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Abstract

In this paper, we report a pipeline, AsmMix, which is capable of pro-
ducing both contiguous and high-quality diploid genomes. The pipeline
consists of two steps. In the first step, two sets of assemblies are gener-
ated: one is based on co-barcoded reads, which are highly accurate and
haplotype-resolved but contain many gaps, the other assembly is based on
single-molecule sequencing reads, which is contiguous but error-prone. In
the second step, those two sets of assemblies are compared and integrated
into a haplotype-resolved assembly with fewer errors. We test our pipeline
using a dataset of human genome NA24385, perform variant calling from
those assemblies and then compare against GIAB Benchmark. We show
that AsmMix pipeline could produce highly contiguous, accurate, and
haplotype-resolved assemblies. Especially the assembly mixing process
could effectively reduce small-scale errors in the long read assembly.

1 Introduction

Genome assembly is the process of determining genome sequences, and a high-
quality assembly is fundamental for understanding the biology of given species
and important for downstream analysis. One can break down the quality of an
assembly into several aspects. First, the assembly should be less fragmented,
which can be evaluated by contig or scaffold N50. Second, there should be
fewer error in the assembly, which can be further broken down into single-base
accuracy, typically measured by Q-value (QV) and large-scale assembly errors,
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so-called misassemblies. Third, for a polyploid genome, the assembly should be
haplotype-resolved, i.e., there should be one assembly representing each haploid.

A large number of laboratory and computational approaches have been de-
veloped to address the challenge of assembly. Next-generation sequencing (NGS)
is a fast, low-cost, and high throughput technology. However, it is only capable
of generating reads typically range in size 100∼200bp, and with only short-
range information, which limits its ability to resolve repetitive regions. Single-
molecule sequencing (SMS) technologies, including Pacific Biosciences and Ox-
ford Nanopore, produces reads with lengths varied from several kilobases to
several millions of bases [1, 2, 3, 4], relatively high error rate (2∼15%) [5, 6,
7]and high cost. While most errors can be corrected by taking consensus, still a
large number of errors remain. The process of correcting those errors by NGS
reads are always referred to as polishing, which typically starts from mapping
NGS reads to SMS assemblies and correct errors by consensus or performing
local assembly [8, 9, 10, 11].

Co-barcoded NGS is an augmented NGS technology, which starts from
breaking chromosomes into millions of long DNA fragments and then tags reads
from one fragment with the same barcode. Thus reads with the same barcode
have a high probability to be derived from the same long DNA fragment, which
means their positions on the chromosome should be within the length scale of
DNA fragments and on the identical haplotype. Co-barcoding technology in-
cludes 10x Linked-read [12], stLFR [13] and a few others [14]. This technology
could help us resolve repetitive regions and phase haplotypes. As a comparison,
with only traditional pair-end NGS reads one would generate highly fragmented
assemblies, typically with contig N50 ranges from 10∼90Kb and scaffold N50
slightly larger than that [15, 16, 17]. But with co-barcoded reads, one could
achieve haplotype-phased assemblies with contig N50 as long as 100∼200Kb
and scaffold N50 at 20∼40Mb [18].

In this paper we demonstrate an assembly pipeline AsmMix which is opti-
mized for the combination of high coverage co-barcoded, NGS and SMS reads.
First, we build assemblies from co-barcoded and SMS reads independently. Then
we perform the assembly mixing to correct the errors in the SMS assembly us-
ing co-barcoded assemblies. The strategy for the mixing is as follows: first, we
compare two assemblies, consider their differences in small scale as errors in
SMS assemblies, and then correct those errors by replacing with sequences in
co-barcoded assemblies. The co-barcoded assemblies have a high scaffold N50,
which is favorable for anchoring sequences to SMS assemblies.

2 Method

The AsmMix pipeline requires stLFR, NGS and SMS reads as input, the steps of
AsmMix pipeline were shown in Fig.1 (a). In the first step, the AsmMix pipeline
runs stLFRdenovo [19] on stLFR reads to generate a set of haplotype-resolved
assemblies, and runs NECAT [20] on SMS reads and then polish by Pilon [8]
using NGS reads to generate another assembly. The next step involves mixing
these two into one. The goal of this step is to fix short-range errors in the SMS
assembly using the stLFR assembly. First the AsmMix pipeline compares two
assemblies to obtain a list of alignment blocks by running QUAST [21, 22] with
SMS assembly as the target and stLFR assembly as the query. The QUAST
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software aligns two assemblies using minimap2 [23] and selects an optimal set of
alignment blocks. Then the AsmMix pipeline further screens the set to remove
possible inconsistencies (Fig.1 (b)). For each alignment block, the AsmMix
pipeline performs base-level pairwise alignment by minimap2 and inspects the
substitutions/indels between two sequences. If a substitution/indel has length
smaller than a certain threshold (50 bases by default), it is considered as an
error in the SMS assembly and replaced with sequence in the stLFR assemblies,
substitutions/indels with length larger than the threshold are discarded. Using
this strategy, most short-scale errors in the SMS assembly are corrected. This
step is implemented in a python script. Each haplotype from stLFR assem-
bly is mixed with SMS assembly independently to retain two haplotypes. In
the following we describe inconsistent alignment blocks filtering and sequence
replacement in detail.

2.1 Filter Alignment Blocks

While running QUAST the AsmMix pipeline set SMS assembly as the target
and stLFR assemblies as the query. For each stLFR scaffold, a set of alignment
blocks are generated by QUAST, sorted by aligned region on stLFR assembly
and denoted by bi, i = 1, . . . , n. A penalty function p(bi, bj) for a pair of align-
ment blocks bi, bj is defined as follows: the penalty is set to −∞ if they map to
distinct SMS contig, or their strands are different, or the length of their overlap
on SMS scaffold exceeds 0.8 time of length of the shorter aligned region. Other-
wise, the penalty is defined as follows: if their aligned regions on SMS scaffolds
do not overlap, the penalty is defined as −|l1 − l2|, in which l1 and l2 are gap
lengths between aligned regions on stLFR and SMS scaffolds respectively. And
if aligned regions on SMS are overlapping, the penalty is defined as −(l1 + l2),
in which l1 is gap length between aligned regions on stLFR scaffold and l2 is
the length of overlap on SMS scaffold.

For a chain of alignment blocks {bk1
, . . . , bkm

}, k1 < · · · < km. The score is
defined as:

s =

m∑
i=1

len(bki) +

m−1∑
i=1

p(bki , bki+1)

In which len(b) is the length of the aligned region on stLFR scaffolds. To select
a chain that maximizes s we apply a dynamic programming algorithm: let si be
the maximal score for chains terminated at bi, then si can be decided via this
recursive relation:

si = len(bi) + max(0, max
j=1,...,i−1

(sj + p(bi, bj)))

Thus if si is maximal, the optimal chain must be terminated at bi and the
whole chain can be recovered by a trace-back process. During implementation,
we perform a two-round iteration for positive/negative strand.

After deciding an optimal chain, the alignment blocks in it are on the same
target scaffold and the same strand. And for alignments blocks to different
target scaffolds or different strands, we will include those back in the sequence
replacement step.

3

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 18, 2021. ; https://doi.org/10.1101/2021.01.15.426893doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426893
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.2 Sequence Replacement

After filtering, the AsmMix pipeline clusters alignment blocks by SMS scaffold
and sort alignment blocks on each SMS scaffold by their starting positions. For
each SMS scaffold, the AsmMix pipeline looks through the alignment blocks to
eliminate overlaps between every two consecutive regions based on the following
rules: 1) if one region covers the next region, the latter will be deleted, 2) if two
regions are overlapping, their overlaps will be assigned to the latter one. After
dealing with overlapping parts, all selected regions on each SMS scaffold are
independent and sent to minimap2 [23] with counterparts from their respective
alignment blocks to do a pairwise alignment. Then the AsmMix pipeline looks
into alignment details by parsing cs tags in paf [24] files. The final replacement
will ignore N bases in stLFR assemblies, and there is a length threshold (50
bases by default) to control whether to replace when there is an indel signal in
the cs tag. Then the AsmMix pipeline concatenates the replaced sequences and
sequences from regions not covered by alignment blocks as the final output.

3 Results

We tested the AsmMix pipeline on a dataset consisting of stLFR reads (∼84x),
MGI PCR-free reads (∼120x), and Oxford Nanopore Technology (ONT) reads
(∼120x) of NA24385. The longest 50x ONT reads were extracted to perform
NECAT assembly. All the assemblies were evaluated by QUAST and primate
gene marker set primates odb10 by BUSCO [25, 26]. The results were enlisted
in Table 1. Most metrics do not change significantly after mixing, except the
number of indel decreases from 0.39 to 0.31 per 1Kbp, which reflects a decrease
of indel errors by the mixing process.

To further analyze the accuracy of assembly, we performed variant-calling
and compare results against a well-established benchmark: the Genome in a
Bottle benchmark (small variant v3.3.2, structural variant v0.6). The accuracy
of variant calling reflects the accuracy of assembly. The variant-calling from
assemblies was performed by minimap2 and paftools. For haplotype-phased
assemblies, variations were called separately and combined using vcftools [27].
Evaluations against benchmarks were performed by rtgtools [28] for small vari-
ants and truvari [29] for structural variants. We evaluated phasing accuracy
by the short/long switch error rate and phase block N50. The short switch
error is the error that flips a single heterogeneous site, and the long switch error
flips the haplotype of all heterogeneous sites after a certain position. To count
short/long switch errors, we minimize the penalty function 5nlong + nshort, in
which nshort is the number of short switch errors and nlong is the number of
long switch errors. Short/long switch error rate is the ratio of the number of
short/long switch errors to the number of common heterogeneous SNPs between
the benchmark and call set. Phase blocks are defined as regions cutting by long
switch errors, and phase block N50 is the N50 of their lengths.

Those results are enlisted in Table 2. For the SNP, mixing leads to a 3.8/3.8-
fold decrease of false negatives, and a 3.4/1.4-fold decrease of false positives,
with/without ignoring haplotyping difference. For the indel, mixing leads to
a 3.0/3.4-fold decrease of false negatives, and a 3.6/4.8-fold decrease of false
positives, with/without ignoring the haplotyping difference. For the large SVs,
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the false negative for insertion/deletion remains almost unchanged, but the false
positives display a 1.8/1.6-fold increase. Our test shows that the mixing proce-
dure could significantly improves the accuracy of short variant, which means a
large proportion of small-scale errors are corrected. We observed a decrease in
the performance of long variant calling, which could partially be explained by
the fact that short reads could not resolve repetitive regions effectively. And all
metrics for phasing display a slight improvement when comparing with stLFR
assemblies.

3.1 Computational cost

The AsmMix pipeline were tested on the dataset described above with a 32-
CPU computational node with 3TB memory. In the pipeline, Necat takes 7
days, Pilon polishing takes 2 days and stLFR denovo takes 4 days, the mixing
step can be finished within 2 hours, with most of the time spent by QUAST.
The whole pipeline takes around 14 days to complete.

4 Discussion

It is common practice to perform assembly with a combination of data from
different technologies, but the problem of what is the optimal strategy for data
combination is still wide open. In this paper we propose an assembly pipeline
that is capable of reaching three goals: contiguity, single-base accuracy, and
haplotype-resolved, making full use of high coverage stLFR, NGS and SMS
reads. The accuracy of assembly is enough for assembly-based SNP, InDel and
structure variant calling with competitive performance.

Moreover, as assembly mixing is implemented as an independent module, the
AsmMix pipeline is compatible with any assemblers for SMS and co-barcoded
reads, this could allow users to test and customize their pipeline in a more
flexible manner.

Our plan for the AsmMix pipeline includes the following directions. First
we use only co-barcoded reads to generate longer contigs in co-barcoded reads
assemblies and correct short-range errors, but it is expected that with that in-
formation one could further scaffold SMS assemblies. Most of the scaffolding
methods start from mapping reads to SMS assemblies, which takes large com-
putational resources [30, 31], we will design the method of scaffolding using
co-barcoded reads assemblies. Second, we only use co-barcoded reads in phas-
ing, in the future we will study how to integrate SMS reads to improve phasing
performance.

5 Availability of data and materials

The AsmMix pipeline is available on GitHub (https://github.com/BGI-biotools/
AsmMix). The stLFR co-barcoded reads of HG002 is available at https://db.

cngb.org/search/run/CNR0026818/. We got 120X Nanopore long reads of
HG002 from Oxford Nanopore Technologies.
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Figure 1: (a): An overview of pipeline AsmMix (b): Filter inconsistent blocks.
In the figure left, we show an example of filtering inconsistent blocks, each yellow
rectangle indicates an alignment block, the number in each rectangle indicates
the length of the alignment block, and the number on the arrow indicates the
penalty score. We seek a path that maximizes the sum of lengths and penalties
it passes through. In the figure below, the shallow yellow rectangles indicate
discarded alignment blocks, yellow rectangles, and black lines indicated selected
blocks and paths.
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stLFR hap1 stLFR hap2 Necat Mix hap1 Mix hap2

Total length
2,899,262,788/
2,624,851,442

2,899,974,893/
2,623,423,014

2,880,654,213 2,880,459,545 2,880,632,458

Scaffold NG50 21,283,539 21,282,592 - - -

Contig NG50 85,008 84,928 34,759,314 34,757,611 34,759,622

Genome fraction
90.688%/
90.865%

90.636%/
90.806%

97.815% 97.814% 97.810%

Duplication ratio
1.058/
1.004

1.059/
1.004

1.009 1.008 1.009

Scaffold NGA50 1,826,678 1,826,238 - - -

Contig NGA50 82,847 83,028 15,981,976 15,594,006 15,594,501

#Misassemblies 4,519 4,493 2,536 2,548 2,539

Mismatch per 1Kbp 1.0174 1.0128 1.2765 1.2888 1.2867

Indel per 1Kbp 0.2504 0.2494 0.3932 0.3116 0.3114

BUSCO complete ratio 86.3% 86.1% 89.4% 89.9% 89.9%

Table 1: Quality assessment of de novo assemblies of NA24385. stLFR hap1/2 is
the haplotype-resolved assembly built from stLFR denovo, Necat is the assembly
build by Necat and polished by Pilon, Mix hap1/2 is the haplotype-resolved
assembly after assembly mixing. Total length, scaffold NG50, contig NG50,
genome fraction, duplication ration, scaffold NGA50, contig NGA50, number
of misassemblies, mismatch per 1Kbp, and indel per 1Kbp were evaluated by
Quast v5.0.2 with reference genome hs37d5, and parameters “-s -m 10000 -
x7000”. The value of row Total length, Genome fraction, and Duplication ratio
before the slash are values of scaffolds, and the values after the slash are values
of contigs. BUSCO complete ratio was evaluated by BUSCO v4 with marker
set primates odb10.
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variation
type

variation
subtype

Metric stLFR NECAT Mix

SNV

SNP

TP 2,330,486/2,523,914 1,161,996/2,067,723 2,536,637/2,779,428

FN 698,572/505,144 1,867,062/961,337 492,421/249,635

FP 253,797/60,369 975,393/69,669 291,137/48,351

Precision 0.9018/0.9766 0.5437/0.9674 0.8970/0.9829

Sensitivity 0.7694/0.8332 0.4498/0.6826 0.8374/0.9176

Indel

TP 334,312/377,364 162,087/284,873 358,833/408,144

FN 125,053/82,001 297,278/174,492 100,541/51,200

FP 72,872/29,827 355,587/232,840 97,589/48,279

Precision 0.8210/0.9268 0.3131/0.5502 0.7862/0.9842

Sensitivity 0.7278/0.8215 0.3529/0.6201 0.7811/0.8885

SV

Insertion

TP 1811 3752 3906

FN 3631 1779 1659

FP 539 343 627

Precision 0.7707 0.9162 0.8616

Sensitivity 0.3329 0.6784 0.7018

Deletion

TP 2750 2420 2539

FN 1449 1690 1537

FP 5983 763 1223

Precision 0.3148 0.7603 0.6749

Sensitivity 0.6548 0.5888 0.6229

Phasing

Phased SNP ratio 0.6881 - 0.7224

Short switch rate 0.0515 - 0.0502

Long switch rate 0.0008 - 0.0007

Phase block N50 4,802,248 - 5,015,779

Table 2: Evaluation of assembly by variant calling. In the row SNV, short
variations of call and benchmark are separated into SNP and indel by vcftools
and compared by rtgtools separately. The value before the slash are without and
after the slash are with the parameter ”–squash-ploidy”, which allow matches
ignoring the haplotyping difference. In the row SV, call and benchmark are
compared by truvari with the parameter ”-r 1000 –passonly” and false-positive
insertion/deletion were counted by a perl script, in which variants with reference
sequence longer than alternative sequence are counted as deletions and otherwise
insertions, variants with ”N” in the alternative sequence are ignored. In the
phasing column, common heterogeneous SNP was selected and their phases
were compared, phased SNP ratio is the ratio of common heterogeneous SNP
against heterogeneous SNP in the benchmark, short switch error is defined as
error of flipping phase of a single variant, and long switch error defined as error
of flipping all phase after of a variant. The penalty for long switch error is 5
times of penalty for switch error and minimized by a dynamic programming
scheme. Phase blocks are defined as regions cut by the location of long switch
error.
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