
The statistics of k-mers from a sequence undergoing a simple

mutation process without spurious matches∗†

Antonio Blanca1 Robert S. Harris2 David Koslicki1,2,3 Paul Medvedev1,3,4,‡

1 Department of Computer Science and Engineering, The Pennsylvania State University
2 Department of Biology, The Pennsylvania State University

3 Huck Institutes of the Life Sciences, The Pennsylvania State University
4 Department of Biochemistry and Molecular Biology, The Pennsylvania State University

‡ Corresponding author, pzm11@psu.edu

Abstract

K-mer-based methods are widely used in bioinformatics, but there are many gaps in our un-
derstanding of their statistical properties. Here, we consider the simple model where a sequence
S (e.g. a genome or a read) undergoes a simple mutation process whereby each nucleotide is
mutated independently with some probability r, under the assumption that there are no spu-
rious k-mer matches. How does this process affect the k-mers of S? We derive the expectation
and variance of the number of mutated k-mers and of the number of islands (a maximal interval
of mutated k-mers) and oceans (a maximal interval of non-mutated k-mers). We then derive
hypothesis tests and confidence intervals for r given an observed number of mutated k-mers,
or, alternatively, given the Jaccard similarity (with or without minhash). We demonstrate the
usefulness of our results using a few select applications: obtaining a confidence interval to sup-
plement the Mash distance point estimate, filtering out reads during alignment by Minimap2,
and rating long read alignments to a de Bruijn graph by Jabba.
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1 Introduction

K-mer-based methods have become widely used, e.g. for genome assembly [1], error correction [26],
read mapping [16, 14], variant calling [31], genotyping [32, 7], database search [29, 11], metage-
nomic sequence comparison [37], and alignment-free sequence comparison [30, 22, 27]. A simple but
influential recent example has been the Mash distance [22], which uses the minhash Jaccard simi-
larity between the sets of k-mers in two sequences to estimate their average nucleotide divergence.
Mash has been applied to determine the appropriate reference genome for in silico analyses [28], for
genome compression [33], for clustering genomes [22, 3], and for estimating evolutionary distance
from low-coverage sequencing datasets [27]. K-mer-based methods such as Mash are often faster
and more practical then alignment-based methods. However, while the statistics behind sequence
alignment are well understood [10], there are many gaps in our understanding of the statistics
behind k-mer-based methods.

Consider the following simple mutation model and the questions it raises. There is a sequence
of nucleotides S that undergoes a mutation process, whereby every position is mutated with some
constant probability r1, independently of other nucleotides. In this model, we assume that S does
not have any repetitive k-mers and that a mutation always results in a unique k-mer (we say that
there are no spurious matches). This mutation model captures both a simple model of sequence
evolution (e.g. Jukes-Cantor) and a simple model of errors generated during sequencing, under
the assumptions that k is large enough and the repeat content low enough to make the effect of
spurious matches negligible. It is applied to analyze algorithms and the predictions of the model
often reflect performance on real biological sequences (e.g. [27, 22]).

How does this simple mutation model affect the k-mers of S? This question bears resemblance
but is distinct from questions studied by Lander and Waterman [15] and in alignment-free sequence
comparison [30] (we elaborate on the connection in Section 1.1). Some aspects of this question have
been previously explored (e.g. [19, 26, 34]), but some very basic ones have not. For example, what
is the distribution of the number of mutated k-mers? The expectation of this distribution is known
and trivial to derive, but we do not know its variance. For another example, consider that the
k-mers of S fall into mutated stretches (which, inspired by Lander-Waterman statistics, we call
islands) and non-mutated stretches (which we call oceans). What is the distribution on the number
of these stretches? We do not even know the expected value. We answer these and other questions
in this paper, with most of the results captured in Table 1.

We immediately apply our findings to derive hypothesis tests and confidence intervals for r1
from the number of observed mutated k-mers, the Jaccard similarity, and the Jaccard similarity
under minhash. Previously, none were known, even though point estimates from these had been
frequently used (e.g. Mash). In order to do this, we observe that our random variables are m-
dependent [13], which, roughly speaking, means that the only dependencies involve k-mers nearby
in the sequence. We apply a technique called Stein’s method [25] to approximate these as Normal
variables and thereby obtain hypothesis tests and confidence intervals.

We demonstrate the usefulness of our results using a few select applications: obtaining a con-
fidence interval to supplement the Mash distance point estimate [22], filtering out reads during
alignment by Minimap2 [16], and rating long read alignments to a de Bruijn graph by Jabba [19].
These examples illustrate how the use of the simple mutation model and the techniques from our
paper could have potentially improved several widely used tools. Our technique can also be applied
to new questions as they arise. Our code for computing all the intervals in this paper is freely
available at https://github.com/medvedevgroup/mutation-rate-intervals.
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1.1 Related work

Here we give more background on how our paper relates to other previous work.

Lander-Waterman statistics: There is a natural analogy between the stretches of mutated
k-mers and the intervals covered by random clones in the work of Lander and Waterman [15].
Each error can be viewed as a random clone with fixed length k, and thus the islands in our
study correspond to “covered islands” in theirs. However, their focus was to determine how much
redundancy was necessary to cover all (or most) of a genomic sequence, which would correspond to
how many nucleotide mutations are needed so that most of the k-mers in the sequence are mutated.
In particular, they expect average coverage of the sequence by clones to be greater than 1, while
in our study we expect the corresponding value, ≈ k(1 − (1 − r)k, to be much less than 1. Thus,
the approximations applied in [15] do not hold in our case.

Alignment-free sequence comparison: In alignment-free analysis, two sequences are com-
pared by comparing their respective vectors of k-mer counts [30]. Two such vectors can be com-
pared in numerous ways, e.g. through the the D2 similarity measure, which can be viewed as a
generalization of the number of mutated k-mers we study in this paper. However, in alignment-free
analysis, both the underlying model and the questions studied are somewhat different. In partic-
ular, alignment-free analysis usually works with much smaller values of k, e.g. k < 10 [38]. This
means that most k-mers are present in a sequence, and k-mers will match between and within
sequences even if they are in different locations and not evolutionarily related. Our model and
questions assume that these spurious matches are background noise that can be ignored (which
is justifiable for larger k), while they form a crucial component of alignment-free analysis. As a
result, much of the work in measuring expectation and variance in metrics such as D2 is done with
respect to the distribution of the original sequences, rather than after a mutation process [23, 5].
Even when the mutation processes have been studied, they have typically been very different from
the ones we consider here (e.g. the “common motif model” [23]). Later works [20, 24] did consider
the simple mutation model that we study here, though still with a small k. Sequence similarity has
also been estimated using the average common substring length between two sequences [12]. This
is similar to the distribution of oceans that we study in our paper, but the difference is that oceans
are both left- and right-maximal, while the common substrings considered by [12] and others are
only right-maximal.

2 Preliminaries

Let L > 0 be a positive integer. Let [L] to denote the interval of integers {0, . . . , L − 1}, which
intuitively captures positions along a string. Let k > 0 be a positive integer. The k-span at position
0 ≤ i < L is denoted as Ki and is the range of integers [i, i + k − 1] (inclusive of the endpoints).
Intuitively, a k-span captures the interval of a k-mer. We think of [L + k − 1] as representing an
interval of length L + k − 1 that contains L k-spans. To simplify the statements of the theorems,
we will in some places require that L ≥ k (or similar), i.e. that the interval is of length at least
2k − 1. We believe this covers most practical cases of interest, but, if necessary, the results can be
rederived without this assumption.

We define the simple mutation model as a random process that takes as input two integers k > 0
and L > 0 and a real-valued nucleotide error rate 0 < r1 < 1. For every position in [L + k − 1],
the process mutates it with probability r1. A mutation at position i is said to mutate the k-spans
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Variable Expectation Variance (1− α) interval

Nmut Lq L(1− q)(q(2k + 2
r1
− 1)− 2k) + f(r1, k) Lq ± zα

√
Var(Nmut)

Nisl Lr1(1− q) + f(r1, k) Lr1(1− q)(1− r1(1− q)(2k + 1)) + f(r1, k) E[Nisl]± zα
√

Var(Nisl)

Nocean Lr1(1− q) + f(r1, k) Lr1(1− q)(1− r1(1− q)(2k + 1)) + f(r1, k) E[Nocean]± zα
√

Var(Nocean)

Jaccard — —

(
L−Lq−zα

√
Var(Nmut)

L+Lq+zα
√

Var(Nmut)
,

L−Lq+zα
√

Var(Nmut)

L+Lq−zα
√

Var(Nmut)

)
minhash Jaccard — — see Theorem 6

Cber
L(1−q)(1+r1(k−1))+f(r1,k)

L+k−1
see Theorem 11 E[Cber]± zα

√
Var(Cber)

Table 1: The expectation, variances, and hypothesis tests derived in this paper. We use q as shorthand for 1−(1−r1)k.
We use f(r1, k) as a placeholder for some function of r1 and k that is independent of L; see the theorems for the full
expressions.

Figure 1: An example of the simple mutation process, with L = 36 and k = 5. There are 5 nucleotides that are
mutated (marked with an x). For example, the mutation at position 10 mutates the k-spans K6, . . . ,K10 (marked in
red). Note that an isolated nucleotide mutation (e.g. at position 10) can affect up to k k-spans (e.g. K6, . . . ,K10),
but nearby nucleotide mutations can affect the same k-span (e.g. mutation of nucleotides at positions 23 and 27 both
affect K23.) There are 2 islands (marked in blue) and 3 oceans, and Nmut = 21. For example, K19, . . . ,K34 is an
island, and K35 is an ocean.

Kmax(0,i−k+1), . . . ,Ki. We define Nmut as a random variable which is the number of mutated k-

spans. As shorthand notation, we use q , 1− (1− r1)k to denote the probability that a k-span is
mutated. Figure 1 shows an example.

The simple mutation model formalizes the notion of a string S undergoing mutations where
there are no spurious matches, i.e. there are no duplicate k-mers in S and a mutation always
creates a unique k-mer. This is also closely related to assuming that S is random and k is large
enough so that such spurious matches happen with low probability. The simple mutation model
captures these scenarios by representing S using the interval [L+ k − 1] and a k-mer as a k-span.

We can partition the sequence K0, . . . ,KL−1 into alternating intervals called islands and oceans.
The range i, . . . , j is an island iff all Ki, . . . ,Kj are mutated, and the range is maximal, i.e. Ki−1
and Kj+1 are either not mutated or out of bounds. Similarly, the range is an ocean iff none of
Ki, . . . ,Kj are mutated, and the interval is maximal. We define Nocean as a random variable which
is the number of oceans and Nisl as the number of islands (see Figure 1).

Consider two strings composed of a set of k-mers A and B, respectively, and let s ≤ min |A|, |B|
be a non-negative integer. The Jaccard similarity between A and B is defined as |A∩B||A∪B| . The minhash
sketch CS of a set C is the set of the s smallest elements in C, under a uniformly random permutation
hash function. The minhash Jaccard similarity between A and B is defined as |(A∪B)S∩AS∩BS |

|(A∪B)S | , or,

equivalently, |(A ∪ B)S ∩ AS ∩ BS |/s [2]. In order to transplant this to our model, we define the
sketching simple mutation model as an extension of the simple mutation model, with an additional
non-negative integer parameter s ≤ L. We follow the intuition of [L+ k − 1] representing a string
S with no spurious matches. For every position i, if Ki is non-mutated (respectively, mutated),
we think of Ki as being shared (respectively, distinct) between the strings before and after the
mutation process. Formally, let U be a universe which contains an element sharedi for every non-
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mutated Ki and, for every mutated Ki, contains two elements a-distincti and b-distincti. Let A
be the set of all sharedi and a-distincti, and let B be the set of all sharedi and b-distincti. The
output of the sketching simple mutation model is the minhash Jaccard similarity between A and
B, i.e. Ĵ = |(A ∪B)S ∩AS ∩BS |/s. Note that the Jaccard similarity (without sketches) would, in
our simple mutation model, be the ratio between the number of sharedi and the size of U , which
is L−Nmut

L+Nmut
.

Given a distribution with a parameter of interest p, an approximate (1−α)-confidence interval
is an interval which contains p with limiting probability 1 − α. Closely related, an approximate
hypothesis test with significance level (1 − α) is an interval that contains a random variable with
limiting probability 1 − α. We will drop the word “approximate” in the rest of the paper, for
brevity. We will use the notation X ∈ x±y to mean X ∈ [x−y, x+y]. Given 0 < α < 1, we define
zα = Φ−1(1−α/2), where Φ−1 is the inverse of the cumulative distribution function of the standard
Gaussian distribution. Let H(x, y, z) denote the hypergeometric distribution with population size
x, y success states in population, and z trials. We define Fn(a) = Pr[H(L+n,L−n, s) ≥ a]. Both
Φ−1 and Fn can be easily evaluated in programming languages such as R or python.

3 Number of mutated k-mers: expectation and variance

In this section, we look at the distribution of Nmut, i.e. the number of mutated k-mers. The
approach we take to this kind of analysis, which is standard, is to express Nmut as a sum of
indicator random variables whose pairwise dependence can be derived. Let Xi be the 0/1 random
variable corresponding to whether or not the k-span Ki is mutated; i.e., Xi = 1 iff at least one of
its nucleotides is mutated. Hence, Pr[Xi = 1] = 1− (1− r1)k , q. We can express Nmut =

∑
Xi.

By linearity of expectation, we have

E[Nmut] = E
[∑

Xi

]
= Lq. (1)

The key to the computation of variance is the joint probabilities of two k-mers being mutated.

Lemma 1. Let 0 ≤ i < j < L. Then, Xi and Xj are independent if j− i ≥ k and Pr[Xi = 1, Xj =
1] = 2q − 1 + (1− q)(1− r1)j−i otherwise.

Proof. Set δ = j − i. If δ ≥ k, then Ki and Ki+δ do not overlap and therefore the variables
Xi and Xi+δ are independent. Otherwise, consider three events. E1 is the event that at least
one of the positions i, . . . , i + δ − 1 is mutated. E2 is the event that none of i, . . . , i + δ − 1 is
mutated and one of i + δ, . . . , i + k − 1 is mutated. E3 is the event that none of i, . . . , i + k − 1
is mutated. Notice that the three events form a partition of the event space and so we can write
Pr[Xi = 1, Xj = 1] = Pr[Xi = 1, Xj = 1 | E1]Pr[E1] + Pr[Xi = 1, Xj = 1 | E2]Pr[E2] + Pr[Xi =
1, Xj = 1 | E3]Pr[E3] = Pr[Xj = 1 | E1]Pr[E1] + 1 · Pr[E2] + 0 · Pr[E3] = q(1 − (1 − r1)δ) + (1 −
r1)

δ(1− (1− r1)k−δ) = q − q(1− r1)δ + (1− r1)δ − (1− q) = 2q − 1 + (1− q)(1− r1)δ.

We can now compute the variance using tedious but straightforward algebraic calculations. As
we will show in the following section, knowing the variance allows us to obtain a confidence interval
or do a hypothesis test based on Nmut.

Theorem 2. If L ≥ k, Var(Nmut) = L(1− q)(q(2k+ 2
r1
− 1)− 2k) + k(k− 1)(1− q)2 + 2(1−q)

r21
((1 +

(k − 1)(1− q))r1 − q).
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4 Hypothesis test for M-dependent variables

Our derivations of hypothesis tests and confidence intervals follows the strategy used for the Bi-
nomials, which we now describe so as to provide intuition. In the case of estimating the success
probability p of a Binomial variable X when the number of trials L is known, a confidence interval
for p is called a binomial proportion confidence interval [6]. There are multiple ways to calculate
such an interval, as described and compared in [4], and we will follow the approach of the Wilson
score interval [36]. It works by first approximating the Binomial with a Normal distribution and

then applying a standard score. The result is that Pr
[
|X − Lp| ≤ zα

√
Var(X)

]
= 1− α+ ε(L, p),

where Var(X) = Lp(1 − p) and ε(L, p) is a function such that limL→∞ ε(L, p) = 0; recall that
zα = Φ−1(1−α/2). This can be solved for X to obtain a hypothesis test X ∈ Lp±zα

√
Var(X). This

can be converted into a confidence interval by finding all values of p for which X ∈ Lp±zα
√

Var(X)
holds. In the particular case of the Binomial, a closed form solution is possible [36], but, more gen-
erally, one can also find the solution numerically.

Though random variables like Nmut are not Binomial, they have a specific form of dependence
between the trials, which allows us to apply a similar strategy. A sequence of L random variables
X0, . . . , XL−1 is said to be m-dependent if there exists a bounded m (with respect to L) such that
if j − i > m, then the two sets {X0, . . . , Xi} and {Xj , . . . , XL−1} are independent [13]. In other
words, m-dependence says that the dependence between a sequence of random variables is limited
to be within blocks of length m along the sequence. It is known that the sum of m-dependent
random variables is asymptotically normal [13] and this was previously used to construct heuristic
hypothesis tests and confidence intervals [18]. Even stronger, the rate of convergence of the sum of
m-dependent variables to the Normal distribution is known due to a technique called Stein’s method
(see Theorem 3.5 in [25]). (This technique applies even to the case where m is not bounded, but
that will not be the case in our paper.) Here, we apply Stein’s method to obtain a formally correct
hypothesis test together with a rate of convergence for a sum of m-dependent (not necessarily
identically distributed) Bernoulli variables.

Lemma 3. Let X =
∑L−1

i=0 Xi be a sum of m-dependent Bernoulli random variables, where Xi

has success probability pi. Let µ = 1
L

∑L−1
i=0 pi, 0 < α < 1, and σ2L = Var(X). Then, Pr[X ≥

Lµ+ zασL] = Pr[X ≤ Lµ− zασL] = α/2− ε/2 and

Pr[X ∈ Lµ± zασL] = 1− α+ ε,

where |ε| ≤ 2(2/π)1/4
√

m2

σ3
L

∑L−1
i=0 E[|Xi|3] +

√
28m3/2
√
πσ2

L

√∑L−1
i=0 E[X4

i ].

Proof. Let Y = (X − Lµ)/σL and let Z be a standard normal random variable. From Theorem

3.6 in [25], we have dW(Y, Z) ≤ m2

σ3
L

∑L−1
i=0 E[|Xi|3] +

√
28m3/2
√
πσ2

L

√∑L−1
i=0 E[X4

i ] , dmax, where dW(·, ·)
denotes the Wasserstein metric. Since Z is a standard normal random variable, we have the
following standard inequality between the Kolmogorov and Wasserstein metrics (see, e.g., Section
3 in [25]):

max
a
|Pr[Y ≥ a]− Pr[Z ≥ a]| ≤ (2/π)1/4

√
dW(Y,Z)

≤ (2/π)1/4dmax , εmax.

Recall that for a standard normal variable, Pr[Z ≥ zα] = α/2 and so, by the above, Pr[Y ≥
zα] ∈ α/2± εmax. Similarly, since Pr[Z ≤ −zα] = α/2 we obtain Pr[Y ≤ −zα] ∈ α/2± εmax. From
the definition of Y it then follows that Pr[X ≥ Lµ+ zασL] ∈ α/2± εmax and Pr[X ≤ Lµ− zασL] ∈
α/2± εmax, and therefore implies that Pr[X ∈ Lµ± zασL] ∈ 1− α± 2εmax.

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2021. ; https://doi.org/10.1101/2021.01.15.426881doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426881
http://creativecommons.org/licenses/by/4.0/


As we will see, m-dependence is well-suited for dealing with variables in the simple mutation
model. In most natural cases, the error |ε| → 0 when L → ∞, and Lemma 3 gives a hypothesis
test with significance level 1− α.

5 Hypothesis tests for Nmut and Ĵ and confidence intervals for r1

There is a natural point estimator for r1 using Nmut, defined as r̂1 = 1 − (1 − Nmut/L)1/k. This
estimator is both the method of moments and the maximum likelihood estimator, meaning it has
nice convergence properties as L increases [35]. In this section, we extend it to a confidence interval
and a hypothesis test, both from Nmut and Ĵ (with and without sketching). In the Nmut setting,
Lemma 1 shows that X0, . . . , XL−1 are m-dependent with m = k−1. Hence we can apply Lemma 3
to Nmut =

∑L−1
i=0 Xi.

Corollary 4. Let 0 < α < 1, nlow = Lq− zα
√

Var(Nmut), and nhigh = Lq+ zα
√

Var(Nmut). Then
Pr[Nmut ≥ nhigh] = Pr[Nmut ≤ nlow] = α/2− ε/2 and

Pr[nlow ≤ Nmut ≤ nhigh] = 1− α+ ε,

where |ε| ≤ c/L1/4 and c is a constant that depends only on r1 and k. In particular, when r1 and
k are independent of L, we have limL→∞(1− α+ ε) = 1− α.

Corollary 4 gives the closed-form boundaries for a hypothesis test on Nmut. To compute a
confidence interval for q (equivalently, for r1), we can numerically find the range of q for which the
observed Nmut lies between nlow and nhigh. In other words, the upper bound on the range would
be given by the value of q for which the observed Nmut is nlow and the lower bound by the value of
q for which the observed Nmut is nhigh. These observations are made rigorous in Theorem 5. We
will use the notation N q

mut to denote Nmut with parameter r1 = 1− (1− q)1/k.

Theorem 5. For fixed k, r1, and α, for a given observed value of N q
mut, there exists an L large

enough such that there exists a unique qlow such that N q
mut = Lqlow + zα

√
Var(N qlow

mut ) and a unique

qhigh such that N q
mut = Lqhigh − zα

√
Var(N

qhigh
mut ), and

Pr[q ∈ [qlow, qhigh]] = 1− α+ ε,

where |ε| ≤ c/L1/4 and c is a constant that depends only on r1 and k. In particular, for fixed r1
and k, we have limL→∞(1− α+ ε) = 1− α.

Note that this theorem states that for sufficiently large L, there is a unique solution for the
value of q for which the observed Nmut is nhigh (and similarly a unique solution for the value of q for
which the observed Nmut is nlow). For small L, we have no such guarantee (though we believe the
theorem holds true for all L ≥ k); to deal with this possibility, our software verifies if the solutions
are indeed unique by computing the derivative inside the proof of Theorem 5 and checking if it is
positive. If it is, then the proof guarantees the solutions to be unique; if it is not, our software
reports this. However, during our validations, we did not find such a case to occur.

We want to underscore how the difference between a confidence interval and a hypothesis test
is relevant in our case. A confidence interval is useful when we have two sequences, one of which
having evolved from the other and we would like to estimate their mutation rate from the number
of mutated k-spans. A hypothesis test is useful when we know the mutation rate a priori, e.g. the
error rate of a sequencing machine. In this case, we may want to know whether a read could have
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been generated from a putative genome location, given the number of observed mutated k-spans.
We will see both applications in Section 7.

In some cases, Nmut is not observed but instead we observe another random variable T =
f(Nmut), where f(x) is a monotone function. For example, if f(x) = (L − x)/(L + x), then T is
the Jaccard similarity between the original and the mutated sequence (in our model). In this case,
a hypothesis test with significance level α is to check if T lies between f(nlow) and f(nhigh). In
addition to the Jaccard, [17] describe 14 other variables that are a function of Nmut, L, and k. These
are: Anderberg, Antidice, Dice, Gower, Hamman, Hamming, Kulczynski, Matching, Ochiai, Phi,
Russel, Sneath, Tanimoto and Yule. We can apply our hypothesis test to any of these variables, as
long as they are monotone with respect to Nmut.

We can also use Lemma 3 as a basis for deriving a hypothesis test on Ĵ in the sketching model.
The proof is more involved and interesting in its own right, but is left for the Appendix due to
space constraints.

Theorem 6. Consider the sketching simple mutation model with known parameters s, k, L ≥ k,
r1, and output Ĵ . Let 0 < α < 1 and let m ≥ 2 be an integer. For 0 ≤ i ≤ m, let nil =
Lq − zi/m

√
Var(Nmut) and nih = Lq + zi/m

√
Var(Nmut). Let

jhigh = s−1 min

a ≥ 0 : mα >
∑
i:nil>0

Fdnile
(a) +

∑
i:nih≤L

Fdni−1
h e(a)

 ; and

jlow = s−1 max

a ≤ s : m(2− α) <
∑
i:nil>0

Fbni−1
l c(a) +

∑
i:nih≤L

Fbnihc
(a)

 .

Then, assuming that r1 and k are independent of L, and m = o(L1/4),

lim
L→∞

Pr[jlow ≤ Ĵ ≤ jhigh] = 1− α.

We can compute a confidence interval for q from Ĵ in the same manner as with Corollary 4.
Let jlow(q) and jhigh(q) be defined as in Theorem 6, but explicitly parameterized by the value of q.

Then we numerically find the smallest value 0 < qlow < 1 for which jlow(qlow) = Ĵ and the largest
value 0 < qhigh < 1 for which jhigh(qhigh) = Ĵ . The following theorem guarantees that [qlow, qhigh]
is a confidence interval for q.

Theorem 7. For fixed k, r1, α, m, and a given observed value of Ĵ , there exists an L large enough
such that there exist unique intervals [q−low, q

+
low] and [q−high, q

+
high] such that q+high ≥ q−low, jlow(q̂) = Ĵ

if and only if q̂ ∈ [q−low, q
+
low], and jhigh(q̂) = Ĵ if and only if q̂ ∈ [q−high, q

+
high]. Moreover, assuming

that r1, k and m are independent of L, we have

lim
L→∞

Pr[q ∈ [q−low, q
+
high]] = 1− α.

6 Number of islands and oceans

In this section, we derive the expectation and variance of Nisl and Nocean and the hypothesis test
based on them. For Nisl, we follow the same strategy as for Nmut, namely to express Nisl as a sum
of indicator random variables whose joint probabilities can be derived. Let us define a right border
as a position i such that Ki is mutated and Ki+1 is not. We will denote it by an indicator variable
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Bi, for 0 ≤ i < L− 1. Let us also say that there exists an end-of-string border iff KL−1 is mutated.
We will denote this by an indicator variable Z. A right border is a position where an island ends
and an ocean begins, and the end-of-string border exists if the last island is terminated not by an
ocean but by the end of available nucleotides in the string to make a k-mer. The number of islands
is then the number of borders, i.e. Nisl = Z +

∑L−2
i=0 Bi.

To compute the expectation, observe that Z is a Bernoulli variable with parameter q. For Bi,
observe that the only way that Ki is mutated while Ki+1 is not is if position i is mutated and the
positions i+ 1, . . . , i+ k are not. Therefore, Bi ∼ Bernoulli(r1(1−q)). By linearity of expectation,

E[Nisl] = q + r1(1− q)(L− 1) = Lr1(1− q) + q − r1(1− q). (2)

Next, we derive dependencies between border variables and use them to compute the variance.

Lemma 8. Let 0 ≤ i < j ≤ L− 2. Then Pr[Bi = 1, Bj = 1] = 0 if j ≤ i+ k and Pr[Bi = 1, Bj =
1] = Pr[Bi = 1]Pr[Bj = 1] = r21(1 − q)2 otherwise. Also, Pr[Bi = 1, Z = 1] = Pr[Bi = 1]Pr[Z =
1] = r1q(1− q) if i ≤ L− 2− k, and Pr[Bi = 1, Z = 1] = r1(1− q)(1− (1− r1)L−2−i) otherwise.

Proof. Observe that when j − i > k, the positions that have an effect on Bi (i.e. Ki, . . . ,Ki+k)
and those that have an effect on Bj (i.e. Kj , . . . ,Kj+k) are disjoint. Hence, Bi and Bj are
independent in this case. When 1 ≤ j − i ≤ k, Bi and Bj cannot co-occur. This is because
Bi = 1 implies that position j is not mutated, while Bj = 1 implies that it is. By the same logic,
Z is independent of all Bi for 0 ≤ i ≤ L − 2 − k. For the case when L − 2 − k < i ≤ L − 2,
Bi = 1 implies that positions L − 1, . . . , i + k are not mutated. Therefore, there is an end-of-
string border when Bi = 1 iff one of the positions i + k + 1, . . . , L + k − 2 is mutated. Thus,
Pr[Z = 1, Bi = 1] = Pr[Z = 1 | Bi = 1]Pr[Bi = 1] = (1− (1− r1)L+k−2−(i+k+1)+1)r1(1− q).

Theorem 9. For L ≥ k+3, Var(Nisl) = Lr1(1−q)(1−r1(1−q)(2k+1))+k2r21(1−q)2+k(r1(3r1+
2)(1− q)2) + (1− q)((1− q)r21 − q − r1).

Lemma 8 also shows that Nisl is m-dependent, with m = k− 1, Therefore, a hypothesis test on
Nisl can be obtained as a corollary of Lemma 3.

Corollary 10. Fix r1 and let 0 < α < 1. Then, the probability that Nisl ∈ E[Nisl]± zα
√

Var(Nisl)
is 1− α + ε, where |ε| ≤ c/L1/4 and c is a constant that depends only on r1 and k. In particular,
when r1 and k are independent of L, we have limL→∞(1− α+ ε) = 1− α.

Unlike for Corollary 4, it is not as straightforward to invert this hypothesis test into a confidence
interval for r1, since the endpoints of the interval of Nisl are not monotone in r1. We therefore do not
pursue this direction here. The derivation of the expectation and variance for Nocean is analogous
and left for the Appendix (Theorem 12). Observe that |Nocean − Nisl| ≤ 1, so, as expected, the
expectation and variance are identical to Nisl in the higher order terms. Corollary 10 also holds for
the case that n is the observed number of oceans, if we just replace Nisl with Nocean.

An immediate application of Nocean is to compute a hypothesis test for the coverage by exact
regions (Cber), a variable earlier applied to score read mappings in [19]. Cber is the fraction of
positions in [L+ k − 1] that lie in k-spans that are in oceans. The total number of bases in all the
oceanic k-spans is the number of non-mutated k-spans plus, for each ocean, an extra k−1 “starter”
bases. We can then write

Cber = (L−Nmut + (k − 1)Nocean)/(L+ k − 1).

We can use the expectations and variances ofNmut (eq. (1) and Theorem 2) andNocean (Theorem 12)
to derive the expectation and variance of Cber:
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L = 100 L = 1, 000 L = 10, 000 E.Coli

r1 = 0.001 0.01 0.1 0.2 0.001 0.01 0.1 0.2 0.001 0.01 0.1 0.2 0.001 0.01 0.1 0.2

k = 100 0.91 1.00 NA NA 0.95 0.96 NA NA 0.95 0.95 NA NA 0.95 0.95 NA NA
k = 51 0.91 1.00 1.00 NA 0.94 0.95 0.94 NA 0.95 0.95 0.96 NA 0.95 0.95 0.95 NA
k = 21 0.91 0.96 1.00 1.00 0.93 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.94 0.93 0.94

Table 2: The accuracy of the confidence intervals for r1 predicted by Corollary 4, for α = 0.05 and for various values
of L, r1, and k (the first three groups) and for the E.coli sequence (the fourth group). NA indicates the experiment
was not run; for the first three groups, we only ran on parameters where dE[Nmut]e < L (otherwise they were not of
interest), while for E.coli, we ran with the same range of values of r1 and k as in the first three groups. In each cell,
we report the fraction of 10,000 replicates for which the true r1 falls into the predicted confidence interval. For the
E.coli sequence, we used strain Shigella flexneri Shi06HN159.

Theorem 11. E[Cber] = 1−q
L+k−1 (L(1 + r1(k − 1)) + (1− r1)(k − 1)) and, for L ≥ k + 3,

Var(Cber) = (1−q)(cL+d)
r2(L+k−1) , where

c = 2rq + r2(−3q − 2k + 4kq) + r3(k − 1)(4kq − 3k − 1) + r4(1− q)(k − 1)2(−2k − 1); and

d = −2q + 2r(q + k − kq) + r2(k − 1)(k − q)
+ r3(k − 1)(3k − 4kq + 1) + r4(k − 1)2(1− q)(k2 + 3k + 1).

Then, observing that Cber is a linear combination of m-dependent variables and hence itself
m-dependent, we can apply Lemma 3 and obtain that, when r1 and k are independent of L,
limL→∞ Pr[Cber ∈ E[Cber]± zα

√
Var(Cber)] = 1− α.

7 Empirical results and applications

In this section, we evaluate the accuracy of our results and demonstrate several applications. A
sanity check validation of the correctness of our formulas for E[Nmut] and Var[Nmut] is shown in
Table S1, however, most of the expectation and variance formulas are evaluated indirectly through
the accuracy of the corresponding confidence intervals. We focus the evaluation on accuracy rather
than run time, since calculating the confidence interval took no more than a few seconds for most
cases (the only exception was for sketch sizes of 100k or more, the evaluation took on the order of
minutes). Memory use was negligible in all cases.

7.1 Confidence intervals based on Nmut

In this section, we evaluate the accuracy of the confidence intervals (CIs) produced by Corollary 4
(other CIs will be evaluated indirectly through applications). We first simulate the simple mutation
model to measure the accuracy, shown in the left three groups (i.e. L = 100, 1000, 10000) of Table 2,
for α = 0.05. We observe that the predicted CIs are very accurate at L = 1000, and also accurate
for smaller k and r1 when L = 100. Similar results hold for α = 0.01 (Table S2) and α = 0.10
(Table S3). The remainder of the cases had a CI that was too conservative; these are also the
cases with some of the smallest variances (Table S1) and we suspect that, similar to the case of
the Binomial, the Normal approximation of m-dependent variables deteriorates with very small
variances. However, further investigation is needed.

Next, we investigate how well our predictions hold up when we simulate mutations along a
real genome, where we can only observe the set of k-mers without their positions in the genome
(as in alignment-free sequence comparison). We start with the E.coli genome sequence and, with
probability r1, for every position, flip the nucleotide to one of three other nucleotides, chosen with
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Sketch size r1 = .05, q = .659 r1 = .15, q = .967 r1 = .25, q = .998

accuracy low high accuracy low high accuracy low high

100 0.97 0.037 0.069 1.00 0.103 0.303 1.00 0.119 1.000
1,000 0.96 0.046 0.055 0.97 0.133 0.174 1.00 0.193 0.375

10,000 0.95 0.049 0.051 0.96 0.144 0.156 0.96 0.232 0.277
100,000 0.95 0.049 0.051 0.95 0.148 0.152 0.96 0.243 0.257

1,000,000 0.94 0.050 0.050 0.95 0.149 0.151 0.96 0.247 0.253

Table 3: The confidence intervals predicted by Theorem 6 and their accuracy. For each sketch size and r1 value,
we show the number of trials for which the true r1 falls within the predicted confidence interval. The reported CI
corresponds to applying Theorem 6 with Ĵ = 1−q

1+q
. Here, α = 0.05, k = 21, L = 4, 500, 000, and the sketch size s and

r1 are varied as shown. The number of trials for each cell is 1,000, and m = 100 for Theorem 6.

equal probability. Let A and B be the set of distinct k-mers in E.coli before and after the mutation
process, respectively. We let L = (|A| + |B|)/2 and n = L − |A ∩ B|. We then calculate the 95%
CI for r1 under the simple mutation model (Corollary 4) by plugging in n for Nmut. The rightmost
group in Table 2 shows the accuracy of these CIs. We see that the simple mutation model we
consider in this paper is a good approximation to mutations along a real genome like E.coli.

7.2 Mash distance

The Mash distance [22] (and its follow-up modifications [21, 27]) first measures the minhash Jaccard
similarity j between two sequences and then uses a formula to give a point estimate for r1 under the
assumptions of the sketching simple mutation model. While a hypothesis test was described in [22],
it was only for the null model where the two sequences were unrelated. Theorem 6 allows us instead
to give a CI for r1, based on the minhash Jaccard similarity, in the sketching simple mutation model.
Table 3 reproduces a subset of Table 1 from [22], but using CIs given by Theorem 6. For most cases,
the predicted CIs are highly accurate, with an error of at most two percentage points. The three
exceptions happen when s is small and q is large; in such cases, the predicted CI is too conservative
(i.e. too large). In Table S4, we also tested the accuracy with a real E.coli genome by letting A
and B be the set of distinct k-mers in the genome before and after mutations, respectively, letting
L = (|A|+ |B|)/2 and Ĵ = ((|A∪B|)∩As∩Bs)/s, and applying Theorem 6 with those values. The
accuracy is very similar to that in the simple mutation model, demonstrating that for a genome
like E.Coli, the simple mutation model is a good approximation.

7.3 Filtering out reads during alignment to a reference

Minimap2 is a widely used long read aligner [16]. The algorithm first picks certain k-mers in a
read as seeds. Then, it identifies a region of the read and a region of the reference that potentially
generated it (called a chain in [16]). Let n be the number of seeds in the read and let m ≤ n
be the number of those that exist in the reference region. Minimap2 models the error rate of the
k-mers as a homogenous Poisson process and estimates the sequence divergence between the read
and the reference as ε̂ = 1

k log n
m (which is the maximum likelihood estimator in that model). If ε̂ is

above a threshold, the alignment is abandoned. [16] observes that due to invalid assumptions, ε̂ is
only approximate and can be biased, but nevertheless maintains a good correlation with the true
divergence.

Using our paper, we can obtain a more accurate estimate of r1. The situation is very similar
to estimating r1 from Nmut, except that only a subset of k-spans are being “tracked.” Therefore,
the maximum likelihood estimator for q is m/n and for r1 is r̂1 = 1− (m/n)1/k. Figures 2 and S3
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Figure 2: Estimates of sequence divergence as done
by mimimap2 (ε̂) and by us (r̂1). Reads are sim-
ulated from a random 10kbp sequence introducing
mutations at the given r1 rate. For each r1 value,
100 reads are used. As in [16], we use k = 15 and,
using a random hash function, identify as seeds the
k-mer minimizers, one for every window of 25 k-mers.
In the case when ε̂ is undefined, we set ε̂ = 1.

Figure 3: Box and whisker plot of Cber scores
for 5,000 replicates of random strings of length
10,000nt, with mutations introduced at a rate of
r1 = 0.1. The solid black line corresponds to the
empirical median of Cber, while the dashed top line
corresponds to E[Cber] + z0.05

√
Var(Cber) and the

bottom dot-dashed line corresponds to E[Cber] −
z0.05

√
Var(Cber), both computed from Theorem 11.

show the relative performance of the two estimators (ε̂ and r̂1) for sequences of different lengths,
with our r̂1 much closer to the simulated rate than ε̂ in both cases.

7.4 Evaluating an alignment of a long read to a graph

Jabba [19] is an error-correction algorithm for long read data. At one stage, the algorithm evaluates
whether a read is likely to have originated from a given location in the reference. Because Jabba’s
reference is a de Bruijn graph and not a string, it uses the specialized Cber score for the evaluation.
In this scenario, the mutation process corresponds to sequencing errors at a known error rate r1
and the question is whether the read is likely to have arisen through this process from the given
location of the reference. The authors assume the simple mutation model and derive the expected
Cber score as 1− r1 −

∑k−1
i=0 i(1− r1)ir21. They then give a lower rating to reads with a Cber score

that has “significant deviation” from this expected value. It is not clear how much of a deviation
is deemed to be significant or how it was calculated.

Theorem 11, which gives E[Cber] and Var[Cber], would have allowed [19] to take a more rigorous
approach. It shows that the Cber expectation computed by [19] is correct only in the limit as L→∞,
while our formula is exact and closed-form. More substantially, we can make the determination
of “significant deviation” more rigorous. We regenerated Figure 2 from [19], using the same range
of values for k (called m in [19]) and an error rate of r1 = 10% as in [19] and plotted the 95%
confidence interval: E[Cber] ± z.05

√
Var(Cber). Figure 3 demonstrates that this range would have

done a good job at capturing most of the generated reads. Table 4 gives the number of Cber values
that fall inside of the 95% confidence interval when using a simple mutation process with the same
r1 = 10% for sequences of length 10,000 for 5,000 replicates, with k ranging from 5 to 50 in steps
of 5, depicting good agreement between simulation and theorem 11.
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k-mer size 5 10 15 20 25 30 35 40 45 50
% inside CI 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.95 0.93

Table 4: A total of 5,000 sequences, each of length 10,000nt underwent a simple mutation process with mutation
probability r1 = 0.1. The percent of associated Cber scores that fell inside of the 95% confidence interval as determined
by Theorem 11 are shown.

8 Conclusion

The simple mutation model has been used broadly to model either biological mutations or sequenc-
ing errors. However, its use has usually been limited to derive the expectations of random variables,
e.g. the expected number of mutated k-mers. In this paper, we take this a step further and show
that the dependencies between indicator variables in this model (e.g. whether a k-mer at a given
position is mutated) are often easy to derive and are limited to nearby locations. This limited
dependency allows us to show that the sum of these indicators is approximately Normal. As a
result, we are able to obtain hypothesis tests and confidence tests in this model.

The most immediate application of our paper is likely to compute a confidence interval for
average nucleotide identity from the minhash sketching Jaccard. Previously, only a point estimate
was available, using Mash. However, we hope that our technique can be applied by others to
random variables that we did not consider. All that is needed is to derive the joint probability of
the indicator variables and compute the variance. Computing the variance by hand is tedious and
error-prone but can be done with the aid of a software like Mathematica.

We test the robustness of the simple mutation model in the presence of spurious matches by
using a real E.coli sequence. However, we do not explore the robustness with respect to violations
such as the presence of indels (which result in different string lengths) or the presence of more
repeats than in E.coli. This type of robustness has already been explored in other papers that
use the simple mutation model [8, 22, 27]. However, exploring the robustness of our confidence
intervals in downstream applications is important future work.

On a more technical note, it would be interesting to derive more tight error bounds for our
confidence intervals, both in terms of more tightly capturing the dependencies on L, r1, and k, and
accurately tracking constants. The error bound ε that is stated in Lemma 3 is likely not tight in
either respect, due to the inherent loss when transferring between the Wasserstein and Kolmogorov
metrics and due to loose inequalities within the proof of Theorem 3.5 in [25]. Ideally, tight error
bounds would give the user a way to know, without simulations, when the confidence intervals
are accurate, in the same way that we know that the Wilson score interval for a Binomial will be
inaccurate when np(1 − p) is low. For example, it would be useful to better theoretically explain
and predict which values in Table 2 deviate from 0.95.

Another practical issue is with the implementation of the algorithm to compute a confidence
interval for q from Ĵ . Theorem 7 guarantees that the algorithm is correct as L goes to infinity.
However, the user of the algorithm will not know if L is large enough for the confidence interval
to be correct. There are several heuristic ways to check this, which we have implemented in the
software: a short simulation to check the true coverage of the reported confidence interval, a check
that the sets in the definitions of jhigh and jlow are not empty, and a check that jhigh and jlow are
monotonic with respect to q in the range 0 < q < 1.
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[24] Sophie Röhling, Alexander Linne, Jendrik Schellhorn, Morteza Hosseini, Thomas Dencker,
and Burkhard Morgenstern. The number of k-mer matches between two dna sequences as a
function of k and applications to estimate phylogenetic distances. Plos one, 15(2):e0228070,
2020.

[25] Nathan Ross. Fundamentals of Stein’s method. Probability Surveys, 8:210–293, 2011.

[26] Leena Salmela, Riku Walve, Eric Rivals, and Esko Ukkonen. Accurate self-correction of errors
in long reads using de Bruijn graphs. Bioinformatics, 33(6):799–806, 2017.

[27] Shahab Sarmashghi, Kristine Bohmann, M Thomas P Gilbert, Vineet Bafna, and Siavash
Mirarab. Skmer: assembly-free and alignment-free sample identification using genome skims.
Genome biology, 20(1):1–20, 2019.

[28] Oliver Schwengers, Torsten Hain, Trinad Chakraborty, and Alexander Goesmann. Reference-
seeker: rapid determination of appropriate reference genomes. BioRxiv, page 863621, 2019.

[29] B. Solomon and C. Kingsford. Fast search of thousands of short-read sequencing experiments.
Nature biotechnology, 34(3):300–302, 2016.

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2021. ; https://doi.org/10.1101/2021.01.15.426881doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426881
http://creativecommons.org/licenses/by/4.0/


[30] Kai Song, Jie Ren, Gesine Reinert, Minghua Deng, Michael S Waterman, and Fengzhu Sun.
New developments of alignment-free sequence comparison: measures, statistics and next-
generation sequencing. Briefings in bioinformatics, 15(3):343–353, 2014.

[31] Daniel S Standage, C Titus Brown, and Fereydoun Hormozdiari. Kevlar: a mapping-free
framework for accurate discovery of de novo variants. bioRxiv, page 549154, 2019.

[32] Chen Sun and Paul Medvedev. Toward fast and accurate snp genotyping from whole genome
sequencing data for bedside diagnostics. Bioinformatics, 35(3):415–420, 2018.

[33] Tao Tang, Yuansheng Liu, Buzhong Zhang, Benyue Su, and Jinyan Li. Sketch distance-based
clustering of chromosomes for large genome database compression. BMC genomics, 20(10):1–9,
2019.

[34] Anqi Wang and Kin Fai Au. Performance difference of graph-based and alignment-based
hybrid error correction methods for error-prone long reads. Genome biology, 21(1):14, 2020.

[35] Larry Wasserman. All of statistics: a concise course in statistical inference. Springer Science
& Business Media, 2013.

[36] Edwin B Wilson. Probable inference, the law of succession, and statistical inference. Journal
of the American Statistical Association, 22(158):209–212, 1927.

[37] Derrick E Wood and Steven L Salzberg. Kraken: ultrafast metagenomic sequence classification
using exact alignments. Genome biology, 15(3):R46, 2014.

[38] Tiee-Jian Wu, Ying-Hsueh Huang, and Lung-An Li. Optimal word sizes for dissimilarity
measures and estimation of the degree of dissimilarity between dna sequences. Bioinformatics,
21(22):4125–4132, 2005.

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2021. ; https://doi.org/10.1101/2021.01.15.426881doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426881
http://creativecommons.org/licenses/by/4.0/


A Appendix

A.1 Missing theorems and proofs

Theorem 2. If L ≥ k, Var(Nmut) = L(1− q)(q(2k+ 2
r1
− 1)− 2k) + k(k− 1)(1− q)2 + 2(1−q)

r21
((1 +

(k − 1)(1− q))r1 − q).

Proof. In the following we will use Lemma 1 and the equality
∑n

i=0 ix
i = x−(n+1)xn+1+nxn+2

(1−x)2 for

x 6= 1 from [9].

Var[Nmut] = E[Nmut
2]− E[Nmut]

2

=
L−1∑
i=0

L−1∑
j=0

E[XiXj ]− L2q2

=
L−1∑
i=0

E[XiXi] + 2
k−1∑
δ=1

L−1−δ∑
i=0

E[XiXi+δ] + 2
L−1∑
δ=k

L−1−δ∑
i=0

E[XiXi+δ]− L2q2

=

L−1∑
i=0

q + 2

k−1∑
δ=1

L−1−δ∑
i=0

2q − 1 + (1− q)(1− r)δ + 2

L−1∑
δ=k

L−1−δ∑
i=0

q2 − L2q2

= Lq + 2

k−1∑
δ=1

(L− δ)(2q − 1 + (1− q)(1− r)δ) + 2
(L+ 1− k)(L− k)

2
q2 − L2q2

= Lq + ((L+ 1− k)(L− k)− L2)q2

+ 2
k−1∑
δ=1

(L− δ)(2q − 1 + (1− q)(1− r)δ)

= Lq + ((L+ 1− k)(L− k)− L2)q2

+ 2

k−1∑
δ=1

(L− δ)(2q − 1)

+ 2

k−1∑
δ=1

(L− δ)(1− r)δ

− 2

k−1∑
δ=1

(L− δ)q(1− r)δ

= Lq + ((L+ 1− k)(L− k)− L2)q2

+ 2

k−1∑
δ=1

L(2q − 1)− 2

k−1∑
δ=1

δ(2q − 1)

+ 2

k−1∑
δ=1

L(1− r)δ − 2

k−1∑
δ=1

δ(1− r)δ

− 2

k−1∑
δ=1

Lq(1− r)δ + 2

k−1∑
δ=1

δq(1− r)δ
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= Lq + ((L+ 1− k)(L− k)− L2)q2

+ 2(k − 1)L(2q − 1)− 2(2q − 1)
k−1∑
δ=1

δ

+ 2L
k−1∑
δ=1

(1− r)δ − 2
k−1∑
δ=1

δ(1− r)δ

− 2Lq
k−1∑
δ=1

(1− r)δ + 2q
k−1∑
δ=1

δ(1− r)δ

= Lq + ((L+ 1− k)(L− k)− L2)q2 + 2(k − 1)L(2q − 1)

− 2(2q − 1)

k−1∑
δ=1

δ

+ (2L− 2Lq)
k−1∑
δ=1

(1− r)δ

+ (2q − 2)
k−1∑
δ=1

δ(1− r)δ

= Lq + ((L+ 1− k)(L− k)− L2)q2 + 2(k − 1)L(2q − 1)

− 2(2q − 1)
k(k − 1)

2

+ (2L− 2Lq)
q − r
r

+ (2q − 2)
1− r − (1 + (k − 1)r)(1− q)

r2

= Lq + ((L+ 1− k)(L− k)− L2)q2 + 2(k − 1)L(2q − 1)

− (2q − 1)k(k − 1)

+
2L(1− q)q

r
− 2L(1− q)

+
(2q − 2)(1− r − (1 + (k − 1)r)(1− q))

r2

= k(k − 1)(1− q)2 − L(2k(1− q) + q)(1− q)

+
2L(1− q)q

r
+

(2q − 2)(1− r − (1 + (k − 1)r)(1− q))
r2

=
2L(1− q)q

r
− L(2k(1− q) + q)(1− q)

+ k(k − 1)(1− q)2 +
(2q − 2)(1− r − (1 + (k − 1)r)(1− q))

r2

= L(1− q)(q(2k +
2

r
− 1)− 2k)

+ k(k − 1)(1− q)2 +
2(1− q)
r2

((1 + (k − 1)(1− q))r − q).
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Theorem 5. For fixed k, r1, and α, for a given observed value of N q
mut, there exists an L large

enough such that there exists a unique qlow such that N q
mut = Lqlow + zα

√
Var(N qlow

mut ) and a unique

qhigh such that N q
mut = Lqhigh − zα

√
Var(N

qhigh
mut ), and

Pr[q ∈ [qlow, qhigh]] = 1− α+ ε,

where |ε| ≤ c/L1/4 and c is a constant that depends only on r1 and k. In particular, for fixed r1
and k, we have limL→∞(1− α+ ε) = 1− α.

Proof. Given the result in corollary 4, we need only show that qlow and qhigh are well-defined. As

such, it is sufficient to show that Lq+zα
√

Var(N q
mut) and Lq−zα

√
Var(N q

mut) are strictly monotonic
in q for sufficiently large L. Equivalently, since q = 1− (1− r1)k, these must be strictly monotonic
in r1 which we consider here. For simplicity, we will write r instead of r1 and Nmut instead of N q

mut.
Focusing then on L(1− (1− r)k) + zα

√
Var(Nmut), consider

∂

∂r

(
L(1− (1− r)k) + zα

√
Var(Nmut)

)
(3)

= Lk(1− r)k−1 + zα

(
(1− q)

(
4q + r

(
L
(
kr2 − 2(k − 1)r − 2

)
+ 2k + 2r − 2kr − 6 + 2(1− q)

·
(
L
(

2k2r2 + kr(2− r)− r + 1
)
− k3r2 + k2

(
r2 − 2r

)
− 3k(1− r)− r + 3

))))
·
(

2r2(1− r)
(

(1− q)2
(
L
(
r2 − 2r − 2kr2

)
+ k2r2 + kr(2− r) + 2(1− r)

)
+ (1− q)(Lr(2− r)− 2(1− r))

)1/2)−1
,

After a (tedious) series expansion of the right side of the equality in eq. (3) about L = ∞, we

find that ∂
∂r

(
L(1− (1− r)k) + zα

√
Var(Nmut)

)
= kL(1 − r)k−1 + o(L). As such, L(1 − (1 −

r)k) + zα
√

Var(Nmut) is increasing as a function of r as L → ∞. The case of showing that
L(1− (1− r1)k)− zα

√
Var(Nmut) is also increasing proceeds in an entirely analogous fashion.

Theorem 6. Consider the sketching simple mutation model with known parameters s, k, L ≥ k,
r1, and output Ĵ . Let 0 < α < 1 and let m ≥ 2 be an integer. For 0 ≤ i ≤ m, let nil =
Lq − zi/m

√
Var(Nmut) and nih = Lq + zi/m

√
Var(Nmut). Let

jhigh = s−1 min

a ≥ 0 : mα >
∑
i:nil>0

Fdnile
(a) +

∑
i:nih≤L

Fdni−1
h e(a)

 ; and

jlow = s−1 max

a ≤ s : m(2− α) <
∑
i:nil>0

Fbni−1
l c(a) +

∑
i:nih≤L

Fbnihc
(a)

 .

Then, assuming that r1 and k are independent of L, and m = o(L1/4),

lim
L→∞

Pr[jlow ≤ Ĵ ≤ jhigh] = 1− α.

Proof. Recall the definition of A and B from the definition of the minhash Jaccard estimator. First,
we argue that an element of (A ∪ B)S is in AS ∩ BS iff it corresponds to a non-mutated k-span
(i.e. iff x = sharedi for some i). Consider an element x ∈ (A∪B)S . If x corresponds to a mutated
k-span (i.e. x = a-distincti or x = b-distincti for some i), then x 6∈ A ∩ B and so x 6∈ AS ∩ BS .
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If x does not correspond to a mutated k-span (i.e. x = sharedi for some i), then x ∈ A ∩ B and
x ∈ AS ∩BS as well.

Next, let J ′ be the random variable corresponding to |(A ∪ B)S ∩ AS ∩ BS |. The minhash
Jaccard estimator can then be expressed as Ĵ = J ′/s. Note that J ′ contains randomness due to
both the mutation process and to the choice of the minhash permutation. For ease of notation we
set N = Nmut. We claim that the distribution of J ′, conditioned on N = n, is hypergeometric
H(L + n,L − n, s). To see this, recall from the discussion in the previous paragraphs that an
element of (A∪B)S is in AS ∩BS only when it corresponds to a non-mutated k-span, and, on the
event that N = n, there are exactly L− n non-mutated k-spans and a total of L+ n k-spans to be
hashed. We assume the hash values are assigned with a random permutation. Equivalently, we can
generate the hash values by repeatedly assigning the smallest available hash value to an element
chosen uniformly at random among those that have not been hashed yet. Then, from the first s
elements, the probability that exactly a of those are selected from the set of the L−n non-mutated
k-spans is:

Pr[J ′ = a | N = n] =

(
L−n
a

)(
2n
s−a
)(

L+n
s

) ,

which corresponds to the hypergeometric H(L+ n;L− n, s) probability function.
Our goal is to deduce a confidence interval for Ĵ , or equivalently for J ′. This can be easily done

if we could compute:

B(a) , Pr[J ′ ≥ a] =
L∑
n=0

Fn(a)Pr[N = n].

However, since we do not have an expression for Pr[N = n], we will instead obtain an upper
and lower bound on B(a) using Lemma 3. For 1 ≤ i ≤ m, let pil = Pr[N ∈ [ni−1l , nil)] and let
pih = Pr[N ∈ [nih, n

i−1
h )]. Note that pil = 0 if nil ≤ 0 and pih if nih > L. Using the law of total

probability, we can write

B(a) =

L∑
n=0

m∑
i=1

(
Fn(a)pilPr[N = n | N ∈ [ni−1l , nil)] + Fn(a)pihPr[N = n | N ∈ [nih, n

i−1
h )]

)
=

m∑
i=1

L∑
n=0

(
Fn(a)pilPr[N = n | N ∈ [ni−1l , nil)] + Fn(a)pihPr[N = n | N ∈ [nih, n

i−1
h )]

)
=

m∑
i=1

pil

L∑
n=0

Fn(a)Pr[N = n | N ∈ [ni−1l , nil)] +

m∑
i=1

pih

L∑
n=0

Fn(a)Pr[N = n | N ∈ [nih, n
i−1
h )]

Observe that Fn(a) is a non-increasing function with respect to n; this is because increasing n in
H(L+n;L−n, s) has the overall effect of reducing the probability of success, since the population
size is increased and the number of successes is decreased. Using this, we can find upper and lower
bounds for B(a) as follows.

B(a) ≤
∑
i:nil>0

pilFbni−1
l c(a)

L∑
n=0

Pr[N = n | N ∈ [ni−1l , nil)]+

∑
i:nih≤L

pihFbnihc
(a)

L∑
n=0

Pr[N = n | N ∈ [nih, n
i−1
h )]
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≤
∑
i:nil>0

pilFbni−1
l c(a) +

∑
i:nih≤L

pi−1h Fbnihc
(a).

Similarly, we obtain B(a) ≥
∑

i:nil>0

pilFdnile
(a) +

∑
i:nih≤L

pihFdni−1
h e(a).

We now approximate pih and pil as follows. Observe that when pih > 0, we have pih = Pr[N ∈
[nih, n

i−1
h )] = Pr[N ≥ nih] − Pr[N ≥ ni−1h ]. By Corollary 4, Pr[N ≥ nih] = i/(2m) − ε1/2 and

Pr[N ≥ ni−1h ] = (i − 1)/(2m) − ε2/2; hence, pih = 1/(2m) − (ε1 − ε2)/2. Here, ε1 and ε2 are
constants whose absolute value is bounded by εmax = c/L1/4, with c > 0 a constant that depends
only on q and k. Hence, pih ∈ 1/(2m)± εmax. Analogously, we have pil ∈ 1/(2m)± εmax.

This allows us to further simplify the bounds for B(a):

B(a) ≤
∑
i:nil>0

pilFbni−1
l c(a) +

∑
i:nih≤L

pi−1h Fbnihc
(a)

≤
(

1

2m
+ εmax

) ∑
i:nil>0

Fbni−1
l c(a) +

∑
i:nih≤L

Fbnihc
(a)

 , Bh(a),

and

B(a) ≥
m∑
i=1

(
pilFdnile

(a) + pi−1h Fdni−1
h e(a)

)

≥
(

1

2m
− εmax

) ∑
i:nil>0

Fdnile
(a) +

∑
i:nih≤L

Fdni−1
h e(a)

 , Bl(a).

Let amax = min{a ≥ 0 : α/2 > Bl(a)} and amin = max{a ≤ s : α/2 > 1 − Bh(a)}. Then,
Pr[J ′ ∈ [amin, amax]] = 1− α and so Pr[Ĵ ∈ [amin/s, amax/s]] = 1− α. The theorem then follows by
observing that when r1, k are independent of L and m = o(L1/4), we have limL→∞ εmaxm = 0 and
so amin/s→ jlow, and amax/s→ jhigh.

Theorem 7. For fixed k, r1, α, m, and a given observed value of Ĵ , there exists an L large enough
such that there exist unique intervals [q−low, q

+
low] and [q−high, q

+
high] such that q+high ≥ q−low, jlow(q̂) = Ĵ

if and only if q̂ ∈ [q−low, q
+
low], and jhigh(q̂) = Ĵ if and only if q̂ ∈ [q−high, q

+
high]. Moreover, assuming

that r1, k and m are independent of L, we have

lim
L→∞

Pr[q ∈ [q−low, q
+
high]] = 1− α.

Proof. Recall from Theorem 6 that nil = Lq − zi/m
√

Var(Nmut) and nih = Lq + zi/m
√

Var(Nmut).
First, observe from Theorem 2 that Var(Nmut) = cL+ o(L), where c is a constant depending only
on k and r1. Consequently,

√
Var(Nmut) = o(L) and so, for fixed k, r1, α, and m, there exists an

L sufficiently large such that, for all i = 0, . . . ,m, nih ∈ [0, L] and nil ∈ [0, L]. Therefore, for all
values of q, there exists an L sufficiently large such that the summations in the definition of jlow
and jhigh are over 0 ≤ i ≤ m. Second, in the proof of Theorem 5 we established that nil and nih
are increasing with q provided L is sufficiently large. Therefore, the parameters in the subscripts
of the F terms of jlow and jhigh are also increasing with q, when L is sufficiently large. Third,
observe that Fn(a) is a non-increasing function of n and of a. The fact that it is a non-increasing
function of n we already observed in the proof of Theorem 6. The fact that it is a non-increasing
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Figure S1: Illustration of the joint probabilities of Xi and Xj , i.e. the terms of the sum in the derivation of Var(Nisl)
in Theorem 9. In this example, L = 20 and k = 5.

function of a follows trivially from its definition. Combining these three observations, we deduce
that jlow are jhigh non-increasing functions of q. Therefore, they take on a certain value (i.e. Ĵ) for
a unique range of the domain, implying the first assertion of the theorem. The second assertion of
the theorem then follows from Theorem 6.

Theorem 9. For L ≥ k+3, Var(Nisl) = Lr1(1−q)(1−r1(1−q)(2k+1))+k2r21(1−q)2+k(r1(3r1+
2)(1− q)2) + (1− q)((1− q)r21 − q − r1).

Proof. For convenience, we will define a random variable Xi for 0 ≤ i ≤ L− 1 and let Xi = Bi for
i < L − 1 and XL−1 = Z. Also, for notational simplicity, write r for r1. Figure S1 visualizes the
joint probabilities of all Xi’s, as given in Lemma 8. Using the figure as a guide, we proceed with
the derivation.

Var[Nisland] = E[N2
island]− E[Nisland]2

=

L−1∑
i=0

L−1∑
j=0

E[XiXj ]− (r(1− q)(L− 1) + q)2

=
L−2∑
i=0

E[Xi]

+ E[XL−1]

+ 2

L−3−k∑
i=0

L−2∑
j=i+k+1

E[XiXj ]

+ 2

L−2−k∑
i=0

E[XiXL−1]
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+ 2

L−2∑
i=L−1−k

E[XiXL−1]

− (r(1− q)(L− 1) + q)2

=

L−2∑
i=0

r(1− q)

+ q

+ 2
L−3−k∑
i=0

L−2∑
j=i+k+1

r2(1− q)2

+ 2
L−2−k∑
i=0

rq(1− q)

+ 2

L−2∑
i=L−1−k

r(1− q)(1− (1− r)L−2−i)

− (r(1− q)(L− 1) + q)2

=
L−2∑
i=0

r(1− q)

+ q

+ 2

L−3−k∑
i=0

L−2∑
j=i+k+1

r2(1− q)2

+ 2
L−2−k∑
i=0

rq(1− q)

+ 2

k−1∑
i=0

r(1− q)(1− (1− r)i)

− (r(1− q)(L− 1) + q)2

=

L−2∑
i=0

r(1− q)

+ q

+ 2
L−3−k∑
i=0

L−2∑
j=i+k+1

r2(1− q)2

+ 2
L−2−k∑
i=0

rq(1− q)

+ 2
k−1∑
i=0

r(1− q)− 2
k−1∑
i=0

r(1− q)(1− r)i

− (r(1− q)(L− 1) + q)2

= (L− 1)r(1− q)
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+ q

+ 2
(L− k − 1)(L− k − 2)

2
r2(1− q)2

+ 2(L− 1− k)rq(1− q)

+ 2kr(1− q)− 2r(1− q)1− (1− r)k

1− (1− r)
− (r2(1− q)2(L− 1)2 + 2rq(1− q)(L− 1) + q2)

= (L− 1)r(1− q)
+ q

+ (L− k − 1)(L− k − 2)r2(1− q)2

+ 2(L− 1− k)rq(1− q)
+ 2kr(1− q)− 2q(1− q)
− r2(1− q)2(L− 1)2 − 2rq(1− q)(L− 1)− q2

= (L− 1)r(1− q)
+ q

+ (L2 − (2k + 3)L+ k2 + 3k + 2)r2(1− q)2

+ 2(L− 1− k)rq(1− q)
+ 2kr(1− q)− 2q(1− q)
− (L2 − 2L+ 1)r2(1− q)2 − 2rq(1− q)(L− 1)− q2

= Lr(1− q)− r(1− q)
+ q

+ L2r2(1− q)2 − (2k + 3)Lr2(1− q)2 + k2r2(1− q)2 + 3kr2(1− q)2 + 2r2(1− q)2

+ 2Lrq(1− q)− 2rq(1− q)− 2krq(1− q)
+ 2kr(1− q)− 2q(1− q)
− L2r2(1− q)2 + 2Lr2(1− q)2 − r2(1− q)2 − 2Lrq(1− q) + 2rq(1− q)− q2

= L2(r2(1− q)2 − r2(1− q)2)
+ L(r(1− q)− (2k + 3)r2(1− q)2 + 2rq(1− q)− 2rq(1− q) + 2r2(1− q)2)
+ k2r2(1− q)2

+ k(3r2(1− q)2 − 2rq(1− q) + 2r(1− q))
+ (2− 1)r2(1− q)2

+ (2− 2)rq(1− q)
− 2q(1− q)
− r(1− q)
− q2

+ q

= Lr(1− q)(1− (2k + 1)r(1− q))
+ k2r2(1− q)2

+ kr(3r + 2)(1− q)2
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Figure S2: Illustration of the joint probabilities of Xi, Bj , and Z′, i.e. the terms of the sum in the derivation of
Cov (Nocean, Nmut) in Theorem 11. In this example, L = 20 and k = 5.

+ (1− q)((1− q)r2 − q − r).

Theorem 12. E[Nocean] = Lr1(1− q) + (1− q)(1− r1) and, for L ≥ k + 3,

Var(Nocean) = L(1− q)(r1 − r21(1− q)2(2k + 1)) + k2r21(1− q)2

− k(1− q)2(r1(2 + r1(2Lq − 3))) + (1− q)(q − r1 − r21(1− q)(Lq − 1)).

Proof. Let us define Z ′ as an indicator for the event that the first k-span (K0) is not mutated.
Hence E[Z ′] = (1 − r1)

k = (1 − q). Observe that every ocean begins either the start of the
interval or a right border. Therefore, the the number of oceans is Nocean = Z ′ +

∑L−2
i=0 Bi. Thus

E[Nocean] = (1−q)+(L−1)r1(1−q) = (1−r1)(1−q)+Lr1(1−q). For the variance, the derivation
is equivalent to replacing Z with Z ′ in the derivation of Theorem 9 and we therefore omit the proof
here.

Theorem 11. E[Cber] = 1−q
L+k−1 (L(1 + r1(k − 1)) + (1− r1)(k − 1)) and, for L ≥ k + 3,

Var(Cber) = (1−q)(cL+d)
r2(L+k−1) , where

c = 2rq + r2(−3q − 2k + 4kq) + r3(k − 1)(4kq − 3k − 1) + r4(1− q)(k − 1)2(−2k − 1); and

d = −2q + 2r(q + k − kq) + r2(k − 1)(k − q)
+ r3(k − 1)(3k − 4kq + 1) + r4(k − 1)2(1− q)(k2 + 3k + 1).

Proof. Throughout, we write r instead of r1 for simplicity. Recall that Cber = (L − Nmut + (k −
1)Nocean)/(L+ k − 1). Applying linearity of expectation together with eq. (1) and Theorem 12,

E[Cber] =
L− E[Nmut] + (k − 1)E[Nocean]

L+ k − 1
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=
L− Lq + (k − 1)(Lr(1− q) + (1− q)(1− r))

L+ k − 1

=
L

L+ k − 1
(1− q)(1 + r(k − 1)) +

(1− q)(1− r)(k − 1)

L+ k − 1

Applying the distributive properties of variance to the definition of Cber we get:

Var(Cber) = Var((L−Nmut + (k − 1)Nocean)/(L+ k − 1))

= (L+ k − 1)−2 Var((k − 1)Nocean −Nmut))

= (L+ k − 1)−2
(
(k − 1)2 Var(Nocean) + Var(Nmut)− 2(k − 1) Cov(Nocean, Nmut)

)
.

We only need to compute the covariance. We will use the same definition of variables as previously
in Sections 3 and 6. In particular, Xi is a random variable indicating that Ki was mutated, Z ′

indicates that K0 has not mutated, and Bi indicates that Ki was mutated and Ki+1 has not. Note
that Z ′ = 1 − X0. Figure S2 visualizes the joint probabilities of all Xi’s, Bj ’s, and Z. We then
compute

Cov (Nocean, Nmut) = E[NmutNocean]− E[Nmut]E[Nocean]

= E

L−1∑
i=0

Xi

Z ′ + L−2∑
j=0

Bj

− Lq(Lr1(1− q) + (1− q)(1− r1))

= E

[
Z ′

L−1∑
i=0

Xi

]
+ E

L−1∑
i=0

Xi

L−2∑
j=0

Bj

− Lq(Lr1(1− q) + (1− q)(1− r1)). (4)

Observe that when i = 0, E[Z ′Xi] = 0. When 1 ≤ i ≤ k − 1, E[Z ′Xi] = (1− q)(1− (1− r)i) since
the left-most i nucleotides are not mutated when Z ′ = 1. When k ≤ i ≤ L − 1, Z ′ and Xi are
independent so E[Z ′Xi] = q(1− q). Thus, calculating the first sum in equation (4), we obtain

E

[
L−1∑
i=0

Z ′Xi

]
=

L−1∑
i=k

q(1− q) +

k−1∑
i=1

(1− q)
(
1− (1− r)i

)
= (L− k)

(
1− (1− r)k

)
(1− r)k +

(
(1− r)k + kr − 1

)
(1− r)k

r

For the second sum in equation (4), observe that Bj = 1 implies that Xj = 1 and Xj+1 = 0.
Furthermore, for 2 ≤ d ≤ k, if Xj+d = 1, then the leftmost k+ 1 + d nucleotides are unmutated, so
from the law of total probability, E[BjXj+d] = (1− (1− r)d−1)r(1− q). Lastly, if Bj = 1, then for
all integers i such that max{0, j − k + 1} ≤ i ≤ j, Xi = 1 as well due to the mutation at position
j. Hence E[BjXi] = E[Bj ] = r(1− q). Using these observations, we obtain

E

L−1∑
i=0

Xi

L−2∑
j=0

Bj

 =
L−1∑
i=0

L−2∑
j=0

E [XiBj ]

=

L−k−2∑
i=0

L−2∑
j=i+k

q(1− q)r

+

L−k−1∑
i=0

i+k−1∑
j=i

(1− q)r +

L−2∑
i=L−k

L−2∑
j=i

(1− q)r
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+
L−k−1∑
j=0

j+k∑
i=j+2

(1− q)r
(
1− (1− r)i−j−1

)
+

L−3∑
j=L−k

L−1∑
i=j+2

(1− q)r
(
1− (1− r)i−j−1

)
+
−k+L−2∑
j=0

L−1∑
i=j+k+1

q(1− q)r

=
1

2
(1− q)qr(k − L)(k − L+ 1)

+ k(1− q)r(L− k) +
1

2
(k − 1)k(1− q)r

+
(1− q)

(
k2r2 − kr2 − 2(1− q)− 2kr + 2

)
2r

+ (1− q)(L− k) ((1− q) + kr − 1)

+
1

2
(1− q)qr(k − L)(k − L+ 1)

Putting all of this together and simplifying, we obtain

Var(Cber) =

r−2(L+ k − 1)−2(1− r)k
(
r2
(
k2 + (−4kL+ k + 3L− 1)(1− r)k + 2kL− 2k − 3L+ 1

)
+ (k − 1)2r4(k(k − 2L+ 3)− L+ 1)(1− r)k − (k − 1)(L− 1)r3

(
k
(

4(1− r)k − 1
)

+ 1
)

+ 2r
(

(k − L− 1)(1− r)k + L+ 1
)

+ 2
(

(1− r)k − 1
))
.

Factoring out the L terms in the numerator, we get

Var(Cber) =
1− q

r2(L+ k − 1)
·

· (L(2rq + r2(−3q − 2k + 4kq) + r3(k − 1)(4kq − 3k − 1) + r4(1− q)(k − 1)2(−2k − 1))

− 2q + 2r(q + k − kq) + r2(k − 1)(k − q)
+ r3(k − 1)(3k − 4kq + 1) + r4(k − 1)2(1− q)(k2 + 3k + 1))
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A.2 Experimental results: extra tables and figures

r1 k L E[Nmut] Nt = t−1
∑t
i=1N

i Var(Nmut) s2t = t−1
∑t
i=1(N

i −Nt)2
0.001 21 100 2.1 2.1 40 39
0.001 21 1,000 20.8 20.7 423 419
0.001 21 10,000 207.9 207.8 4,257 4,304
0.001 51 100 5.0 4.9 199 199
0.001 51 1,000 49.7 49.8 2,350 2,417
0.001 51 10,000 497.5 498.9 23,863 24,072
0.001 100 100 9.5 9.3 567 557
0.001 100 1,000 95.2 95.9 8,191 8,116
0.001 100 10,000 952.1 957.3 84,427 83,041
0.010 21 100 19.0 19.0 291 287
0.010 21 1,000 190.3 190.5 3,101 3,118
0.010 21 10,000 1,902.7 1,905.2 31,198 31,225
0.010 51 100 40.1 39.9 939 939
0.010 51 1,000 401.0 400.9 11,027 11,014
0.010 51 10,000 4,010.4 4,013.1 111,908 113,098
0.010 100 100 63.4 63.4 1,350 1,362
0.010 100 1,000 634.0 634.1 18,794 19,183
0.010 100 10,000 6,339.7 6,345.9 193,237 188,818
0.100 21 100 89.1 89.0 127 130
0.100 21 1,000 890.6 890.4 1,341 1,373
0.100 21 10,000 8,905.8 8,907.5 13,479 13,589
0.100 51 100 99.5 99.5 8 8
0.100 51 1,000 995.4 995.5 85 84
0.100 51 10,000 9,953.6 9,954.3 855 830
0.200 21 100 99.1 99.1 8 7
0.200 21 1,000 990.8 990.9 78 78
0.200 21 10,000 9,907.8 9,908.0 786 791

Table S1: Validation of Equation (1) and Theorem 2, using t = 10, 000 trials. For each row, we show the value
of E[Nmut] given by Equation (1), the sample average of Nmut over all trials (Nt), the value of Var[Nmut] given by
Theorem 2, and the sample variance of all the trials (s2t ). Here, N i is observed Nmut for the ith trial.

L = 100 L = 1, 000 L = 10, 000

r1 = 0.001 0.01 0.1 0.2 0.001 0.01 0.1 0.2 0.001 0.01 0.1 0.2

k = 100 0.94 1.00 NA NA 0.99 0.99 NA NA 0.99 0.99 NA NA
k = 51 0.93 1.00 0.98 NA 0.99 0.99 0.96 NA 0.99 0.99 0.98 NA
k = 21 0.92 0.99 0.98 0.97 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99

Table S2: The accuracy of the confidence intervals for r1 predicted by Corollary 4, for α = 0.01 and for various values
of L, r1, and k. NA indicates the experiment was not run because the parameters were not of interest (precisely,
dE[Nmut]e = L). The number of replicates was 10,000 for all experiments.

L = 100 L = 1, 000 L = 10, 000

r1 = 0.001 0.01 0.1 0.2 0.001 0.01 0.1 0.2 0.001 0.01 0.1 0.2

k = 100 0.90 0.86 NA NA 0.94 0.90 NA NA 0.91 0.90 NA NA
k = 51 0.91 0.94 0.97 NA 0.93 0.90 0.93 NA 0.91 0.90 0.94 NA
k = 21 0.91 0.94 0.92 0.94 0.93 0.90 0.90 0.93 0.92 0.90 0.90 0.90

Table S3: The accuracy of the confidence intervals for r1 predicted by Corollary 4, for α = 0.10 and for various values
of L, r1, and k. NA indicates the experiment was not run because the parameters were not of interest (precisely,
dE[Nmut]e = L). The number of replicates was 10,000 for all experiments.
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Sketch size r1 = .05, q = .659 r1 = .15, q = .967 r1 = .25, q = .998

100 0.97 1.00 1.00
1,000 0.97 0.96 1.00
10,000 0.96 0.96 0.97
100,000 0.94 0.95 0.96

Table S4: The accuracy of confidence intervals predicted by Theorem 6 on a real E.coli sequence. For each sketch
size and r1 value, we show the number of trials for which the true r1 falls within the predicted confidence interval.
Here, α = 0.05, k = 21, and the sketch size s and r1 are varied as shown. The number of trials for each cell is 1,000,
and m = 100 for Theorem 6. E.coli strain K-12 substr. MG1655 was used.

Figure S3: Estimates of sequence divergence as done by mimimap2 (ε̂) and by our approach (r̂1). This is similar
to Figure 2 but with sequence lengths of 1kbp instead of 10kbp.
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