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Abstract

TARDiS for Philogenetics is a novel tool for optimal genetic sub-
sampling. It optimizes both genetic diversity and temporal distribu-
tion through a genetic algorithm. TARDiS, along with example data
sets and a user manual, is available at https://github.com/smarini/tardis-
phylogenetics

1 Introduction

Viral genetic sequence data can be used for integrated phylogenetic and popula-
tion genetic, or phylodynamic, analysis to trace viral evolutionary patterns, as
well as spatiotemporal origin and dissemination of viral and bacterial pathogens
[5]. Phylodynamic tools, such as NextStrain [6] and BEAST [23, 1], are now
routinely utilized to monitor evolution and population dynamics of epidemics
based on real-time deposition of pathogen sequences in databases (e.g. Gen-
Bank, HIVdatabases, GISAID) [22, 14, 12, 10, 15, 13, 24]. Not unlike traditional
epidemiological analysis, however, these methods can significantly be affected
by sampling bias [7], and sampling during outbreaks are rarely performed ran-
domly from a representative, stratified population [21]. Not only do the quality
and quantity of sequences vary per country, but even regional sample collection
policies tend to be inconsistent over time, as exemplified by the inherent sam-
pling bias of SARS-CoV-2 strains, collected through convenience sampling, and
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sequenced during the early pandemic phase [15]. Moreover, continuous gener-
ation of new sequences can very quickly approach information overload. For
example, as of January 15th, 2021, ∼375,000 sequences have been deposited
in GISAID (SARS-CoV-2) database, with a number of countries either over or
under represented compared of their actual infection prevalence. In such cases,
full dataset analyses cannot be accomplished, as computational tools are not
designed to handle hundred of thousands of sequences. In order to reduce com-
putational complexity, subsampling must often be performed [8], typically using
an approach that maximizes genetic diversity among subpopulations [2] (e.g.,
countries or regions [8]), which increases phylogenetic signal in the dataset, thus
improving phylodynamic inference over convenience sampling. Besides enhanc-
ing signal for statistical phylogenetic inference, reliable estimates of significant
events in the context of space and time also require sufficient temporal signal
in the dataset [7], or distribution of sampling over time, to calibrate reliable
molecular clocks [19]. Despite sampling strategies pose a significant threat to
conclusions drawn from phylodynamic inference, this problem has received so
far insufficient attention [4]. Hall et al. (2016) [7] were able to demonstrate
that sampling sequences uniformly with respect to both space and time leads
to better solutions than optimizing sampling solely by genomic diversity. There
currently exists no tool to aid researchers to optimize pathogens’ sequences sub-
sampling with respect to space, time, and genetic diversity. In what follows, we
introduce TARDiS (Temporal And diveRsity Distribution Sampler), a machine
learning approach designed to optimize phylogenetic subsampling according to
both genetic diversity and temporal distribution for user-defined subpopula-
tions.

2 Methods

2.1 Genetic Algorithm

TARDiS implements a genetic algorithm (GA) [9, 3] optimizing genetic diversity
and time sampling distributions criteria for any set of viral or bacterial genomes.
The output consists of user-defined number n of optimally subsampled genomes
from a complete dataset of N genomes. Briefly, the algorithm is initialized as a
population of random individuals. Each individual is a solution to the problem,
i.e., a subsample of size n genomes. Each individual is characterized by a fitness
score, reflecting how well that particular individual (solution) performs on the
given problem. In our case, fitness is measured as a combination of genetic
diversity (i.e., how diverse are the genomes represented by the individual), and
time distribution (i.e., how evenly distributed are the genomes represented by
the individual along the epidemic timeline).

Genetic diversity maximization. We aim to recover a subsample of genomes
as genetically diverse as possible. To do so, we first need to calculate the genetic
distance between all possible genome pairs, represented by a square distance
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matrix D, with N rows and columns. The user can provide their own distance
matrix, or let TARDiS compute it using the Jukes-Cantor substitution model.
We calculate the genetic diversity fitness Fgd of a subset as

Fgd =

∑nc

(i,j,i 6=j) dist(i, j)

distmax(1, . . . , nc)

where nc are all the genome pairs (i, j) ∈ n, with i 6= j; dist(i, j) is the genetic
distance of a genome pair (i, j); and distmax(1, . . . , nc) is the sum of the genetic
diversities of the maximum n elements of the distance matrix D, representing a
theoretical upper bound to force fitness ∈ [0, 1], with a higher value representing
a better Fgd.

Time distribution optimization. Our objective is to recover a subsample
of n genomes that are evenly distributed along the considered time interval.
Intuitively, if n = 10 and the time interval is 10 days, we would like to consider
one genome per day. We can thus calculate the ideal time distribution Itd as a
date vector of n elements, starting with the first available date df , ending with
the last available date dl, and having the remaining n − 2 elements distanced
with a

df−dl

n−1 interval. The worst possible time distribution Wtd, on the other
hand, is a time distribution concentrated into a single specific date (i.e., all
samples collected on the same day). We measure the time distribution fitness
Ftd as

Ftd = 1−
∑n

i |time(gi)− ti|∑n
i |tw − ti|

where time(gi) is the collection date of the i-th genome, ti is i-th date in Itd,
and tw is i-th date in Wtd. In other words, Ftd is bounded ∈ [0, 1], with a higher
value representing a better Ftd. The final fitness F of a specific individual is
calculated as

F = Fgd × wgd + Ftd × wtd

where wgd and wtd are user-defined weights to set the importance of genetic
diversity and time distribution, respectively.

GA operators. Once a population is generated, fitness is calculated for each
individual. Individuals are then chosen and combined to produce a new pop-
ulation, in an iterative fashion. To generate a novel individual, TARDiS uses
three operators: selection, mutation, and crossover. The selection operator is
based on deterministic tournament selection with k = 5 [3]. Briefly, two sets of
k individuals are randomly chosen, and the individual with the highest fitness
is selected from each set. The crossover operator combines two tournament
winners A and B into a new individual C by keeping the all the g genomes
∈ (A ∪B), and randomly selecting n−g

2 genomes ∈ (A ∩B)− (A ∪B). To help
avoid local maxima, each newly generated individual C has a 0.08 probability
of mutating [9, 3]. A mutation is defined as swapping a genome of individual C
with one randomly chosen from the remaining, non-(A|B) genome pool. Note
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also that the user defines a fraction of the population that is randomly created
(and thus not evolved) for each generation. Another user-defined value deter-
mines elitism, i.e., the fraction of best genomes (ranked by fitness) to be copied
without modifications in the next generation.

2.2 Case study: subsampling a rising epidemic.

We simulated a growing epidemic using a stochastic, agent-based model [11]
with limited migration between ten subpopulations, or regions (a, . . ., j). De-
tails on simulation paramaters can be found in the supplementary materials.
We ran TARDiS on a single simulated dataset, subsampling 40 genomes per
region (with the exception of region f, with 37 genomes available) for 50 gen-
erations, with a population of 1000 individuals per generation, of which 85%
were evolved, 10% were newly generated, and 5% were elite. The phytools
package [20] in R [17] was used for joint likelihood reconstruction of discrete
ancestral states [16] according to subpopulation for each internal node of the
subsampled trees. Transition rates among discrete states along tree nodes were
considered to be equal a priori. Migration rates between states were then re-
estimated, as described in the supplementary methods. We compared the results
obtained both with (wgd = 1, wtd = 1) and without considering time distri-
bution (wgd = 1, wtd = 0). Our simulation indicated that better results are
obtained by considering time distribution: the overall migration rate root mean
squared error (RMSE) decreased by 17% (0.035 to 0.029). Eight representative
clades were then chosen for which the majority of taxa consisted of a single sub-
population and were consistent across true and subsampled trees (Figure 1, A).
The RMSE decreased by 43.4% (from 25.37 considering only genetic diversity
(t0) to 14.36 if we include time distribution (t1). The addition of a temporal
weighting component for an exponentially growing population can act to both
increase and decrease representation of earlier time points (e.g., weeks 15 and
12, respectively; Figure 1, B). However, representation of week 1 of the epi-
demic was increased from 0% to 5%. As the early stages of an epidemic, and
time nearing the root of the tree, represent periods of high epidemiological and
phylogenetic uncertainty, sample representation during this time is critical for
reliable phylodynamic inference and thus contributed to the loss of error in our
estimates.

Simulation principles. Each subpopulation was allowed to emerge from the
initially infected population (a) with a mean probability of [initial] infection
of 0.02 (standard deviation [sd] of 0.005). Each infected individual within a
subpopulation was then allowed to migrate to another subpopulation with a
mean probability of 0.01 (sd=0.005). The number of contacts for each indi-
vidual was picked from a normal distribution with a mean of 4 (sd=2). The
probability of transmission (when a contact occurs) was provided in the form of
a threshold function: prior to 5 days (sd=3), the host was not able to transmit,
but after that time, the individual was able transmit with a mean probability
of 0.05 (sd=0.005), representing an incubation period for the simulated virus.
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Figure 1: A) True and subsampled trees with representative clades. Eight repre-
sentative clades were chosen for which the majority of taxa consisted of a single
subpopulation, or state, and were consistent across true and subsampled trees.
Root mean squared error (RMSE) was calculated for the true times to the most
recent common ancestors (TMRCAs) and estimated TMRCAs across the five
representative clades for the subsampled tree with (t1) and without considera-
tion of time (t0). (B) Temporal distribution of samples per subpopulation for
true and subsampled trees with (t1) and without consideration of time (t0). (C)
Screenshot of the TARDiS graphical user interface.

Each infected individual was removed from the simulation (representing death,
recovery, etc.) after 14 days. The described parameters resulted in a basic re-
productive number (R0) of approximately 1.6 for the epidemic. The simulated
epidemic was run for 365 days or until a total of 10,000 hosts were infected.
For each of the ten subpopulations, individuals belonging to that subpopulation
were binned according to week of removal (i.e., seven-day intervals) and subsam-
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pled according to an exponential distribution (rate=5), representing idealistic
sampling of a population proportional to the size of the epidemic and result-
ing in a range [37, 844] of sampled individuals for each subpopulation (state).
The original transmission tree was pruned, leaving only the remaining sampled
individuals.

A molecular clock, or constant evolutionary rate across all branches of the
tree, was assumed, allowing branches separating noes within the tree to be
scaled in both time and genetic distance. Nucleotide (A,C,G,T) sequences
were thus simulated along the tree using a general time reversible evolution-
ary model, with rate matrix (0.32512,1.07402,0.26711,0.25277,2.89976,1.00000)
and nucleotide frequencies (0.299,0.183,0.196,0.322). A gamma distributed of
rate variation across sites (alpha=2.35) was also used, with a proportion (0.60)
of sites considered to be invariable. Branch lengths were scaled by a factor of 8e-
04 (representing an approximate evolutionary rate in substitutions/site/year).
Sequence simulation was performed in Seq-Gen [18].

Migration rates for each of the ten subpopulations were calculated as a func-
tion of the number of transitions between subpopulation states (non-reversible)
along each branch within the tree and the frequency (F ) of the initial subpop-
ulation among tree tips. I.e, for w branches with transitions between subpopu-
lations, and x branches with specifically transitions from i (node at earlier time
point) to j (node at more recent time point),

Rij =
x× Fi

w

3 Implementation

TARDiS is implemented as a command-line tool based on NextFlow, suitable
for analyzing large datasets in an HPC environment, and as a GUI based
on R/Shiny for ease-of-use and experimentation 1. TARDiS is available at
https://github.com/smarini/tardis-phylogenetics.
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