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ABSTRACT 1	

The myeloma cell surface proteome (“surfaceome”) not only determines tumor 2	

interaction with the microenvironment but serves as an emerging arena for therapeutic 3	

development. Here, we use glycoprotein capture proteomics to first define surface 4	

markers most-enriched on myeloma when compared to B-cell malignancy models, 5	

revealing unexpected biological signatures unique to malignant plasma cells. We next 6	

integrate our proteomic dataset with existing transcriptome databases, nominating CCR10 7	

and TXNDC11 as possible monotherapeutic targets and CD48 as a promising co-target 8	

for increasing avidity of BCMA-directed cellular therapies. We further identify potential 9	

biomarkers of resistance to both proteasome inhibitors and lenalidomide including 10	

changes in CD53, EVI2B, CD10, and CD33. Comparison of short-term treatment with 11	

chronic resistance delineates large differences in surface proteome profile under each 12	

type of drug exposure. Finally, we develop a miniaturized version of the surface 13	

proteomics protocol and present the first surface proteomic profile of a primary myeloma 14	

patient plasma cell sample. Our dataset provides a unique resource to advance the 15	

biological, therapeutic, and diagnostic understanding of myeloma.  16	

  17	
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INTRODUCTION 1	

The composition of the tumor cell surface plays a central role in determining cancer’s 2	

interaction with the local microenvironment. Over the past several years, targeting 3	

surface proteins expressed on tumor cells has also rapidly emerged as one of the most 4	

exciting frontiers for treating cancer. This strategy is particularly relevant in the case of 5	

the plasma cell malignancy multiple myeloma. Antibody-based therapeutics targeting 6	

CD38, SLAMF7 and BCMA have now been FDA-approved, and engineered cellular 7	

therapies targeting BCMA have shown highly promising clinical data. Furthermore, 8	

identifying and quantifying cell surface markers play a critical role in the diagnosis and 9	

monitoring of all hematologic malignancies, including myeloma. 10	

 One of the notable clinical features of myeloma is that despite the recent advent of 11	

many effective therapies, there is still no known cure for this disease. Resistance to 12	

current small molecule therapeutics, particularly proteasome inhibitors such as 13	

bortezomib and carfilzomib, and immunomodulatory drugs such as lenalidomide, is a 14	

widespread conundrum. Characterizing surface proteomic changes in these contexts may 15	

reveal new strategies to diagnose and specifically treat drug-resistant disease. 16	

Despite the importance of the cell surface to diagnosis, therapy, and biology of 17	

myeloma, much remains unknown. While extensive RNA-seq datasets are available on 18	

both myeloma primary samples (such as the Multiple Myeloma Research Foundation 19	

CoMMpass study (research.themmrf.org)) and cell lines (keatslab.org and Cancer Cell 20	

Line Encyclopedia (1)), it is well-known that transcript-level expression is only modestly 21	

correlated with surface protein expression (2-4). This lack of predictive power is related 22	

to two main features. First, even for proteins exclusively present at the plasma membrane, 23	

transcript-only quantification cannot capture alterations in translational regulation and 24	

protein trafficking that ultimately govern surface expression. Second, proteins expressed 25	

at the cell surface can also have significant pools of either intracellular or secreted forms 26	

as well; RNA-seq cannot distinguish these components. Therefore, these datasets can at 27	

best be considered partially predictive of the cell surface proteome. 28	

Other studies have used flow cytometry, or, more recently, mass 29	

cytometry/CyTOF (5), to profile myeloma tumor cells in the context of inter-patient 30	

heterogeneity (6), response to therapy (7), or drug resistance (8). However, these assays 31	
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are typically restricted to monitoring a maximum of ~50 surface proteins that are already 1	

very well-characterized and have high-quality antibodies available. Even a recent large-2	

scale survey of normal human B-cells by CyTOF, screening an exhaustive catalog of 351 3	

metal-conjugated antibodies, only identified 98 expressed surface proteins (9). It is 4	

estimated that most human cells express >2000 unique proteins on their surface (10). 5	

Therefore, these widely-used approaches can only begin to outline the overall profile of 6	

the myeloma cell surface. 7	

To overcome these limitations, here we use a relatively unbiased approach, 8	

glycoprotein cell surface capture (CSC) (11), to directly quantify hundreds of proteins 9	

localized to the surface of myeloma tumor cells. We specifically identify new potential 10	

immunotherapy strategies in myeloma and new biomarkers of small molecule resistance 11	

and response to acute treatment. Finally, to streamline the surface proteomics 12	

methodology we develop a miniaturized CSC approach and apply this approach to 13	

primary patient myeloma. Uncovering the surface landscape of malignant plasma cells 14	

serves as a significant resource to the myeloma community.     15	

 16	

RESULTS 17	

Determining the malignant plasma cell surface landscape 18	

We first utilized the CSC approach to oxidize, covalently biotinylate, and then isolate N-19	

linked glycoproteins from four multiple myeloma cell lines (KMS-12PE, AMO-1, RPMI-20	

8226, L363) (Fig. 1A). Labeling was performed on live cells to generate an initial surface 21	

proteomic landscape of malignant plasma cells. In our initial analysis, using the label-free 22	

quantification approach in MaxQuant (12), we cumulatively quantified 1245 proteins 23	

annotated as membrane bound in Uniprot across all cell lines (ranging from 715-1069 in 24	

individual cell lines, with a minimum of two peptides per protein), with a common 25	

intersection of 562 proteins (Fig. 1B). To maximize number of captured proteins, we 26	

used glycoprotein biotinylation with on-bead trypsinization (Fig. 1A); however, this 27	

method is likely to also spuriously elute peptides deriving from background intracellular 28	

proteins. Filtering our data with a recently-described set of the best-validated plasma 29	

membrane proteins (10), 530 of these quantified proteins (305-436 per cell line) appear 30	

localized to the cell surface with high confidence (Supp. Fig. 1A).  Notably, across these 31	
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lines we detected almost all of the major immunotherapy targets in myeloma, as well as 1	

canonical flow cytometry markers for plasma cells (7, 13): BCMA, CD138/SDC1, CD38, 2	

CD56, SLAMF7/CS-1, CD46, Integrin-b7 (ITGB7), CD74/HLA-DR, TACI, 3	

CD48/SLAMF2 and LY9/CD229 (Fig. 1C; Supplementary Dataset 1). 4	

While these positive identifications are certainly encouraging for the utility of this 5	

dataset, we note this technology still cannot detect all cell surface proteins. For example, 6	

we did not detect GPRC5D, a G-protein coupled receptor (GPCR) recently proposed as a 7	

specific immunotherapy target in myeloma (14). In general, GPCRs and other multi-pass 8	

membrane proteins tend to be under-represented in CSC (4); we noted the same effect in 9	

our dataset (Supp. Fig. 1B). Furthermore, as in essentially all proteomic methods, 10	

proteins present at low copy number on the cell surface are less likely to be detected on 11	

the mass spectrometer (15). In addition, ~10-20% of surface proteins likely do not feature 12	

any N-linked glycosylation (16), and therefore will not be detectable via CSC. Despite 13	

these limitations, we propose that this initial landscape of the myeloma cell surface 14	

provides a unique resource for downstream investigation.  15	

 As myeloma is a malignancy of plasma cells, we were curious what surface 16	

markers particularly distinguish myeloma from B-cells earlier in the developmental 17	

trajectory. We therefore compared our myeloma surfaceome to our earlier dataset (17) 18	

including six B-cell acute lymphoblastic leukemia (B-ALL) lines derived from early (pre- 19	

or pro-) B-cell developmental stages. We further compared the myeloma surface profile 20	

to two B-lymphoblastoid cell lines (EBV-immortalized normal cord blood donor B-cells 21	

and ARH-77), derived from differentiated, late-stage B-cells (18). By Principal 22	

Component Analysis (PCA) we were encouraged to find that lines representing each cell 23	

type (plasma cells, early B-cell, late B-cell) clustered separately, consistent with a 24	

relatively unique surface signature for each cell type (Fig. 1D).  25	

 We next identified the specific markers that most distinguish myeloma plasma 26	

cells versus these other B-cell types (Fig. 1D; Supp. Fig. 1C). Giving confidence in this 27	

analysis, many canonical markers were among the strongest hits including BCMA, 28	

CD138/SDC1, and CD28 for plasma cells and CD19, CD22, and CD72 for B-ALL cells, 29	

respectively (Fig. 1D). Intriguingly, by intensity of mass spectrometry signal, CD38 was 30	

not significantly different between these cell types, underscoring possible clinical 31	
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relevance of anti-CD38 monoclonal antibody therapy in B-ALL (19). We were surprised 1	

to find the three proteins that most-distinguished myeloma plasma cells from early-stage 2	

malignant B-cells, based on fold-change and p-value, were not canonical markers at all: 3	

gamma-glutamyl transferase 1 (GGT1), selectin-P ligand (SELPLG), and cell adhesion 4	

molecule 1 (CADM1) (Fig. 1E). Comparison of myeloma cells to the two B-5	

lymphoblastoid cell lines also showed CD138/SDC1 and CD28 as characterizing 6	

myeloma cells, while CD19, CD22, and CD20 characterized late-stage B-cells. 7	

SLAMF6/CD352 and SLAMF1/CD150 most strongly differentiated B-lymphoblastoid 8	

cell lines, while adenylate cyclase 3 (ADCY3), Podocalyxin-like (PODXL), and Integrin-9	

a3/ITA3/CD49c (ITGA3) were the most strongly-differentiating on myeloma cells (Supp. 10	

Fig. 1C). These proteins may carry previously unexplored diagnostic or biological 11	

relevance to myeloma or broader plasma cell biology. 12	

In parallel with our surface proteomic data, we also obtained RNA-seq data for all 13	

of the analyzed cell lines. We overall found a modest quantitative correlation (Pearson R 14	

= 0.54; p < 2.2e-16) between the transcriptome and surface proteome of myeloma and B-15	

ALL cells (Supp. Fig. 1D), consistent with prior studies (17, 20). We did find a set of 16	

proteins, including CD99, GGT1 and TOR1AIP2, with transcript level discordant with 17	

surface protein, suggestive of possible post-transcriptional regulation (Supp. Fig. 1D). 18	

Taken together, this initial profiling underscores the unique surface phenotype of 19	

malignant plasma cells and unexpected markers distinguishing them from closely related 20	

cellular models. 21	

 22	

Identifying new targets for myeloma antigen-specific immunotherapies 23	

We next turned our attention to possible new immunotherapeutic strategies revealed by 24	

our surface profiling. We first integrated our proteomic data with publicly-available 25	

transcriptome datasets to create a ranking system for possible single-antigen 26	

immunotherapy targets, based on five criteria related to surface abundance and specificity 27	

for plasma cells (Fig. 2A; Supplementary Table 1). Emphasizing the validity of this 28	

strategy, four of the top six targets by our ranking either already have FDA-approved 29	

therapeutics or are being clinically investigated in myeloma: BCMA (TNRFSF17 gene), 30	

TACI (TNFRSF13B), Integrin beta-7 (ITGB7), and CS-1/SLAMF7 (SLAMF7) (Fig. 2A). 31	
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CD38, CD138/SDC1, LY9/CD229, CD48, and GPRC5D also ranked highly 1	

(Supplementary Dataset 2). Based on these results, we probed other high-scoring 2	

proteins found in our proteomic data that, to our knowledge, have not yet been explored 3	

as therapeutic targets in myeloma. Here we offer two particularly intriguing examples: 4	

CCR10 and TXNDC11. CCR10 is a chemokine receptor previously shown to be 5	

expressed on plasma cells and thought to relate to homing to resident tissues (21). We 6	

found this gene to be robustly expressed on myeloma plasma cells per the CCLE but with 7	

minimal expression on other tumor cell lines (Supp. Fig. 2A). Data from GTex also 8	

suggest low, though not absent, mRNA expression on non-hematopoietic tissues, while 9	

data included in the Human Blood Atlas suggest markedly higher mRNA expression on 10	

plasmablasts than other hematopoietic cells, with the exception of some T-cell subtypes, 11	

including T regulatory cells, consistent with prior literature (22) (Supp. Fig. 2A). By 12	

flow cytometry we verified markedly increased CCR10 expression on myeloma cell lines 13	

compared to B-cell malignancy lines, of the same magnitude as BCMA relative increase, 14	

and also confirmed CCR10 expression on myeloma patient tumor cells (Supp. Fig. 2B). 15	

Together, these features suggest CCR10 as a promising immunotherapeutic target in 16	

myeloma.	17	

While TXNDC11 is generally poorly characterized, its sparse literature revolves 18	

around its role in endoplasmic reticulum (ER) associated protein degradation (23, 24). 19	

However, proteins with known ER localization may also have surface components; for 20	

example, the ER-resident HSP70 isoform BiP/GRP78 can be found at the cell surface in 21	

myeloma and serve as an immunotherapy target (25). Furthermore, immunofluorescence 22	

data in the Human Protein Atlas (26), as well as bioinformatic prediction from 23	

COMPARTMENTS (27), both place the primary location of TXNDC11 at the plasma 24	

membrane, not the ER. Similar to CCR10, while some non-hematopoietic tissues express 25	

TXNDC11, expression appears to be highly enhanced on plasma cells (Supp. Fig. 2C). 26	

In addition, per the Cancer Dependency Map (28), myeloma plasma cells appear 27	

somewhat genetically dependent on TXNDC11 for proliferation (Supp. Fig. 2C), 28	

potentially reducing probability of tumor resistance via antigen loss under therapeutic 29	

pressure. Unfortunately, we could not validate any currently available antibodies against 30	

TXNDC11 as suitable for flow cytometry (not shown). Therefore, we cannot definitively 31	
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confirm that TXNDC11 spans the plasma membrane, nor rule out that TXNDC11 is 1	

identified in our dataset due to spurious background labeling of intracellular 2	

glycoproteins. Future studies will probe the relevance of this potential target. While we 3	

highlight these two proteins, additional targets from our integrative analysis may also 4	

warrant further follow-up in myeloma therapy. 5	

 6	

Characterizing the most abundant myeloma surface proteins for potential co-7	

targeting 8	

We next reasoned that identifying the most highly-expressed proteins on the 9	

surface of plasma cells may be advantageous for certain therapeutic designs. We illustrate 10	

one potential approach in Fig. 2B. In this embodiment, an scFv with no intracellular 11	

signaling domains (i.e. not a full CAR construct), specifically designed for “locking on” 12	

against a high abundance tumor antigen, would be highly expressed on the surface of the 13	

engineered T-cell. However, the T-cell would only be activated after engagement of an 14	

anti-BCMA (or other highly myeloma-specific antigen) scFv incorporated into a CAR. 15	

This approach would be designed to specifically increase the avidity of CAR-T binding 16	

to tumor. We envision that this approach, by increasing T-cell dwell time on tumor, could 17	

potentially enable CAR-T killing at lower antigen densities, which recent studies have 18	

suggested may be an important determinant of efficacy (29, 30). Or, alternatively, this 19	

approach may allow for reducing CAR signaling strength to minimize exhaustion (31) 20	

while still ultimately achieving the same degree of tumor killing, given more prolonged 21	

association between T-cells and target cells.  22	

In this approach, the highly abundant tumor antigen for “locking on” would not 23	

necessarily have to be extremely specific for plasma cells, as no killing would occur if 24	

BCMA (or other targeted myeloma-specific antigen) were not present. We therefore 25	

interrogated our data to identify proteins that were among 1) most highly abundant on 26	

myeloma plasma cells, 2) confidently localized to the cell surface, 3) highly expressed at 27	

transcript level in myeloma patients per the CoMMpass database; 4) highly expressed on 28	

myeloma cell lines per CCLE data (see Methods for details). This analysis identified 14 29	

potential “locking on” protein candidates (Fig. 2D).  30	
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We additionally probed biological signatures of surface proteins >2 S.D. above 1	

the LFQ mean (Fig. 2E). 4F2 (encoded by SLC3A2) and LAT1 (SLC7A5), which together 2	

comprise the heterodimeric large neutral amino acid transporter CD98, as well as the 3	

neutral amino acid transporter AAAT (SLC1A5), appear to be the most abundant proteins 4	

on the myeloma cell surface. This observation is potentially consistent with the critical 5	

role of protein synthesis in plasma cell biology.  Other high-abundance plasma membrane 6	

proteins govern homeostatic mechanisms common across most human cells (AT1A1, 7	

AT1B3, TFR1/CD71). However, several of the other most highly abundant surface 8	

proteins carry specific functions in cellular signaling, either in myeloma plasma cells or 9	

hematopoietic cells more generally, including CD138/SDC1, CD47, CD38, 10	

ICAM1/CD54, ITA4/CD49d, and CD48/SLAMF2. 11	

Integrating these two analyses, we specifically focused on two targets for further 12	

evaluation as “locking on” antigens: CD38 and CD48. We chose these proteins as others 13	

nominated in our analyses of Fig. 2D-E were expressed on at least some non-14	

hematopoeitic tissues per GTex (Supp. Fig. 3A), potentially leading to misdirection of 15	

CAR-T’s during the locking-on phase by homing to irrelevant body sites. We particularly 16	

note that some of these proteins, most prominently CD38, would not be identified as 17	

highly abundant on the cell surface purely based on mRNA-seq analysis, illustrating the 18	

utility of proteomic studies in this application (Supp. Fig. 3B). CD38, a cell surface 19	

ectoenzyme, is well-known in myeloma as the target of the monoclonal antibodies 20	

(mAbs) daratumumab and isatuximab (32). While CD38 has been proposed as a 21	

standalone CAR-T target in myeloma, concern remains about toxicity given CD38 22	

expression on many other hematopoietic cells and increased potency of CAR-Ts at lower 23	

antigen densities when compared to mAbs (13). CD48/SLAMF2, a CD2 ligand, has been 24	

proposed as a therapeutic target in myeloma, with prior studies confirming that >90% of 25	

myeloma primary samples tested expressed CD48 (33). Notably, CD48, but not CD38, 26	

shows greater transcript expression on myeloma cell lines than any other tumor cell type 27	

in the CCLE (Supp. Fig. 3C). However, concerns about toxicity still arise with CD48 28	

monotherapy, given relatively high expression across other hematopoietic cells (33). 29	

Therefore, using either of these antigens as “locking on” handles, which do not activate 30	
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T-cells when engaged, may be the most effective way to deploy them in myeloma 1	

cellular therapy. 2	

To evaluate which of these proteins is more highly expressed at the myeloma cell 3	

surface, and thus best-positioned to increase T-cell avidity, we used a calibrated 4	

fluorescence strategy by flow cytometry to measure absolute antigen density of both 5	

CD38 and CD48 expression. We evaluated myeloma cell lines (MM.1S, OPM-2, AMO-6	

1) and primary bone marrow aspirate samples from 5 relapsed/refractory myeloma 7	

patients, selected on CD19-/CD138+ plasma cells. We found that both antigens were 8	

expressed at high copy number, consistent with our proteomic findings, but CD48 9	

showed the higher antigen density (range: 59,307-2,769,932 copies/cell vs. 16,251-10	

613,422 for CD38) (p = 0.05) (Fig. 2F; Supp. Fig. 3D). We thus conclude that CD48 11	

may be a particularly strong candidate for a potential “locking on” strategy to enhance the 12	

efficacy of BCMA-directed CAR-T’s. 13	

 14	

The myeloma surface proteome is remodeled in the context of proteasome inhibitor 15	

resistance  16	

Having characterized the surface proteome of plasma cells at baseline, we next proposed 17	

that cataloging alterations in the context of proteasome inhibitor (PI) resistance may be 18	

relevant for diagnosing this condition, identifying new biological strategies to overcome 19	

resistance, or developing immunotherapies that selectively eliminate resistant disease. To 20	

this end, we performed cell surface proteomic profiling of AMO1, L363, and RPMI-8226 21	

myeloma cell lines previously described to be in vitro-evolved for resistance to either 22	

carfilzomib (CfzR)	or	bortezomib (BtzR) (34) (Fig. 3A; Supp Fig. 4A-B, 23	

Supplementary Dataset 3). Serving as a positive control, the drug efflux pump MDR1 24	

(ABCB1) was by far the most increased surface protein in CfzR cells, consistent with our 25	

prior results from whole cell shotgun proteomics (35, 36) (Supp. Fig. 4C). Aggregating 26	

BtzR vs. wild-type data, though, we saw no change in MDR1 (Supp. Fig. 4D), consistent 27	

with prior findings (35). Instead, across both CfzR and BtzR comparisons we found a 28	

signature whereby CD50, CD361/EVI2B, CD53, and Integrin-b7 (ITGB7) were 29	

commonly decreased while CD10 and CD151 were increased versus parental. Compared 30	

to RNA-seq (Supplementary Dataset 4), several genes showed evidence of possible 31	
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post-transcriptional regulation; CD151, for example, showed >2.5-fold increased surface 1	

protein but essentially no transcript change in AMO1-BtzR cells (Supp. Fig. 4E). We did 2	

not identify significant upregulation of any current myeloma immunotherapy target 3	

proteins (Supplementary Dataset 3). Furthermore, with the possible exception of CD10, 4	

we did not identify signatures suggestive of de-differentiation to a more B-cell-like 5	

surface protein profile (37). 6	

Flow cytometry largely validated the extensive surface remodeling uncovered by 7	

our proteomic dataset, confirming prominent alterations in CD53, EVI2B, CD50, CD10, 8	

and CD151 in both AMO1 (Fig. 3B) and RPMI-8226 (Supp. Fig. 4F) PI-resistant cells. 9	

Our previous analysis indicated that CD53, EVI2B, and CD10 cell surface levels were 10	

transcriptionally regulated (Supp. Fig. 4E). Therefore, to investigate relevance to 11	

myeloma patients, we interrogated mRNA expression in paired pre- and post-first relapse 12	

tumor cells in the MMRF CoMMpass dataset (release IA14). 94% of these CoMMpass 13	

patients were treated with PI as part of their induction regimen. Consistent with our 14	

proteomic findings, in relapsed myeloma patient tumor cells we found significant 15	

transcript decreases of CD53 and EVI2B, while MME (CD10) showed a significant 16	

increase (Fig. 3C).  CD151 showed a non-significant increase, though in the context of 17	

post-transcriptional regulation protein-level increase could potentially be higher.  We 18	

further developed an immunohistochemistry (IHC) assay for CD53, confirming decrease 19	

on plasma cells in bone marrow core biopsies (n = 13) in paired diagnosis and relapse 20	

specimens after a PI-containing regimen (Fig. 3D). We further noted that these markers 21	

appeared to carry prognostic relevance at diagnosis in the CoMMpass cohort (Supp. Fig. 22	

4G). From a biological perspective, alterations in these surface proteins may influence 23	

the phenotype of PI-refractory myeloma. For example, both CD53 (38) and CD151 (39) 24	

may impact tumor interaction with the microenvironment. Taken together, these markers 25	

warrant further investigation in the context of assessing and monitoring PI resistance. 26	

 27	

Lenalidomide evolved resistance leads to increased CD33 and CD45/PTPRC on 28	

myeloma cells 29	

We further probed surface proteomic changes in the context of evolved resistance to 30	

lenalidomide (Len), a thalidomide analog used in both the standard front-line regimen for 31	
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myeloma patients and maintenance monotherapy. To our knowledge, surface changes 1	

resulting from Len resistance have not been previously characterized. We performed CSC 2	

proteomics on OPM2 and H929 cell lines in vitro-evolved to become resistant to 3	

lenalidomide (LenR) relative to their WT counterparts (40). While we found broad 4	

surface proteomic changes in both cell lines, there was relatively little overlap between 5	

the two (Fig. 4A). The most notable common signature was increased CD33 and 6	

CD45/PTPRC in both LenR cell lines (Fig. 4A). Examining CoMMpass data, we 7	

confirmed both CD33 and PTPRC transcripts to be significantly increased at first relapse 8	

vs. diagnosis in patient tumor cells (Fig. 4B). Plasma cell expression of either of these 9	

markers has already been proposed as a poor prognostic factor in newly-diagnosed 10	

myeloma (41, 42), potentially consistent with more aggressive disease biology after Len 11	

resistance. In terms of therapeutic targeting, while CD45 is expressed at high levels on 12	

essentially all non-plasma cell leukocytes, CD33 is a well-known surface target enriched 13	

in myeloid malignancies (43). However, by CSC profiling, CD33 shows low mass 14	

spectrometric intensity on myeloma plasma cells (Supp. Dataset 1), suggestive of low 15	

surface protein expression. Furthermore, per Human Blood Atlas data CD33 mRNA 16	

expression on B-lineage cells is expected to be much lower than that on myeloid cells 17	

(Supp. Fig. 4H). “On target, off tumor” toxicity on non-malignant cells expressing CD33 18	

is already a considerable concern in treatment of myeloid leukemias (44). Taken together, 19	

targeting CD33 to selectively eliminate Len-resistant myeloma is unlikely to be 20	

straightforward. However, there may be opportunities to generate dual-targeting cellular 21	

therapies or other immunotherapeutics to take advantage of this increased CD33 22	

expression in Len-resistant disease.   23	

  24	

Short term drug treatment leads to divergent surface profiles from evolved 25	

resistance 26	

Another potential strategy to take advantage of the myeloma surfaceome is to consider 27	

co-treatment approaches of small molecules and immunotherapies. For example, our 28	

group (45) and others (46-48) have used small molecules to increase expression of CD38 29	

on myeloma plasma cells to enhance efficacy of daratumumab. Other examples include 30	

small molecule treatment to boost surface BCMA in myeloma (49, 50) or CD22 in B-31	
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ALL (51). Furthermore, it has been suggested that acute responses to PI treatment, in 1	

particular marked chaperone upregulation and ER stress response, may translate into 2	

mechanisms of long-term cellular adaptation and resistance (52-54). We therefore 3	

examined the effects of short-term (48 hr) Btz and Len treatment on the myeloma 4	

surfaceome (Supplementary Dataset 5).  5	

We first noted that surface protein changes after acute Btz treatment at 7.5 nM for 6	

48 hr in RPMI-8226 cells, when compared to BtzR vs. WT data aggregated across cell 7	

lines, did not show significant correlation (R = -0.056; p = 0.058) (Fig. 5A). The most 8	

apparent commonalities were in down-regulated proteins, including CD53, NCAM2, and 9	

SEMA4A. While we did not observe an increase in any current immunotherapy targets 10	

after acute Btz treatment, we surprisingly noted a decrease in surface BCMA in RPMI-11	

8226 cells (Fig. 5B). We further confirmed this finding in another cell line, MM.1S, by 12	

flow cytometry (Supp. Fig. 5A-B).  13	

We similarly investigated short term treatment with Len. After 48 hr of 50 uM 14	

treatment in AMO-1 we again found broad alterations to the surfaceome (Fig. 5C). We 15	

did not observe any alteration in CD33 or PTPRC/CD45. However, among the most 16	

upregulated proteins was Mucin-1 (MUC1), a known therapeutic target in multiple 17	

myeloma (55). By flow cytometry we confirmed MUC1 surface changes after short term 18	

Len in both AMO-1 as well as primary CD138+ plasma cells from two patients (Fig. 19	

5D). Additionally, in RPMI-8226 cells, mass spectrometry and flow cytometry identified 20	

GITR, a potential tumor suppressor in myeloma (63), as upregulated under Len treatment 21	

(Supp. Fig. 5C-D).  22	

We further probed treatment with two other agents targeting protein homeostasis 23	

that have been preclinically investigated in myeloma: the p97 inhibitor CB-5083 (56) and 24	

the allosteric HSP70 inhibitor JG342 (57, 58) (Supp. Fig. 5E-G). We found that surface 25	

proteomic signatures were largely unique to both these agents, showing minimal overlap 26	

with PI treatment.  27	

Intriguingly, myeloma surface markers show wide variability in expression 28	

changes when aggregated across drug treatment conditions (Supp. Fig. 5H). For 29	

example, TXNDC11 and CCR10 protein levels appear stable across drug treatments in 30	

comparison to canonical myeloma markers BCMA and CD138/SDC1. Some proteins, 31	
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including ITGB6, consistently exhibit large changes in surface expression after drug 1	

treatment, suggesting that they might be regulated by common stress pathways in 2	

myeloma cells.  3	

Together, these findings confirm that acute drug treatment and long-term 4	

resistance lead to rare commonalities but in general largely divergent effects on the 5	

myeloma surfaceome. Furthermore, our results suggest that in some settings Btz co-6	

treatment may decrease efficacy of BCMA-targeted therapy, whereas Len co-treatment 7	

may enhance utility of MUC1-directed treatments. 8	

 9	

“Micro” method for streamlined surface proteomics 10	

Ideally, our surface proteomic analyses here would be performed on primary myeloma 11	

tumor specimens instead of cell lines. However, one significant limitation of the standard 12	

CSC method is the requirement for large sample inputs, typically 30e6-200e6 cells (4, 13	

11). In other cancers, this requirement has largely restricted surface proteomic analyses to 14	

model systems (20, 59). To our knowledge, no surface proteomic profiling has previously 15	

been performed using primary myeloma tumor cells. 16	

We sought to develop a miniaturized CSC method amenable to reduced sample 17	

inputs, thereby allowing for more ready application to primary samples. We reasoned that 18	

adapting the “InStageTip” strategy could meet this need (60). This “one pot” approach, 19	

which minimizes sample losses during processing by eliminating many steps of handling 20	

and vessel transfer, was previously shown to allow for large decreases in shotgun 21	

proteomic sample input on whole-cell lysates.  22	

In our adaptation of this method for cell surface proteomic profiling, following 23	

surface biotinylation of live cells, streptavidin bead capture, and bead washes, all steps 24	

are performed in a single P200 tip (Fig. 6A). We first applied this “micro” method to 25	

RS4;11 B-ALL cells, comparing 1e6 cellular input to 30e6 input in the standard 26	

(“macro”) method. With the micro method, by MaxQuant analysis we were able to 27	

quantify 662 and 645 proteins in each replicate, compared to 725 and 774, respectively, 28	

with the standard macro method with 30x greater input. We further saw consistent 29	

quantification between the micro and macro method (R = 0.84) and excellent quantitative 30	
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reproducibility between biological replicates of the micro method on 1e6 cells (R = 0.98) 1	

(Fig. 6B-C). 2	

Encouraged by these results, we next evaluated the head-to-head performance of 3	

the micro vs. macro method in AMO-1 myeloma cells across a range of inputs (30e6, 4	

10e6, 1e6 cells). In this follow-up experiment, the benefits of the micro prep on protein 5	

yield were not as pronounced, with only a modest increase in membrane protein 6	

identification with 1e6 cells versus the standard macro prep (Supp. Fig. 6A). 7	

Furthermore, we noted a marked drop-off in membrane protein identifications from 30e6 8	

to 1e6 cells with micro method, with only 40% and 35% of membrane protein IDs at the 9	

lower input in each replicate, respectively (Supp. Fig. 6A). 10	

Even though we could not consistently obtain a dramatic increase in membrane 11	

protein identifications at the lower sample input, it still appears that the micro method 12	

carries at least some advantage in protein identifications over the standard macro protocol 13	

on low sample inputs. Furthermore, the “one pot” approach markedly streamlines the 14	

overall workflow by eliminating additional steps requiring transfer of the sample from 15	

one vessel to another. 16	

 We therefore attempted to apply our micro CSC method to primary myeloma 17	

plasma cells. We titrated cellular inputs obtained from a relapsed patient with a malignant 18	

pleural effusion, from which we isolated ~50e6 CD138+ plasma cells with magnetic bead 19	

selection. While we found a marked decrease in membrane protein identifications from 20	

25e6 to 1e6 primary cells (Fig. 6D), the micro approach on 5e6 cellular input still 21	

enabled quantification of 327 membrane-annotated proteins, of which 216 were high 22	

confidence plasma membrane proteins, on this primary tumor sample (Fig. 6E, 23	

Supplementary Dataset 6). Furthermore, the micro “one pot” approach on 25e6 cellular 24	

input quantified 868 total membrane-annotated proteins, of which 483 were high 25	

confidence plasma membrane proteins (Fig. 6E, Supplementary Dataset 6), and 26	

identified essentially all of the antigens of interest previously identified in our cell line 27	

studies. We further found a strong positive correlation (R = 0.51; p < 1e4) between 28	

surface protein quantification in myeloma cell lines and in this primary sample, with very 29	

few surface proteins found on the primary sample not identified in myeloma cell lines 30	
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(Supp. Fig. 6B). This overall similarity to the surface proteomic landscape of a primary 1	

tumor underscores the utility of our profiling in myeloma cell lines above.  2	

 3	

DISCUSSION 4	

 Here we used a proteomic approach to delineate the cell surface landscape of 5	

multiple myeloma plasma cells. Our results characterize the distinct myeloma cell surface 6	

repertoire as well as define surfaceome remodeling in the context of resistance to and 7	

acute treatment with commonly used small molecule therapeutics. Our findings suggest 8	

new immunotherapy targets in this disease, reveal possible biomarkers of resistance, and 9	

provide a unique resource for probing plasma cell biology given the numerous 10	

physiologic processes governed by cell surface proteins. Furthermore, we modify a 11	

common cell surface proteomic method which, with further refinement, may more readily 12	

expand “surfaceome” profiling to primary tumor samples. 13	

 Notably, our dataset is valuable as it extends to far more proteins simultaneously 14	

than are accessible by flow cytometry or CyTOF. On the other hand, for surface proteins 15	

present at low copy number, or with no glycosylation, sensitivity of detection by CSC 16	

proteomics is certainly lower than these other approaches. Furthermore, we cannot 17	

exclude the possibility of false positive hits due to background intracellular protein 18	

labeling. Therefore, this broad dataset ultimately serves as an important complement to 19	

targeted antibody-based approaches. 20	

 We believe that particular utility of this resource comes from its ability to identify 21	

surface proteomic signatures that could not be predicted from RNA-seq alone. For 22	

example, our identification of surface proteins most highly expressed on plasma cells 23	

(Fig. 2C-E) cannot be directly extrapolated from transcriptome data. Furthermore, we 24	

find evidence of potential post-transcriptional regulation of many surface proteins in the 25	

drug-resistant setting (Supp. Fig. 4E). 26	

 We further integrate our proteomic data with RNA-based datasets to assist in the 27	

identification of new immunotherapy targets in myeloma (Fig. 2A). Our two hits we 28	

specifically examine, CCR10 and TXNDC11, while promising, still require significant 29	

additional validation as possible targets. We note that given prior data suggesting ER-30	

localized biology, TXNDC11 in particular may not have been considered as a possible 31	
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immunotherapeutic target without our proteomic dataset in hand. Other antigens 1	

emerging from our scoring system may also have significant promise and stand as a 2	

resource for others in the community. In parallel, modulating CAR binding avidity has 3	

recently been proposed as a method to precisely tune CAR-T activation	(61). Our 4	

proposal to use CD48/SLAMF2 binding to increase avidity, and thereby extend 5	

functional activity, of BCMA CAR-Ts requires future experimental exploration. 6	

We do note that as we were finalizing this work, another group also performed 7	

surface proteomics on a series of myeloma cell lines, as well as targeted whole-cell lysate 8	

proteomics from primary myeloma samples (62). In their limited analysis they point out 9	

several surface proteins expressed on plasma cells that are being targeted in other 10	

malignancies, including CD5, CD147 (BSG), LY75 (LY75), CD98hc (SLC3A2), and 11	

CD166 (ALCAM). However, based on our scoring metrics (Supplementary Dataset 2), 12	

all of these appear to be poor cellular therapy targets (score <8) for myeloma due to low 13	

plasma cell specificity and high likelihood of on-target, off-tumor toxicity. We believe 14	

that our integrated bioinformatic analysis provides a much more robust resource for the 15	

development of new myeloma therapies. 16	

  In terms of study limitations, due to the sample input required for cell surface 17	

proteomics, the large majority of our surface profiling is performed in myeloma cell 18	

lines. While we know these models are only partially representative of true patient tumors 19	

(63), our identification of nearly all canonical myeloma surface markers and 20	

immunotherapy targets on cell lines (Fig. 1C; Fig. 6E; Supp. Fig. 6B) increases 21	

confidence in the broader applicability of our findings. In addition, many of the drug-22	

resistance or drug-treatment signatures we identified were consistent with those observed 23	

in primary patient tumors, either at the transcript (MMRF CoMMpass) or protein (our 24	

studies here) level. However, validating the clinical utility of novel surface biomarkers of 25	

drug resistance, as well as the potential relevance to small molecule or 26	

immunotherapeutic co-treatment strategies (for example, the combination of 27	

lenalidomide and MUC1-directed therapy) awaits further investigation.  28	

To this point above, broadly extending surface proteomic profiling to primary 29	

plasma cells would certainly be a boon for myeloma research. Our miniaturization of the 30	

CSC method provides a small step toward allowing more routine profiling of primary 31	
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samples, but further optimization is clearly needed. Recently, a method utilizing 1	

automated liquid handlers was described, obtaining high-quality data from only 1e6 2	

murine B-cells	(64). While this approach is not necessarily optimal as it requires 3	

specialized equipment only available in a handful of labs, such approaches may 4	

demonstrate a way forward for more routine “surfaceome” profiles of patient plasma 5	

cells. However, we still believe that the “micro” method will carry advantages for other 6	

groups performing surface proteomics given a streamlined protocol and no apparent 7	

disadvantages versus the macro method. Notably, we used our adapted micro method to 8	

proteomically profile the cell surface of a myeloma primary sample for the first time. 9	

Overall, our data supports the notion that our resource remains highly useful for 10	

generating hypotheses and motivating further investigation in myeloma. 11	

In conclusion, we provide a unique resource for the myeloma research 12	

community, identifying new surface markers with potential biological, diagnostic, and 13	

therapeutic relevance. Through further method advancement, our goal is to ultimately 14	

bring this powerful approach to more widespread use in basic, translational, and clinical 15	

studies in myeloma. 16	

 17	
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METHODS 1	

Cell Lines 2	
All cell lines were grown in RPMI-1640 media with 10% FBS. PI-resistant cells derived 3	
from cell lines AMO-1, L363, RPMI-8226, and ARH-77 were grown in 90 nM 4	
Bortezomib (Btz) or Carfilzomib (Cfz) as previously described	(65). Lenalidomide-5	
resistant cell lines H929 and OPM-2 were grown in increasing concentrations of 6	
lenalidomide and removed from drug for 5-7 days, as previously described (40), before 7	
use in cell surface proteomics. Cell lines were verified by DNA short tandem repeat 8	
testing and assessed as mycoplasma negative. 9	
 10	
Myeloma Patient Sample Processing 11	
Patient bone marrow samples (BM) were processed as previously described	(66). Fresh 12	
de-identified primary myeloma patient BM samples were obtained from the UCSF 13	
Hematologic Malignancies Tissue Bank in accordance with the UCSF Committee on 14	
Human Research-approved protocols and the Declaration of Helsinki. BM mononuclear 15	
cells were isolated by density gradient centrifugation with Histopaque-1077 (Sigma 16	
Aldrich), and washed with 10 mL DPBS 3 times. For small molecule perturbation 17	
experiments, mononuclear cells were plated in IL-6 supplemented medium (RPMI1640, 18	
10% FBS, 1% penicillin/streptomycin, 2 mM glutamine, with 50ng/mL recombinant 19	
human Il-6 (ProSpec)) at 2e5 cells per well in a 96-well plate and incubated at 37°C, 5% 20	
CO2 overnight prior to drug treatment and processing for flow cytometry as described 21	
below. For mass spectrometry, isolated mononuclear cells were taken directly from 22	
histopaque isolation into CD138 magnetic bead isolation and surface glycoprotein 23	
labeling as described below.  24	
 25	
Flow Cytometry 26	
Cells were resuspended in FACS buffer (5% FBS in D-PBS) and stained with antibodies 27	
for 1-2 hours on ice, washed with FACS buffer, and then resuspended in FACS buffer. 28	
For experiments where live cells populations were studied, cells were resuspended in 29	
FACS buffer. For analyses including live/dead stains, cells were resuspended in FACS 30	
buffer containing Sytox Green or Sytox Red (Thermo). For drug treatment experiments, 31	
cells were plated into 96 well plates and treated for 48 hours with compounds unless 32	
otherwise noted. For quantitative flow cytometry, antibodies used were FITC Mouse anti-33	
human CD48 (BD Biosciences, clone TU145), FITC Mouse anti-human CD38 (BD 34	
Biosciences, clone HIT2), FITC Mouse IgG1k isotype control (BD Biosciences, clone 35	
27-35), and unstained respectively. using calibrated beads (Bangs Labortories), 200 µL of 36	
FACS buffer + 1 drop of beads per well (one wells for “blank” beads, and other for 37	
FITC-Beads). Calibration curve for quantification beads were performed on the 38	
Quantitative software QuickCal v2.3. (Bangs Laboratories, Inc.) before FITC analysis on 39	
multiple myeloma cell lines. The following antibodies were used: CD138 (BD 40	
Biosciences, 562097, 552026), BCMA (BD Biosciences, 552026, BioLegend 357504), 41	
CD53 (BD Biosciences, 555508), CD10 (BD Biosciences, 561002), CD151 (BD 42	
Biosciences, 556057), CD50/ICAM3 (BD Biosciences, 555958), ITGB7 (BD 43	
Biosciences, 555945), GITR/CD357 (BioLegend 311604), MUC1/CD227 (BD 44	
Biosciences, 559774), CCR10 (BD Biosciences, clone 1B5). Isotype antibodies for 45	
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markers were ordered from BD Biosciences and BioLegend as per manufacturer 1	
recommendations. 2	
 3	
Drug treatments  4	
For cell surface proteomics experiments, 25e6 cells were seeded at 1e6/mL in T75 flasks 5	
and treated with compounds for 48 hours at the LD25 dose. RPMI-8226 cells were treated 6	
with 50uM Lenalidomide (Sigma CDS022536), 7.5nM Bortezomib (SelleckChem), or 7	
300nM CB-5083 (gift of Cleave Biosciences). AMO1 cells were treated with 50uM 8	
Lenalidomide, 750nM JG-342 (gift of Jason Gestwicki, UCSF), or 250nM CB-5083. For 9	
flow cytometry experiments, cells were plated and treated in 96-well plates with the 10	
doses described in figure legends for 48 hours prior to flow cytometry analysis unless 11	
otherwise indicated.  12	
 13	
Cell surface proteomics sample preparation 14	
For all analyses except lenalidomide-resistant cell lines, 30e6 cells were collected for cell 15	
surface proteomics and washed twice with cold PBS. To oxidize glycoproteins, cells were 16	
incubated with 1.6mM Sodium metaperiodate (NaIO4) for 20 minutes with end-over-end 17	
rotation at 4°C in the dark, followed by three washes with ice cold PBS. To label 18	
oxidized glycoproteins, cells were incubated with 10mM Aniline and 1mM Biocytin 19	
hydrazide (Biotium, 90060) for 1.5 hours at 4°C with end-over-end rotation. Cells were 20	
washed three times with ice cold PBS, snap frozen in liquid nitrogen, and stored at -80C 21	
prior to processing. Pellets were lysed in 2x RIPA Buffer with HALT Protease Inhibitors 22	
(Thermo) and 2mM EDTA and sonicated on ice with occasional vortexing. Lysates were 23	
mixed with 500uL Neutravidin (Pierce, 29200) bead slurry and incubated on end over 24	
end rotary for 120 minutes at 4°C. Slurry was washed on columns with 50mLs each of 25	
three wash buffers as follows: first, 1x RIPA with 1mM EDTA, second, PBS with 1M 26	
NaCl, and third, 50mM ammonium bicarbonate with 2M Urea. Bead slurry was 27	
transferred to an eppendorf tube with 50mM Tris pH 8.5, 10mM TCEP, 20mM IAA, 28	
1.6M Urea. 2ug Trypsin was added to each sample for overnight digestion at RT. 29	
Supernatant contained digested peptides was removed from bead slurry and acidified (pH 30	
~2) prior to desalting on SOLA columns or homemade C18 Stagetips. Eluted peptides 31	
were dried down by speedvac and resuspended in 2% ACN, 0.1% FA for mass 32	
spectrometry analysis. For lenalidomide-resistant cell line analysis using SILAC, all cell 33	
lines were grown were cultured in RPMI SILAC media (Thermo) supplemented with 34	
Dialyzed FBS for SILAC (Thermo) containing L-[13C6,15N2]lysine and L-[13C6,15N4] 35	
arginine (heavy label; Thermo) or L-[12C6,14N2]lysine and L-[12C6,14N4]arginine (light 36	
label, Thermo) for 5 passages to ensure full incorporation of the isotope labeling on cells. 37	
Briefly, 40x106 Len sensitive and resistant cells were harvested at 80% confluence, 38	
mixed at 1:1 cell count ratio, and subjected to the CSC protocol as described above to 39	
include all tryptic fragments. All experiments were performed in duplicate in both 40	
forward and reverse SILAC labeling scheme such that a total of four biological replicates 41	
were analyzed together.	 42	
 43	
Macro-vs-Micro Cell Surface Proteomics 44	
AMO1 cells were counted and titrated into 3e7, 1e7, and 1e6 cells for cell-surface 45	
labeling. For harvesting, cells were washed twice with cold D-PBS (UCSF CCFAL001). 46	
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For cell-surface labeling, the samples were re-suspended in 990 μL cold D-PBS and 1	
transferred to a 1.5-mL amber tube. Next, they were oxidized by the addition of 10 μL 2	
160mM NaIO4 (Thermo 1379822) and incubated on a rotisserie at 4°C for 20 minutes. 3	
Three spin washes were performed each with 1 mL cold D-PBS at 300g for 5 minutes to 4	
remove the oxidizing reagent. For chemical labeling, cell pellets were re-suspended in 1 5	
mL cold D-PBS followed by the addition of 1 μL of aniline (Sigma-Aldrich 242284) and 6	
10 μL biocytin hydrazide (Biotium 90060). Samples were incubated at 4°C for 60 7	
minutes on a rotisserie followed by three more spin washes with cold D-PBS. After the 8	
final wash, supernatant was removed, and cell pellet were snap frozen and stored in -9	
80°C. Labeling was repeated for duplicate samples for the two protocols. 10	
 11	
For both micro and macro protocols, labeled cell pellets were lysed in 500 μL buffer 12	
containing 2X RIPA (Millipore 20-188), 1X HALT protease inhibitor (Thermo 78430), 13	
and 2 mM EDTA. Lysates were sonicated at 1-Hz pulses for 30 seconds with a probe 14	
sonicator and incubated on ice for 10 minutes. To remove precipitates, samples were 15	
spun at 17,200g for 10 minutes at 4°C. To prepare for enrichment of biotinylated 16	
proteins, 100, 80, 60 of High Capacity NeutrAvidin slurry (Thermo PI29204) were 17	
washed three times with 1 mL 2X RIPA/1mM EDTA buffer in 2-mL chromatography 18	
columns (Bio-Rad 7326008) attached to a vacuum manifold (Promega A7231). Clarified 19	
lysates were then transferred to the chromatography column (3e7, 1e7, 1e6 cell inputs 20	
into 100, 80, 60 slurry, respectively) and incubated at 4°C for 60 minutes on a rotisserie. 21	
For the macro protocol, protein-bound beads were transferred to a 10-mL 22	
chromatography column (Bio-Rad 7311550) and washed with the following buffers: 50 23	
mL 1x RIPA/1mM EDTA, 50 mL 1X PBS/1M NaCl, and 50 mL 2M urea/50mM 24	
ammonium bicarbonate (ABC). For the micro protocol, beads were transferred to a 2-mL 25	
chromatography column and washed with 5 mL of each buffer. For the macro protocol, 26	
rinsed beads were dried fully and transferred to a 1.5-mL tube using 100 μL of digestion 27	
buffer containing 1.5M urea (VWR 97063-798), 50mM ABC, 10 mM 2-chloroacetamide 28	
(VWR 97064-926), and 5mM TCEP (GoldBio TCEP10). For the micro protocol, P200-29	
StageTips were packed with four C18 disks (3M 14-386-2) and activated with 60 μL 30	
methanol, 60 μL 80% acetonitrile (ACN)/0.1% formic acid (FA), and twice with 60 μL 31	
0.1% trifluoroacetic acid (TFA) prior to transferring the beads to the tip using 100 μL of 32	
the digestion buffer. For protein digestion, trypsin/LysC (Promega PRV5073) was 33	
reconstituted to 1 μg/μL with ultrapure water, and added to each sample (1500, 500, 50 34	
ng trypsin for 3e7, 1e7, 1e6 cell inputs, respectively). The macro samples were mixed at 35	
1000 RPM on an orbital shaker while the micro samples were wrapped in parafilm and 36	
placed on an end-to-end rotisserie at RT for the overnight digestion. 37	
 38	
For the macro protocol, the soluble fraction containing the tryptic peptides was separated 39	
from the beads by spinning at 1000g for one minute. Samples were then transferred to 40	
fresh tube and acidified with 10% TFA to reach a final concentration of 1% TFA. For 41	
desalting, C18 SOLA columns (Thermo 03150391) were activated with 500 μL ACN and 42	
equilibrated twice with 500 μL 0.1% TFA on a vacuum manifold. Acidified samples were 43	
passed through the column twice followed by two washes with 1000 μL 0.1% TFA and 44	
one wash with 500 μL 2% ACN/0.1% FA. Finally, peptides were eluted once with 150 45	
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μL 80% ACN/0.1% FA and again with 200 μL 80% ACN/0.1% FA. Samples were fully 1	
dried by SpeedVac and stored in -80°C. 2	
 3	
For the micro protocol, 10% TFA was added to each sample to reach a final 4	
concentration of 1% TFA. An initial peptide binding step was performed by spinning the 5	
acidified samples at 1000g prior to desalting three times with 100 μL 0.1% TFA. Peptides 6	
were then eluted twice with 50 μL 80% ACN/0.1% FA. Samples were fully dried by 7	
SpeedVac and stored in -80°C. 8	
 9	
LC-MS/MS operation 10	
For all analyses except lenalidomide-resistant cell lines, 1 ug of peptides were injected 11	
into a Dionex Ultimate 3000 NanoRSLC instrument with 15-cm Acclaim PEPMAP C18 12	
(Thermo) reverse phase column coupled to a Thermo Q Exactive Plus mass spectrometer. 13	
A linear gradient from 2.4% Acetonitrile to 40% Acetonitrile in 0.1% Formic Acid over 14	
195 minutes at flow rate of 0.2uL/min was employed, with an increase to 80% 15	
Acetonitrile for column wash prior to re-equilibration. For MS1 acquisition, spectra were 16	
collected in data dependent top 15 method with full MS scan resolution of 70,000, AGC 17	
target was set to 3e6, and maximum IT set to 100ms. For MS2 acquisition, resolution was 18	
set to 17,500, AGC set to 5e4, and maximum IT to 180ms. For lenalidomide-resistant cell 19	
line analysis using SILAC, data were collected on the Q-Exactive Plus in data-dependent 20	
mode using a top 20 method with dynamic exclusion of 35 secs and a charge exclusion 21	
setting that only sample peptides with a charge of 2, 3, or 4. Survey scans were collected 22	
as profile data with a resolution of 140,000 (at 200 m/z), AGC target of 3E6, maximum 23	
injection time of 120 ms, and scan range of 400 - 1800 m/z. MS2 scans were collected as 24	
centroid data with a resolution of 17,500 (at 200 m/z), AGC target of 5E4, maximum 25	
injection time of 60 ms with normalized collision energy at 27, and an isolation window 26	
of 1.5 m/z with an isolation offset of 0.5 m/z. 27	
 28	
Proteomic data analysis and quantification 29	
For all analyses except lenalidomide-resistant cell lines, mass spectrometry data was 30	
processed in Maxquant (12) (version 1.6.2.1) with settings as follows: enzyme specificity 31	
as trypsin with up to two missed cleavages, PSM/Protein FDR 0.01, cysteine 32	
carbidomethylation as fixed modification, methionine oxidation and N-terminal 33	
acetylation as variable modifications,  minimum peptide length = 7, matching time 34	
window 0.7 min, alignment time 20 min, with match between runs, along with other 35	
default settings.  Data was searched against the Uniprot Swiss-Prot human proteome 36	
(downloaded Sept. 3, 2018). Proteingroups files were exported from Maxquant, filtered 37	
to remove contaminants, and filtered for proteins with at least two unique peptides for 38	
analysis. Data analysis was performed in Perseus (67) and R (69). Identified proteins 39	
were filtered against curated lists of Uniprot-annotated membrane proteins or those 40	
identified in the analysis of Bausch-Fluck et al. (10) (Supplementary Table 8).  41	

For lenalidomide-resistant cell line analysis using SILAC, peptide search for each 42	
individual dataset was performed using ProteinProspector (v5.13.2) against 20203 human 43	
proteins (Swiss-prot database, obtained March 5, 2015). Enzyme specificity was set to 44	
trypsin with up to two missed cleavage; cysteine carbamidomethyl was set as a fixed 45	
modification; methionine oxidation, lysine and arginine SILAC labels were set as 46	
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variable modifications; peptide mass tolerance was 6 ppm; fragment ion mass tolerance 1	
was 0.4 Da; peptide identification was filtered by peptide score of 0.0005 in Protein 2	
Prospector, resulting in a false discovery rate (FDR) of <1% calculated by number of 3	
decoy peptides included in the database.  4	

Quantitative data analysis was performed using Skyline (68) software with the 5	
MS1 filtering function. Specifically, spectral libraries from forward and reverse SILAC 6	
experiments were analyzed together such that MS1 features without an explicit peptide 7	
ID would be quantified based on aligned peptide retention time. The first four isotopic 8	
peaks of precursor ions were then quantified at 50% FWHM defined by ms1 scanning 9	
resolution of 140,000 (at 200 m/z). The boundary of peptide elution time was determined 10	
by default algorithm and the total peak area was used as the peptide quantification value. 11	
An isotope dot product of at least 0.8 (as calculated by Skyline) was used to filter out low 12	
quality peptide quantification, and a custom report was generated for further processing 13	
and analysis using R. To ensure stringent quantification of the surface proteome, several 14	
filters were applied to eliminate low confidence protein identifications. In the tryptic 15	
fraction, only peptides with five or more well quantified peptides were included. Each 16	
replicate between individual fractions or reverse SILAC labeling agreed with each other, 17	
and forward and reverse SILAC datasets were then combined and reported as median 18	
log2 enrichment values. All p values reported is Wilcox ranked test for median log2 19	
enrichment SILAC ratio. All data analyses were carried out using R. 20	
 21	
Cell Surface Proteomics on Primary Myeloma Cells 22	
CD138+ myeloma cells were isolated from patient peripheral blood using a magnetic 23	
bead-based approach (EasySep Human CD138 Positive Selection Kit, StemCell 24	
Technologies 17877). The CD138+ -enriched sample was titrated into 2.5e7, 1e7, 5e6, 25	
1e6, 5e5, 3e5, 1e5 cells for cell-surface labeling and processed to obtain surface peptides 26	
using the micro protocol described above. 27	
 28	
CD53 Immunohistochemistry 29	
Decalcified bone marrow core biopsies were obtained from myeloma patients under a 30	
UCSF Committee on Human Research-approved protocol. The electronic medical record 31	
was evaluated to identify sequential core biopsies performed on the same patient at both 32	
diagnosis and at first relapse. Interpretation was performed by two hematopathologists 33	
(S.P. and E.R.) blinded to patient identification and relapse status. Final H-score was 34	
averaged between pathologists. CD53 staining was assessed on cells with morphology 35	
consistent with plasma cells and CD138+ staining on adjacent tissue sections. 36	
 For immunohistochemical staining, tissues were fixed in neutral buffered 10% 37	
formalin for 24 to 48h, dehydrated with graded alcohols and infiltrated with paraffin wax 38	
at 58 degrees in an automated tissue processor. Infiltrated tissue was embedded at 60C to 39	
produce FFPE blocks. FFPE blocks were sectioned at 4 microns. Immunohistochemical 40	
detection on the unstained FFPE tissue sections was performed on Ventana Medical 41	
Systems Discovery Ultra Biomarker Automated Slide Preparation System using alkaline 42	
epitope conditioning (Ventana/Roche CC1) at 97C for 32 minutes. Recombinant rabbit 43	
monoclonal (clone EPR4342(2) directed to CD53 supplied by Abcam (ab134094) used at 44	
1:200 for 32 minutes at 36C. OmniMap anti-Rb HRP (Ventana 760-4311) was used for 45	
chromogenic DAB detection (32 minutes). 46	
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 1	
Bioinformatic Analysis of “Locking on” and standalone immunotherapy targets 2	

For “locking on” analysis, LFQ intensity averages, quartiles, and standard 3	
deviation were calculated based on information in Supplementary Dataset 1. The 14 4	
potential locking-on targets were compared to transcript levels in 5	
MMRF_CoMMpass_IA16a_E74GTF_cufflinks_Gene_FPKM data set.  6	

For standalone immunotherapy targets, the scoring rubric used is described in 7	
Supplementary Table 1. For COMPARTMENTS predictions of subcellular localization, 8	
the data set used was “human_compartment_integrated_full.tsv”, available on 9	
https://compartments.jensenlab.org/Downloads and accessed on August 27, 2020. The 10	
CCLE database used for this analysis was: 11	
“CCLE_RNAseq_rsem_genes_tpm_20180929.txt” and accessed on June 25, 2020. 12	
Available on https://portals.broadinstitute.org/ccle/data. For the points assignment, a 13	
TPM average values was taken and a non-heme cancer cell line average was calculated. 14	
Also, the values from each disease were transformed into log2 values (and the nonheme 15	
averages).  The nonheme diseases were: Bile Duct, Breast, Chondrosarcoma Colorectal, 16	
Endometrium, Esophagus, Ewings Sarcoma, Giant cell tumor, Glioma, Kidney, Liver, 17	
Lung NSC, Lung small cell, Medulloblastoma, Melanoma, Mesotelioma, Neuroblastoma, 18	
Osteosarcoma, Other, Ovary, Pancreas, Prostate, Soft Tissue, Stomach, Thyroid, Upper 19	
Aerodigestive, Urinary Tract. The genes where Multiple myeloma were highest 20	
expressed compared to the other diseases were selected and compared to the average 21	
value in non-heme tissues. For Human Blood Atlas analysis, the database used was 22	
“rna_blood_cell_monaco.tsv” available in the Human Protein Atlas portal 23	
https://www.proteinatlas.org/about/download. Accessed on August 27, 2020.  24	
For GTEx analysis, the dataset used was “GTEx_Analysis_2017-06-25	
05_v8_RNASeQCv1.1.9_gene_median_tpm.gct”, accesed on July 16, 2020 and available 26	
on https://gtexportal.org/home/datasets. The ESNG gen names were transformed into 27	
HUGO nomenclature using gprofiler2 package in RStudio (https://CRAN.R-28	
project.org/package=gprofiler2). We calculated a non-heme tissue average and a heme 29	
tissue average. The non-heme tissues were: Adipose Subcutaneous, Adipose Visceral 30	
Omentum, Adrenal Gland, Artery Aorta, Artery Coronary, Artery Tibial, Bladder, Brain 31	
Amygdala, Brain Caudate basal ganglia, Brain Cerebellar Hemisphere, Brain 32	
Cerebellum,  Brain Cortex, Brain Frontal Cortex BA9, Brain Hippocampus, Brain 33	
Hypothalamus,  Brain Nucleus accumbens basal ganglia, Brain Putamen basal ganglia, 34	
Brain Spinal cord cervical c1, Brain Substantia nigra, Breast Mammary Tissue, Cells 35	
Cultured fibroblasts , Cervix Ectocervix, Cervix Endocervix , Colon Sigmoid, Colon 36	
Transverse, Esophagus Gastroesophageal Junction, Esophagus Mucosa, Esophagus 37	
Muscularis,  Fallopian Tube, Heart Atrial Appendage , Heart Left Ventricle, Kidney 38	
Cortex, Kidney Medulla,  Liver, Lung, Minor Salivary Gland, Muscle Skeletal, Nerve 39	
Tibial, Ovary, Pancreas, Pituitary, Prostate, Skin Not Sun Exposed Suprapubic, Skin Sun 40	
Exposed Lower leg, Small Intestine Terminal Ileum, Skin Sun Exposed Lower leg, Small 41	
Intestine Terminal Ileum, Stomach, Testis, Thyroid, Uterus, and Vagina. The heme 42	
tissues included were Cells-EBV transformed lymphocytes, Spleen, and Whole Blood. 43	

In the end, we merged these 5 data sets, matching by Gene Name, using the 44	
controls mentioned above (used across all the process to verify reliability), for 33654 45	
proteins scored in total. The final data set were created with all the points assigned across 46	
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all the data set, creating a total score which is the sum of the prior points. Then, the 1	
proteins were ranked by the higher score in a descending manner (see Supplementary 2	
Dataset 2).   3	
 4	
Data Availability 5	
Proteomic data generated in this study was deposited to ProteomeXchange via the PRIDE 6	
database (69, 70) (PXD022482, PXD022553). Leukemia proteomic data was downloaded 7	
from PRIDE (PXD016800). RNA sequencing data generated in this study was uploaded 8	
to GEO (GSE160572). Processed leukemia RNA sequencing data was downloaded from 9	
GEO (GSE142447). 10	
 11	
 12	
 13	
 14	
 15	
 16	

  17	
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FIGURES and FIGURE LEGENDS 1	

 2	
Figure 1. Initial elucidation of the myeloma plasma cell “surfaceome”. A. Overall 3	
schematic of surface proteomic investigations in this study. This includes a description of 4	
the modified cell surface capture (CSC) methodology used, with biotinylated proteins 5	
identified after on-bead trypsinization. B. Upset plot shows high degree of overlap in 6	
identified glycoproteins across the four evaluated myeloma cell lines. Data included if 7	
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identified with two peptides in at least one of three biological replicate per cell line. C. 1	
Common myeloma diagnostic markers and immunotherapeutic targets were identified by 2	
cell surface proteomics in all four evaluated cell lines. Height of column indicates label-3	
free quantification (LFQ) intensity from MaxQuant, averaged across replicate samples. A 4	
threshold of LFQ = 25 is indicated by grey line. D. Principal Component Analysis (PCA) 5	
illustrates the differential cell surface landscape of myeloma plasma cells versus B-6	
lymphoblastoid cells and B-cell acute lymphoblastic leukemia cell lines. BtzR and CfzR 7	
are bortezomib and carfilzomib resistant cells (n = 2 or 3 biological replicates per cell 8	
line, except for RPMI-BtzR). E. Volcano plot comparing glycoprotein LFQ intensity of 9	
four myeloma cell lines to eight B-ALL cell lines. Significantly changed proteins labeled 10	
in blue (log2-fold change >|1|; p < 0.05).  11	
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 1	

 2	
Figure 2. Immunotherapeutically targeting the myeloma cell surfaceome. A. Outline 3	
of a five-criteria scoring strategy, integrating surface proteomics data here with publicly-4	
available mRNA transcriptome data, to propose new targets for possible antigen-specific 5	
immunotherapies in myeloma (see Methods for details). We specifically point out surface 6	
proteins with the highest scores among the total 33,654 analyzed (see Supplementary 7	
Table 1 for scoring rubric; maximum score = 19). B. Schematic illustrating the concept 8	
of using a high-abundance, “locking on” antigen to tune CAR-T activation via increased 9	
avidity. C. Distribution of mass spectrometric intensity (label-free quantification (LFQ) 10	
from MaxQuant) of all glycoproteins quantified in our proteomic data; intensity is 11	
averaged across all four analyzed cell lines. D. Bioinformatic strategy to nominate 12	
possible high-abundance “locking on” antigens. E. Plot displaying the average LFQ 13	
intensity across cell lines of proteins >2 S.D. above the mean (C) versus average unique 14	
peptides identified in each line. F. Absolute quantification by flow cytometry for CD38 15	
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and CD48 antigen density across 3 myeloma cell lines (MM.1S, OPM-2, AMO-1) and 1	
CD138+/CD19- myeloma tumor cells from 5 primary patient bone marrow specimens. 2	
Box plot shows median and interquartile range of surface antigen density. p-value by t-3	
test. (A) and (B) created with BioRender. 4	
  5	
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 1	
Figure 3. Defining a myeloma surface signature of proteasome inhibitor resistance. 2	
A. Cell surface proteomics was performed on evolved bortezomib-resistant (BtzR) and 3	
carfilzomib resistant (CfzR) myeloma cell lines (AMO-1 BtzR (n = 3); AMO1 CfzR (n = 4	
3), L363 BtzR (n = 2), L363 CfzR (n = 3), RPMI-8226 BtzR (n = 1)) and aggregated in 5	
comparison to wild-type cell lines (AMO1 (n = 3), L363 (n = 2), RPMI-8226 (n = 1)). 6	
Significantly changed proteins in PI-resistant lines shown in blue (log2-fold change >|1|; 7	
p < 0.05). B. Validation by flow cytometry of most-changed surface proteins in AMO-1 8	
cells. C. mRNA data in the MMRF CoMMpass database (Release IA14) from paired 9	
diagnosis and first-relapse tumor cells (n = 50), where all patients had received a PI as 10	
part of their induction regimen. These transcriptome findings in patient samples are 11	
consistent with top hits in our cell line studies, and suggest these transcript changes are 12	
driven by Btz resistance. p-value by t-test. D. Immunohistochemistry for CD53 on 13	
myeloma plasma cells in bone marrow core biopsies from UCSF patients before and after 14	
Btz treatment (n = 13) is also consistent with protein-level decrease. H-scoring (see 15	
Methods) averaged from two independent hematopathologists (E.R. and S.P.). p-value by 16	
t-test. 17	
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 1	

 2	
Figure 4. Surface proteomic signatures of lenalidomide resistance. A. In vitro-3	
evolved lenalidomide-resistant H929 and OPM-2 lines were analyzed by cell surface 4	
proteomics with comparison to parental lines by SILAC quantification (n = 4; heavy and 5	
light channels swapped for two replicates each). Significantly-changed proteins in blue 6	
(log2-fold change >|1|; p < 0.05), with only CD33 and PTPRC/CD45 showing common 7	
changes between the two lines B. MMRF CoMMpass patient transcript data confirms 8	
significant increase in CD33 and PTPRC at first relapse versus diagnosis, suggesting that 9	
increases in these surface proteins is driven by IMiD resistance. 10	
  11	
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 1	
Figure 5. Characterizing myeloma surface proteomic changes in response to acute 2	
drug treatment. A. Correlation in surface proteomic profile between acute Btz treatment 3	
in RPMI-8226 cells (7.5 nM, 48 hrs, n = 3) vs. DMSO (n = 4) and aggregate BtzR cell 4	
line data (as in Fig. 3A) vs. parental. Common changes are observed in some 5	
downregulated surface proteins but no significant overall correlation is observed. B. 6	
Volcano plot of RPMI-8226 cells treated for 48 hr with 7.5 nM bortezomib, highlighting 7	
significantly changed proteins (log2-fold change >|1|; p < 0.05 in blue). C. Similar plot as 8	
in B., for 48 hour treatment with 50 µM Lenalidomide in AMO-1 cells. D. Validation of 9	
increase in surface MUC1 in plasma cells in response to 25 µM Lenalidomide treatment, 10	
in both AMO-1, AMO-1 BtzR, and two primary patient bone marrow aspirates (selected 11	
on CD138+ plasma cells). 12	
  13	
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 1	

 2	
Figure 6. “Micro” protocol for cell surface proteomics. A. Schematic of “micro” 3	
sample preparation method using an In-StageTip approach for all steps after surface 4	
glycoprotein biotinylation on live cells. B. Quantitative comparison of LFQ intensity for 5	
identified proteins using 30e6 cells in the standard, “macro” protocol, versus 1e6 cells 6	
using our “micro” protocol. LFQ values averaged from n = 2 biological replicates per 7	
preparation method; performed with RS4;11 B-ALL cells. C. The micro method 8	
demonstrates excellent reproducibility across both biological replicates at 1e6 cell input. 9	
D. Total number of glycoproteins identified using the “micro” method at various cell 10	
inputs, on CD138+ tumor cells isolated from a relapsed/refractory myeloma patient with 11	
a malignant pleural effusion. E. Cell surface protein intensities in the 25e6 input 12	
condition from (D). The large majority of antigens we point out in this work as possibly 13	
clinically relevant are also detected in the primary patient samples; several exceptions 14	
include CCR10, which as a GPCR likely is not captured efficiently enough to be found 15	
by proteomics on this primary sample, CD10, and CD33. 16	
  17	
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 1	

SUPPLEMENTARY FIGURES and LEGENDS 2	

 3	
Supplementary Figure 1. Additional characterization of the baseline myeloma 4	
surfaceome. A. Quantified captured proteins (minimum 2 peptides per protein) filtered 5	
based on highest-confidence plasma membrane localization, from ref.	(10). B. All genes 6	
expressed at mRNA level TPM > 1 in the four analyzed cell lines included (per data 7	
available at keatslab.org) were filtered by Uniprot annotation for different protein classes. 8	
We then evaluated which fraction were detected by our cell surface capture experiments. 9	
For example, in this data we identify 45% of Cluster of Differentiation (CD) markers 10	
predicted to be present on myeloma cells based on mRNA expression, but only 6% of 11	
GPCRs. C. Analogous to Fig. 1E, we compared our myeloma surface profiles across 12	
myeloma lines (AMO1, L363, RPMI-8226, and KMS12PE) to the two B-lymphoblastoid 13	
lines examined (ARH-77 and EBV-immortalized normal donor-derived) to identify 14	
markers that most-distinguish plasma cells. Significantly-changed proteins noted in blue 15	
(log2-fold change >|1|; p < 0.05). D. RNA-seq data on B-ALL and myeloma cell lines (as 16	
in Fig. 1E) was also analyzed for log2-fold changes between cell types and compared to 17	
log2-fold changes from proteomics. This analysis identifies proteins that may be under 18	
post-transcriptional regulation of surface expression, particularly with significant 19	
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increases in mRNA but no detected change in captured protein. Proteins labeled in blue 1	
identical to those found to be significant in volcano plot of Fig. 1E. Pearson correlation 2	
and associated p-value of significance shown. 3	
  4	
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 1	
Supplementary Figure 2. Additional characterization of CCR10 and TXNDC11 as 2	
potential myeloma immunotherapy targets. A. mRNA transcript data from the Human 3	
Blood Atlas (top) demonstrates that among hematopoietic cells CCR10 is most highly 4	
expressed in plasmablasts (we note that long-lived plasma cells are unfortunately not 5	
included in this dataset; plasmablasts used as closest proxy). Cancer Cell Line 6	
Encyclopedia (CCLE) (middle) data supports that on average myeloma cell lines express 7	
>20x more CCR10 mRNA than any other tumor cell type. GTex (bottom) data does 8	
suggest some low level CCR10 expression in non-hematopoietic tissues; B-lymphoblast 9	
expression can be compared to memory B-cell expression in the Human Blood Atlas. 10	
Plasmablast expression is therefore expected to be at least 20x higher than other non-11	
hematopoietic tissues, supportive of a therapeutic index.  B. Flow cytometry analysis 12	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.17.427038doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.17.427038


	 42	

confirms significantly higher CCR10 expression on myeloma plasma cells (OPM-2, 1	
MM.1S, ANBL-6, AMO-1) than B-cell malignancy cell lines (SEM, RS411 (B-ALL), 2	
HBL-1, OCI-LY10, TOLEDO (B-cell lymphoma)), with similar increase as seen for 3	
BCMA. Analysis of a primary patient plasma cell (CD19-/CD138+/CD38+) specimen 4	
confirms CCR10 expression (top right).  C. Similar analysis as in A., illustrating highly 5	
enriched TXNDC11 expression on plasmablasts, highly increased expression in myeloma 6	
plasma cells versus any other cancer cell type in the CCLE, and moderate expression in 7	
other non-hematopoietic tissues. D. Data from the Cancer Dependency Map 8	
(depmap.org; Avana Public 20Q3) indicate that myeloma cell lines are among the most 9	
genetically dependent on CRISPR deletion of this gene, as noted by lowest CERES score 10	
when averaged across all included tumor cell lines.  11	
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 1	
Supplementary Figure 3. Additional characterization of high abundance surface 2	
antigens for a potential “locking on” strategy. A. Plot of “locking on” candidate (as in 3	
Fig. 2D) transcript expression in GTex suggests that most genes have significant 4	
expression in non-hematopoietic tissues, with the exception of CD38 and CD48. B. 5	
mRNA expression of all genes corresponding to proteins identified in our surface 6	
proteomic datasets were ranked according to average abundance (measured in TPM) in 7	
both cell lines (keatslab.org dataset) and primary CD138+ tumor cells (MMRF 8	
CoMMpass release IA15). Potential “locking on” candidates are highlighted. C. CCLE 9	
data highlights that myeloma cell lines express the highest average CD48 mRNA, 10	
whereas several other hematopoietic malignancy cell types express greater CD38 than 11	
myeloma cells. These data also confirm that non-hematopoietic cells do not appear to 12	
express these antigens. D. Illustration of flow cytometry gating strategy to identify 13	
primary patient tumor cells for use in absolute quantification of CD38 and CD48. 14	
Mononuclear cells in patient bone marrow aspirate were gated on singlet, live 15	
lymphocytes in the SSC/FSC plot and then characterized as CD138+/CD19- plasma cells. 16	
  17	
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 1	
Supplementary Figure 4. Additional characterization of surface biomarkers of 2	
myeloma drug resistance. A-B. Dose response curves for RPMI-8226 WT, BtzR, and 3	
CfzR evolved resistance lines treated with Btz (A) or Cfz (B) for 48 hours. C-D. 4	
Analogous to Fig. 3A, we display aggregate data of carfilzomib (C) or bortezomib (D) 5	
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evolved resistant cell lines (CfzR and BtzR, respectively) versus their parental 1	
counterpart. Consistent with prior findings (35), we note that MDR1 is by far the most 2	
highly-upregulated surface protein in CfzR lines. Significantly-changed proteins noted in 3	
blue (log2-fold change >|1|; p < 0.05). E. Surface proteome-transcriptome comparison of 4	
BtzR AMO-1 vs. parental AMO-1 cells shows positive but relatively weak correlation 5	
(Pearson correlation and associated p-value shown). F. Flow cytometry confirms surface 6	
proteomic alterations in PI-resistant RPMI-8226 cells as also seen in AMO-1 cells (Fig. 7	
3B). G. MMRF CoMMpass (Release IA10) overall survival data for tumor mRNA 8	
expression of noted putative PI-resistance biomarkers, separated by top (red) and bottom 9	
(green) half of expression. p-value by log-rank test. H. CD33 is predicted to be expressed 10	
at far lower levels on plasmablasts (used as a proxy for plasma cells) than on normal 11	
myeloid lineage cells per data in the Human Blood Atlas (top), and myeloma cell lines 12	
express far less CD33 than AML cell lines in the CCLE (bottom).  13	
  14	
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 1	
Supplementary Figure 5. Probing myeloma surfaceome effects of acute drug 2	
treatment. A. MM.1S cells treated with 2.5 nM Btz for 48 hours show a decrease in 3	
surface BCMA as measured by flow cytometry, while treatment with 250nM CB-5083 4	
for 48 hours shows no change. B. Quantification of results in (A) using median 5	
fluorescence intensity (n=2). C. RPMI-8226 cells treated with 25 µM Len show increase 6	
in GITR (n = 2). D-G. Profiling of RPMI-8226 cells treated with 50 µM Len for 48 hours 7	
(D), or 300 nM CB-5083 for 48 hours (E), and AMO1 cells treated with 250 nM CB-8	
5083 for 48 hours (F), or 750 nM JG-342 for 48 hours (G) shows remodeling of the 9	
surface proteome (n = 3).  H. Mean of protein absolute value change for 48 hour 10	
perturbations vs. DMSO for RPMI (Lenalidomide, Bortezomib, CB-5083) and AMO1 11	
(Lenalidomide, CB-5083, JG342). Proteins on the right side of the distribution show the 12	
greatest variability across drug treatments while those on the left side show the least 13	
variability. 14	
 15	
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 1	
Supplementary Figure 6. “Micro” method application to myeloma cell lines and 2	
primary sample. A. Surface protein identifications of the “micro” method applied to 3	
AMO1 myeloma cells, across a range of cell inputs, show less advantage over the 4	
standard “macro” method than initially found on RS4;11 B-ALL cells (Fig. 6B). B. 5	
Quantitative comparison of identified surface proteins (by LFQ intensity) in the assessed 6	
primary sample (x-axis) versus averaged over the four profiled myeloma cell lines (y-7	
axis). We note very few proteins identified in the primary sample were not found in the 8	
assessed cell lines (i.e. few points with quantified LFQ intensity in the primary sample 9	
but 0 in cell lines). Many more proteins were identified in cell lines but not in the primary 10	
sample; however, this finding cannot determine whether these proteins are not truly 11	
expressed in the primary sample at all or were just unquantified due to lower overall 12	
proteomic coverage. Pearson correlation R value reported.  13	
 14	

  15	
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SUPPLEMENTARY TABLE 1 1	
 2	

Dataset 5 points 4 points 3 points 2 points 1 point 0 points 
Myeloma surface 
proteomics (this 
study) 

  Identified in 
aggregate 
proteomic 
dataset* 

  Not identified 
in aggregate 
proteomic 
dataset 

COMPARTMENTS 
(subcellular 
localization 
prediction) 

  Highest-
confidence 
prediction at 
plasma 
membrane 

 Low-
confidence 
prediction of 
plasma 
membrane 
localization 

No predicted 
localization to 
plasma 
membrane 

Cancer Cell Line 
Encyclopedia 

Highest 
expression in 
myeloma 
cells, with 
>16-fold (4-
fold on log2 
scale) greater 
average 
expression  
than average 
in non-
hematopoietic 
tumor types** 

 Highest 
expression 
in myeloma 
cells, but 
not meeting 
>16-fold 
threshold 

Myeloma cell 
lines within 
top 5 most 
highly-
expressing 
tumor cell 
types 

Expressed 
in myeloma 
cells but not 
highly 
compared 
to other 
tumor types 

Not expressed 
in myeloma 
cells 

Human Blood 
Atlas (Monaco et 
al. dataset) 

 At least 10-
fold higher 
expression  
in 
plasmablast
s*** than 
any NK 
cells, T-cell, 
or myeloid 
cell type 

 Highest 
expression in 
plasmablasts 
but not 
meeting >10-
fold criteria 

 Expressed but 
no enrichment 
in 
plasmablasts 
vs. other 
hematopoietic 
cells 

Genotype Tissue 
Expression (GTex) 
project 

 Average 
TPM in non-
hematopoieti
c tissues**** 
<5 

 Average 
TPM in non-
hematopoieti
c tissues<50 

 Average TPM 
in non-
hematopoietic 
tissues >50 

 3	
Supplementary Table 1. Scoring rubric to determine potential myeloma surface 4	
antigens for immunotherapeutic targeting. Assigned points based on perceived 5	
subjective importance to success of an immunotherapeutic strategy versus a specific 6	
antigen.  Maximum possible score = 19. 7	
*Aggregate dataset includes cell surface capture proteomics on wild-type (RPMI-8226, 8	
AMO-1, L363, and KMS12-PE cells. 9	
**Non-hematopoietic cell types include all except “multiple_myeloma”, “B-10	
cell_lymphoma_other”, “lymphoma_Burkitt”, “lymphoma_DLBCL”, “B-cell_ALL”, “T-11	
cell_ALL”, “leukemia_other”, “T-cell_lymphoma_other”, “AML”, “CML”, 12	
“lymphoma_Hodgkin”. 13	
***plasmablasts are used as a proxy for plasma cells as long-lived plasma cells are not 14	
analyzed as part of this dataset 15	
****non-hematopoietic tissues include all except “Cells – EBV-transformed 16	
lymphocytes”, “spleen”, and “whole blood”. 17	
 18	
  19	
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SUPPLEMENTARY DATASET LEGENDS 1	

 2	

Supplementary Dataset 1. Mass spectrometry on Myeloma, B-lymphoblast, and 3	

Leukemia cell lines.  4	

 5	

Supplementary Dataset 2. Output of ranking metrics for myeloma immunotherapy 6	

targets 7	

 8	

Supplementary Dataset 3. Mass spectrometry on Proteasome-inhibitor resistant and 9	

WT Myeloma cell lines.  10	

 11	

Supplementary Dataset 4. RNA sequencing on Proteasome-inhibitor resistant and 12	

WT Myeloma cell lines.  13	

 14	

Supplementary Dataset 5. Mass spectrometry on Myeloma cell lines treated with 15	

small molecule inhibitors.  16	

 17	

Supplementary Dataset 6. Mass spectrometry on primary patient sample using 18	

“micro” method. 19	

 20	

Supplementary Dataset 7. Mass Spectrometry on Lenalidomide resistant and WT 21	

MM cell lines.  22	

 23	

Supplementary Dataset 8. Membrane Protein lists use for filtering and data 24	

analysis.  25	

 26	

 27	
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