
′
= K + 1

0 otherwise.
(A.11)

By convention we have µ0(x) = 0, βp
Nmax

(x) = 0 and βd

N
′Nmax← N

(x) = 0. The interpretation of (A.7)

is analogous to the one in (16) except that the i-process for physiological transitions as well as all

the other processes of non-focal species and abiotic factors are absent. Note that, if we further have

βp
N (x) = (1 −m)βN (x) and βdB

N
′K←N

(x) = mβN (x) for some migration probability m and birth rate

βN (x) depending only on the local density of the parent and which is the realm of the aforementioned

demographic models, then

hN′
,N (x) =



βN (x) + qN+1,N (x) for N
′
= N + 1

xN−2mβN (x) +
(
qN−1,N (x)− µN (x)

)
for N

′
= N − 1

xN−1mβN (x) + qN,N (x) for N
′
= N

xN′−1mβN (x) for N
′
6= {N − 1, N,N + 1},

(A.12)

where

q
N

′
,N

(x) =



(1−m)βN (x)N +m
∑
K∈S βK(x)KxK for N

′
= N + 1

µN (x)N for N
′
= N − 1

−[qN+1,N (x) + qN−1,N (x)] for N
′
= N

0 otherwise.

(A.13)

Well-mixed physiologically structured population model. Here we reduce our metacommunity model

to a well-mixed population model for a single focal species that is physiologically structured. In

so doing, we assume that each ‘group’ is inhabited by at most one individual and that individuals

reproduce via dispersal into an empty uninhabited group. The set of g-states can be represented with

S = {0} ∪ P implying that each group is either empty or it is inhabited by a single individual that

is in one of the finite number of physiological states. The only processes are birth (via dispersal),

physiological transition and death. This model is conceptually similar to the one in Lion (2018a,b)

and Priklopil and Lehmann (2020). The individual fitness (16) then reduces to

ha,b(x) = λd
a,b(x) + λT

a,b(x)− δa,b

(∑
c∈P

λT
c,b + λD

b,b

)
, for all a, b ∈ P. (A.14)

Here, for all a, b ∈ P, we have λd
a,b(x) = x0λ

dB
a,0,b(x) where λd

a,0,b(x) = βd

a
0←b

(x), and λD
b,b(x) = µb(x)

and

λT
a,b(x) =

γa←b(x) for a 6= b

0 otherwise.
(A.15)

The interpretation of (A.14) is analogous to the one in (16), except that here each ‘group’ can
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transition from one state to another only due to the i-processes of the focal parent individual b ∈ P.

Therefore, the ‘survival’ term in the brackets in (A.14) implies that the focal parent a = b ∈ P has

either died and is removed from the group or it physiologically transitions to some other physiological

state.

Conditional fitness. The concept of individual fitness (16) has been considered in the previous

literature for discrete time processes (Lehmann et al., 2016; Ohtsuki et al., 2020) and could generically

be called unconditional individual fitness because it is evaluated unconditionally on whether or not

a group transition occurs. We can distinguish its dispersal and philopatric components, as discussed

in Section 3.3, by writing

hau,bs(x) = hd
au,bs(x) + hp

au,bs(x), (A.16a)

where

hd
au,bs(x) =

∑
w∈S

xwh
d
au,w,bs(x) (A.16b)

and

hd
au,w,bs(x) = λdB

au,w,bs(x)

hp
au,bs(x) = λpB

au,bs(x) + λT
au,bs(x) + δa,b

[
qu,s(x)−

∑
c∈P

λT
cu,as(x)− λD

au,as(x)

]
.

(A.16c)

The conditional individual fitness (e.g. Rousset, 2004; Rousset and Ronce, 2004,Lehmann and Rous-

set, 2010 Lehmann et al., 2016, Appendix E) is defined as the fitness of an individual given a

group-transition (it is conditional on the realization of the state after the transition), and this can

be written as

wau,bs(x) = wd
au,bs(x) + wp

au,bs(x), (A.17a)

where wd
au,bs(x) =

∑
w∈S xww

d
au,w,bs(x) and where

wd
au,w,bs(x) =

hd
au,w,bs(x)

qu,w

wp
au,bs(x) =

hp
au,bs(x)

qu,s
.

(A.17b)

Note that when a = b ∈ P, then wp
au,as(x) = 1 +

λpB
au,as(x)−

∑
c∈P λT

cu,as(x)−λD
au,as(x)

qu,s
and when

a 6= b ∈ P, then wp
au,bs(x) =

λ
pB
au,bs

(x)+λT
au,bs(x)

qu,s
. If we now further make the assumptions of the

“physiologically unstructured metapopulation model” case where S = {0, 1, 2, . . . , Nmax} and use

(A.16)–(A.17) along with (A.12)–(A.13) and noting that hd
N

′
,K,N

(x) = mβN (x) for N
′
= K + 1, then

we recover equations (A.43)-(A.48) of Lehmann and Rousset (2010), which hold as the conditional

fitnesses for the model of Alizon and Taylor (2008).

A.2 Mutant-resident individual fitnesses

A.2.1 Fitness of mutant and resident individuals

The derivation of fitness functions for mutant-resident dynamics is analogous to the one for resident

dynamics (Appendix A, Section A.1). Using nM,au =
∑
j∈Iu jauyuj and the fact that upon a

transition from si ∈ Ω to uj ∈ Ω the number of mutants that are added or removed is jau − ias for

38

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.01.15.426821doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426821
http://creativecommons.org/licenses/by-nc-nd/4.0/


all a ∈ P, we get

ṅM,au =
∑
j∈Iu

jauẏuj

=
∑
j∈Iu

jau
∑
s∈S

∑
i∈Is

πuj,si(y)ysi

=
∑
j∈Iu

∑
s∈S

∑
i∈Is

(ias + jau − ias)πuj,si(y)ysi

=
∑
j∈Iu

∑
s∈S

∑
i∈Is

(jau − ias)

[∑
b∈P

(
λM,pB
auj,bsi(y) + λM,T

auj,bsi(y)
)
ibs +

∑
k∈Iw

∑
dw∈C

λM,dB
auj,s,dwk(y)kdwydw

]
ysi

+
∑
j∈Iu

∑
s∈S

∑
i∈Is

(jau − ias)

[∑
c∈P

λM,T
cuj,asi(y) + λM,D

auj,asi(y)

]
iasysi

+
∑
j∈Iu

∑
s∈S

∑
i∈Is

 ∑
c,b∈P

λ̄p
cu,bsi(y)Nbs +

∑
c,d∈P

∑
wk∈Ω

λ̄d
cu,s,dwk(y)Ndwywk

 iasysi+
+
∑
s∈S

∑
i∈Is

πmc
uj,si(y)iasysi.

(A.18)

By exchanging the indices and using yM,bsi|M,bs = ibsysi
nM,bs

, we can re-write the above as

ṅM,au =
∑
bs∈C

∑
j∈Iu

∑
i∈Is

[
(jau − ias)

(
λM,pB
auj,bsi(y) + λM,T

auj,bsi(y)
)
ibs+

+
∑
w∈S

(jau − iaw)xwλ
M,dB
auj,w,bsi(y)

]
yM,bsi|M,bsnM,bs

+
∑
s∈S

∑
j∈Iu

∑
i∈Is

(jau − ias)

[∑
c∈P

λM,T
cuj,asi(y) + λM,D

auj,asi(y)

]
yM,asi|M,asnM,as

+
∑
s∈S

∑
j∈Iu

∑
i∈Is

[
πp
uj,si(y) + πd

uj,si(y) + πmc
uj,si(y)

]
yM,asi|M,asnM,as

=
∑
bs∈C

gM
au,bs(y)nM,bs,

(A.19)

where

gM
au,bs(y) =

∑
j∈Iu

∑
i∈Is

[
λM,d
auj,bsi(y) + λM,pB

auj,bsi(y) + λM,T
auj,bsi(y)+ (A.20)

+ δa,b

(
πuj,si(y)−

∑
c∈P

λM,T
cuj,asi(y)− λM,D

auj,asi(y)

)]
yM,bsi|M,bs, (A.21)

which is the partitioning given in (47).

The derivation of the resident fitness for the mutant-resident dynamics (49) is identical to (A.18)-

(A.20), except that one needs to replace the numbers of mutants within a group ias with resident

numbers Nas − ias, for all as ∈ C, class-specific densities for mutants nM,as with resident densities

nR,as, for all as ∈ C, as well as conditional group frequencies yM,bsi|M,bs with yR,bsi|R,bs, for all

b ∈ P, si ∈ Ω.

A.2.2 Fitness of an average individual

We can obtain the average individual fitness (51)-(52) by taking an average over mutant and resident

individual fitness’s (47) and (49). Here, instead, we will provide an alternative derivation that is

similar to the the derivation for resident fitness (16): the average individual growth-rate (51)-(52)
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can be calculated from the mutant-resident group and metacommunity dynamics (42) as

ṅau = Nauẋu

= Nau
∑
j∈Iu

∑
s∈S

∑
i∈Is

[
πp
uj,si(y) + πd

uj,si(y) + πmc
uj,si(y)

]
ysi

= Nau
∑
j∈Iu

∑
s∈S

∑
i∈Is

 ∑
c,b∈P

λ̄p
cuj,bsi(y)Nbs +

∑
c∈P

∑
dw∈C

λ̄dB
cuj,s,dwk(y)Ndwxw + πmc

uj,si(y)

 ysi
=
∑
bs∈C

∑
j∈Iu

∑
i∈Is

[
(Nau −Nas)

(
λ̄pB
auj,bsi(y) + λ̄T

auj,bsi(y)
)

+
∑
w∈S

(Nau −Naw)xwλ̄
dB
auj,w,bsi(y)

]
Nbsysi+

+
∑
s∈S

∑
j∈Iu

∑
i∈Is

(Nau −Nas)

[∑
c∈C

λ̄T
cuj,asi(y) + λ̄D

auj,asi(y)

]
Nasysi+

+
∑
s∈S

∑
j∈Iu

∑
i∈Is

 ∑
c,b∈P

λ̄p
cuj,bsi(y)Nbs +

∑
c∈P

∑
dw∈C

λ̄dB
cuj,s,dwk(y)Ndwxw + πmc

uj,si(y)

Nasysi
=
∑
bs∈C

ḡau,bs(y)nbs,

(A.22)

where

ḡau,bs(y) =
∑
j∈Iu

∑
i∈Is

[
λ̄d
auj,bsi(y) + λ̄pB

auj,bsi(y) + λ̄T
auj,bsi(y)+ (A.23)

+ δa,b

(
πuj,si(y)−

∑
c∈P

λ̄T
cuj,asi(y)− λ̄D

auj,asi(y)

)]
ysi|s, (A.24)

which is the partitioning (52) from the main text.

B Appendix: Relatedness and genetic correlations

B.1 Jump-process approach

To facilitate the derivation of the recursion (30) for relatedness (Section 3.4.1), we represent here

the metacommunity dynamics as a discret time jump-process. To this end, we focus on a single

group and take a probabilistic perspective on the group dynamics by viewing the vector x(t) := x

as the probability distribution of the state of some focal group at time t (Section 3). The state

of the focal group is considered as a random variable which we denote with S(t) for all t. In the

continuous time formulation discussed in the main text, the focal group (as well as all other groups in

the metacommunity) can thus be seen as undergoing a continuous time (non-homogeneous) Markov

chain {S(t) | t ∈ [t0, tf ]} on the state space S for some initial time t0 and final time tf (and recall

that the non-homogeneity is implicit and comes via the group transition matrix (10) being a function

of x(t)). Now, because we want to consider a jump chain (or embedded Markov chain, e.g., Iosifescu,

2007) associated to the above continuous time Markov chain, we are interested in the probabilities

at which the i-processes happen. Let Πk = S(Tk) denote the random variable of this jump process

giving the state of the group at the kth jump starting at time t0, where each jump time Tk is (also)

a random variable. The resident group dynamics of this discrete time Markov chain can then be

written as

x(Tk+1) = Ax(Tk), (B.1a)
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where each element

au,s =

−
qu,s
qs,s

=
qu,s∑

w 6=s∈S qw,s
u 6= s

0 u = s
(B.1b)

gives the probability at which a group in state s ∈ S transitions to state u ∈ S (because no state is

absorbing). Using the discrete time group dynamics (B.1) we obtain a jump-process for relatedness

(30)-(32) as given in the main text.

B.2 Mutant-pair dynamics

Here we derive the mutant-pair dynamics (82)-(83) when δ = 0 (Section 5.3.3). The ODE for the

total (or average) density of local pairs nabu for all abu ∈ B is given, with a slight abuse of notation,

identically to (21). By defining nMM,abs =
∑
i∈I iasibsysi as the density of mutant-pairs abs ∈ B,

the ODE for mutant-pair dynamics is given as

ṅMM,abu =
∑
j∈Iu

jaujbu
∑
s∈S

∑
i∈Is

πuj,si(y)ysi

=
∑

s6=u∈S

[∑
d∈P

αCA
abu,ds(x)nM,ds +

∑
d∈P

αIM
abu,ds(x)nM,ds +

∑
c,d∈P

αDP
abu,cds(x)nMM,cds

]
− nMM,abu

∑
w 6=u

qw,u(x), for all abu ∈ B,

(B.2)

where the above rates are given in terms of i-processes as in (23)-(25) and where we used the

consistency relation (61).

We obtain the ODE (82) for the mutant-pair frequencies pMM defined in (79) by differentiation and

using (21) and (B.2), whereby

ṗMM,abu =
d

dt

(
nMM,abu

nabu

)
=
ṅMM,abu

nabu
− pMM,abu

ṅabu
nabu

for all abu ∈ B. (B.3)
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dispersal

+

†

philopatricphilopatric

individual-level processes

group dynamics

philopatric dispersal

focal species

other (non-focal) species

group

Figure 1: Individual-level processes of the focal species (top panels) and the group dynamics of the meta-
community (bottom panels). Top panel: As given in Section 3.1, the focal resident species undergoes
philopatric individual-level processes of birth, physiological transition and death (top left panel), as well
as birth and dispersal (top right panel). The dashed ovals represent groups and circles represent individ-
uals of the focal species. In all processes the parent individual is in physiological state b ∈ P and inhabits
a group in state s ∈ S, and the arrow indicates who was being produced or removed as a result of this
process. Bottom panel: Group transitions (11)-(14) are caused by the individual-level processes of the
focal and all non-focal species as well as fluctuations in external factors. Group transitions determine
the change in the composition of groups and the metacommunity at large as given in (10).
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(a) (b) (c)

(d) (e) (f)

Figure 2: Panels (a)-(c) depict the fast and slow subsystems and the critical manifoldM0 (89)-(90) (where
δ = 0, Sections 6.1-6.2), and, panels (d)-(f) depict their singular perturbations and the slow manifold
Mδ (where δ small but non-zero, Section 7). (a) The phase-plane for the fast variables (x,n,vn) (the
“x-axis”) and the slow variable pv. In the fast subsystem (Section 6.1) the slow variable pv stays constant
while the fast variables converge to (x̂, n̂, v̂n) whenever x(t0) is in the neighborhood (indicated by gray
semi-circles) of x̂ for some initial time t0. A specific solution for the fast subsystem is depicted with
small arrows and where the empty circle shows the initial condition for t0. The slow subsystem (Section
6.2) is constrained onM0, and a particular solution is constructed by taking the steady state of the fast
subsystem (where t→∞) as the initial condition for the slow subsystem (x(τ0),n(τ0),vn(τ0), pv(τ0)) =
(x̂, n̂, v̂n, pc). In this example pv(τ) → 1 as τ → ∞. (b) The shape of M0 on the (p, pv)-plane where
p̂ = 1pv (top panel) and (pMM, pv)-plane where p̂MM = r̂pv + (1− r̂)p2v (bottom panel). Note that the
shape ofM0 in the bottom panel depends on the steady state for relatedness r̂. (c) Phase-plane for the
fast (and slow) arithmetic mutant frequency p (58) and the slow reproductive value weighted mutant
frequency pv (the notation is identical to panel (a)). Note that p = pv on M0 and that their dynamics
on M0 is as given in (91) and (94). (d) The phase plane for (x,n,vn, pv) as a singular perturbation of
(a) where, in particular, the slow manifoldMδ is O(δ)-close toM0 as is the initial condition (gray circle)
and the solution on Mδ. Moreover, because Mδ is a stable manifold, the solutions in the neighborhood
of Mδ approach the solutions on Mδ. (e) The shape of Mδ as a perturbation of M0 discussed in (b).
(f) The phase plane for (p, pv) as a singular perturbation of (c). Note that the solutions p(τ)|Mδ

and
pv(τ)|Mδ

are O(δ)-distance away from each other because Mδ lies off-diagonal. The interpretation of
the solutions are identical to (d).
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