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Abstract

Understanding how each person’s unique genotype influences their individual patterns of gene
regulation has the potential to improve our understanding of human health and development and
to refine genotype-specific disease risk assessments and treatments. However, the effects of genetic
variants are not typically considered when constructing gene regulatory networks, despite the fact
that many disease-associated genetic variants are thought to have regulatory effects, including the
disruption of transcription factor (TF) binding. We developed EGRET (Estimating the Genetic Reg-
ulatory Effect on TFs), which infers a genotype-specific gene regulatory network (GRN) for each
individual in a study population. EGRET begins by constructing a genotype-informed TF-gene prior
network derived using TF motif predictions, eQTL data, individual genotypes, and the predicted ef-
fects of genetic variants on TF binding. It then uses message passing to integrate this prior network
with gene expression and TF protein-protein interaction data to produce a refined, genotype-specific
regulatory network. We used EGRET to infer GRNs for two blood-derived cell lines and identified
genotype-associated, cell-line specific regulatory differences that we subsequently validated using
allele-specific expression, chromatin accessibility QTLs, and differential ChIP-seq TF binding. We
also inferred EGRET GRNs for three cell types from each of 119 individuals and identified cell type-
specific regulatory differences associated with diseases related to those cell types. EGRET is, to our
knowledge, the first method that infers networks that reflect individual genetic variation in a way that
provides insight into genetic regulatory associations that drive complex phenotypes.
EGRET is available through the Network Zoo R package (netZooR v0.9; netzoo.github.io).
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1 Introduction

The mechanisms by which disease-associated genetic variants exert their effects on phenotype remains
anunanswered question. Genome-wide association studies (GWAS)have found that phenotype-associated
genetic variants typically have modest effect sizes, generally lie outside of coding regions, and likely in-
fluence gene regulation [1, 2, 3, 4]. These findings are consistent with the observation that genetic varia-
tion in transcription factor (TF) binding sites and their flanking regions explains a substantial amount of
the heritability of many diseases and complex traits [5]. What is lacking are methods that can effectively
predict genotype-specific TF regulatory network structure, helping to explain the genotype-phenotype
link at the level of the individual.

EGRET (Estimating the Genetic Regulatory Effect on TFs) is a method built on a simple premise:
genetic variants that affect both transcription factor binding in a gene’s regulatory region and the ex-
pression of that gene should produce an alteration in an individual’s gene regulatory network (GRN).
More specifically, such a variant should alter the edge weight connecting a TF and its target gene in a
specific individual’s regulatory network if that person carries the variant. EGRET begins with an initial
guess of TF-to-gene edges using TF binding motifs identified within the human reference genome. For
variants lying within TF binding motifs in a gene’s promoter, EGRET determines whether the variants
are likely to influence the binding of the TF and the expression of the gene. If a variant meets these
criteria, then the initial estimate of the TF-to-gene edge is modified. EGRET then uses message passing
[6] to integrate these modified edges with TF-TF interaction data and population-level gene expression
information to construct individual-specific GRNs where the weight of an edge connecting a TF to a
gene reflects the confidence that the TF regulates that gene.

We validated EGRET in two ways. First, we inferred and compared networks for two genotyped cell
lines and found that predicted genotype-specific, differentially regulated genomic regionswere enriched
for genotype-affected chromatin accessibility, allele-specific expression, and differential TF binding as
determined by ChIP-seq; each provided independent evidence that EGRET networks capture biologi-
cally relevant genetic disruptions in gene regulation. Second, we used EGRET to infer 357 individual and
cell-type specific GRNs (three cell types, 119 individuals) and showed that EGRET networks captured
cell-type specific, genetically influenced regulatory disruptions in relevant disease processes. Notably,
these disease-related regulatory disruptions affected network modularity in different cell types, indicat-
ing that the effects of genetic variants extended beyond differential regulation of genes to the alteration
of higher-order regulatory processes through changes in network structure.

These results show that EGRET can identify genetic changes that alter cellular functions and the
causal role played by disease-associated variants. Because the only individual-specific data EGRET re-
quires is genotype data, it can be used to understand genetic effects in many cohorts with SNP chip or
whole genome sequencing data, such as TOPMED [7] and the UK biobank [8].
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2 EGRET - Estimating the Genetic Regulatory Effects on TFs

2.1 The EGRET algorithm

EGRET uses several sources of information to capture the impact of genetic variants on TF-to-gene reg-
ulatory relationships and construct individual-specific GRNs (Tables 1 and S1, Figures 1A and S1). The
first is a TF-to-gene referencemotif prior networkM derived, for example, frommotif scans of a reference
genome ([9], Supplementary Note S1) that estimates which TFs bind to promoter regions to regulate
target gene expression. Second, EGRET requires eQTL data either from the study population or from
a public database from the cell type of interest. Third, EGRET uses genotype information in the form
of genetic variants of the individual(s) for which GRNs are being constructed, and fourth, EGRET uses
predictions of the effect of these genetic variants on TF binding (Supplementary Note S2) to modify the
reference motif priorM , producing a genotype-specific “EGRET prior” E.

Specifically, for each input genotype, EGRET selects SNPs (A in Figure 1B) that (1) are within motif-
based TF binding sites in the promoter regions of genes, and (2) have a statistically significant eQTL
association (β in Figure 1B) with the expression of the adjacent gene. EGRET then uses QBiC [10] to
identify SNPswithin TFmotifs that significantly affect TF binding (q in Figure 1B), thus selecting genetic
variants in each individual that are predicted to affect both gene expression and TF binding. The effect
of a SNP s on TF i’s regulation of gene j is then defined as the product |qsijAsijβsij |. Modifier weights to
the referencemotif prior are calculated by adding these effects per TF-gene pair, allowing for the fact that
a gene might have more than one variant in its promoter region affecting the binding of a particular TF.
The EGRET prior network E is constructed by subtracting the modifier from the reference motif prior:

Eij =Mij −
∑
s

|qsijAsijβsij |

thus penalizing the reference motif prior when the individual in question contains a genetic variant
with sufficient evidence to suggest it may alter gene regulation (Figure 1B, Supplementary Note S3).
This EGRET prior, E, is then combined with two additional inputs (Supplementary Note S4). The fifth
input to EGRET is a TF-TF interaction network (P ) derived from protein-protein interactions, that re-
flects the fact that TFs can form complexes through protein-protein interactions to cooperatively regulate
expression. Lastly, EGRET uses gene expression data to calculate a co-expression matrix C under the
assumption that genes which are co-regulated are likely to exhibit correlated expression.

EGRET then uses a message passing network integration framework introduced previously [6] to
search for regulatory consistency among the E, P , and C matrices (Supplementary Note S5). This mes-
sage passing process updates all three input matrices, boosting those relationships that show agreement
between associations captured in E, P , and C while down-weighting others. Upon convergence, the
primary output is an individual-specific, complete, bipartite GRN (E∗) that captures genotype-specific
regulatory effects. EGRET repeats this process separately using genotype information for each individ-
ual, producing a collection of individual-specific genotype-informedGRNs (Figure 1C). These networks
can then be examined to identify features that are unique to specific genotypes, are associated with par-
ticular phenotypic states, or both. It is important to note that EGRET GRNs E∗ are complete graphs,
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meaning that an edge exists between all TFs and genes considered. However, it is the edge weights that
indicate the strength of the relationship between the respective TFs and genes, with a higher weight
indicating a higher likelihood of a regulatory relationship.

It is also worth noting that the data forM , P , C, as well as the eQTLs can be obtained from publicly
available resources. Thus, one can construct an EGRET network for a given cell type in an individual
of interest simply by providing the genotype information for that individual and relying on publicly
available data (for example, databases such as the Genotype Tissue Expression Project - GTEx [11]) for
the remaining model inputs.

2.2 Regulatory disruption scores

EGRET inferred edge weights can be used to quantitatively estimate the predicted regulatory effects
produced by SNPs on a given gene, TF, or TF-gene relationship (Table S2). Ahigher edgeweight between
a TF i and a gene j is interpreted as a higher confidence that the TF binds the promoter of and regulates
the expression of gene j. To assess the effects of SNPs on gene regulation, we define and calculate
three different regulatory disruption scores for nodes and edges in a given genotype x (Figure 1D). The
edge disruption score d(E)

xij quantifies the extent to which a TF-gene regulatory relationship is disrupted
by genetic variants. The gene disruption score d(G)

xj assesses the extent to which a gene has disrupted
regulation due to genetic variants in its promoter region. The TF disruption score d(TF )

xi is a measure of
the extent to which a TF’s genome-wide regulation is disrupted by genetic variants. These scores are
defined per edge/node in each genotype-specific EGRET network by comparing it to a baseline network
constructed using no genotype information and applying message-passing toM , P , and C (instead of
E, P , and C):

d(E)
xij

= |E∗xij
−B∗ij |

where E∗xij
denotes the weight of edge ij in the EGRET network for individual x and B∗ij is the edge

weight for edge ij in the baseline network predicted without using genotype information. This score
quantifies the extent to which edges are disrupted by variants in a given individual-specific network
(E∗) compared to a baseline genotype-agnostic regulatory network (B∗).

Similarly, TF disruption scores d(TF )
xi and gene disruption scores d(G)

xj are calculated by taking the
sum of edge disruption scores around the specific TF or gene in question:

d(TF )
xi

=
∑
j

∣∣∣E∗xij
−B∗ij

∣∣∣
d(G)
xj

=
∑
i

∣∣∣E∗xij
−B∗ij

∣∣∣
It is worth noting that disruption scores are all greater-than or equal to zero and that a higher edge

disruption score corresponds to a larger difference between the EGRET and baseline edge weights for
a particular TF-gene edge. However, because of the manner in which the EGRET prior is created - by
penalizing edges involving a TF motif which contains an eQTL variant with a significant negative QBiC
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effect - only regulatory disruptions are modeled, and not the creation of “new” regulatory relationships
where none potentially existed before.

3 Applications of EGRET

3.1 EGRET finds regulatory differences between two genetically distinct cell lines

We tested whether EGRET could distinguish genotype-specific patterns of gene regulation by analyzing
two blood-derived cell lines, GM12878 and K562. We chose these cell lines because high quality genome
sequences are available for both cell lines [12, 13] providing high confidence variant calls; this was es-
pecially useful for K562 because the cell line is aneuploid [13]. In addition, both cell lines have had
relatively large numbers of TFs mapped by ChIP-seq (110 TFs for GM12878 and 204 TFs for K562 in the
ReMap 2018 database [14]), allowing us to use differential TF binding as a way of validating regulatory
differences.

To build genotype-specific EGRET priors (E) for GM12878 and K562, we generated a referencemotif
prior M using FIMO [9] identifying TF motifs in the promoter regions of genes ([-750, +250] relative
to transcription start sites) and modified this using eQTL data for lymphoblastoid cell lines (LCLs)
from GTEx [11], the cell lines’ respective genotypes, and SNP effect predictions from QBiC (Supple-
mentary Notes S1-S3). Comparing edges in E againstM predicted 1,520 genotype-altered prior edges
for GM12878 and 1,182 for K562 (Figure S2) out of a total of 39,690,052 possible edges.

Next, weused the TF-TF interaction data as used by Sonawane and colleagues [15] to constructP , and
LCL gene expression data fromGTEx to constructC (Supplementary Note S4). Genes and TFs with low
expression, defined as having non-zero values in < 50 samples, were filtered out. Performing message
passing between E, P , and C produced the final genotype-specific EGRET networks E∗ for GM12878
and K562 (Supplementary Note S5). For comparison, we constructed a baseline PANDA GRN usingM
as input to the message passing with P and C. We calculated the edge disruption score for each TF-
gene pair in each cell line’s EGRET network. Because of the relatively small number of genotype-altered
edges in the EGRET priors, the majority of edge disruption scores are very close to zero in both cell lines
(Figure S3).

For each cell line, we compared both EGRET’s predictions of TF binding and the baseline PANDA
networks to an empirical network based on ChIP-seq data [14] (Supplementary Note S6.1). At multiple
cut-offs for the edge disruption scores, EGRET networks outperformed the baseline network prediction
of TF binding for variant-disrupted edges (Tables S3 and S4, Supplementary Note S6.2). Based on these
analyses, we considered variant-impacted scores to be those at or above 0.35 and a “high” disruption
score to be anything at or above 0.5.

To capture changes in the disruption score between different genotype-specific networks, we calcu-
lated a “regulatory difference score”R(E)

ij (Table S2) for each edge between genotypes GM12878 (g) and
K562 (k), defined as:

R
(E)
ij =

∣∣∣d(E)
gij − d

(E)
kij

∣∣∣ .
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The magnitude of this score is the difference in edge disruption scores between GM12878 d(E)
gij and

K562 d(E)
kij

and reflects the assumption that genetic differences between cell lines will cause differences

in predicted regulatory TF-gene interaction strength. A high value of R(E)
ij suggests a difference in the

edge disruption scores for the edge TFi − Gj between the two cell lines, which is interpreted as that
relationship being disrupted in one cell line but not the other. Conversely, a value of R(E)

ij close to zero
indicates that the edge disruption scores for the edge TFi −Gj are similar and therefore that the regu-
latory relationship is either disrupted in both cell lines or remains unaltered in both cell lines.

We again used the cell line-specific ChIP-seq regulatory networks (Supplementary Note S6.1) to
construct a differential ChIP-seq regulatory network by taking the absolute value of the difference between
the GM12878 ChIP-seq network and the K562 ChIP-seq network. This allows us to assign a score of 1
to edges which show differential TF binding (a TF binds the promoter region of a gene in one cell line
but not the other) and a score of 0 to edges which show the same pattern of TF binding (a TF either
binds the promoter region of a gene in both cell lines, or neither). This scoring allows us to validate the
framework modeled by the regulatory difference scoreR(E)

ij . We found that edges with high differential
regulation scores R(E)

ij were enriched for edges showing differential TF binding in the differential ChIP-
seq regulatory network (Fisher p-value = 2.4e-226, T-test p-value = 2.296e-07).

Wehighlight two examples of genotype-specific promoter binding of TFs identified though the EGRET
network analysis. First, the edge between the TF RELA and the gene SLC16A9 (ENSG00000165449)
has a regulatory difference score of 6.099744, with d(E)

gij = 0.000256 in GM12878 and d(E)
kij

= 6.1 in the
K562. These scores suggest that the binding of RELA to the promoter region of SLC16A9 is disrupted
in K562, but not in GM12878. The positions of eQTLs, genetic variants, and ChIP-seq binding regions
for RELA in both genotypes (Figure 2A) indicate that an eQTL variant is present in the promoter region
of SLC16A9 (purple track in Figure 2A), is associated with the expression of SLC16A9, resides within a
RELA bindingmotif, and is predicted byQBiC to affect the binding of RELA at that location; the disrupt-
ing variant is present only in K562 (orange track in Figure 2A) and not in GM12878; this prediction is
confirmed by the presence of a RELA ChIP-seq binding range in GM12878, but not in K562 (teal track in
Figure 2A). As a second example, consider the edge between of the TF ARID3A and the gene PMS2CL
(ENSG00000187953), with a regulatory difference score of 1.0564 and d(E)

gij = 0.0096 in GM12878 and
d
(E)
kij

= 1.066 in K562, suggesting that the binding of ARID3A to the promoter region of PMS2CL is
disrupted in K562, but not in GM12878. This prediction is confirmed by ChIP-seq-derived TF binding
data in the region (Figure 2B). Both of these examples of genotype-specific TF binding are within the
top 20 edge disruption scores for K562 for edges with confirmed differential binding between K562 and
GM12878 ChIP-seq experiments.

Because an edge in an EGRET network implies a regulatory relationship, as opposed to simply pres-
ence of binding by a TF, we wanted to further validate our network predictions against assays that cap-
tured changes in gene expression. We used data from an in-vitro allele-specific expression (ASE) as-
say (Biallelic Targeted Self-Transcribing Active Regulatory Region sequencing — BiT-STARR-seq) per-
formed in LCLs [16] (Supplementary Note S6.3). We calculated regulatory difference scores per gene
and found that the 101 genes having highest differential regulation scores R(G)

j (those within the top
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10%) were enriched for genes harboring ASE-causing variants located within promoter region TF mo-
tifs (Fisher p-value = 2.5e-03). As a second independent validation, we compared data from a published
chromatin accessibility QTL (caQTL) analysis in LCLs to those genes whose regulatory difference score
were in the top 10% (Supplementary Note S6.4) [17] and found that these genes having R(G)

j values
among the top 10% were enriched for having caQTLs within motifs in their promoter regions (Fisher
p-value = 1.4e-04). This suggests that many of the predicted regulatory SNPs alter their associated reg-
ulatory networks by affecting chromatin accessibility. It is worth noting that our results are based only
on the genotypes of two cell lines; we anticipate that using a larger number of genotyped cell lines with
available ChIP-seq, caQTL, andASEdatawould increase both the specificity and sensitivity of predicting
genotype-mediated effects in gene expression.

Overall, these results indicate that EGRET is capable of synthesizing diverse sources of data tomodel
gene regulatory processes and can predict genotype-associated patterns of gene regulation.

3.2 EGRET networks for a population of individuals identify cell type-specific disease as-
sociations

A growing body of work indicates that cell-type specific gene regulatory processes affect gene expres-
sion [18, 15] and do so in a manner dependent on an individual’s genotype [19, 20, 21], resulting in
changes that alter the structure of functional “communities” or “modules” comprised of TFs and genes,
and are enriched for genes associated with tissue-specific biological processes [22]. Banovich and col-
leagues [17] had previously analyzed RNA-seq data derived from three cell types: lymphoblastoid cell
lines (LCLs), induced pluripotent stem cells (iPSCs), and cardiomyocytes (CMs; differentiated from
the iPSCs). They demonstrated that genes preferentially expressed in CMs were enriched for processes
associated with coronary artery disease, and those enriched in LCLs were associated with immune-
related conditions. Our working hypothesis was that these effects should be linked to cell type-specific
regulatory processes affected by an individual’s genetic background.

To test this, we constructed 357 individual-specific EGRET networks using expression, genotype,
and eQTL data from 119 Yoruba individuals for all three cell types used in the Banovich et al. [17] study
(Supplementary Note S7). We also constructed a baseline GRN for each cell type (Supplementary Note
S7.1). We calculated TF disruption scores (defined in Supplementary Table S2) for each TF in each
individual EGRET network to identify TFs whose regulatory influence was disrupted by variants. TF
disruption scores (d(TF )

xi ) were then scaled per individual and cell type to have a mean of zero and
standard deviation of one, and are denoted d(TF )′

xi (Supplementary Note S7.2). We then labelled TFs as
associated with Crohn’s disease (CD) and coronary artery disease (CAD) (Tables S5 and S6) based on
annotation from the NHGRI-EBI GWAS catalog [23]. We tested to see if disease-associated TFs were
more likely to have significant disruption scores in relevant cell types. Using a T-test, we found that
TF disruption scores were significantly higher in cardiomyocytes (CMs) for TFs associated with CAD
than were disruption scores for non-CAD related TFs (p = 4.5256e-06); this CAD enrichment was not
observed in LCLs (p = 0.99831). Similarly, we found TF disruption scores in LCLs, but not CMs, were
substantially higher for TFs linked to CD than for non CD-linked TFs (p = 5.3374e-16 in LCL networks,
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p = 1 in CM networks; Table 2). This analysis leads to an important observation: genotype-mediated,
disease-related TF disruptions are cell-type specific and can be identified using networks inferred by
EGRET. Indeed, we find that the highest TF disruption scores for CAD TFs occur in CMs (Figure 3A)
and that the highest TF disruption scores for CD TFs occur in LCLs (Figure 3B).

Further supporting this observation, the TF disruption signal in CAD is dominated in a subset of
the study population by single a TF, ERG, which is a member of the erythroblast transformation-specific
(ETS) gene family and known to be involved in angiogenesis [24]. In these individuals, the high TF dis-
ruption scores for CAD TFs in CMs are driven by the presence or absence of a mutation on chromosome
1 (chr1:201476815, an eQTL for CSRP1) that lies in the binding motif for the TF ERG in the promoter
region of the gene CSRP1 (ENSG00000159176). While ERG is identified as CAD-related in the GWAS
catalog, CSRP1 (alias CRP1) is not. However, CSRP1 is a known smooth muscle marker [25] and has
been found by GTEx [11] to be highly expressed in smooth muscles, especially in arteries (Figure S4).
CSRP1 has also been associated with the bundling of actin filaments [26], cardiovascular development
[27], andwith response to arterial injury [28]. Further, knockdown of CSRP1 in zebrafish caused cardiac
bifida [29] and a frameshift mutation in CSRP1 has been linked to congenital cardiac defects in a large
human pedigree [30]. The results of our EGRET analysis support a previously unreported mechanism
of action for ERG in heart disease—that ERG regulates the expression of CSRP1 and that this regulation
can be disrupted by genetic variation.

We also tested the hypothesis that the network effects of genetic variants have the potential to subtly
change the modular structure of genotype-specific networks, altering the functional network modules
active in an individual. ALPACA [22] is a method that compares the modular structure of two networks
and identifies modules that differ between the networks. The resulting gene differential modularity
(DM) scores indicate which genes have undergone the greatest change in their “modular environment.”
We used ALPACA to compare the modular structure of the cell-type and individual-specific EGRET
GRNswith the baseline GRN for the corresponding cell type, and calculated the DM score for each gene
in each network (Supplementary Note S7.3, Figure S5).

Given that individual 18 had the greatest TF disruption score for ERG in CMs, we further inves-
tigated cellular processes predicted by EGRET to be variant-perturbed within this individual’s three
cell-type specific EGRET networks. For each cell type we ranked this individual’s genes by their DM
scores from highest to lowest in each cell type reflecting their predicted impact on altering the modular
structure of each cell-type specific network. We used GORILLA (Supplementary Note S7.4; [31]) with
these ranked lists to identify GO biological process functions associated with modules altered by the
presence of specific genetic variants. Several GO terms relevant to CMs and cardiovascular functioning
and development, including “regulation of actomyosin structure organization,” “prepulse inhibition,”
“ephrin receptor signaling pathway,” “maintenance of postsynaptic specialization structure,” and “actin
cytoskeleton reorganization” were enriched in CMs from this individual (Figure 4, Table S7) but not in
their LCLs or iPSCs (Figure 4, Tables S8 and S9). For full enrichment results, see Figure S6, Figure S7,
and S8, Figure S9). Further evidence of cell type-specific alteration of functional modules can be seen
by examining the DM scores of disease-associated target genes (as annotated by the NHGRI-EBI GWAS

8

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2021. ; https://doi.org/10.1101/2021.01.18.427134doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.18.427134
http://creativecommons.org/licenses/by-nc/4.0/


catalog [23]). Coronary artery disease genes with high DM scores in CMs had low DM scores in iPSCs
and LCLs (Figure 5A). In contrast, genes associated with Crohn’s disease, which has a strong immune
component, that had high DM scores in LCLs and low DM scores in iPSCs and CMs (Figure 5B).

EGRET also predicts dosage effects of regulatory SNP variants on network structure. Consider
CSRP1, which we previously discussed as having a regulatory SNP in its promoter region that can affect
binding of the transcription factor ERG. EGRET shows that the presence of a genetic variant in the pro-
moter region of CSRP1 affects not only regulation by ERG (as seen by a substantial TF disruption score)
but also the role that CSRP1 plays in altering the functional modules in cardiomyocyte GRNmodels. As
seen by CSRP1’s DM scores in Figure S10, EGRET predicts that the genetic variant exerts its influence on
network structure in a dosage-specific manner; individuals homozygous for the disrupting variant are
predicted to exhibit the greatest impact on the modularity, those who are heterozygous to have an inter-
mediate effect, and those homozygous for the wild-type to exhibit minimal or no effect on modularity.

Collectively, these results suggest that phenotype- and disease-associated variants can act through
disruption of TF binding leading to regulatory changes that manifest themselves both through altered
expression of specific target genes and the modification of GRN functional modular structure.

4 Discussion

One of the fundamental tenets of genetics is that genotype influences phenotype. For many traits, es-
pecially those related to human disease, this connection is not straightforward. The vast majority of
phenotype-associated genetic variants are non-coding and have small effect sizes [32, 33] and a recent
analysis found that most (71%-100%) 1-MB windows in the genome contribute to schizophrenia heri-
tability [34]. This suggests that many variants must act in concert to produce complex trait phenotypes,
but the mechanisms by which they exert their influence remains an open question. Functional genomics
studies have provided some insights into roles of these variants: variants are enriched in regulatory ele-
ments [35, 36, 37], disease heritability tends to be enriched in tissues relevant to the disease [1], and TF
binding plays an important role in explaining heritability of human traits [5]. Despite this progress at
the population level, questions remain regarding the influence of an individual’s genotype on these reg-
ulatory processes. Answers to these questions will be important for translating population-level insights
into clinically actionable information.

EGRET is the first method, to our knowledge, that directly addresses these issues. EGRET begins
with a reference motif prior network based on mapping transcription factor binding sites to the regula-
tory regions of genes. EGRET extends this by modifying the reference motif network based on evidence
that SNPs in a gene’s regulatory region may influence TF binding as well as gene expression. Subse-
quently, EGRET uses a previously developed message passing framework [6] to iteratively seek con-
sistency between a genotype-altered regulatory network model, TF-TF protein-protein interaction data
(acknowledging that TFs can form regulatory complexes), and gene co-expression data (based on the
assumption that genes regulated by the same TFs are likely to exhibit correlated expression). EGRET
then outputs edge weights for all TF-to-gene edges. These edge weights reflect the confidence of a reg-
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ulatory relationship between a TF and gene, given an individual’s genotype. We demonstrate EGRET
using publicly available eQTL, gene expression, and PPI data, and show that the algorithm provides
powerful insights regardless of whether or not the individual genotypes are sample matched with other
data types.

We validated EGRET in two ways. In the first, we inferred genotype-specific gene regulatory net-
works for two genotyped cell lines and identified genes that differed in their TF-gene edges, meaning
that the model predicts differences in binding of specific TFs to upstream regions of individual genes.
When we cross-referenced EGRET’s predictions with ChIP-seq data for these cell lines, we found con-
cordance between the predictions and ChIP-seq data, demonstrating that EGRET was able to accurately
identify different TF binding patterns and effectively altered the structure of the regulatory network. We
also found that genes with high regulatory difference scores between the two cell lines—those predicted
to be differently regulated by EGRET—were enriched for QTLs associated with chromatin accessibility
and enriched for allele-specific expression, suggesting that the EGRET-predicted regulatory changes are
likely to have broader regulatory effects.

Our second validation looked at three different cell types in 119 genotyped individuals. We found
distinct cell type-specific and genotype-specific differences in the gene regulatory networks that were
linked to disease. Most notable among thesewere regulatory differences associatedwith Crohn’s disease
in lymphoblastoid cell lines and others linked to coronary artery disease in the regulatory networks in
cardiomyocytes. Not only were individual TF-gene connections disrupted, but these disruptions led
to higher-order changes in the network community structure, reorganizing the network in ways that
predict changes in cell type- and disease-specific functional network communities.

Taken together, these results from EGRET present a compelling picture of the way in which small-
effect, non-coding SNPs work together to influence phenotype. These SNPs have the potential to subtly
alter the binding of TFs to their target genes. The direct effect of these individual SNPs is to alter which
TFs regulate specific genes. However, their indirect, and possibly more important effect, is to alter the
structure and membership of functional communities in the overall regulatory networks. Indeed, it is
known that even a small number of TF-gene regulatory edge additions or deletions can lead to significant
changes in network modular organization [22].

EGRET is capable of inferring gene regulatory networks specific to an individual’s genotype, syn-
thesizing genetic and gene expression data in a way that, for the first time, allows verifiable, disease-
associated regulatory changes to be inferred for individual research subjects. As such, EGRET has the
potential to substantially advance our understanding of genetic effects on disease risk, development,
and response to therapeutic interventions. Potential applications of EGRET are wide ranging. EGRET
can be used to infer a specific gene regulatory network for any individual for whom genotype data are
available, even without associated gene expression data—provided there is expression and eQTL data
from a relevant cell type obtained from a sufficiently large population to infer accurate regulatory net-
workmodels. This implies that EGRET can be used to retrospectively analyze large cohort GWAS studies
to tease out mechanistic associations for phenotype-linked genetic variants, as well as in the context of
new studies that seek to understand disease mechanisms and the regulatory role of non-coding genetic
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variants.

Data and Code Availability

EGRET is available through the Network Zoo R package (netZooR v0.9; netzoo.github.io) with a step-
by-step tutorial.
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Figure 1: EGRET integrates multiple data types to construct individual-specific GRNs. (A) EGRET
takes as input several data types (population-level inputs circled in blue, individual-specific inputs cir-
cled in orange) to construct individual-specific GRNs: an initial estimate of the binding locations of TFs
in the form of a reference motif prior (Mij), the beta values of eQTL associations between “eSNPs” and
“eGenes” (β), the genetic variants (s) harbored by the individual in question, PPI data as an estimate of
TF-TF co-operativity (P ), and gene expression to estimate a gene co-expression matrix (C). (B) An in-
dividual’s genetic variants are used tomodify the referencemotif prior to produce an individual-specific
EGRET prior (E) by penalizing motif-gene connections in which that individual carries a variant allele
(A) in the relevant promoter-region motif such that the variant is an eQTL for the adjacent gene (β)
and the variant is predicted by QBiC to affect TF binding at that location (q). (C) Message passing is
used to integrate the co-expression (C) and PPI (P ) networks with the EGRET prior (E) resulting in a
final, unique GRN per individual (E∗). (D) Regulatory disruption scores can be calculated to quantify
the extent to which an edge or node in the network is disrupted by variants. Edge disruption scores
are calculated by subtracting a genotype-agnostic baseline network (B∗) from the individual’s EGRET
network and taking the absolute value. TF or gene disruption scores are calculated taking the sum of
the edge disruption scores around the TF or gene in question.
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Figure 2: EGRET identifies variant-impacted TF binding disruptions. (A) Example of variant-
disruptedRELAbinding inK562 but not inGM12878. Positions of eQTLs (purple track), genetic variants
(orange tracks), ChIP-seq binding regions (teal tracks), and genes (black track) are shown in the region
of SLC16A9. (B) Example of variant-disrupted ARID3A binding in K562 but not in GM12878. Positions
of eQTLs (purple track), genetic variants (orange tracks), ChIP-seq binding regions (teal tracks) and
genes (black track) are shown in the region of PMS2CL. The eQTL track is labeled according to the TF
motif in which the eSNP resides as well as the adjacent eGene.
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Figure 3: Disease-relatedTFs are disrupted in relevant cell types. Scaled TFdisruption scores d(TF )′
xi are

shown for 119 Yoruba individuals for TFs associated with (A) coronary artery disease (CAD) or (B)
Crohn’s disease (CD). Each point represents the scaled TF disruption score for a disease-related (CD
or CAD) TF, for a given individual for a given cell type (LCL, CM or iPSC). Disease-related TFs were
identified using the GWAS catalog [23]. Scaled TF disruption scores for CAD-related TFs are highest
in the cardiac-related cell type, CMs. Scaled TF disruption scores for CD-related TFs are highest in the
immune cell type, LCLs.

23

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2021. ; https://doi.org/10.1101/2021.01.18.427134doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.18.427134
http://creativecommons.org/licenses/by-nc/4.0/


●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

CM LCL iPSC

2 4 6 8 2 4 6 8 2 4 6 8

RNA processing
RNA metabolic process

mRNA processing
mRNA metabolic process

cellular component biogenesis
nucleic acid metabolic process
heterocycle metabolic process

RNA splicing, via transesterification reactions with bulged adenosine as nucleophile
mRNA splicing, via spliceosome

RNA splicing, via transesterification reactions
RNA splicing

GTP metabolic process
cell division

cell cycle
guanosine−containing compound metabolic process

RNA modification
purine ribonucleoside metabolic process

purine nucleoside metabolic process
ncRNA processing

enzyme active site formation via cysteine modification to L−cysteine persulfide
peptidyl−cysteine modification to L−cysteine persulfide

macromolecule methylation
transcription, DNA−templated

nucleic acid−templated transcription
mitochondrial transcription
ncRNA metabolic process

morphogenesis of a polarized epithelium
regulation of glycogen catabolic process

ribonucleoprotein complex biogenesis
methylation

cellular carbohydrate metabolic process
peptidyl−lysine trimethylation

actin cytoskeleton organization
actin filament−based process

cellular component organization or biogenesis
regulation of organelle organization

establishment or maintenance of cell polarity
regulation of actin filament−based process

actin cytoskeleton reorganization
neuron projection guidance

positive regulation of epithelial cell differentiation
regulation of cellular component biogenesis

axon guidance
regulation of cytoskeleton organization

cellular component morphogenesis
maintenance of postsynaptic specialization structure

organelle organization
regulation of epithelial cell differentiation

synapse organization
regulation of actomyosin structure organization

prepulse inhibition
postsynaptic specialization organization

regulation of actin cytoskeleton organization
ephrin receptor signaling pathway

−log10(p−value)

G
O

 te
rm

Count

●

●

●
●
●

100

200

300

400

500

Figure 4: Variant-disrupted gene regulation affecting network modularity is enriched for coro-
nary/heart related functions in CMs for an individual with a CAD disruption signature. GO terms
enriched in genes with high DM scores for individual 18, the individual with the highest TF disruption
score for ERG. Several GO terms related to coronary/cardiac function are enriched in highly ranked DM
genes in CMs but not in LCLs and iPSCs. Point size corresponds to the the number of high-DM genes
annotated with the corresponding GO term. For display purposes, several generic GO terms enriched
only in CMs were omitted in this figure. The entire set of enriched GO terms can be seen in Figure S9,
as well as Tables S7, S9 and S8
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Figure 5: Variant-disrupted disease genes affect the modularity of the individual’s regulatory net-
work in the relevant cell type. Differential modularity (DM) scores indicate the extent to which a
gene’s modular environment in the network changes between the genotype-specific EGRET network
and the genotype-agnostic network. (A) CAD-related genes with high DM scores in cardiomyocytes
(CMs) have low DM scores in the other cell types; (B) CD-related genes with high DM scores in LCLs
have low scores in the other cell types.
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Tables

Table 1: Data types and sources used as input to EGRET. Note that the application of EGRET to the 119
Yoruba individuals uses the same motif and PPI priors as used in the cell line analysis.
Data type Tissue/Genotype Source

Genotype cell line comparison

eQTLs LCL https://gtexportal.org/home/datasets [11]
Gene expression LCL https://gtexportal.org/home/datasets [11]
Genotype GM12878 https://www.illumina.com/platinumgenomes.html [12]
Genotype K562 https://www.encodeproject.org/files/ENCFF538YDL/ [13]
ChIP-seq GM12878, K562 http://pedagogix-tagc.univ-mrs.fr/remap/ [14]
PPI N/A https://sites.google.com/a/channing.harvard.edu/kimberlyglass/home [15]
Motif N/A constructed using FIMO [9]

Population application: 119 Yoruba individuals

eQTLs LCL http://eqtl.uchicago.edu/jointLCL/ [17]
eQTLs iPSC/iPSC-CM http://eqtl.uchicago.edu/yri_ipsc/ [17]
Gene expression LCL http://eqtl.uchicago.edu/jointLCL/ [17]
Gene expression iPSC/iPSC-CM https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107654 [17]
Genotype Yoruba individuals http://eqtl.uchicago.edu/yri_ipsc/ [17]

Table 2: T-test p-values of differences between the TF disruption scores of disease (CD or CAD related
TFs, determined from the GWAS catalog) versus non-disease TFs in different cell types. CAD TFs have
significantly higher TF disruption scores than non-CAD TFs in CMs, but not in LCLs. CD TFs have
significantly higher TF disruption scores than non-CD TFs in LCLs, but not in CMs.

Disease Cell type P-value

CAD LCL 0.99831
CAD CM 4.5256e-06
CD LCL 5.3374e-16
CD CM 1
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RNA splicing

GTP metabolic process
cell division

cell cycle
guanosine−containing compound metabolic process

RNA modification
purine ribonucleoside metabolic process

purine nucleoside metabolic process
ncRNA processing

enzyme active site formation via cysteine modification to L−cysteine persulfide
peptidyl−cysteine modification to L−cysteine persulfide

macromolecule methylation
transcription, DNA−templated

nucleic acid−templated transcription
mitochondrial transcription
ncRNA metabolic process

morphogenesis of a polarized epithelium
regulation of glycogen catabolic process

ribonucleoprotein complex biogenesis
methylation

cellular carbohydrate metabolic process
peptidyl−lysine trimethylation

actin cytoskeleton organization
actin filament−based process

cellular component organization or biogenesis
regulation of organelle organization

establishment or maintenance of cell polarity
regulation of actin filament−based process

actin cytoskeleton reorganization
neuron projection guidance

positive regulation of epithelial cell differentiation
regulation of cellular component biogenesis

axon guidance
regulation of cytoskeleton organization

cellular component morphogenesis
maintenance of postsynaptic specialization structure

organelle organization
regulation of epithelial cell differentiation

synapse organization
regulation of actomyosin structure organization

prepulse inhibition
postsynaptic specialization organization

regulation of actin cytoskeleton organization
ephrin receptor signaling pathway
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