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Abstract

Neural population activity is theorized to reflect an un-
derlying dynamical structure. This structure can be accu-
rately captured using state space models with explicit dy-
namics, such as those based on recurrent neural networks
(RNNs). However, using recurrence to explicitly model dy-
namics necessitates sequential processing of data, slowing
real-time applications such as brain-computer interfaces.
Here we introduce the Neural Data Transformer (NDT), a
non-recurrent alternative. We test the NDT’s ability to cap-
ture autonomous dynamical systems by applying it to syn-
thetic datasets with known dynamics and data from mon-
key motor cortex during a reaching task well-modeled by
RNNs. The NDT models these datasets as well as state-of-
the-art recurrent models. Further, its non-recurrence en-
ables 3.9ms inference, well within the loop time of real-time
applications and more than 6 times faster than recurrent
baselines on the monkey reaching dataset. These results
suggest that an explicit dynamics model is not necessary to
model autonomous neural population dynamics.

Code: github.com/snel-repo/neural-data-transformers.

1. Introduction

Neural populations are theorized to have an underlying
dynamical structure which drives the evolution of popula-
tion activity over time [21, 27, 33]. This structure can be
explicitly modeled using linear [6, 11, 19] or switching lin-
ear dynamical systems [17, 24], or nonlinear dynamical sys-
tems such as recurrent neural networks (RNNs) [22, 23, 26].
In contrast to traditional analyses that average activity
across repeated trials of the same behavior, these models
have helped relate neural population activity to behavior in
individual trials. In particular, an RNN-based method called
latent factor analysis via dynamical systems (LFADS) has
been shown to model single trial variability in neural spik-
ing activity far better than traditional baselines like spike

smoothing or GPFA [14, 22]. This precise modeling enables
accurate prediction of subjects’ behaviors on a moment-by-
moment basis and millisecond timescale.

RNNs have also been used to model language, and have
been analogously shown to capture linguistic structure in
input sentences [31]. However, with the advent of mas-
sive language datasets and their costly training implications,
the language modeling community has shifted away from
recurrent networks and towards the Transformer architec-
ture [32]. A Transformer receives a sequence of word to-
kens, or inputs, and processes each individual token in par-
allel. For example, a Transformer can classify the parts of
speech of every word in a sentence simultaneously, whereas
an RNN must process earlier words before later ones. A
Transformer’s parallelism enables it to be trained and op-
erated on sequential data faster than an RNN. Though neu-
roscience datasets may not yet be large enough to realize
much training benefit, reduced inference times could al-
ready benefit real-time applications where cycle times are
critical, such as brain-computer interfaces or closed-loop
neural stimulation.

Here we introduce the Neural Data Transformer (NDT),
an architecture for modeling neural population spiking ac-
tivity. The NDT is based on the BERT encoder [5] with
modifications for application to neuroscientific datasets,
specifically multi-electrode spiking activity. Modifications
are needed as spiking activity has markedly different statis-
tics than both language data and other time series [8, 35]
previously modeled by Transformers. Further, neuroscien-
tific datasets are generally much smaller than typical dataset
sizes in other machine learning domains, necessitating care-
ful training decisions [9]1.

We test the NDT on synthetic and real datasets to vali-
date its performance. In our synthetic datasets, we generate
firing rates using autonomous dynamical systems and sam-
ple spikes from the firing rates. We show the NDT can use
the sampled spikes to recover the unobserved rates as well
as LFADS. Further, when applied to activity recorded from

1Negative results such as “difficult training“ are under-reported. Our
regularization was inspired by discussion in this Twitter thread.
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Figure 1. Sequential vs. parallel models. (a) Unsupervised models of sequential spiking activity take in binned spikes (with 2 channels in
this schematic) and output inferred rates. A likelihood loss trains the network to output the most likely rates. (b) A Transformer architecture
(top) performs parallel modeling, contrasting with RNNs (bottom) and methods like GPFA which use sequential processing.

monkey motor cortex, NDT-inferred firing rates enable pre-
diction of simultaneously measured behavioral variables as
well as rates from LFADS. We then demonstrate the NDT’s
inference efficiency, showing it performs inference in 3.9ms
with minimal dependence on sequence length. On the mon-
key dataset, this enables inference 6.7× faster than LFADS.
We also include an ablative study measuring the contribu-
tions of different design choices, and consider the tradeoffs
of using an NDT with fewer layers.

Our results provide a proof-of-principle that recurrence
is not necessary to accurately infer neural population firing
rates on a single-trial basis, and unlocks for neuroscience
an alternative modeling paradigm that has greatly advanced
other fields using machine learning models.

2. The NDT Model
Both the NDT and LFADS transform sequences of

binned spiking activity into inferred firing rates (Fig. 1a).
In real-time applications, the sequence of spiking activ-
ity would come from a rolling window of recent activ-
ity that ends with the current timestep. Both models as-
sume a Poisson emission model, meaning inferred rates
are compared against the observed spiking activity to com-
pute a Poisson likelihood-based training objective (negative
log-likelihood, NLL). When computing rates, a sequential
model like the Decoder RNN in LFADS typically maintains
an internal state. At each timestep, the state incorporates the
next input, and the updated state produces the timestep’s
output (Fig. 1b, bottom). In contrast, a Transformer uses
a stack of layers that process all inputs together (Fig. 1b,
top, depicts one such layer). A Transformer layer com-

prises several nonlinear blocks, in particular a self-attention
block (Fig. 2a) in which a new representation of each input
is constructed by incorporating relevant information from
every other input. Specifically, a self-attention block cre-
ates three representations from each input: a query, key,
and value. Each query is paired with every key to compute
a dot-product similarity representing how much each input
“attends” every other input. Each output is a weighted sum
of all values, with weights determined by these attentions.
Overall, self-attention enables the exchange of information
across timesteps, and thus enables the modeling of tempo-
ral dependencies without explicit dynamics. Further details
can be found in Sec. 7.2, and in the original Transformer
paper [32] or the Annotated Transformer [15].

The body of the NDT architecture is a Transformer
encoder with 6 layers in most of our experiments, as
in Vaswani et al. [32]. We briefly discuss the option to
use fewer layers in Sec. 3.3. Before entering the encoder,
each channel of the input can be optionally projected to an
n-dimensional embedding, i.e., for data with C channels,
the dimension of each input representation is then Cn. To
keep dimensionality small, we only consider n ∈ {1, 2} in
our experiments. We pass the Transformer encoder outputs
through a linear layer and exponentiation (thus treating the
linear layer outputs as log-firing rates) before calculating
the NLL. Instead of the cross-entropy loss used in language
modeling, these log-firing rates are passed into a Poisson
likelihood loss.

To train the model in an unsupervised manner, we
adapt the masked modeling methodology used in BERT
(Fig. 2b). In masked modeling, the model is given an in-
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Figure 2. Transformer architecture and training details. (a) Inputs to Transformer layers are normalized (“Norm” blocks), enriched
through contextual information (“Self-Attention” blocks), and passed through a feedforward module (“MLP” i.e. multi-layer perceptron
blocks). Blocks with the same label share parameters. The circled plus symbols indicate addition. (b) The model is trained with masked
modeling [5, 13], that is, model outputs are optimized to maximize likelihood of the masked activity given the context provided by
unmasked activity.

put sequence x1 . . . xT , with a random subset of the T in-
put tokens masked. Subset size is typically a fixed ratio of
the full sequence, e.g., 20% of the inputs. The model is
then asked to reproduce the original input for that masked
subset. To do so, the model must learn how to lever-
age the context provided by the unmasked timesteps (e.g.,
if firing rates in the dataset are temporally smooth, high
spike counts in unmasked timesteps may imply high spike
counts in masked timesteps). Readers familiar with LFADS
might note that masked modeling resembles the coordi-
nated dropout method developed to regularize LFADS mod-
els [13], only differing in that coordinated dropout masks
individual dimensions (channels) of a given input timestep
independently and is not constrained to mask entire input
timesteps.

We adjust the training procedure as follows:

• In BERT, masked inputs are typically replaced with a
special “[MASK]” token. Instead of using this special
token, which introduces a large distribution shift be-
tween training and inference time [5], we use a “zero
mask.” That is, we simply zero out the spike inputs
of a masked timestep, which was previously demon-
strated to be an effective masking strategy for spiking
data [13].

• We use intensive regularization to stabilize training,
which we find especially important when dataset sizes
are smaller. Specifically, in the dropout layers (see
Sec. 7.2 for locations), dropout ratios are swept ∈
[0.2, 0.6].

The importance of the design choices presented here are
proven in an ablative study in Sec. 3.4.

3. Results
We compare the NDT with LFADS on both synthetic au-

tonomous dynamics and M1 reaching activity, optimizing
hyperparameters (ranges in Sec. 7.3) as follows:

• NDT is optimized using grid search. Using early stop-
ping, we select the checkpoint with least validation
NLL as measured without masking.

• LFADS is optimized using the AutoLFADS frame-
work [14]. LFADS is known to benefit from
Population-Based Training (PBT [10]) over simple
grid search. (We find that NDT performs compara-
bly between grid search and PBT.) AutoLFADS PBT
is run with exponentially-smoothed validation NLL
as the exploitation metric, and so we select the least
smoothed validation NLL checkpoint [14].

Each search has 20 models. We run three searches for each
experiment (a total of 3 ∗ 20 = 60 models are trained) and
report the mean and 95% CI of the metrics achieved. We
select our models according to likelihood, since likelihood
does not require knowledge of the underlying system and
is measurable in both synthetic and real-world settings. We
apply AutoLFADS with fixed settings that were previously
shown to work in a variety of applications [14]. Note that
our goal is to use AutoLFADS to provide a baseline for
comparison, and we do not exhaustively explore its design
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Figure 3. Modeling synthetic data. (a) We plot the generated spikes (bottom of each quadrant) and inferred rates from AutoLFADS
and NDT for individual synthetic neurons for 8 trials of the same condition (randomly chosen), along with the ground truth rates for that
condition. Inferred firing rates closely match generating ground truth rates. Vertical bar denotes spikes per bin. Horizontal bar indicates
10% of the trial length, 5 bins for Lorenz and 10 bins for Chaotic RNN. (b) Across a hyperparameter sweep on the Lorenz dataset, models
that achieve better likelihoods yield more accurate inference of the underlying rates.

choices or alternate hyperparameter ranges to achieve a per-
formance ceiling or minimize training/inference times.

3.1. The NDT achieves high-fidelity inference on
synthetic autonomous dynamical systems

We first evaluate the NDT on two synthetic datasets
where observed activity reflects autonomous dynamics: the
Lorenz system and the chaotic RNN (details in Sec. 7.4).
The Lorenz system dataset [28, 36] is created by simulating
a 3D state evolving according to the Lorenz equations, and
projecting it to a specified higher dimensionality to form fir-
ing rates for a population of synthetic neurons. These rates
are sampled according to a Poisson distribution to generate
spikes. Similarly, the chaotic RNN dataset [30] is created by
simulating dynamics using a vanilla RNN whose weights
are initialized from the normal distribution. This system
is motivated by the fact that many neural datasets are well
modeled by RNNs (which are themselves nonlinear dynam-
ical systems). The chaotic RNN is more complex than the
Lorenz system - as measured by the number of principal
components underlying the generating system - and is thus
more challenging to model.

The synthetic setting allows us to evaluate inferred firing
rates by comparing against the ground truth rates that pro-
duced the synthetic spikes. In both datasets, NDT and Au-
toLFADS inferences closely match the ground truth, though
NDT rates appear less smooth (Fig. 3a). We quantify model
inference quality by measuring the correspondence between
inferred and ground truth firing rates using the coefficient

Dataset NDT (R2 ↑) LFADS (R2 ↑)
Lorenz 0.934 ±0.007 0.921 ±0.009

Chaotic 0.846 ±0.023 0.869 ±0.002

Table 1. The NDT and AutoLFADS both infer firing rates that
closely align with the generating firing rates on synthetic datasets.

of determination (R2 ; Tab. 1). In both datasets, the gap
between the two models is small, indicating the NDT can
accurately infer firing rates in autonomous dynamical sys-
tems. Importantly, we also find that within an HP search,
NDT models with high data likelihoods (as computed on
the observed spiking activity) tend to match the underlying
systems well (as measured by correspondence with ground
truth firing rates, Fig. 3b). This match between likelihoods
and firing rate inference does not occur in LFADS mod-
els that lack coordinated dropout [13] and provides a key
confirmation that the NDT’s masking strategy works as de-
sired. Verifying that likelihood correlates with recovery of
underlying structure in synthetic data provides confidence
that likelihood can be used to optimize and choose between
NDT models in applications to real-world data.

3.2. NDT infers motor cortical firing rates in au-
tonomous settings with high fidelity

To test performance in real-world neural recordings, we
apply NDT to the Monkey J Maze dataset [12]. These
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Figure 4. NDT inference on monkey reaching data. (a) Trial-averaged inferred rates and smoothed activity (4 of 108 conditions shown).
Vertical bar denotes spikes/sec. Shading indicates SEM. (b) Across a hyperparameter sweep, models that converge to better likelihoods
tend to achieve better match to empirical PSTHs. (c) Example predicted reach trajectories based on NDT-inferred rates (dashed) align more
closely with the true trajectories (solid) than predictions based on smoothed spikes (dotted). (d) Performance on kinematic decoding with
smaller training sets still greatly improves on spike smoothing down to 92 training trials. Shading indicates 95% confidence interval across
three sweeps.

data were previously used to evaluate LFADS and AutoL-
FADS [13, 14, 22] and serve as a benchmark for models of
autonomous dynamics. In this dataset, spiking activity from
202 neurons in the primary motor and dorsal premotor cor-
tices was recorded as a monkey performed a delayed reach-
ing task with a variety of straight and curved reaches. The
reaching dataset consists of 2296 trials across 108 different
reach conditions, where a given condition is specified by
targets and obstacles present. Each trial has a random delay
period that separates target presentation from a “Go” cue
that prompts the monkey to begin its reach, which provides
a time period for the monkey to plan before executing the
reach. Previous analyses of this paradigm demonstrated that
neural activity is well modeled as an autonomous dynami-
cal system, where plan activity serves as an initial state that
predicts the activity patterns observed during movement ex-
ecution [4, 22, 27]. We train our models on activity during
this autonomous period, spanning 250 ms before movement
onset to 450 ms after. We perform most experiments by bin-
ning the spike sequences at 10ms ; we find similar results
for bin sizes varying from 2ms to 20ms (results not shown).

We compute peri-stimulus time histograms (PSTHs) for
the models by averaging inferred rates across repeated tri-
als of the same reach condition (Fig. 4a). Both NDT and
AutoLFADS exhibit low across-trial variance (as shown by
the shaded errorbars), indicating that the models produce
consistent inferred rates for different trials of the same con-
dition. We also calculate a spike smoothing baseline by
first passing observed spiking activity through a Gaussian
kernel with 30 ms standard deviation, and then averaging
across trials to form empirical PSTHs (Fig. 4a, bottom).
These exhibit larger across-trial variance than the model-
inferred firing rates, as spike smoothing produces noisy es-
timates on single trials [22]. To quantify the quality of the
models’ inferred rates, we measure the correspondence be-
tween inferred PSTHs and empirical PSTHs. NDT mod-
els with greater likelihoods tend to have better R2 (Fig. 4b).
The highest-performing models perform on par with Au-
toLFADS.

For motor cortical datasets, another method to evaluate
the quality of inferred firing rates is through behavioral de-
coding, i.e., testing how well simultaneously-recorded be-
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Figure 5. Sequential vs. parallel runtime. Recurrent architec-
tures, such as LFADS, have inference times that grow with in-
put sequence length. The NDT has near-constant runtime. In the
reaching dataset with input sequences of length 70, the NDT infers
6.7× faster than LFADS.

Train Time Inference Time # Parameters Reaching R2

AutoLFADS 45m 26ms 280K 0.915
NDT-6 9.4hr 3.9ms 1.36M 0.918
NDT-2 45m 2.2ms 480K 0.921
NDT-1 20m 0.98ms 270K 0.886

Table 2. Speed gains from reducing model size. On one sweep
for each variant, we report the training time of the best model,
inference time on 70 bins, number of trainable parameters, and
kinematic decoding performance.

havioral variables can be decoded from the models’ inferred
rates. We use optimal linear estimation to map firing rates
onto hand velocities (details in Sec. 7.5) and find that NDT
enables accurate behavioral decoding that matches AutoL-
FADS (0.918 and 0.915 R2 , respectively). These velocity
predictions can be integrated to produce predicted reach-
ing trajectories (Fig. 4c). The large number of trials (2000)
also allows us to evaluate each model’s sensitivity to dataset
size by subsampling from the full dataset. NDT comfort-
ably outperforms the spike smoothing baseline, even when
scaling to as few as 92 training trials (Fig. 4d). While a
6-layer NDT performs worse than AutoLFADS at 92 trials,
we show that a 2-layer NDT closes the gap in Sec. 3.3.1.

3.3. Efficiency Gains from Parallelism

Inference Speeds. Since the NDT models a given in-
put sequence in parallel, we should expect a roughly con-
stant inference speed with respect to input sequence length.
The NDT’s non-recurrence enables 3.9ms inference (Fig. 5,
with details in Sec. 7.6), comfortably within the loop time
of many real-time applications. In practice, we find the
NDT’s inference times increase slightly with increased bin
lengths; in contrast, LFADS inference times increase sub-
stantially. In the reaching dataset with sequence length 70,
this amounts to a 6.7x speedup. For reference, prior work
that achieved high-performing online decoding uses win-

dows with 20 bins of 15ms [11]; even with this reduced bin
count our method provides a 4x speedup.

One caveat to this inference efficiency comparison is that
we use recurrent architectures in a non-iterative fashion. For
real-time applications, recurrent architectures could poten-
tially be adapted to maintain an internal state that is updated
each time a new input is received (i.e., once per timestep),
as is done in traditional iterative state space models such
as Kalman Filters. The resulting inference speed should be
comparable with a parallel architecture. However, to the
authors’ best knowledge such an iterative approach has not
been demonstrated on deep network models of neural data.

3.3.1 Smaller NDTs Improve Training Speed and Data
Efficiency

The fixed computational complexity of the NDT’s paral-
lel architecture should grant faster training in addition to
inference [32]. The 6-layer NDT used in previous experi-
ments, however, does train for significantly longer than our
LFADS model (Tab. 2). We note that training times of dif-
ferent models across an HP search can vary widely, i.e., we
see NDT 6-layer times between 3 and 18 hours. However,
training times can be reduced substantially by simply us-
ing a smaller NDT. We find a 1-layer NDT, with around the
same number of parameters as our LFADS model, trains
under 30 minutes (and infers in under 1ms). Remarkably,
this 1-layer NDT achieves 0.89 R2 on kinematics decoding
in the Maze dataset (−0.02R2 against the 6-layer baseline),
and a 2-layer NDT matches the 6-layer performance. Note
that the shallower NDTs train faster than LFADS again due
to parallelism, as parallelism avoids the costly backprop-
agation through time used to train recurrent networks. In
our case, the 6-layer NDT was much larger than the AutoL-
FADS model; AutoLFADS training times are more appro-
priately compared with the 2 or 1-layer NDT.

Smaller models may also be more performant in lim-
ited data settings. The 2-layer model achieves 0.866
R2 when training on just 92 trials (not shown), outperform-
ing the AutoLFADS model. Regularization is still critical
for the smaller 2-layer model: performance drops to 0.4
R2 when the dropout range is confined to [0.0, 0.3] instead
of [0.2, 0.6] (not shown). Though non-exhaustive, this re-
sult indicates that the gap between AutoLFADS and NDT
when limited to 92 trials (Fig. 4d) may be due to 6-layer
models being oversized. Extrapolating beyond this dataset,
neural datasets, though smaller than in other domains, may
be well-modeled by Transformers so long as the models are
appropriately scaled.

3.4. Ablative Analysis

We empirically justify three key design choices of the 6-
layer NDT by removing them and evaluating the degraded
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R2 (↑)

Baseline 0.918±0.005

Output rates, not logrates 0.292 ±0.203

Use “[MASK]” tokens, not zeroes 0.022 ±0.024

Constrain dropout ∈ [0.0, 0.2] 0.549 ±0.103

Table 3. The use of logrates, zero masks, and heavy regularization
are all critical to the NDT’s performance.
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Figure 6. Lograte vs. rate inference. We plot loss trajectories
of two hyperparameter sweeps of size 20. One sweep uses firing
logrates (model output is exponentiated before calculating loss)
and the other uses firing rates. When using rates, models train less
stably and converge to poor solutions.

performance on the reaching dataset. Each is critical to
achieving high performance (Tab. 3): without these subtle
choices, performance is much worse and more variable. For
example, models that infer rates instead of logrates train
more slowly and fail to converge to a good solution over
a wide set of hyperparameters (Fig. 6). Notably, inferring
rates instead of logrates regresses performance in both 2-
layer models and 6-layer models, i.e., constraining models
to output in log space is important even with increased ca-
pacity. We also experimented with a few training details
relevant in other Transformer works, such as variable length
mask spans or adding embedding layers, but found their
contributions on the reaching dataset to be marginal, on the
order of 1-2% R2 .

4. Discussion

We have introduced the NDT, a parallel neural network
architecture for neural spiking activity, and shown it can be
competitive with RNNs in autonomous dynamical settings
while achieving substantially faster inference. Further,
with careful architecture choices, the NDT could even
match RNN performance on datasets with as few as 92

training trials (0.2 Mb). This indicates that Transformers
are compatible with dataset sizes that are typically available
in systems neuroscience.

The most critical limitation of the NDT, and thus an im-
portant avenue for future work, is its inability to model non-
autonomous dynamics, i.e. systems with unpredictable ex-
ternal perturbations. This occurs when unmonitored brain
areas send signals to the recorded area. For example, un-
predictable experiment cues that are first processed in so-
matosensory or visual areas will propagate and perturb the
dynamics of recorded motor areas. LFADS, which infers
inputs in such non-autonomous settings, outperforms NDT
by over 20% R2 in a preliminary experiment with a syn-
thetic, non-autonomous dataset, the Chaotic RNN with In-
puts studied in Sussillo et al. [30]. Incorporating a prior for
exogenous inputs may solve this limitation.

Despite this limitation, we put forth the NDT as a
forward-looking proposal. We believe the NDT and more
generally the Transformer can benefit neuroscience due to
the Transformer’s rapid rise in the broader machine learn-
ing community. This community will continue to advance
Transformer tooling, analysis, and theory. Many of these
advances could translate to neuroscientific applications. We
provide two example directions:

• Story generation requires modeling of both sensible
short-term sentence structure and a coherent long-term
storyline. While RNNs struggle to learn long-term de-
pendencies, the Transformer’s parallel design makes it
less biased with respect to either short or long term de-
pendencies. This enables the Transformer to produce
long passages of coherent text [25]. Analogously, a
single Transformer model may yield insights around
both fast and slow features of neural activity, uncover-
ing hierarchy within the activity that maps naturally to
the multi-scale nature of animal behavior [2, 3].

• Transformers have been productively used to under-
stand the interaction of data from multiple modalities.
For example, vision-language transformers [18] pro-
duce language representations that are contextualized
by accompanying images. Similar techniques could be
applied to build models which incorporate recordings
of multiple brain areas, different recording modalities,
and behavioral measurements.

However, the major driver of the Transformer’s popular-
ity is its ability to scale to large amounts of training data bet-
ter than RNNs (i.e. through faster training). As increasing
training data generally improves machine learning models
across domains, we anticipate that larger datasets from new
recording technologies and dataset aggregation will further
improve the NDT’s performance and applicability, possi-
bly past recurrent methods. Notably, these large datasets
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need not be excessively difficult to collect. For example,
they could consist of neural activity that is continuously col-
lected without constrained or even measured behavior. In
other domains, the largest datasets tend to be similarly un-
structured, naturally-occurring data, such as freeform text
extracted from the internet. In a large-scale “pretraining”
step, networks can learn deep representations of such data
in a self-supervised manner, using methods such as those
used to train LFADS and NDT. Pretrained representations
make subsequent learning for downstream tasks much more
data-efficient. The seeming universality of the representa-
tions learned in these tasks, for example, has prompted the
GLUE language benchmark [34] to assess how well single
models perform on 9 different language tasks. An analo-
gous effort in neuroscience may help reveal all the different
computational roles of a given neural population, much as
prior work has sought to find preferential tuning properties
for single neurons.

One promising avenue in the analysis of trained RNNs
is the application of techniques from nonlinear dynamical
systems theory to interrogate the RNNs’ learned dynami-
cal structure [7, 20, 28, 29]. The Transformer is currently
disconnected from these dynamical techniques, as it lacks a
recurrent structure to analyze. It would be useful, even be-
yond the computational neuroscience community, to try to
bridge this gap and understand how the Transformer repre-
sents dynamical structure.
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7. Methods

7.1. Data Availability

The Lorenz dataset, along with generation scripts for the
Chaotic RNN dataset, are available in the code repo. The
Maze dataset will be released upon publication.

7.2. Architectural Details

We summarize the Transformer encoder and self-
attention mechanism, though we refer the reader to the
resources [15, 32] for more details. Inputs to a Trans-
former layer pass through a self-attention block, a layer
norm block [1], an MLP, and another layer norm.

The self-attention block is the only ones which simulta-
neously transforms multiple inputs into multiple outputs. It
comprises three different learned weight matrices, termed
the query, key, and value matrices. All inputs are mul-
tiplied by these matrices to form three sets of intermedi-
ate representations, respectively termed the queries, keys,
and values. An output is formed by taking a weighted
sum of the values. To be precise, we introduce notation.
The entire block transforms a sequence of T inputs x[1:T ],
into outputs y[1:T ]. The intermediate representations are
q[1:T ], k[1:T ], v[1:T ]. For example, if the query matrix is de-
noted Q, then qi = Qxi.

Output yi is computed as a weighted sum with weights
w

[1:T ]
i , where each weightwj

i represents the “attention” step
i pays to step j. wj

i is determined by calculating dot-product
similarity between query i and key j, and then normalizing
similarities over all j with the softmax function. Formally:

yi =
T∑

j=1

wj
i vj

sji = qi · kj

wj
i =

exp (sji )∑T
l=1 exp (s

l
i)

Self-attention lets inputs query for relevant information
from other inputs. However, if we directly feed population
representations, inputs would be unable to query for infor-
mation from a particular timestep, i.e. there is no intrinsic
ordering of the inputs. This is inappropriate for our con-
text. To allow the NDT to account for input order, we add a
learned position embedding (i.e. a unique vector represent-
ing the identity of the input timestep) to each input before it
is fed into the transformer layers.

Following self-attention, we have layer normalization
and an MLP. Each layer normalization block receives a sin-
gle population state vector as input and normalizes this in-
put using the mean and variance of its elements. The MLP
comprises 2 linear layers joined with a non-linear ReLU ac-
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tivation, and similarly transforms a single input to a single
output. Dropout layers are added right before the inputs en-
ter the transformer body (the consecutive transformer lay-
ers), right after they exit the body, and right after each linear
layer in the MLP of each transformer layer.

7.3. Hyperparameters

NDT searches are swept over:

• Dropout ratio, as described in Sec. 3.

• Context span, the number of timesteps forward and
backward each input aggregates information from.
Span is swept between 4 and 32 steps in both direc-
tions for the synthetic datasets, and 10 and 50 in the
reaching datasets.

• The ratio of masked tokens that are replaced with a
random input instead of a zero mask, and the ratio that
are not replaced at all (a methodology from BERT to
reduce train-test distribution shift). Zero mask ratio is
between 0.5 and 1.0 on synthetic datasets, and 0.6 and
1.0 on the reaching dataset. Of the remaining masked
tokens, between 0.9 and 1.0 are replaced with random
inputs on synthetic datasets, between 0.6 and 1.0 on
the reaching dataset.

• Length of masked span [16] is set between 1 and 5 in
synthetic datasets, and 1 and 7 in reaching dataset.

AutoLFADS PBT optimizes over:

• Dropout, from 0.0 to 0.6

• Coordinated Dropout [13] rate, from 0.01 to 0.7

• L2 penalties for the generator from 1e-4 to 1.0

• KL penalties for the initial condition from 1e-5 to 1e-3

Both models optimize learning rate, from 1e-5 to 5e-3.
The LFADS controller is kept off as we study autonomous
settings. Note that although we find these AutoLFADS set-
tings outperform the ranges reported in [14], we only claim
they are sufficient and not necessary for achieving reported
results. PBT settings such as early stopping metrics and
epochs per generation are as in [14]. Other hyperparame-
ters are available in the code.

7.4. Synthetic Dataset

The train-val split is 0.8 and 0.2 for each dataset. The
Lorenz dataset has 1560 total trials, 50 timesteps, and 29
channels. These trials comprise 65 conditions (firing rate
trajectories) with 24 trials sampled per condition. The RNN
dataset is generated with γ = 1.5 and has 1300 total tri-
als (with 100 conditions and 13 trials per condition), 100
timesteps, and 50 channels. R2 is calculated by flattening
timesteps and trials, and averaging across input channels,
as done in [14].

7.5. Kinematic Decoding

We decode 2D hand velocity from inferred rates at single
timesteps using ridge regression with α = 0.01. As in [22],
we find improved decoding performance by applying a 90
ms lag between neural activity and the corresponding kine-
matics, i.e., while rates are inferred between a (-0.25ms,
0.45ms) window around movement onset, kinematics are
predicted only around (-0.16ms, 0.45ms).

7.6. Timing Tests

We report the time of a forward pass through the NDT
and LFADS models, i.e. the time it takes to infer rates from
spike inputs. 1 posterior sample is used for LFADS. Times
are averaged over 1300 trials. Measurements were taken
on a machine (on CPU) with 32GB RAM and a 4-core i7-
4790K processor running at 4.2 GHz.
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