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Abstract 22 

Within populations, some individuals tend to exhibit a bold or shy social behavior 23 

phenotype relative to the mean. The neural underpinnings of these differing phenotypes – also 24 

described as syndromes, personalities, and coping styles – is an area of ongoing investigation. 25 

Although a social decision-making network has been described across vertebrate taxa, most 26 

studies examining activity within this network do so in relation to exhibited differences in 27 

behavioral expression. Our study instead focuses on constitutive gene expression in bold and 28 

shy individuals by isolating baseline gene expression profiles that influence social boldness 29 

predisposition, rather than those reflecting the results of social interaction and behavioral 30 

execution. We performed this study on male green anole lizards (Anolis carolinensis), an 31 

established model organism for behavioral research, which provides a crucial comparison group 32 

to investigations of birds and mammals. After identifying subjects as bold or shy through 33 

repeated reproductive and agonistic behavior testing, we used RNA sequencing to compare 34 

gene expression profiles between these groups within various forebrain, midbrain, and hindbrain 35 

regions. The ventromedial hypothalamus had the largest group differences in gene expression, 36 

with bold males having increased expression of calcium channels and neuroendocrine receptor 37 

genes compared to shy males. Conversely, shy males express more integrin alpha-10 in the 38 

majority of examined regions. There were no significant group differences in physiology or 39 

hormone levels. Our results highlight the ventromedial hypothalamus as an important center of 40 

behavioral differences across individuals and provide novel candidates for investigation into the 41 

regulation of individual variation in social behavior phenotype.  42 
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Introduction 43 

Individuals vary widely in their social boldness. Some individuals perform many high 44 

intensity behaviors within moments of participating in a novel social encounter, while others 45 

hesitantly engage in few, low-intensity interactions. Often, social boldness is consistent across 46 

different social environments (Coppens et al., 2010; Stamps and Groothuis, 2010). Although a 47 

continuum of such behavioral propensity usually exists within a population, we can categorize 48 

individuals at each end of such a continuum as either behaviorally ‘bold’ or ‘shy’ based on the 49 

latency, frequency, and intensity of exhibited social behaviors across contexts. Such behavioral 50 

phenotypes, also referred to as behavioral syndromes, personalities, or coping styles (Koolhaas 51 

et al., 1999; Réale et al., 2010; Sih et al., 2004), often manifest as correlated suites of 52 

behavioral outputs, presumably due to regulation by shared neural underpinnings. The neural 53 

substrates that lead an individual toward exhibiting a bold or shy phenotype likely rely on brain 54 

regions involved in social decision-making (Newman, 1999; O’Connell and Hofmann, 2011, 55 

2012), and neuroendocrine mediators of these circuits (Baugh et al., 2012; Félix et al., 2020; 56 

Ketterson and Nolan Val, 1999). Although numerous neural systems have been associated with 57 

social behavioral output, the bases of stable bold-shy behavioral phenotypes remain poorly 58 

understood. 59 

Among vertebrates, the lack of understanding of neuroendocrine regulators of behavioral 60 

phenotypes is especially true among non-avian reptiles, as they are the least studied vertebrate 61 

taxonomic group (Kabelik and Hofmann, 2018), despite serving as an important evolutionary 62 

comparison group, especially for amniotic vertebrates. A social decision-making network has 63 

been described in reptiles (Kabelik et al., 2018), and various neuroendocrine variables have 64 

been related to the expression of social behaviors in lizards (Dunham and Wilczynski, 2014; 65 

Hartline et al., 2017; Kabelik et al., 2013, 2008b; Kabelik and Crews, 2017; Kabelik and 66 

Magruder, 2014; Korzan et al., 2001; Korzan and Summers, 2004; Larson and Summers, 2001; 67 
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Smith and Kabelik, 2017; Watt et al., 2007; Sarah C. Woolley et al., 2004; Woolley et al., 2001; 68 

Sarah C Woolley et al., 2004). However, many potential regulators of social boldness remain 69 

unexamined. In this study, we compare neural gene expression from various brain regions of 70 

male green anoles (Anolis carolinensis) that exhibit stable bold and shy phenotypes in order to 71 

identify potential regulatory variables. Green anoles are a longstanding model for social 72 

behavior investigation (Lovern et al., 2004), and they have recently become a model for 73 

comparative genomic investigation (Alföldi et al., 2011), making them an ideal subject species 74 

for the present study. We focus here on male green anoles because they exhibit high levels of 75 

both reproductive and aggressive behaviors, and our aim was to differentiate individuals based 76 

on boldness within both contexts. 77 

While many studies of social boldness examine gene expression resulting from the 78 

performance of specific social behaviors (e.g., Mukai et al., 2009; Wong et al., 2012; Zayed & 79 

Robinson, 2012), or by adoption of a dominant or submissive status within a social hierarchy 80 

(e.g., Eastman et al., 2020; Renn et al., 2008), here we examine differences in baseline neural 81 

gene expression among subjects that have been extensively screened within different social 82 

contexts and assigned to a bold or shy phenotype category. This design eliminates gene 83 

expression differences associated with expressed behavioral output and instead places focus 84 

on the neural state differences that predispose individuals toward bold or shy behavioral outputs 85 

prior to engaging in a behavioral encounter with a conspecific. Additionally, the examined males 86 

are housed individually and thus hold identical home ‘territories’, eliminating social status-87 

related gene transcription. We selected five bold and five shy individuals for our analysis and 88 

compared gene expression profiles between these experimental groups across four forebrain, 89 

one midbrain, and one hindbrain region. These individuals did not differ in body size or baseline 90 

steroid hormone levels. However, our gene expression analyses show differential regulation of 91 

integrin alpha-10 across brain regions of bold versus shy subjects, and a prominent role for 92 
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calcium channels and various neuroendocrine factors within the ventromedial hypothalamus, 93 

including androgen and secretin receptors. 94 

 95 

Materials and Methods 96 

Subjects 97 

Fifty-seven focal male green anoles (Anolis carolinensis) were obtained from a 98 

commercial supplier. These males were housed singly within terraria (30.5 cm H x 26 cm W x 99 

51 cm L) and kept in breeding season conditions: long-day (14 light:10 dark) full-spectrum 100 

lighting, 12 hours of supplemental heat provided 5 cm above one end of a wire-mesh terrarium 101 

lid by means of a 60-W incandescent light bulb, and thrice-weekly feeding with crickets. 102 

Additional males and females from our housing colony were used in social interactions. All 103 

procedures involving live animals were conducted according to federal regulations and 104 

approved by the Institutional Animal Care and Use Committee at Rhodes College. 105 

 106 

Social behavior boldness assessment 107 

Focal males were each assessed three times with different conspecifics for social 108 

boldness within each of three social encounter scenarios – reproductive encounter, agonistic 109 

encounter as a resident, and agonistic encounter as an intruder. Thus, each focal male’s 110 

behavior was scored in nine separate 10-min behavioral encounters, and a maximum of one 111 

social encounter per focal male was run per day. The reproductive behavior scenario involved 112 

two conspecific adult females simultaneously placed into the focal male’s terrarium. Two 113 

females were used to maximize the probability of eliciting reproductive behaviors from the focal 114 

male. We recorded the frequency (sum of behaviors per 10-min session) and latency to first 115 
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performance (minute of first occurrence of any listed behavior) of the following behaviors: head 116 

bob bout, push-up bout, dewlap extension bout, dewlap extension bout with push up, chase, 117 

and copulate. Focal males that failed to display any behaviors were assigned the maximum 118 

latency score of 10 min. The maximum intensity of behavioral display was also scored from 0-3 119 

based on the highest achieved category: no display, display only, chase, and copulate. The 120 

agonistic encounter as a resident scenario involved a size-matched (within 3 mm snout-vent 121 

length) adult conspecific male intruder being placed within the focal male’s terrarium. Behaviors 122 

were scored as in the reproductive encounter, except that biting of the stimulus male replaced 123 

copulation as the highest intensity behavior. The agonistic encounter as an intruder scenario 124 

involved the focal male being taken out of his terrarium and placed into the terrarium (home 125 

territory) of a size-matched adult conspecific male. Behavioral scoring was the same as in the 126 

previous agonistic scenario. Stimulus animals were also only used once per day, and no 127 

behavioral trials involved the repeated pairing of the same subjects. 128 

 129 

Bold-shy categorization 130 

We conducted principal components analysis (PCA) using SPSS Statistics 22 (IBM) to 131 

reduce the average behavioral latency, frequency, and intensity scores from each of the three 132 

social behavior interaction scenarios into a single value. In each scenario, the resulting analysis 133 

generated a single PCA axis with an eigenvalue > 1, and in each case, this axis was highly 134 

positively correlated with average frequency and intensity scores, and negatively with average 135 

latency scores (r>±0.73, p<0.001 for each). This PCA axis 1 explained 65% of the behavioral 136 

variation in the reproductive boldness trial, 79% of the variation in the agonistic trial as resident, 137 

and 80% of the variation in the agonistic trial as intruder. We used these PCA axes to correlate 138 

boldness across behavioral scenarios. We also took an average of these three PCA axes to use 139 

in selecting bold and shy individuals for the RNAseq portion of this study. Because the average 140 
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PCA axis 1 score differed across the three behavioral testing blocks (F(2,54)=4.23, p=0.02), we 141 

ranked focal males based on this average PCA principal component axis 1 score within each 142 

behavioral block. We then chose the highest and lowest scoring focal male within each block, as 143 

well as the next highest and next lowest scoring focal male in two of the three blocks. This 144 

resulted in selection of the five most socially ‘bold’ and five most ‘shy’ males out of the 57 focal 145 

males screened for behavioral consistency. 146 

 147 

Tissue harvesting and brain tissue punching 148 

Prior to handling for blood and brain harvesting, focal subjects were left undisturbed in 149 

their home terraria for 24 h. We euthanized focal males by cutting through the spinal column 150 

and immediately collected trunk blood for hormone analyses (average collection time from first 151 

handling was 162 ± 3.2 s). The blood was kept at 4°C until centrifugation. The brain was then 152 

rapidly dissected, placed within a microcentrifuge tube filled with Tissue Tek (Sakura) cutting 153 

medium, and frozen under dry ice (average time from first handling to freezing of brain was 544 154 

± 8.4 s). The body (minus the head) was then weighed, after which the testes were dissected 155 

from the body and also weighed. Brains were sectioned at 100 µm on a Microm HM 520 156 

cryostat (Thermo Scientific). The sections were laid onto glass microscope slides resting on a 157 

metal block within the cryostat at -19°C. Tissue punches of selected areas were obtained using 158 

a Stoelting brain punch set with the aid of a dissecting microscope (Olympus SZX7) mounted 159 

above the cryostat. Brain punches were placed into Trizol (Invitrogen) and frozen at -80°C. 160 

Either 1 mm or 1.5 mm tissue punches were used to obtain tissue from selected brain regions. 161 

These were as follows: POA-LS, a region including the preoptic area, anterior hypothalamus, 162 

paraventricular nucleus of the hypothalamus, and septal nuclei; HIP, a region of the medial 163 

cortex, which is at least partly homologous to the mammalian hippocampus (Desfilis et al., 164 

2018; Striedter, 2016; Tosches et al., 2018); DVR, including the subcortical pallium (dorsal 165 
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ventricular ridge, including amygdaloid nuclei) as well as striatum; VMH, the ventromedial 166 

hypothalamus; MID, the midbrain tegmentum; HIND, the pons and rostral medulla, though not 167 

cerebellum. Brain regions were determined by reference to multiple atlases and publications 168 

(Bruce and Braford, 2009; Butler and Hodos, 2005; Greenberg, 1982; Hoops et al., 2018; Jarvis, 169 

2008; Kabelik et al., 2014; Lopez et al., 1992; Naik et al., 1981; O’Connell and Hofmann, 2011; 170 

Rosen et al., 2002; ten Donkelaar, 1998). 171 

 172 

Hormone analyses 173 

Blood samples were centrifuged and plasma (averaging 77 ± 3.3 µl) was frozen at -80°C 174 

until hormone analysis. We quantified testosterone (ADI-900-065; sensitivity 5.67 pg/mL), 175 

estradiol (ADI-900-008; sensitivity 28.5 pg/mL), progesterone (ADI-900-011; sensitivity 8.57 176 

pg/mL), and cortisol (ADI-900-071; sensitivity 56.72 pg/mL) using enzyme-linked 177 

immunosorbent assay (ELISA) kits (Enzo Life Sciences, Farmingdale, NY). The cortisol kit 178 

cross-reacts with corticosterone at 28%, representing a general glucocorticoid assay, albeit with 179 

lower-than-typical sensitivity. Samples were run across two plates for each hormone and the 180 

inter-assay variation across plates and the intra-assay variance for each plate is as follows: 181 

testosterone (inter: 5.6%; intra: 5.6% and 6.1%), estradiol (inter: 4.1%; intra: 3.7% and 8.5%), 182 

progesterone (inter: 4.7%; intra: 2.3% and 4.7%), and cortisol (inter: 6.4%; intra: 3.8% for both 183 

plates). We re-suspended 7 µl of plasma in 203 µL of the appropriate assay buffer and ran each 184 

sample in duplicate as per manufacturer’s instructions. Hormone results were generally 185 

consistent with previously reported levels in this species (Greenberg and Crews, 1990).  186 

 187 

RNA sequencing and analyses 188 
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Brain RNA was extracted using Trizol according to manufacturer's instructions (Thermo 189 

Fisher Scientific). Poly-adenylated RNA was isolated from each sample using the NEXTflex 190 

PolyA Beads purification kit (Perkin Elmer). Strand-specific libraries with unique barcodes were 191 

prepared using the NEXTFLEX Rapid Directional RNA-Seq kit 2.0 according to manufacturer's 192 

instructions (Perkin Elmer). Libraries were pooled in equal molar amounts and sequenced on an 193 

Illumina HiSeq 2500 to obtain roughly 40 million reads per sample. 194 

 We first applied quality and adaptor trimming to the raw reads using Trim Galor! 195 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/; parameters: trim_galore --196 

paired --phred33 --length 36 -q 5 --stringency 5 --illumina -e 0.1). Reads were then aligned 197 

using kallisto (Bray et al., 2016) with default parameters to the Anolis carolinensis cDNA 198 

reference transcriptome (Anolis_carolinensis.AnoCar2.0.cdna.all.fa.gz) downloaded from 199 

Ensembl (May 2020). Read counts were combined into a single matrix. Differences in gene 200 

expression within each brain region were calculated using DESeq2 (Love et al., 2014) within the 201 

in silico Trinity pipeline (p<0.05, 4-fold change). We corrected p-values for multiple hypothesis 202 

testing and considered transcripts with false discovery rate (FDR) correct p-values <0.05 203 

significantly differentially expressed. We performed a gene ontology enrichment analysis for 204 

differentially expressed genes in the ventromedial hypothalamus using the PANTHER (version 205 

14; http://pantherdb.org/; Mi et al., 2019). Data visualizations were made in RStudio (version 206 

1.3.1056) running R (version 3.5.2). Boxplots and bar charts were made with ggplot2 (version 207 

3.3.0) and the volcano plot was generated using EnhancedVolcano (version 1.0.1). 208 

 209 

Statistical analyses 210 

Some behavioral scores and all hormone levels were ln-transformed to meet 211 

assumptions of parametric analyses. Data reduction was conducted using PCA, and the 212 

comparison of the average resultant score across behavioral testing blocks was conducted 213 
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using one-way analysis of variance. Correlations among behavioral scores were conducted 214 

using Pearson’s r. Behavioral and physical differences between bold and shy focal males were 215 

examined via independent-samples t-tests, except for behavioral intensity measure, which was 216 

compared using a Mann-Whitney U test. Scatterplots of PCA scores were made with ggplot2 217 

(version 3.3.0) in RStudio (version 1.3.1056) running R (version 3.5.2).  218 

 219 

Data availability 220 

Data from the behavior and hormone analyses, as well as RNA sequencing analysis, including 221 

count matrices, GO enrichment analyses, and differential expression statistics, are available in 222 

the Supplementary Excel File. Raw sequencing reads are available on the Sequence Read 223 

Archive (submission pending acceptance). 224 

 225 

Results 226 

Correlated behavioral traits are stable within individuals 227 

Individual differences in social boldness are relatively stable across different types of 228 

social encounters. In Figure 1, we present correlations between focal males in the reproductive, 229 

agonistic as a resident, and agonistic as an intruder scenario, reflecting latency, frequency, and 230 

intensity measures reduced into a single principal component axis for each scenario. We found 231 

positive correlations between boldness scores across all behavioral scenarios: reproductive 232 

boldness and boldness as the resident in an agonistic trial (r=0.55, N=57, p<0.001), between 233 

boldness as the resident in an agonistic trial and boldness as the intruder in an agonistic trial 234 

(r=0.50, N=57, p<0.001), and between reproductive boldness and boldness as the intruder in an 235 

agonistic trial (r=0.29, N=57, p=0.026). 236 
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 237 

Behavioral, but not physiological, traits differ between bold and shy individuals 238 

Relative to shy males, the bold males showed a higher average frequency of 239 

reproductive behaviors, agonistic behaviors as a resident, and agonistic behaviors as an 240 

intruder. Similarly, the bold males exhibited lower average latencies to first reproductive 241 

behavior, to first agonistic behavior as a resident, and to first agonistic behavior as an intruder. 242 

Bold males also exhibited higher average behavioral intensities to females, as resident males in 243 

agonistic trials, and as intruder males in agonistic trials. However, behavioral boldness was not 244 

correlated with physical or hormonal characteristics. Bold and shy focal males did not differ in 245 

snout-vent length, or body-minus-head mass (body was weighed after brain removal, so as not 246 

to delay freezing of brain tissue). Likewise, these groups did not differ in testes mass, or in 247 

circulating testosterone, estradiol, progesterone, or glucocorticoid levels.  248 

Table 1. Mean and standard error (S.E.) values for behavioral and physical variables of bold 249 
and shy male green anoles. No physical but all behavioral variables differ between bold and shy 250 
groups. Parametric comparisons state the t statistic (t) and degrees of freedom (df); 251 
nonparametric comparisons state the U statistic (U) and the sample size (N); both state the 252 
probability of significance (P) at α=0.05. 253 

 Shy 
mean 

Shy 
S.E. 

Bold 
mean 

Bold 
S.E. 

t/U Df/N P 

Behavioral Variables:        
reproductive behavior 
frequency (#/10 min) 

11.1 2.62 27.9 1.72 -5.36 8 0.001 

resident agonistic 
frequency (#/10 min) 

4.3 2.86 38.4 6.08 -5.07 8 0.001 

intruder agonistic 
frequency (#/10 min) 

7.7 2.71 32.3 3.58 -5.50 8 0.001 

reproductive behavior 
latency (min) 

3.7 0.80 1.1 0.06 3.44 8 0.009 

resident agonistic latency 
(min) 

6.9 1.07 1.0 0.00 10.36 8 <0.001 

intruder agonistic latency 
(min)  

7.6 0.81 1.6 0.24 7.13 8 <0.001 

reproductive behavior 
intensity (0-4 scale) 

0.9 0.07 1.5 0.17 1.50 10 0.016 

resident agonistic intensity 
(0-4 scale) 

0.7 0.35 2.3 0.29 1.50 10 0.016 
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intruder agonistic intensity 
(0-4 scale) 

0.5 0.22 2.0 0.13 0.00 10 0.008 

        
Physical Variables:        
snout-vent length (mm) 6.0 0.07 6.0 0.10 0.00 8 1.00 
body mass (g) 3.3 0.07 3.4 0.08 -0.75 8 0.48 
testes mass (g) 0.1 0.00 0.1 0.01 -0.26 8 0.80 
testosterone (ng/ml) 2.2 1.08 1.5 0.14 0.30 8 0.77 
estradiol (ng/ml) 9.3 5.68 5.2 1.78 0.68 8 0.74 
progesterone (ng/ml) 0.6 0.06 0.8 0.21 -0.97 8 0.14 
glucocorticoids (ng/ml) 7.0 3.14 4.8 0.59 0.25 8 0.81 

 254 

 255 

 256 

Figure 1. Focal male green anole lizards exhibit stable social boldness phenotypes. (Left) Average 257 
boldness in three reproductive encounters correlates strongly with average boldness as the resident male 258 
in three separate agonistic encounters. (Middle) Average boldness as the resident male correlates 259 
strongly with average boldness as an intruder within three separate agonistic encounters. (Right) Average 260 
boldness as the intruder male in three separate agonistic encounters correlates weakly with average 261 
reproductive boldness to three pairs of females. Social boldness is represented by PCA axis 1 values, 262 
which are positively correlated with average behavioral frequency and intensity, and negatively correlated 263 
with average latency to display, within each behavioral encounter scenario. Trials were carried out in 264 
three blocks. One to two focal males with the highest combined PCA values per block (‘bold’, shown in 265 
blue-green), and one to two focal males with the lowest combined PCA values per block (‘shy’, shown in 266 
orange) were selected for the bold-shy neural RNA sequencing comparison.  267 

 268 

Boldness is associated with gene upregulation in the ventromedial hypothalamus 269 

We measured baseline gene expression in bold and shy individuals across six brain 270 

regions that contribute to social decision-making and are functionally conserved across 271 

vertebrates (Kabelik et al., 2018; Newman, 1999; O’Connell and Hofmann, 2011, 2012; 272 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.15.426859doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426859


13 
 

Thompson et al., 2008; Walton et al., 2010) (Figure 2A; Supplemental Excel File). The number 273 

of differentially expressed genes across brain regions were relatively few (average of 8), with 274 

the exception of the ventromedial hypothalamus, where 608 genes were differentially 275 

expressed. Across brain regions, only integrin alpha-10 (itga10) was consistently downregulated 276 

in bold individuals compared to shy individuals (Figure 2B), with the exception of the dorsal 277 

ventricular ridge where expression of this gene was not detected.  278 

Since the ventromedial hypothalamus had a drastically different patterns in baseline 279 

gene expression between bold and shy individuals, we explored these patterns in more detail. 280 

There were 601 genes upregulated and 7 downregulated in bold individuals compared to shy 281 

individuals (Figure 2C). We examined gene otology annotations for differentially expressed 282 

genes and found enriched molecular function of calcium channel activity (p=5.04x10-4). Indeed, 283 

at least seven voltage-gated calcium channel genes were upregulated in bold individuals 284 

(Figure 2D). While many differentially expressed genes are unannotated and labeled as “novel 285 

transcripts”, we noted several that have established roles in regulating behavior or have a log 286 

fold change of greater than 5. This includes the androgen receptor (ar, p=0.014) and the two 287 

subunits of the NMDA receptor, grin1a (p<0.001) and grin 2b (p<0.001). Expression of integrin 288 

alpha-10 was downregulated in bold individuals (p=0.017), similar to other brain regions. Finally, 289 

some genes had a large fold change increased in bold individuals, including a potassium 290 

channel (kcnh1-like, p>0.001), the secretin receptor (sctr, p=0.02), and an unknown g protein-291 

coupled receptor (p=0.003). 292 
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Figure 2. Baseline brain gene expression in bold and shy anoles highlights the ventromedial 294 
hypothalamus. (A) RNA sequencing was used to quantify gene expression in six different brain regions in 295 
bold (orange) and shy (blue-green) individuals. The number of differentially expressed genes in each brain 296 
region is shown in the Venn diagrams. (B) Integrin alpha-10 (itga10) was downregulated in bold anoles 297 
across almost all brain regions. The log fold change (log2FC) is shown in bar plots. (C) A volcano plot 298 
highlights the genes that are differentially expressed in the ventromedial hypothalamus, where the cutoff 299 
for significance (red dots beyond the dashed lines) is p<0.05 with false discovery rate correction and a log 300 
fold change of two or greater. (D) Select differentially expressed genes are shown, including voltage-gated 301 
calcium channels (top) and other genes previous linked to behavior and/or with large fold changes in 302 
expression (bottom). Boxplots show rectangles as the lower and upper quartiles (with the median as the 303 
line) and whiskers that indicate the maximum and minimum values; individual data points are shown as 304 
dots.  305 

 306 

Discussion 307 

Most behaviorally linked gene expression studies examine changes resulting from 308 

participation in behavioral trials or the establishment of dominant or subordinate status within a 309 

social hierarchy. However, such comparisons make it difficult to ascertain what variables are 310 

predisposing animals to exhibit a bold or shy phenotype in the first place, as such studies will 311 

also detect gene transcription differences that result from the perception of conspecifics and 312 

performance of varied levels of behaviors toward other individuals. Hence, to remove 313 

perception-related and performance-based gene expression, and thus focus on neural 314 

differences that predispose individuals toward bold or shy behavioral profiles, we examined 315 

male green anoles under baseline conditions. These anoles had been previously screened 316 

under three different social conditions, and repeatedly within each condition. We found highly 317 

stable boldness phenotypes, which transcended social context. That is, in relation to shy males, 318 

bold males tended to behave more quickly and to exhibit greater numbers and higher intensities 319 

of courtship behaviors within reproductive trials, and of aggressive behaviors within agonistic 320 

trials. This correlation of social boldness across contexts is in line with expectations for 321 

consistent behavioral phenotypes (Coppens et al., 2010; Stamps and Groothuis, 2010). Thus, 322 

our gene expression analysis investigates neural correlates of a general social boldness. 323 

 324 
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Social boldness phenotype is unrelated to circulating steroid hormone levels 325 

While there were many behavioral differences between bold and shy individuals in this 326 

study, we did not find any group differences in circulating hormone levels or body size. We 327 

expected testosterone, estradiol, progesterone, or glucocorticoid levels to correlate with 328 

individual differences in behavior. Previous findings suggesting steroidal regulation of behavioral 329 

expression include research on male tree lizards, which found correlations between circulating 330 

testosterone levels and aggressive behavior display frequency and intensity (Kabelik et al., 331 

2006). Manipulative studies in the same species demonstrated that both testosterone and 332 

progesterone promote faster, more frequent, and more intense displays of aggression (Kabelik 333 

et al., 2008b; Weiss and Moore, 2004). Similarly, in male side-blotched lizards, circulating 334 

testosterone levels are higher in the more aggressive morph (Sinervo et al., 2000). However, 335 

while we cannot rule out organizational effects of steroid hormones on social behavior 336 

phenotype in male green anoles, we find no evidence for activational effects of any of these 337 

steroid hormones on boldness phenotype.  338 

Studies examining other vertebrate taxa have found mixed associations between 339 

circulating steroid hormone levels and behavioral boldness. For example, testosterone 340 

treatment in African striped mice (Rhabdomys pumilio) increases boldness behavior (Raynaud 341 

and Schradin, 2014), and acute 17a-ethinylestradiol (an estrogen mimic) decreases boldness 342 

behavior in Siamese fighting fish (Betta splendens). However, aromatase inhibitors decrease 343 

boldness in female Siamese fighting fish, highlighting a role for local hormone synthesis within 344 

the brain that may regulate behavioral phenotypes. As aromatase was not differentially 345 

expressed between bold and shy males within this study, functional manipulations would be 346 

required to determine a causal role for steroid hormone synthesis in the brain and any 347 

relationships with individual variation in behavior. 348 
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Studies attempting to link hormones to behavioral phenotypes often measure hormone 349 

levels after a behavioral stimulus is presented, but our study focused instead on baseline levels 350 

of hormones. Similar to our finding in green anoles, bold and shy male zebrafish do not differ in 351 

baseline cortisol levels (Oswald et al., 2012), suggesting that baseline hormone levels may be 352 

unlinked to behavioral phenotypes. Instead, hormones may influence behavioral syndromes 353 

through differential abundance of their receptors within the brain. 354 

 355 

Differentially expressed genes and a regulatory role for the ventromedial hypothalamus 356 

When comparing forebrain, midbrain, and hindbrain regions of bold versus shy male 357 

green anole lizards, we found the greatest number of differentially expressed genes within the 358 

ventromedial hypothalamus, a node within the social decision-making neural network (O’Connell 359 

and Hofmann, 2011). We were initially surprised to find so few genes differentially expressed 360 

within other brain regions, but the patterns here represent a constitutive state, rather than a 361 

response to a behavioral stimulus that would be expected to induce a greater change in gene 362 

expression across brain regions. The ventromedial hypothalamus has been implicated in the 363 

regulation of both reproductive and agonistic behaviors, making it a logical location for 364 

regulation of general social behavior boldness. For instance, both copulatory and agonistic 365 

conditions have been shown to upregulate markers of neural activity within the Syrian hamster 366 

ventromedial hypothalamus, although copulation tends to induce more c-Fos expression (an 367 

immediate early gene product and proxy marker of neural activity) in the medial portions of the 368 

nucleus, while agonistic situations tend to increase c-Fos in the lateral ventromedial 369 

hypothalamus (Kollack-Walker and Newman, 1995). Additionally, stimulation of the lateral 370 

portions of the rat ventromedial hypothalamus has been shown to elicit aggressive responses 371 

(Kruk, 1991). The ventromedial hypothalamus therefore seems a likely social behavior 372 

integration center, owing to its regulatory role in various types of social behavior expression. 373 
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A prominent category of differentially expressed genes within the ventromedial 374 

hypothalamus was voltage-gated calcium channels. Voltage-gated calcium channels regulate 375 

both intracellular calcium levels as well as general neuronal excitability, and have been linked to 376 

a number of neuropsychiatric symptoms in humans, including bipolar disorder, depression, and 377 

attention deficit hyperactivity disorder (Kabir et al., 2017). In addition to voltage-gated calcium 378 

channels, we also found that expression of ligand-gated calcium channel NMDA subunits is 379 

upregulated in bold individuals. NMDA receptor regulation has been linked to behavioral 380 

boldness in birds (Audet et al., 2018), suggesting the tuning of calcium channel expression may 381 

be a conserved feature of behavioral variability. Indeed, increased intracellular calcium levels 382 

induce signaling cascades that can lead to changes in transcription, such as the 383 

phosphorylation of cyclic adenosine monophosphate response element binding protein (CREB), 384 

which has been linked to synaptic, neuronal, and behavioral plasticity (Hofmann, 2003). In tree 385 

lizards, the dorsolateral portions of the ventromedial hypothalamus show increased neural 386 

activity as measured by an increase in pCREB following an agonistic encounter (Kabelik et al., 387 

2008a). Thus, a number of neural activity-regulating channels differ in baseline gene expression 388 

between bold and shy males, highlighting neuronal excitability in the ventromedial 389 

hypothalamus as a contributor to stable individual variation in behavior.  390 

In the ventromedial hypothalamus, we also observed increased gene expression of a 391 

few neuromodulators with strong ties to behavior. For example, although we did not find 392 

significant differences in testosterone levels between bold and shy individuals, we did find an 393 

increase in androgen receptor expression in bold individuals. This finding is exciting given that 394 

androgen receptor presence within the ventromedial hypothalamus occurs within its dorsolateral 395 

aspect (Rosen et al., 2002), the same region of the ventromedial hypothalamus that has been 396 

previously linked to the expression of aggressive behavior in male tree lizards (Kabelik et al., 397 

2008a). Apart from androgen receptor gene expression, we also found an increase in 398 
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expression of the secretin receptor in bold individuals. Secretin receptor expression is 399 

widespread in the brain and although central secretin signaling is primarily known for its role in 400 

regulating neurodevelopment and memory function via effects on synaptic plasticity, secretin 401 

has also been shown to regulate anxiety and associated behaviors (Nishijima et al., 2006; Wang 402 

et al., 2019), as well as activity of reproductive circuitry (Csillag et al., 2019). Secretin has been 403 

shown to regulate GABAergic transmission to gonadotropin-releasing hormone-producing cells 404 

(Csillag et al., 2019), as well as affecting the firing rate of over 50% of examined paraventricular 405 

hypothalamus neurons in rat in vivo studies (Chen et al., 2013). These studies suggest a role for 406 

secretin as a widespread modulator of neural function, and as such, secretin may also regulate 407 

social behavior via modulation of neuronal activity within the ventromedial hypothalamus.  408 

Across most brain regions, integrin alpha-10 was the one gene consistently 409 

downregulated in bold individuals. Integrins are typically associated with neuronal development, 410 

as they can detect and transmit mechanical force on extracellular matrices into an intracellular 411 

signal (Takada et al., 2007). The role of integrin alpha-10 is not well understood, especially in 412 

the context of behavior. Integrin alpha-10 in humans is associated with the 1q21.1 chromosomal 413 

region, which when deleted leads to thrombocytopenia absent radius (TAR) (Brunetti-Pierri et 414 

al., 2008). Genome wide association studies in humans has also linked integrin alpha-10 to 415 

bipolar disorder (Pedroso et al., 2012). Thus, a role for integrin alpha-10 in natural variation in 416 

behavioral strategies beyond that of human disease is a promising avenue of future research. 417 

 418 

Conclusion 419 

Our study focuses on constitutive differences across bold or shy individuals by isolating 420 

baseline hormone levels and brain gene expression profiles that influence social boldness 421 

predisposition, rather than those reflecting the results of social interaction and behavioral 422 
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execution. We found that correlated behavioral traits were not driven by differences in steroid 423 

hormone levels or body size, as these were consistent across treatment groups. Instead, brain 424 

gene expression differences strongly relate to social boldness and likely reflect variables 425 

involved in the neural circuitry that regulates social boldness. Specifically, we found that 426 

baseline differences between bold and shy males were associated with gene expression in the 427 

ventromedial hypothalamus, where expression of voltage-gated calcium channels, the androgen 428 

receptor, and the secretin receptor were increased in bold individuals. We suggest that studies 429 

should include examination of the ventromedial hypothalamus as a potential regulator of social 430 

behavior boldness in reptiles as well as across other vertebrate taxa. 431 
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