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Abstract 
Motivation: In single cell analyses, cell types are conventionally identified based on known marker 

gene expressions. Such approaches are time-consuming and irreproducible. Therefore, many new 

supervised methods have been developed to identify cell types for target datasets using the rapid 

accumulation of public datasets. However, these approaches are sensitive to batch effects or biological 

variations since the data distributions are different in cross-platforms or species predictions. 

Results: We developed scAdapt, a virtual adversarial domain adaptation network to transfer cell labels 

between datasets with batch effects. scAdapt used both the labeled source and unlabeled target data 

to train an enhanced classifier, and aligned the labeled source centroid and pseudo-labeled target 

centroid to generate a joint embedding. We demonstrate that scAdapt outperforms existing methods 

for classification in simulated, cross-platforms, cross-species, and spatial transcriptomic datasets. 

Further quantitative evaluations and visualizations for the aligned embeddings confirm the superiority 

in cell mixing and preserving discriminative cluster structure present in the original datasets.  

Availability: https://github.com/zhoux85/scAdapt. 
Contact: yangyd25@mail.sysu.edu.cn or luojinx5@mail.sysu.edu.cn 

 

1 Introduction  

Single-cell RNA-seq technologies have been successfully employed to 

generate high resolution cell atlas and to improve our understanding of 

cellular heterogeneity in human diseases. One major step of single-cell 

RNA sequencing (scRNA-seq) analyses is cell type identification 

(Lahnemann, et al., 2020). Typically, cells are first grouped into different 

clusters, and each cell cluster will be manually assigned to one label based 

on the uniquely high expression levels of canonical makers. Nevertheless,  

visual inspection of cluster-specific gene is labor intensive in practice and 

irreproducible, and the assignments of cell types require expert knowledge 

of canonical makers (Luecken and Theis, 2019).  Thus, it’s necessary to 

develop automated computational methods for cell annotations. 

A growing list of classification methods have been developed to 

annotate cells based on public data of known cell types (Abdelaal, et al., 

2019). The most typical methods are similarity-based methods that assign 

cell labels through scanning reference cell databases for similar cells. For 

example, SingleR (Aran, et al., 2019), and CHETAH (de Kanter, et al., 

2019) used Spearman correlation for similarity measurement. The scmap 

(Kiselev, et al., 2018) combines three metrics, cosine distance, Pearson 

correlation, and Spearman correlation, to quantify the closeness between 

query cell and the centroid of each reference cell cluster. Though these 

methods are robust, they cannot reflect the complex non-linear relations 

between genes. To overcome this issue, the machine-learning based 

methods are proposed to train models on the reference dataset and to use 

the trained models for predicting cell labels. For example, scPred 

(Alquicira-Hernandez, et al., 2019) takes advantage of singular value 

decomposition to obtain small number of informative features and uses 

the features to train a support vector machine (SVM) model. In 

singleCellNet (Tan and Cahan, 2019), the reference data are pair-

transformed into binary matrix that is then used to train a Random Forest 

classifier. Seurat (Stuart, et al., 2019) identifies anchoring cell pairs by 

projecting query cells onto precomputed reference principal component 

analysis (PCA) structure and used these anchors to train a weighted vote 

classifier for cell annotation. However, machine learning techniques 

applicable to test sets following the same distribution as the training set 

(Ganin and Lempitsky, 2015), and thus do not always work well on single 

cell data due to batch effects or biological factors (e.g. treatments, 

individuals, species) difference between datasets. 

 To solve the distribution mismatch between samples, many methods 

have been proposed to align cell distribution, such as fastMNN 

(Haghverdi, et al., 2018), Harmony (Korsunsky, et al., 2019), LIGER 

(Welch, et al., 2019). However, most of these methods do not support label 
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prediction, and other cell annotation tools such as singleCellNet and 

SingleR running on the aligned data didn’t show much improvement due 

to the transformation of gene expression according to previous benchmark 

analyses (Abdelaal, et al., 2019; Huang, et al., 2020). Seurat is the only 

method to support a joint batch effect removal and cell annotation. When 

the batch difference is obvious, Seurat has the option to learn an aligned 

subspace across datasets using canonical correlation analysis (CCA) 

instead of PCA, where anchors are identified for classification. Although 

taking batch difference into consideration and showing improvement in 

practice, Seurat suffers from two limitations. First, the integration is 

unsupervised without effectively using the cell-type information in 

reference data for aligning cell clusters, and it may mismatch cells of 

different cell types across datasets. Second, since distribution-alignment 

and label projection are optimized independently, the features for sample 

alignment are not optimal for cell classification. Therefore, it should be 

beneficial to combine sample alignment and cell annotation in one step.  

In computer vision community, domain alignment and classifier 

training can be joint performed through domain adaptation network that 

has been shown to enhance the generalization of the classification model 

(Wang and Deng, 2018). A typical domain adaptation framework is to 

reduce the distribution mismatch of the latent feature via domain 

adversarial learning (Ganin and Lempitsky, 2015). It can also be readily 

applied to the scenario of cross-batch single cell annotation, where 

scRNA-seq data from different batches are considered as different 

domains (Ge, et al., 2020). On the other hand, semi-supervised learning 

(SSL), can leverage additional information from the unlabeled data to 

better estimate the decision boundary between the different classes, and 

thus improves the classifier’s accuracy (Ouali, et al., 2020). SSL can also 

be used to alleviate the adverse impact of domain discrepancy by training 

the classifier on labeled source and unlabeled target data jointly (Cui, et 

al., 2020). Virtual adversarial training (VAT) has been widely used in 

many SSL tasks and achieves state-of-the-art performance (Miyato, et al., 

2018). It can enhance classifier’s robustness with respect to random and 

local perturbations or noises in the inputs. 

Combining domain adaptation and VAT-based semi-supervised 

learning, we developed scAdapt, to make use of both labeled source and 

unlabeled target data for improving classification performance. Here, our 

domain adaptation network includes not only the adversary-based global 

distribution alignment, but also category-level alignment (Xie, et al., 2018) 

to preserve the discriminative structures of cell clusters in low dimensional 

feature (i.e., embedding) space. We demonstrate that scAdapt compares 

favorably to existing methods for classification and batch correction in 

simulated, cross-platforms, cross-species, and spatial transcriptomic 

datasets. Further quantitative evaluations and visualizations for the 

aligned embeddings confirm the superiority in cell mixing and preserving 

discriminative cluster structure present in the original datasets.  

2 Methods 

2.1 Datasets and preprocessing 

Simulated data: We used the R package “Splatter” (Zappia, et al., 2017) 

to generate simulated scRNA-seq counts data of different batches with 

similar cell type compositions. We simulated two batches with 2000 and 

1000 cells considered as source and target dataset, respectively, and each 

cell has 10000 genes. Each batch was uniformly split into four cell groups 

with cell proportion set to 0.25 by the parameter group.prob. To simulate 

datasets with different magnitudes of batch effects, we adjusted the batch 

parameter batch.facLoc and batch.facScale with increasing values [0.2, 

0.4, 0.6, 0.8, 1.0] where larger values corresponding to stronger batch 

effects. For brevity, we set batch.facLoc = batch.facScale. To simulate 

datasets with different magnitudes of clustering difficulty, we set the 

parameter de.fracScale to 0.2 for simulated datasets with weak clustering 

signal and 0.3 for simulated datasets with strong clustering signal. 

Simulation were run five times with different random seeds and average 

results were reported. For other parameters, default values were used 

unless otherwise specified.  

Cross-platforms datasets: The human Peripheral Blood Mononuclear 

Cells (PBMC) scRNA-seq data were retrieved directly from the 

SeuratData package with dataset name “pbmcsca” (Ding, et al., 2019). The 

data consists of seven batches from seven different sequencing platforms. 

We removed the cells annotated as “Unknown” and the resulting datasets 

contains a total of 30975 cells and each cell has 33694 genes. We 

combined the data from the 10x Chromium (v2) and 10x Chromium (v3) 

platform as source data and the rest five platforms: CEL-Seq2 (CL), Drop-

seq (DR), inDrop (iD), Smart-seq2 (SM2), Seq-Well (SW) as target data. 

As a result, we have five pairs of cross-platform datasets: 10x-CL, 10x-

DR, 10x-iD, 10x-SM2, 10x-SW. For all the datasets, raw counts were 

extracted from the Seurat object for further processing. 

Cross-species datasets: The human and mouse pancreas data were 

downloaded from SingleCellNet GitHub page where five ready-to-use 

datasets are provided. For data batch generated by Baron, Segerstolpe and 

Tabula Muris cell atlas, raw counts are provided for further processing. 

For datasets from Murano and Xin, normcounts are provided. Following 

the filtering step in previous benchmark study (Tran, et al., 2020), we 

removed the cells labeled as “unclear”, “co-expression”, “unclassified”, 

“unclassified endocrine”, “alpha.contaminated”, “beta.contaminated”, 

“delta.contaminated” or “gamma.contaminated”. “activated_stellate,” 

“PSC”, and “quiescent_stellate” cells were merged into “stellate”. The 

resulting datasets contain a total of 17,574 cells. To obtain compatible 

gene names for cross-species analysis, we used the homologous genes 

provided by SingleCellNet to convert gene names and only the 

intersection gene set between the human data and mouse data were kept. 

To construct a large source with enough training samples and cover more 

cell types in the source, we combined the mouse data from the Baron and 

Tabula Muris as source data.  

Spatial transcriptomic datasets: We downloaded two mouse brain 

(hypothalamic preoptic region) datasets from Gene Expression Omnibus 

(GSE113576) and Dryad repositories, respectively (Moffitt, et al., 2018). 

The spatial transcriptomic dataset has 64,373 cells measured with spatially 

resolved multiplexed error robust fluorescence in situ hybridization 

(MERFISH) and the scRNA-seq dataset has 30,370 cells measured by 10x 

Chromium. 10x data has full transcriptome with 22,067 genes, while 

MERFISH data has only 154 targeted genes. We combined the two 

datasets with the 154 intersecting genes. 

Preprocessing: Seurat R package (version 3.2.0) was used for 

preprocessing. For both the simulated and real datasets (except for Murano, 

Xin, and MERFISH where counts are already normalized), the counts 

matrix were normalized by the NormalizeData function in Seurat with 

default ‘LogNormalize’ normalization method and a scale factor of 10,000. 

Top 2000 highly variable genes were selected based on the log-normalized 

counts using the FindVariableFeatures function with default ‘vst’ method. 

For real datasets, the cell-type annotations from the corresponding 
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publications were considered as the ground truth for evaluations. Because 

the brain data has pre-selected markers, we did not select variable gene, 

but used all the 154 intersecting genes.  

The datasets analyzed in this study are summarized in Table S1. 

2.2 The architecture of scAdapt 

Our scAdapt model includes two modules. Classification module, based 

on cross-entropy loss and virtual adversarial training loss, aims to improve 

the accuracy of cell annotation using both labeled source and unlabeled 

target data. Batch correction module contains two loss. The adversarial 

domain adaptation loss aims to reduce distribution discrepancy at 

embedding space of source and target, while the semantic alignment loss 

can make the embeddings better clustered and more separable. We 

optimized these two modules jointly in order to improve domain 

alignment and final classification simultaneously.  

The overall structure of scAdapt is illustrated in Fig. 1. It consists of a 

feature extractor G with two hidden layers, a domain classifier D with two 

hidden layers, and a label predictor F with a linear output layer followed 

by a softmax operation. The input includes source gene expression matrix 

Xs = [x1
𝑠 , … , x𝑚𝑠

𝑠 ] ∈ 𝑅𝑚𝑠×𝑛  of 𝑚𝑠  labeled cells with Ys = {y𝑖
𝑠}𝑖=1

𝑚𝑠  being 

the corresponding labels and target gene expression matrix Xt =

[x1
𝑡 , … , x𝑚𝑡

𝑡 ] ∈ 𝑅𝑚𝑡×𝑛  of 𝑚𝑡  unlabeled cells, where 𝑛  is the number of 

common genes shared by the source and target data. In domain adaptation 

setting, Xs and Xt are assumed to be different but related (Wang and Deng, 

2018).  

To minimize the source sample classification error with known labels, 

standard cross-entropy loss is used as below: 

                           𝐿𝐶𝐸 = −
1

𝑚𝑠
∑ 𝒚𝑖,𝑠

T  𝐹(𝐺(x𝑖
𝑠))

𝑚𝑠
𝑖=1                                  (1) 

where 𝒚𝑖,𝑠 ∈ 𝑅𝐾×1 is one-hot encoded vector of 𝑦𝑖
𝑠 and 𝐾 is the number of 

class.  

We use virtual adversarial training (VAT) to incorporate the 

information of data distribution from unlabeled data, which can better 

estimate the decision boundary between different classes (Ouali, et al., 

2020). VAT is an effective data augmentation technique which do not 

need prior label information and is hence applicable to semi-supervised 

learning. It assigns similar labels to each input data and its neighbors in 

the adversarial direction where the perturbation will alter the model’s 

output distribution the most. Then the model is robust to small 

perturbations or noises in the inputs. The loss function of VAT is given by 

𝐿VAT(Xt, θ) = 𝐷𝐾𝐿[𝑝(Yt|Xt, θ), 𝑝(Yt|Xt + rvat, θ)] − 2‖𝐹(𝐺(Xt))‖
∗
     (2) 

where rvat = arg max
 r;‖r‖2≤𝜖

𝐷𝐾𝐿[𝑝(Yt|Xt, θ), 𝑝(Yt|Xt + r)]        

where rvat  denotes the virtual adversarial perturbation maximizing the 

difference between the model output of perturbed input and non-perturbed 

input, θ  is the model parameter to train. The output distribution is 

parameterized as 𝑝(Yt|Xt, θ), and 𝐷𝐾𝐿[∙,∙] is KullbackLeibler divergence 

that measures the difference between two probability distributions. The 

last penalty term ‖𝐹(𝐺(Xt))‖∗  in (2) is designed to improve both the 

prediction discriminability and diversity, and ‖∙‖∗  is the nuclear-norm  

(Cui, et al., 2020).  

To learn the domain-invariant features, adversarial adaptation loss is 

adopted, where the feature extractor G and domain classifier D are trained 

by playing a two-player minimax game: the first player is domain 

classifier which distinguishes whether the feature is from the source 

domain or target domain, and the second player is feature extractor which 

aims to output domain-invariant features to confuse the domain classifier. 

Domain alignment is expected when the game reaches an equilibrium. 

Formally, the domain classifier D is trained by minimizing the binary 

cross-entropy loss 

𝐿𝐷𝐴 = −
1

𝑚𝑠
∑ log(𝐷(𝐺(x𝑖

𝑠)))
𝑚𝑠
𝑖=1 −

1

𝑚𝑡
∑ log(1 − 𝐷(𝐺(x𝑗

𝑡)))𝑚𝑡
𝑗=1           (3) 

while the feature extractor G is trained to maximize the 𝐿𝑎𝑑𝑣 loss (fool the 

domain classifier D). In order to update the parameters of D and G 

Fig 1. The overall structure of scAdapt for cell type classification and batch correction on source and target dataset. With source and target data as input, the feature 

extractor G learns to capture low-dimensional embedding 𝑍𝑠 and 𝑍𝑡 which are then used to train the label predictor F with the cross-entropy loss and virtual 

adversarial training loss, respectively. At the embedding space, batch correction is achieved at global- and class-level: adversarial domain adaptation loss is 

employed to perform global distribution alignment and semantic alignment loss minimizes the distance between the labeled source centroid and pseudo-labeled 

target centroid. The target pseudo label 𝑌𝑡 is estimated by label predictor F.  
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simultaneously, gradient reverse is used to flip the sign of the gradient 

between D and G during backpropagation (Ganin and Lempitsky, 2015).   

Besides global domain-invariance, discriminability must also be 

preserved, which ensures the embeddings of same class but different 

domains are mapped nearby. An intuitive solution is to perform semantic 

alignment for samples of each class directly. However, explicit alignment 

for each class is impossible since no label information provided for target 

domain. We approach the problem by assigning pseudo labels to target 

samples with the classifier F and then explicitly align the centroid for each 

class in source and target domain (Xie, et al., 2018). The centroid is 

defined as the mean embedding of each class.  For each target class, all 

samples with correct or wrong pseudo labels are used for centroid 

calculation, and thus the noise or bias brought by partial false pseudo 

labels are expected to be suppressed by correct pseudo labels with a 

dominating portion. We formulate the following semantic alignment loss 

to minimize the distance between the target centroids and their 

corresponding source centroids:  

 𝐿𝑆𝑀(Xs, Xt ) =
1

𝐾
∑ ‖𝐶𝑠

𝑘 − 𝐶𝑡
𝑘‖2

2𝐾
𝑘=1 +

1

𝑚𝑠
∑ ‖𝐺(x𝑖

𝑠) −  𝐶𝑠
𝑘‖2

2𝑚𝑠
𝑖=1         (4)   

where 𝐶𝑠
𝑘 and 𝐶𝑡

𝑘 denote the source and target centroids. The second term 

of (4) is designed to penalize big intra-class distances and enforce better 

cluster compactness (Wen, et al., 2016).  

The overall loss function can be formulated as: 

𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙  = 𝐿𝐶𝐸 + 𝜆(𝜆0𝐿𝑉𝐴𝑇 + 𝜆1𝐿𝐷𝐴  + 𝜆2𝐿𝑆𝑀)                     (5) 

where 𝜆0 , 𝜆1 , and 𝜆2  are the regularization coefficients controlling the 

contribution of virtual adversarial training, global domain alignment, and 

semantic alignment to the total loss function, respectively.  

2.3 Identifying cell-type-important genes 

Since neural networks are often considered as black box models with no 

clear interpretation, examining the importance of each gene relative to 

classification output is favorable for understanding the reason behind 

classification decisions. We identified key genes for each cell type by 

activation maximization method (Simonyan, et al., 2013). Formally, let 𝜃 

be the fixed model parameters after training the network, and ℎ𝑖(𝜃, 𝑥) be 

the activation of 𝑖-th neuron in the last layer of neural network with input 

𝑥, i.e., the classification score for cell type 𝑖. Activation maximization 

looks for input patterns which maximize the classification score: 

                                  𝑥 =  argmax
𝑥

ℎ𝑖(𝜃, 𝑥)                                 (6) 

A locally-optimal solution of (6) can be found through gradient ascent 

in the input space, where the gradient of ℎ𝑖(𝜃, 𝑥) with respect to 𝑥 are 

computed to iteratively update the input 𝑥. It should be noted that the 

optimization is performed with respect to the input 𝑥, which is different 

from the training procedure of neural network for optimizing the model 

parameters 𝜃. The input 𝑥 was initialized with a zero vector and updated 

for 100 iterations with learning rate set to 1. The changes of resulting 𝑥∗ 

compared with the initialization values were calculated as the gene 

importance score. To evaluate whether the identified top-important genes 

are reliable, we selected the top genes with the largest importance score 

for each cell type and compared them with cell-type markers in the 

PanglaoDB database (Franzén, et al., 2019) and the marker gene reported 

in original publication (Moffitt, et al., 2018). We also performed Gene 

Ontology (GO) enrichment analysis on these selected genes, using the R 

package clusterProfiler (Yu, et al., 2012).   

2.4 Hyper-parameters setting 

All the neural network layers are fully-connected. The two hidden layers 

of feature extractor G have 512 and 256 nodes, respectively. For spatial 

transcriptomic data with only 154 genes, we set the nodes in each hidden 

layer as 128 and 128. The size of hidden layers in domain classifier D is 

set to 1024. Rectified linear unit (ReLU) function is used as activation 

function for the hidden layers while softmax activation function and 

sigmoid function applied to the last layer of F and D, respectively. The 

network is trained by mini-batch stochastic gradient descent with a 

momentum of 0.9 and weight decay of 5 × 10−4. We follow the same 

annealing strategy of learning rate as described in (Ganin and Lempitsky, 

2015), i.e. the learning rate 𝜂𝑝 is adjusted following 𝜂𝑝 = 𝜂0/(1 + 𝑎𝑝)𝑏  , 

where 𝑝 is the training progress linearly increasing from 0 to 1, 𝜂0 is the 

initial learning rate set to 0.001, a = 10, and b = 0.75. The batch size is set 

to 256. Throughout all experiments, we set regularization parameter 𝜆0 =

0.1𝜆, 𝜆1 =  𝜆, and 𝜆2 = 𝜆, where the penalty parameter 𝜆 is updated from 

0 to 1 by a progressive schedule according to Ganin et al. (Ganin and 

Lempitsky, 2015):  

                                         𝜆 =  
2

1+𝑒−10𝑡
− 1                                       (7) 

where 𝑡 is the training progress linearly increasing from 0 to 1. With this 

schedule, the model can first focus on training the model with labeled 

source data, and then focus on the optimization of virtual adversarial 

training, global domain alignment, and semantic alignment whose 

information are noisy and inaccurate at early training stages. The method 

was implemented based on PyTorch (Paszke, et al., 2019). An open-source 

implementation of the scAdapt algorithm can be downloaded at 

https://github.com/zhoux85/scAdapt. 

2.5 Benchmarking classification methods 

To evaluate the performance of scAdapt, we benchmarked it against other 

cell type annotation tools, including: Seurat V3, scmap, scPred, CHETAH, 

SingleR, and singleCellNet. For Seurat V3, we used both the CCA-based 

and PCA-based label propagation to evaluate whether the classification 

can benefit from aligned data. The default hyperparameters recommended 

in these annotation tools and accompanying tutorials were used for 

performance evaluation.  

Evaluation metric: We evaluated the classification performance of each 

method using the accuracy score, which is defined as the proportion of 

correctly annotated cells. We computed the accuracy for each class in the 

test data and reported averaged accuracy across all the classes. Throughout 

the evaluation, the previously published cell type annotations provided by 

original datasets were considered as ground truth.   

2.6 Benchmarking batch correction methods 

Seurat V3, fastMNN, Harmony, and LIGER are used as competing 

methods. All the tools were run with their default parameters. We 

evaluated the performance by quantitative measure and visual inspection. 

Silhouette score and divergence score are used to measure the quality of 

batch correction (Wang, et al., 2019). An accurate batch correction method 

should result in a high silhouette score (preserving the original structure 

of the data) and low divergence score (keeping the same-type cells across 

batches well mixed). Uniform manifold approximation and projection 

(UMAP) was used for visualizing cells in a two-dimensional space (Becht, 

et al., 2018). During the benchmark, all competing methods were run with 
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their default hyperparameters, or the hyperparameters provided in the 

accompanying tutorials. 

   Evaluation metric: We used divergence score to quantify how well the 

same population between different batches are mixed after batch 

correction. A smaller divergence score means better mixing of the same 

cell population. The quality of mixing is estimated by the universal k-

nearest-neighbor (kNN) divergence (Wang, et al., 2009). The kNN 

divergence between UMAP embeddings 𝑍𝑠,𝑙  and 𝑍𝑡,𝑙  of class 𝑙  can be 

formulated as 

𝐷𝑘𝑁𝑁(𝑍𝑠,𝑙||𝑍𝑡,𝑙) =  
𝑑

𝑛
∑ log

𝑣(𝑖)

𝜌(𝑖)
+ log

𝑚

𝑛−1

𝑛
𝑖=1                 (8) 

where 𝑑  is dimension size of embeddings, m and n are the number of 

source and target samples in class 𝑙, respectively, 𝜌(𝑖) is the Euclidean 

distance between sample 𝑖 and its kNNs in the same batch, and 𝑣(𝑖) is the 

distance from sample 𝑖 to its kNNs in the other batch. The average kNN 

divergence over all classes is calculated as divergence score. In all 

experiments for batch-correction evaluation, 𝑘 was set to 30 for k-nearest-

neighbor computation.  

Evaluation only by divergence score is not sufficient, since we can 

obtain a perfect score by randomly mixing the data regardless of the cell 

type. Thus, we use silhouette score to quantify how well different cell 

types are separated after batch correction and ensure that datasets 

integration can conserve true biological signals in original datasets. Let 

𝑎(𝑖) denote the average distance between cell 𝑖 to all other cells in the 

same cluster and 𝑏(𝑖) be the average distance between the cell 𝑖 and cells 

in the next closest cluster. The distance is calculated using Euclidean 

distance based the UMAP embeddings of the batch-corrected data. The 

silhouette coefficient of cell 𝑖 can be formulated as 

 𝑆(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max{𝑎(𝑖),𝑏(𝑗)}
∈ [−1, 1], 𝑖 = 1, … , 𝑛                  (9)  

The average silhouette coefficient across all cells can be calculated as 

silhouette score. A higher silhouette score indicates better cell type 

assignment.  

3 Results 

To showcase the strength of scAdapt, we analyzed multiple scRNA-seq 

datasets from simulation tool “Splatter”, different species and sequencing 

platforms, and spatial transcriptomic. The performance of scAdapt was 

compared with seven cell type classification methods, and four batch 

correction methods. Our results show that scAdapt consistently 

outperforms these existing methods in cell type annotation and batch 

correction.  

3.1 Performance on simulated dataset 

We first evaluated the classification accuracy under different degree of 

batch effects with weak clustering signal strength (de.facScale=0.2) in Fig 

Fig 2. Benchmarking of scAdapt against seven classification methods and four batch correction methods on simulated data with two batches and four different 

cell types. a. Average accuracy under increasing batch.fracScale values where larger values corresponding to stronger batch effects. b. The integration quality 

measured by divergence score versus silhouette score at batch.fracScale =1.0. Specifically, a lower divergence score means better cell mixing across datasets 

and a higher silhouette score indicates better cell type assignment. c. UMAP plots colored by batch and cell type at batch.fracScale =1.0.   
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2a. We can see that the accuracy of all classification methods decreases 

with increasing batch.fracScale, confirming our speculation that batch 

effects makes classification challenging. In particular, the accuracy of 

competing methods drop dramatically as the batch.fracScale increases, 

but the decreasing of Seurat-CCA is not so pronounced at high 

batch.fracScale values. Compared to Seurat-PCA, Seurat-CCA achieved 

a 78% improvement of accuracy (from 0.39 to 0.69) at the largest 

batch.fracScale, which confirms that batch-correction can enhance the 

classification model when the batch difference is obvious. Although 

singleR achieves the second highest performance when batch.fracScale 

<= 0.6, its accuracy demonstrates a sharp drop from 0.85 to 0.61 as 

batch.fracScale changed from 0.6 to 1.0. By comparison, scAdapt always 

outperforms the competing methods across all batch effects settings and is 

particularly prominent for large batch difference. The accuracy of scAdapt 

is perfect (accuracy ≈ 0.98) until the batch.fracScale value increased to 

0.6, but even then remains high at batch.fracScale = 1.0 (accuracy > 0.94). 

The superior performances show that scAdapt can effectively reduce 

performance degradation brought by batch difference.  

Next, we evaluated the performance of scAdapt and other four batch 

correction methods using the most challenging simulation setting with 

batch.fracScale=1.0 (Fig 2b, c). Ideally, there should be four distinct cell 

groups (each representing a cell type) in the UMAP visualization after 

batch correction, and the cells from both batches are well mixed in each 

group. Visualization of the uncorrected data shows that the cells are 

grouped by batch distinctly, resulting in lowest silhouette score (-0.026) 

and highest divergence score (4.18). After removing batch effects by 

scAdapt, the batch distinctions are effectively removed with the same-type 

cells across batches uniformly mixed while maintaining the cell type 

structure in original batches. scAdapt achieves not only the highest 

silhouette score (0.92) but also presents lowest divergence score (0.01) 

over others. Although Harmony and LIGER also have low divergence 

score (≈ 0.10), their silhouette scores are much lower (≈ 0) due to over-

correction problem with all cell types mixed together. fastMNN, although 

produced a proper balance of batch mixing and cell type mixing with a 

divergence score of 0.75 and silhouette score of 0.43, suffered from under-

correction where the cell types across batches are not well aligned despite 

relatively clear separation between cell types. Seurat produced the highest 

divergence score (2.5) and low silhouette score (0.24) since it failed to 

perform cell type alignment and the cell types in Batch 2 are far less 

discernable. These results suggest improved batch correction by scAdapt, 

compared with the unsupervised batch correction methods ignoring label 

information of source data which provide a prior regarding cell-type 

composition.   

To demonstrate the separate contributions of different components in 

scAdapt, we performed ablation study with batch.fracScale=1.0 by 

evaluating three variants of scAdapt: Baseline refers to scAdapt without 

VAT and domain adaptation (DA), which means the model was only 

trained on the source batch; Baseline+VAT and Baseline+DA refer to 

Fig 3. Comparison of classification methods and integration methods for five pairs of cross-platform human PBMC dataset. a. Heatmap showing the accuracy 

of different classification methods. b. Divergence score and silhouette score of different integration methods. c. UMAP plots of the 10x-iD test pair colored by 

batch and cell type.  
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Baseline including DA and VAT, respectively. From Fig S1a, we can see 

that the inclusion of VAT can improve the classification notably, and DA 

is beneficial to batch correction, compared with Baseline. Combing these 

two components can further enhance the performance of batch correction 

through guiding cell type alignment with more accurate pseudo labels. We 

also visualized the embeddings of scAdapt and its three variations by 

UMAP in Fig S1b. In Baseline, the two batches are completely 

mismatched and the four clusters in target batch stay too close to each 

other, which makes the classification of target examples hard. Using the 

auxiliary information from target, Baseline+VAT makes the cell types 

discriminated well but ignores alignment across batches. Baseline+DA 

aligns the cell types correctly, but the group 1 and group 2 are not well 

separated. For Baseline+DA+VAT, the same cell types across batches are 

perfectly aligned while different cell types are well distinguished, 

confirming the necessity of combining VAT and DA for batch correction.   

We also evaluated the performance on datasets with strong clustering 

signal strength (de.facScale=0.3) where the uncorrected data have low cell 

type noise and demonstrate distinguishable cluster structure in each batch 

(Fig S1c). As expected, all classification methods and batch correction 

methods (except LIGER) show improved performance and scAdapt still 

outperforms the competing methods. 

3.2 Performance on cross-platform datasets 

In realistic scenario, the source and target datasets are often generated 

from different experimental platforms by different labs. To evaluate the 

performance of scAdapt on this realistic setting, we conducted cross-

platform test on five paired source-target PBMC datasets where we 

mapped the cell types from source dataset to target dataset. In this setting, 

each dataset is profiled by different sequencing platforms.  

Fig 3a shows the accuracy score on the five pairs of source-target 

datasets. scAdapt shows a slight edge over Seurat-CCA by average 

accuracy, and consistently outperforms the other seven methods across the 

five test pairs, indicating that integrating source and target dataset can 

make the classification method resilient against batch effects. The 

heatmap of confusion matrices of classification results show that scAdapt 

has a more balanced performance on each cell type with minimum 

accuracy > 0.74, compared to other methods with minimum accuracy 

ranging from 0.31 to 0.62 (Fig S2a).  The performance drop of competing 

methods mainly come from the misclassification of closely related cell 

types. For example, the second ranked Seurat-CCA method incorrectly 

assigned 21% of Cytotoxic T cell as CD4+ T cell, and 10% of them to 

Natural killer cell. For completeness, we also ran CHETAH, SingleR, 

singleCellNet, and SVM with gene expression data corrected by Seurat 

V3 (other methods failed to run over corrected datasets) and observed that 

using Seurat V3 correction can improve the performance of CHETAH, 

SingleR, singleCellNet, and SVM by 15%, 4%, 3%, 4%, respectively (Fig 

S2b). It's worth noting that the improved accuracies of CHETAH (0.83), 

SingleR (0.84), singleCellNet (0.8), and SVM (0.8) are still lower than 

that of scAdapt (0.86). 

The quantitative performance of the five integration methods are 

summarized in Fig 3b. As expected, scAdapt is the top method with lowest 

Fig 4. Comparison of classification methods and integration methods for four cross-species pancreas dataset pairs. a. Heatmap showing the accuracy of different 

classification methods. b. Divergence score and silhouette score of different integration methods. c. UMAP plots of the Baron human dataset mapped to mouse 

source datasets (Baron and Tabula Muris (TM)) colored by batch and cell type.  
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divergence score and highest silhouette score across all dataset pairs, 

which is congruent with visualizations plots in Fig 3c, S3. Specifically, 

divergence score is reduced by 26%-169% on top of Seurat V3, fastMNN, 

Harmony, and LIGER, respectively. The silhouette score is also improved 

substantially by 32%-47% when compared to the four competing methods. 

Although the competing methods can separate the distinct cell types such 

as B cell and Megakaryocyte well, the highly similar cell types CD4+ T 

cells, Cytotoxic T cell, and Natural killer cell (Bezman, et al., 2012) are 

tightly connected in their visualization plots (Fig S3). Since the target data 

are unlabeled in practice, it would be difficult to visually distinguish them 

as different cell types. In contrast, scAdapt is able to make the separation 

of the three clusters visible, which highlights the contribution of the 

proposed semantic alignment loss and accurate pseudo label. 

3.3 Performance on cross-species datasets 

To demonstrate the ability of scAdapt to more challenging scenario with 

large distribution difference, we evaluated scAdapt and competing 

methods by pancreas datasets where the difference come from two sources 

of variation: species and platform. We used the mouse data from Baron 

and Tabula Muris cell atlas as source data, and human data from Baron, 

Segerstolpe, Murano, and Xin as target data. Different from the slight 

superiority in cross-platform experiment, scAdapt achieves much higher 

average accuracy (0.93) than the second-ranked scmap (0.81), which 

confirms the ability of scAdapt to deal with large difference between 

species. Seurat-CCA, which achieves competitive performance in cross-

platform test, suffered an accuracy drop of 22.5% compared to scAdapt. 

Other six methods are low-performing with accuracy < 0.7. Further 

inspection of the classification by Sankey plots reveals that the competing 

methods cannot effectively differentiate some major cell types (Fig S4a). 

For the alpha cell type, which accounts for the highest proportion (35%) 

in target data, Seurat-CCA, Seurat-PCA, scPred, and SVM only correctly 

classified 55%, 26%, 31%, and 65% cells, respectively. For beta cell type 

with the second highest proportion (26%), 33%-89% cells are correctly 

categorized by competing methods. By contrast, the accuracy of scAdapt 

on these two cell types are larger than 0.95. We also performed batch 

corrected classification evaluations as in cross-platform test and found that 

the four competing methods can benefit from correction with accuracy of 

0.81 (CHETAH), 0.86 (SingleR), 0.78 (singleCellNet), and 0.81 (SVM) 

(Fig S4b), but are still lower than that of scAdapt (0.93). These results 

suggest the effectiveness of scAdapt to overcome the variations from both 

species and platform.  

The divergence score and silhouette score computed shows that 

scAdapt is again the leading method for batch correction (Fig 4b). Similar 

to simulation and cross-platform scenario, fastMNN ranked second for 

silhouette score, despite the relatively poor data mixing.  Harmony and 

LIGER produced much lower silhouette scores decreased by 69% and 

83%, respectively, compared to scAdapt. Visual inspection reveals that 

the performance degradation of Harmony and LIGER mainly come from 

under-correction (Fig 4c, S5). For example, part of the alpha and beta cells 

are separated as human-specific cell types in xin dataset, which is not 

consistent with the original assignments. Additionally, scAdapt can 

clearly separate acinar and ductal cells which come from the same 

progenitors and are closely associated (Reichert and Rustgi, 2011), while 

none of the competing methods can separate them in all of the cross-

species integration tests. These results suggest that scAdapt is able to 

Fig 5. Predicting cell types in spatial transcriptomic dataset (MERFISH) with dissociated scRNA-seq (10x Chromium) dataset from the hypothalamic preoptic 

region of mouse brain. a. Heatmap for the confusion matrix of our method with average accuracy in the bracket. b. UMAP plots of the MERFISH dataset mapped 

to 10x Chromium reference by our method with divergence score and silhouette score in the bracket. Cells are colored by batch (left) and cell type (right). c. 

Expression patterns of the top cell-type-specific marker genes identified by activation maximization in MERFISH dataset. Cells are colored based on the log-

normalized expression of marker gene. The gene names are listed in the title of the panel. 
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maintain biological heterogeneity while effectively reducing unwanted 

species-specific noise. 

Due to the difference between species, the reference data may not 

contain all cell types in the query data. In order to assess how accurate 

scAdapt are for discovering new, unknown cell types, we trained it on 

mouse dataset with “alpha” cells removed, and tested it on human Baron 

dataset. We labeled the cell “unassigned” if its highest output probability 

is smaller than 0.5. We found that scAdapt achieved high accuracy for 

known cell types (accuracy=0.9) while 95% of “alpha” cells are correctly 

recognized as “unassigned”. Removing “beta” cells obtained similar 

results with accuracy of 0.95 (known) and 0.89 (“beta”). Pseudolabel 

thresholding allows new cell types to occupy a distinct region in the 

embedding. The new cell types in the UAMP visualizations of scAdapt 

embeddings occupy a distinct region and are clearly distinguishable (Fig 

S6). These results show that scAdapt is able to identify cell types that are 

not in the reference dataset.  

3.4 Application to spatial transcriptomic dataset  

Current scRNA-seq technologies require cell dissociation, resulting in 

losing the spatial localization. Novel spatial transcriptomics methods, such 

as MERFISH (Moffitt, et al., 2018), can retain cells spatial information, 

but have a small number of genes that can be simultaneously measured 

per cell. Thus, finding and merging similar cell types across these two data 

types is challenging with the limited shared information. To assess how 

well scAdapt performs compared with alternative methods in this setting, 

we obtained two datasets profiled from hypothalamic preoptic region of 

mouse brain, where the dissociated scRNA-seq dataset was sequenced by 

10x Chromium as source and the spatial transcriptomics dataset was 

measured with MERFISH as target. These two datasets have only 154 

overlapped genes. 

From Fig 5a and S7, we can see that scAdapt achieves an average 

accuracy of 0.87 over the nine cell types in target dataset, higher than the 

accuracies of competing classification methods ranging from 0.35 (scPred) 

to 0.78 (Seurat-CCA). Spatial distribution of the cell types predicted by 

scAdapt also demonstrate more consistent patterns than competing 

methods when compared with previous reports (Moffitt, et al., 2018) (Fig 

S8). For example, the predicted ependymal cells are enriched in a single 

layer lining the third ventricle. By contrast, this pattern could be missed 

by Seurat-CCA since it misclassified most ependymal cell as inhibitory 

neurons. The batch correction results in Fig 5b and S9 suggest that 

scAdapt successfully mapped cells of the same cell types between the two 

datasets into a shared embedding, with lower divergence score (0.30) and 

higher silhouette score (0.47) than alternative approaches (divergence 

score: 0.33-2.50, silhouette score: 0.20-0.43).   

To make our neural network model more interpretable, we used 

activation maximization method to identify the most important gene for 

predicting certain cell type. We listed the top 10 genes with largest 

importance score by order in Table S2. We found that among the nine top 

1 marker genes identified by our method for each cell type, six genes 

(Excitatory: Slc17a6, Inhibitory: Gad1, Immature_oligodendrocyte:  

Pdgfra, Microglia: Selplg, Mural_pericyte: Myh11, Astrocytes:  Aqp4) are 

the same as the ones reported in original publication (Moffitt, et al., 2018), 

and the other three genes (Mature_oligodendrocyte: Ermn, Endothelial:  

Slco1a4, Ependymal: Ccnd2) are in maker gene lists of corresponding cell 

type from PanglaoDB database (Franzén, et al., 2019). In Fig 5c, these 

genes also exhibited clear expression patterns correlated with 

corresponding cell types. The results of GO enrichment analysis on the 

top 10 genes of each cell type were presented in Fig S10. We can see that 

the selected genes are significantly enriched on GO terms relevant to the 

biological processes of nervous system, such as glutamate secretion term 

(GO: 0014047) for excitatory cell, myelination (GO: 0042552) for 

immature oligodendrocyte cell. These results suggest that the identified 

genes are consistent with prior biology knowledge and verify the 

reliability and interpretability of our scAdapt model.    

Compared with batch-corrected embedding space, batch correction in 

the gene expression space is more useful for downstream analysis like the 

identification of differentially expressed (DE) gene. To address this, we 

added a decoder layer to reconstruct batch-corrected gene expression from 

batch-corrected embeddings with mean squared error loss. We used the 

DE gene detection as a performance measure to evaluate the quality of 

corrected gene expression. Seurat and fastMNN that produce batch-

corrected gene expression matrix were chosen for comparison. We 

selected DE genes by performing DE analysis between inhibitory cells and 

all other cells using Wilcoxon rank sum test with logFC> 0.25 and adjust 

p-value < 0.01. We compared the intersection of DE genes from batch-

corrected dataset and uncorrected dataset to evaluate whether the batch 

correction method can preserve the results of DE analysis on original 

datasets. From Fig S11, we found that gene expression corrected by 

scAdapt retained more raw DE genes than those by Seurat and fastMNN 

(76 vs 67 and 69). Further GO enrichment analysis showed that the DE 

genes detected by scAdapt were significantly enriched for GO terms 

relevant to the process of neural communication and development, such 

as neuropeptide signaling pathway and positive regulation of neuron 

projection development (Fig S12). These results indicate that scAdapt can 

benefit from batch-corrected embeddings and accurately retain gene 

expression features after reconstruction. 

4 Discussion 

In this work, we developed a novel virtual adversarial domain adaptation 

framework, scAdapt, to perform cell type classification for datasets with 

batch effects. The virtual adversarial based semi-supervised learning in 

scAdapt improves classification accuracy using both labeled source 

dataset and unlabeled target dataset, and domain alignment removes batch 

effects in the embedding space by making use of label information in the 

source. For quantitative benchmarks, we used simulated scRNA-seq 

datasets that vary in the intensity of batch effects, real cross-platform, 

cross-species, and spatial transcriptomic datasets. Experiments with 

quantitative measure validated the superiority of scAdapt. Visual 

inspection also demonstrated that the cells are well mixed and 

discriminative cluster structure present in the original datasets are 

preserved. To gain the biological interpretability behind model decisions, 

we also identified cell type specific marker genes and some of them are 

validated in PanglaoDB database. 

We demonstrated that the comparing classification methods didn’t 

perform well with large batch difference between source and target dataset. 

Explicit batch correction can benefit classification in some cases, but the 

improvement is limited. By contrast, our method is ideal to overcome the 

strong batch effects according to the experiment results. Additionally, 

when there are multiple source datasets generated by different sequencing 

platforms, we can combine these datasets as source, and the cross-platform 

and cross-species experiment results has shown that our method is robust 

to the batch effects in the combined dataset. It is to be noted that the source 

dataset for model training should contain a reasonable number of cells per 

cell type for reliable cell type annotation. We recommended including at 

least 10 cells per cell type to adequately represent the transcriptional 

program as well as variance. 
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While scAdapt performed best in the experiments, there is still room 

for improvement. One direction is to enhance the classifier by 

distinguishing similar subtypes at deeper annotation level since the subtle 

biological difference between subtypes cannot be recognized easily and 

often masked by noise from experimental batches and sequencing 

platforms. Recent advance in fine-grained image classification may serve 

as a candidate solution which can learn a more discriminative feature 

representation (Lin, et al., 2015). Another direction is to take the intra-

class variance into consideration since the softmax loss tends to collapse 

all data points from each cell type to a single cluster and thus limits the 

clustering performance for more detailed subtypes of the labeled cell types. 

Deep metric learning has shown the ability to maintain the relative 

relationship of cells (Qian, et al., 2019), and we plan to use this method to 

preserve local structures for subtype clustering. 
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