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 32 
 33 

Abstract 34 
There is a growing body of research demonstrating that the cerebellum is involved in language 35 
understanding. Early theories assumed that the cerebellum is involved in low-level language 36 
processing. However, those theories are at odds with recent work demonstrating cerebellar 37 
activation during cognitive tasks. Using natural language stimuli and an encoding model 38 
framework, we performed an fMRI experiment where subjects passively listened to five hours of 39 
natural language stimuli which allowed us to analyze language processing in the cerebellum 40 
with higher precision than previous work. We used this data to fit voxelwise encoding models 41 
with five different feature spaces that span the hierarchy of language processing from acoustic 42 
input to high-level conceptual processing. Examining the prediction performance of these 43 
models on separate BOLD data shows that cerebellar responses to language are almost 44 
entirely explained by high-level conceptual language features rather than low-level acoustic or 45 
phonemic features. Additionally, we found that the cerebellum has a higher proportion of voxels 46 
that represent social semantic categories, which include “social” and “people” words, and lower 47 
representations of all other semantic categories, including “mental”, “concrete”, and “place” 48 
words, than cortex. This suggests that the cerebellum is representing language at a conceptual 49 
level with a preference for social information. 50 
 51 
Significance Statement 52 
Recent work has demonstrated that, beyond its typical role in motor planning, the cerebellum is 53 
implicated in a wide variety of tasks including language. However, little is known about the 54 
language representations in the cerebellum, or how those representations compare to cortex. 55 
Using voxelwise encoding models and natural language fMRI data, we demonstrate here that 56 
language representations are significantly different in the cerebellum as compared to cortex. 57 
Cerebellum language representations are almost entirely semantic, and the cerebellum contains 58 
over-representation of social semantic information as compared to cortex. These results 59 
suggest that the cerebellum is not involved in language processing per se, but cognitive 60 
processing more generally. 61 
 62 
Introduction 63 
The cerebellum is known to be involved in a diverse set of cognitive processes including 64 
attention(Allen et al., 1997), working memory(Brissenden et al., 2018), object recognition(Liu et 65 
al., 1999), and language processing(Booth et al., 2007; Stoodley & Schmahmann, 2009). 66 
Evidence for the cognitive function of the cerebellum in healthy subjects has come largely from 67 
neuroimaging studies, which have found that certain cognitive tasks elicit consistently localized 68 
BOLD responses across cerebellum(King et al., 2018) and that resting-state BOLD fluctuations 69 
in cerebellum align to known resting-state networks in cortex(Buckner et al., 2011; Marek et al., 70 
2018). However, little is known about what role the cerebellum plays in cognitive processes, or 71 
how representations in the cerebellum might differ from those found in cortex. 72 
 73 
Language understanding is a highly complex cognitive process, which makes it a rich area of 74 
research to study cognitive processing. Hierarchically organized networks for language 75 
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processing are widely distributed across much of cortex(J. R. Binder et al., 1997; de Heer et al., 76 
2017; Dronkers et al., 2004; Hickok & Poeppel, 2007; Poeppel et al., 2012). These networks 77 
include some putative “language specific” areas in temporal and inferior frontal 78 
cortex(Fedorenko et al., 2011), as well as non-language specific conceptual areas in temporal, 79 
parietal, and prefrontal cortex(Fedorenko et al., 2013). However, it is unclear whether these 80 
networks are also reflected in the cerebellum. Clinical evidence for a cerebellar role in language 81 
processing is found in work on cerebellar cognitive affective syndrome (CCAS), which shows 82 
that patients with acquired cerebellar damage experience language degradation which can 83 
include agrammatism, dysprosody, and anomia(Schmahmann & Sherman, 1998). However, the 84 
subtlety and variability of these effects have made it difficult to form a complete picture. Early 85 
work into language deficits from cerebellar lesions has often conflicted with cases suggesting a 86 
degradation in grammar while preserving semantic content(Frank et al., 2008; Justus, 2004; M. 87 
C. Silveri et al., 1994) and other work suggesting a more uniform degradation in language 88 
processing that includes semantic content(Cook et al., 2004; Fiez et al., 1992; Maria Caterina 89 
Silveri & Misciagna, 2000). However, it is unclear if the standard aphasia tests used in these 90 
studies are sensitive enough to detect deficits from cerebellar damage (Cook et al., 2004; 91 
Murdoch, 2010). Our goal is to determine how language perception is localized in the 92 
cerebellum, what aspects of language are represented in the cerebellum, and how this 93 
compares to language processing systems in cortex. 94 
 95 
Here we modeled cortical and cerebellar representations of natural speech using three different 96 
categories of features that span the putative language processing hierarchy (de Heer et al., 97 
2017; Hickok & Poeppel, 2007): modality-specific, language-specific, and conceptual. Modality-98 
specific features capture information specific to how people perceive the language stimulus. In 99 
this study, subjects listened to audio recordings of naturally spoken narrative stories, so we 100 
used a feature space that captures frequency information in sound(Cheung et al., 2016). This 101 
feature space is known to be represented in auditory cortex(de Heer et al., 2017). Building upon 102 
modality-specific features, language-specific features capture information that only exists in 103 
language, like phoneme articulations and syntax. These feature spaces are known to be 104 
represented in STG(de Heer et al., 2017; Fedorenko et al., 2011) and inferior frontal cortex(de 105 
Heer et al., 2017). Finally, conceptual features capture information about the meaning conveyed 106 
by language, which is known to be represented across broad regions of cortex, overlapping with 107 
other cognitive tasks(de Heer et al., 2017; Fedorenko et al., 2013). Previous work used similar 108 
methods to demonstrate that there is a hierarchy across these feature categories in cortex, 109 
where modality-specific information feeds into language-specific and then conceptual 110 
representations(de Heer et al., 2017). Here we investigated whether this hierarchy is replicated 111 
in the cerebellum, or if the cerebellum is specifically involved in only some aspects of language 112 
processing. For ease of language, “cortex” here refers exclusively to the cerebral cortex and 113 
“cerebellum” refers to the whole cerebellum, as cerebellar white matter was not excluded from 114 
analysis.  115 
 116 
 117 
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Figure 1. Voxelwise encoding model construction. To localize different stages of language 
processing across the cerebellum we used five feature spaces to predict voxelwise BOLD responses in 
each subject: spectral, articulatory, part-of-speech, word-level semantic, and context-level semantic. 
Each 10-15 minute stimulus story was transcribed and temporally aligned to the audio recording at the 
word and phoneme level. Features were then extracted for each of the five feature spaces. The 
features for the spectral model are 256 bands of a mel-frequency spectrogram, the features for the 
articulatory model are a 22 length n-hot vector, the features for the part-of-speech model are a 1-hot 17 
length vector, the features for the word-level semantic model are a 985-dimensional vector based on 
statistical word co-occurrence, and the features for the context-level semantic model are a 768 
dimensional vector based on GPT(Radford et al., 2018), a neural network language model that 
incorporates context (preceding words) into the representation of the current word. Features were 
extracted for each timepoint, word, or phoneme, and concatenated into a feature matrix. The feature 
matrix was then resampled to the rate of the BOLD signal (0.5 Hz) and delayed to form an FIR model 
that accounts for hemodynamics. Then regularized linear regression was used to fit weights that predict 
each voxel’s BOLD signal from the stimulus matrix. Finally, models were used to predict responses on 
a held out test dataset that was not used for model fitting. Model performance was assessed as the 
linear correlation between held out BOLD data and model predictions for each voxel. 

 118 
To determine which aspects of language the cerebellum is involved in processing or 119 
representing, we conducted a functional MRI (fMRI) experiment where subjects passively 120 
listened to 27 natural, narrative stories (5.4 hours) about a diverse set of topics. We then used 121 
voxelwise encoding models (Figure 1) to determine how well each set of speech-related 122 
features could predict each voxel in each subject. The stimuli were first transformed into 5 123 
different feature spaces: spectral, articulatory, part-of-speech, word-level semantic, and context-124 
level (multi-word) semantic. We used ridge regression to fit voxelwise encoding models with 125 
each feature space, and then tested how well these encoding models could predict responses 126 
to a new story that was not used for model fitting. Finally, we used variance partitioning to 127 
measure how much variance in cerebellar and cortical BOLD responses is uniquely explained 128 
by each of the five feature spaces. We found substantial evidence that the cerebellum 129 
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represents language at a high conceptual and semantic level, and no strong evidence that the 130 
cerebellum represents any language-specific or modality-specific information.  131 
 132 
In addition, we used the word-level semantic encoding models to determine whether the 133 
cerebellum represents different semantic categories than cortex. This analysis showed that all 134 
semantic categories are represented in both the cerebellum and cortex, but that the cerebellum 135 
has an overrepresentation of social semantic categories and an underrepresentation of mental, 136 
concrete, and place-related semantic categories as compared to cortex.  137 
 138 
Methods 139 
Participants. Data was collected from three male subjects and two female subjects: UT-S-140 
01(female, age=24), UT-S-02 (male, age 34), UT-S-06 (female, age 23), UT-S-07 (male, 141 
age=25), UT-S-08 (male, age=24). Three of the subjects were authors (UT-S-01:S.J, UT-S-142 
02:A.G.H, and UT-S-06:A.L). All subjects were healthy and had normal hearing. The 143 
experimental protocol was approved by the Institutional Review Board at the University of Texas 144 
at Austin. Written informed consent was obtained from all subjects. 145 

 146 
fMRI collection. MRI data was collected on a 3T Siemens Skyra scanner at the UT Austin 147 
Biomedical Imaging Center using a 64 channel Siemens volume coil. Functional scans were 148 
collected using gradient echo EPI with repetition time (TR) = 2.00 s, echo time (TE) = 30.8 ms, 149 
flip angle = 71°, multi-band factor (simultaneous multi-slice) = 2, voxel size = 2.6mm x 2.6mm x 150 
2.6mm (slice thickness = 2.6mm), matrix size = (84, 84), and field of view = 220 mm. Field of 151 
view covered both the cortex and the cerebellum in their entirety for all subjects. Anatomical 152 
scans were collected using a T1-weighted multi-echo MP-RAGE sequence on the same 3T 153 
scanner with voxel size = 1mm x 1mm x 1mm following the Freesurfer morphometry protocol. 154 
Anatomical data for subject UT-S-02 was collected on a 3T Siemens TIM Trio at the Berkeley 155 
Brain Imaging Center with a 32-Channel Seimen’s volume coil using the same sequence.  156 
 157 
Known regions of interest (ROIs) were localized separately in each subject. Three different 158 
tasks were used to define ROIs, these include a visual category localizer, an auditory cortex 159 
localizer, and a motor localizer. 160 
 161 
For the visual category localizer, data were collected in six 4.5 minute scans consisting of 16 162 
blocks of 16 seconds each. During each block 20 images of either places, faces, bodies, 163 
household objects, or spatially scrambled objects were displayed. Subjects were asked to pay 164 
attention for the same image being presented twice in a row. The corresponding ROIs defined in 165 
cortex with this localizer were the fusiform face area (FFA)(Kanwisher et al., 1997), occipital 166 
face area (OFA)(Kanwisher et al., 1997), extrastriate body area (EBA)(Downing et al., 2001), 167 
parahippocampal place area (PPA)(Epstein & Kanwisher, 1998), and the occipital place area 168 
(OPA). 169 
 170 
Motor localizer data were collected during 2 identical 10-minute scans. The subject was cued to 171 
perform six different tasks in a random order in 20-second blocks. The cues were ‘hand’, ‘foot’, 172 
‘mouth’, ‘speak’, saccade, and ‘rest’ presented as a word at the center of the screen, except for 173 
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the saccade cue which was presented as a random array of dots. For the hand cue subjects 174 
were instructed to make small finger-drumming movements for the entirety of the time the cue 175 
was displayed. For the foot cue, the subjects were instructed to make small foot and toe 176 
movements. For the mouth cue, subjects were instructed to make small vocalizations that were 177 
nonsense syllables such as balabalabala. For the speak cue, subjects were instructed to self-178 
generate a narrative without vocalization. For the saccade cue, subjects were instructed to look 179 
around for the duration of the task.  180 
 181 
Weight maps for the motor areas were used to define primary motor and somatosensory areas 182 
for the hands, feet, and mouth; supplemental motor areas for the hands and feet, secondary 183 
motor areas for the hands, feet, and mouth, the ventral premotor hand area. The weight map for 184 
the saccade responses was used to define the frontal eye field and intraparietal sulcus visual 185 
areas. The weight map for the speech production was used to define broca’s area and the 186 
superior ventral premotor area (sPMV) speech area(Chang et al., 2011). In the cerebellum, 187 
weight maps for each subject were resliced in SUIT space(Diedrichsen, 2006) and then the 188 
resliced maps were averaged across subjects for each task. Motor areas for the hand, mouth, 189 
foot, and saccade tasks were defined in the posterior and anterior lobe.  190 
 191 
Auditory cortex localizer data were collected in one 10-minute scan. The subject listened to 10 192 
repeats of 1-minute auditory stimulus each containing 20 seconds of music (Arcade Fire), 193 
speech (Ira Glass, This American Life), and natural sound (a babbling brook). To determine 194 
whether a voxel was responsive to auditory stimulus, the repeatability of the voxel response 195 
across the 10 repeats was calculated using an F-statistic. This map was used to define the 196 
auditory cortex (AC). 197 
 198 
fMRI preprocessing. All functional data were motion corrected using the FMRIB Linear Image 199 
Registration Tool (FLIRT) from FSL 5.0(Woolrich et al., 2009). FLIRT was used to align all data 200 
to a template that was made from the average of all functional runs in the first story session for 201 
each subject. These automatic alignments were manually checked. Low frequency voxel 202 
response drift was identified using a 2nd order Savitzky-Golay filter with a 120 second window 203 
and then subtracted from the signal. To avoid artifacts from onsets and poor detrending 204 
performance, responses were trimmed by removing 20 seconds (10 volumes) at the beginning 205 
and end of each scan. This removed the 10-second silent period as well as the first and last 10 206 
seconds of each story. The mean response for each voxel was subtracted and the remaining 207 
response was scaled to have unit variance. 208 

 209 
Cortical Surface reconstruction and Visualization. For cortical surfaces, meshes were generated 210 
from the T1-weighted anatomical scans using freesurfer(Dale et al., 1999). Before surface 211 
reconstruction, anatomical surface segmentations were hand-checked and corrected. Blender 212 
was used to remove the corpus callosum and make relaxation cuts for flattening. Functional 213 
images were aligned to the cortical surface using boundary based registration (BBR) 214 
implemented in FSL. These were checked for accuracy and adjustments were made as 215 
necessary.  216 
 217 
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For the cerebellum cortical surfaces, the SUIT toolbox(Diedrichsen, 2006)  was used to isolate 218 
the cerebellum from the rest of the brain using the T1-weighted anatomical image. The 219 
anatomical maps for the cerebellum were normalized into SUIT space using the SUIT 220 
registration algorithm. After encoding model fitting, cerebellar functional results were 221 
transformed into anatomical space and then resliced using SUIT. The SUIT flatmap and surface 222 
was added to the pycortex database for the purpose of surface visualization. 223 
 224 
Model maps were created by projecting the values for each voxel onto the cortical surface using 225 
the ‘nearest’ scheme in pycortex software(Gao et al., 2015). This projection finds the location of 226 
each pixel in the image in 3D space, and assigns that pixel the associated value.  227 
 228 
Stimulus set. The modeling training stimulus set consisted of 26 10-15 min stories taken from 229 
The Moth Radio Hour. In each story, a single speaker tells an autobiographical story without 230 
reading from a prepared speech. Each story was played during one scan with a buffer of 10 231 
seconds on either side of the story start and stop. Data collection was broken up into 6 different 232 
days, the first session involving the anatomical scan and localizers, and each successive 233 
session consisting of 4 to 5 stories, plus one additional story used for model prediction. This 234 
additional story (which was not one of the 26 stories used for model training) was played in 235 
every session and the responses to this story were averaged. Stories were played over 236 
Sensimetrics S14 in-ear piezoelectric headphones. The audio for each story was filtered to 237 
correct for frequency response and phase errors induced by the headphones using calibration 238 
data provided by sensimetrics and custom python code 239 
(https://github.com/alexhuth/sensimetrics_filter). All stimuli were played at 44.1 kHz using the 240 
pygame library in Python. 241 
 242 
Each story was manually transcribed by one listener. Certain sounds (for example, laughter and 243 
breathing) were also marked to improve the accuracy of the automated alignment. The audio of 244 
each story was downsampled to 11kHz and the Penn Phonetics Lab Forced Aligner 245 
(P2FA)(Jiahong Yuan, 2008) was used to automatically align the audio to the transcript. Praat(P 246 
Boersma, 2014) was then used to check and correct each aligned transcript manually. 247 
 248 
Feature Spaces. Five feature spaces were used to cover the hierarchy of language processing. 249 
Each feature space was fit separately for each subject. The spectral feature space was a mel-250 
band spectrogram(Jiahong Yuan, 2008) with frequencies ranging from approximately 0 Hz to 251 
8kHz with 256 windows. The articulatory feature space was a n-hot feature space where each 252 
phoneme is assigned a 1 for each articulation that is required to produce the sound and a 0 for 253 
every other articulation for a total of 22 features per phoneme. For the part-of-speech feature 254 
space, a one-hot vector of 17 features was assigned to each word noting the part of speech for 255 
each word in each story. Part of speech tagging was done using the flair package(Akbik et al., 256 
2019). Flair is a language model that uses recurrent neural networks to tag speech into 17 257 
categories (e.g. noun, verb, number, determiner, etc). The word-level semantic space was a 258 
985-dimensional feature space based on word co-occurrence(Huth et al., 2016). Each word in 259 
the stimulus set was assigned the vector associated with it in the original space. If the word in 260 
the story was not present in the original semantic space, it was assigned a vector of length 985 261 
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of zeros. The contextual semantic space was based on a fine-tuned GPT language 262 
model(Radford et al., n.d.). GPT is a state of the art language model that takes into account 263 
previous words while generating features for the current word. To assign features to each word, 264 
we extracted 768-dimensional feature vectors from layer 9 with a context length of 25 words. 265 
We chose layer 9 because it is a midlayer of GPT and it has been demonstrated that middle 266 
layers of recurrent language models are best able to predict brain activity(Jain & Huth, 2018; 267 
Toneva & Wehbe, 2019).  268 
 269 
Experimental Design and Statistical Analysis 270 
Encoding model fitting. We used each of the 5 features spaces to fit a linearized finite impulse 271 
response (FIR) model to every cortical voxel in each subject. The cerebellar models and the 272 
cortical models were fit separately. The stimulus matrix for each story was downsampled using 273 
a 3-lobe Lanczos filter, then z-scored and concatenated together. To fit the linear model the 274 
stimulus matrix has to account for variance in the hemodynamic response function across 275 
voxels. To do this we concatenate 4 delayed copies of the stimulus (using delays of 1, 2, 3, and 276 
4 time points). This final stimulus matrix is then regressed with the BOLD data using ridge 277 
regression. We then test the model using a held out data set. This is done by taking the dot 278 
product of the weight matrix from the regression with the stimulus matrix from the held out test 279 
set, resulting in a voxel by timepoint matrix. This resulting matrix is compared to the actual 280 
BOLD data for the held out test set and the correlation calculated over time for each voxel to 281 
give a measure of model performance. The correlation was then noise-ceiling corrected for 282 
some analyses (noted in the text)(Schoppe et al., 2016). Total model performance metrics were 283 
computed using the mean R2 across voxels. Mean was used instead of summation to better 284 
account for the difference in number of voxels over the cerebellum as compared to the cortex. 285 
To keep the scale of the weights consistent, a single value of the regularization coefficient was 286 
used for all voxels in both the cerebellum and cortex in all subjects. To find the best 287 
regularization coefficient, the regression procedure was bootstrapped 50 times in each subject 288 
and a regularization performance curve was obtained for each subject by averaging the 289 
bootstrap sample correlations across the 50 samples, then across voxels, and finally across the 290 
6 subjects and the best overall value of the regularization parameter was selected. This was 291 
done separately for each feature space. 292 
 293 
Individual model comparison. Encoding models with each of the feature spaces  were fit in the 294 
cerebellum and cortex in each subject and the regression weights were used to predict a held 295 
out test set. Model performance for each voxel was estimated by taking the correlation of the 296 
predicted time series for each voxel with the actual data. Then to test if the model performance 297 
was significant the time series for each voxel was randomly shuffled in blocks of TRs and the 298 
correlation with the predicted time series was recalculated. This was done for 10000 299 
permutations to gain a null distribution of responses. Lastly, the Fisher-corrected p-value was 300 
calculated and this was FDR corrected to account for all the comparisons. A threshold of  301 
𝑞(𝐹𝐷𝑅) < 0.05 was used to test for significantly well predicted voxels. This was done 302 
individually in the cerebellum and cortex in each subject for each model. The correlations were 303 
also noise-ceiling corrected. Comparison was done across subjects by taking the average R2 of 304 
all voxels in each subject in the cerebellum and cortex 305 
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 306 
Variance Partitioning. Because 5-way variance partitioning has too many partitions to be 307 
interpretable, we used two versions of variance partitioning to test specific hypotheses. The first 308 
version looked at the unique variance explained by each model. This was done to test if one 309 
feature space is uniquely better at predicting cerebellar or cortical voxels. The second version 310 
was a pairwise variance partitioning where each model was jointly fit with the contextual 311 
semantic space. This was done to test for the specific hypothesis that the contextual semantic 312 
model is better predicting the same areas as the low level models in the cerebellum, i.e. are 313 
there unique low-level language representations in the cerebellum or is the contextual semantic 314 
model better predicting the same areas as the low-level models. To do variance partitioning, 315 
joint models with the concatenated feature spaces are fit and then used to predict the held out 316 
data set. To be succinct, the variance explained by the five feature spaces will be written as sets 317 
A-E.  318 

Unique Partition -The following nested models were fit as follows 319 
𝐴	 ∪ 	𝐵	 ∪ 	𝐶	 ∪ 	𝐷	 ∪ 	𝐸, 𝐴	 ∪ 	𝐵	 ∪ 	𝐶	 ∪ 	𝐷, 𝐴	 ∪ 	𝐵	 ∪ 	𝐶	 ∪ 	𝐸, 𝐴	 ∪ 	𝐵	 ∪ 	𝐷	 ∪ 	𝐸, 𝐴	 ∪ 	𝐶	 ∪ 	𝐷	 ∪ 	𝐸, 320 

and 𝐵	 ∪ 	𝐶	 ∪ 	𝐷	 ∪ 	𝐸 321 
The variance uniquely explained by each feature space without any overlap from the other 322 
feature spaces, or relative complement (RC), was then calculated for each feature space as 323 
follows: 324 

𝐴!" 	= 𝐴	 ∪ 	𝐵	 ∪ 	𝐶	 ∪ 	𝐷	 ∪ 	𝐸	 − 	𝐵	 ∪ 	𝐶	 ∪ 	𝐷	 ∪ 	𝐸	,  325 
𝐵!"	 = 𝐴	 ∪ 	𝐵	 ∪ 	𝐶	 ∪ 	𝐷	 ∪ 	𝐸	 − 	𝐴	 ∪ 	𝐶	 ∪ 	𝐷	 ∪ 	𝐸		 326 
𝐶!" 	= 𝐴	 ∪ 	𝐵	 ∪ 	𝐶	 ∪ 	𝐷	 ∪ 	𝐸	 − 	𝐴	 ∪ 	𝐵	 ∪ 	𝐷	 ∪ 	𝐸 327 
𝐷!" 	= 𝐴	 ∪ 	𝐵	 ∪ 	𝐶	 ∪ 	𝐷	 ∪ 	𝐸	 − 	𝐴	 ∪ 	𝐵	 ∪ 	𝐶	 ∪ 	𝐸		 328 
𝐸!" = 𝐴	 ∪ 	𝐵	 ∪ 	𝐶	 ∪ 	𝐷	 ∪ 	𝐸	 − 	𝐴	 ∪ 	𝐵	 ∪ 	𝐶	 ∪ 	𝐷	 329 

A Fisher-corrected permutation test with 10000 permutations was done in each subject in both 330 
the cerebellum and cortex for each voxel for the unique partitions using the joint 𝐴	 ∪ 	𝐵	 ∪ 	𝐶	 ∪331 
	𝐷	 ∪ 	𝐸 model. Multiple comparison correction was done using FDR with a threshold of 𝑝 < 0.05. 332 
Cerebellar data was resliced after the calculation of the unique partitions and the significance 333 
testing. The mean of the variance explained was calculated for each subject, in each partition, in 334 
the cerebellum and cortex.  335 
 Pairwise Variance Partitioning - The following concatenated models were fit as follows 336 
(where A is the contextual semantic feature space): 337 

𝐴 ∪ 𝐵, 𝐴 ∪ 𝐶, 𝐴 ∪ 𝐷, 𝐴𝑈𝐸, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 338 
The variance explained by the intersections were calculated as follows: 339 

𝐴 ∩ 𝐵	 = 𝐴 + 𝐵 − 𝐴 ∪ 𝐵 340 
𝐴 ∩ 𝐶	 = 	𝐴 + 𝐶	 − 	𝐴 ∪ 𝐶 341 
𝐴 ∩ 𝐷	 = 𝐴 + 𝐷 − 𝐴 ∪ 𝐷 342 
𝐴 ∩ 𝐸 = 𝐴 + 𝐸 − 𝐴 ∪ 𝐸 343 

Then the unique contribution of each feature space in each pair can be calculated. This is the 344 
unique contribution without overlap from the other feature space noted as RC/X where X is the 345 
other paired feature space. These are calculated as follows: 346 

𝐴!"/% = 𝐴 ∪ 𝐵 − 𝐵 347 
𝐵!" = 𝐴 ∪ 𝐵	 − 𝐴 348 
𝐴!"/" = 𝐴 ∪ 𝐶 − 𝐶 349 
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𝐶!" = 𝐴 ∪ 𝐶 − 𝐴 350 
𝐴!"/& = 𝐴 ∪ 𝐷 − 𝐷 351 
𝐷!" = 𝐴 ∪ 𝐷 − 𝐴 352 
𝐴!"/' = 𝐴 ∪ 𝐸 − 𝐸 353 
𝐸!" = 𝐴 ∪ 𝐸 − 𝐴 354 

A Fisher-corrected permutation test with 10000 permutations was done in each subject in both 355 
the cerebellum and cortex for each voxel for the unique partitions and intersections using the 356 
joint 𝐴 ∪ 𝐵, 𝐴 ∪ 𝐶, 𝐴 ∪ 𝐷, 𝐴 ∪ 𝐸 models. Multiple comparison correction was done using FDR with 357 
a threshold of 𝑝 < 0.05. Cerebellar data was resliced after the calculation of the unique 358 
partitions and the significance testing.  359 
 360 
Analysis of model weights. To assess similarity of semantic categories between cortex and 361 
cerebellum, the semantic space had to be broken into discrete categories instead of a smoothly 362 
continuous space. To do this the encoding model weights for the top 25% of voxels predicted by 363 
the word-level semantic model in each subject were concatenated together across subjects. 364 
This was done separately in cortex and cerebellum, and then those were also concatenated 365 
together. Then the model weights were normalized across voxels and PCA was used to drop 366 
the number of dimensions from 985 to 86, which we chose because it explained 80% of the 367 
variance. These data were then clustered using spherical k-means into 5 clusters.  368 
 369 
To choose the number of clusters we calculated inertia, which is the within-cluster sum of 370 
squares criterion, of the clustering algorithm for a range of clusters between 1 and 20 clusters. 371 
From this we calculated the point where the inertia changes from an exponential drop to a linear 372 
drop in inertia. This can also be defined as the point where the inertia is farthest from a linear 373 
line connecting the inertia at cluster 1 to the inertia at cluster 20. This point occurred at 5 374 
clusters. (Supplemental Figure 11 shows the inertia across all clusters tested.) 375 
 376 
To test for significance in category differences between cerebellum and cortex, a permutation 377 
test was done by shuffling voxels between the cortex and the cerebellum for each subject. The 378 
difference in the ratio of each category in the cerebellum as compared to the ratio of that 379 
category in the cortex was calculated for both the permutation set and the original data. The 380 
two-tailed p-value was calculated for each category as the ratio of the permutation difference 381 
greater than the absolute value of the original data difference plus the ratio of the permutation 382 
difference less than the negative absolute value of the original data. This was multiple 383 
comparison corrected using FDR with a threshold of 𝑝 < 0.05.  384 
 385 
Data Availability  386 
A dataset including the data used in this study is being prepared for public release. Before the 387 
data are publicly available, they are also available upon request. 388 
 389 
Results 390 
 391 
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Figure 2. Prediction performance of encoding models based on five language feature spaces in 
cortex and cerebellum. Encoding models fit with 5.4 hours of BOLD data were tested against a held 
out story (10 minutes). (A) Correlation between predicted and actual BOLD response is plotted on 
flattened cortical and cerebellar surfaces for one subject (UT-S-02; other subjects are shown in 
Supplementary Figure 1). Significance testing for each model in each voxel was done using a one-
sided FDR-corrected permutation test with a threshold of 𝑝 < 0.05. The higher-level models have better 
prediction performance in both cerebellum and cortex. In cortex, the areas best predicted by each of 
the three feature categories are spatially distinct. However, in the cerebellum, the areas best predicted 
by each feature space are highly overlapping. (B) To compare across subjects, we plotted average 
𝑅 ! across all voxels in the cerebellum and cortex for each subject and each feature space. The 
context-level semantic feature space has the highest predictive performance in both the cerebellum 
and cortex for all subjects. Performance scales roughly linearly in both cerebellum and cortex across 
the hierarchy of language representations, albeit with higher 𝑅!in cortex than cerebellum. (C) Because 
cortical and cerebellar BOLD responses might have different levels of noise, which could obscure 
differences in representation, we also computed noise ceiling-corrected correlations(Schoppe et al., 
2016). This correction caused the average 𝑅!to be less biased in favor of cortex (for corrected 
correlation flatmaps, see Supplemental Figure 2) and suggests that each feature space might be 
represented to a similar extent in cerebellum and cortex. However, overlapping prediction performance 
between different feature spaces in the cerebellum suggests that the cerebellum may not be separately 
representing each stage of language processing.  

 392 
Encoding model performance. To determine which aspects of language might be processed in 393 
the cerebellum, we created five feature spaces that span the hierarchy of language processing 394 
from sound to context-level meaning, including a spectral feature space, an articulatory space, a 395 
part-of-speech space, a word-level semantic space, and a context-level semantic space that 396 
combines information across words. Previous work has demonstrated that these feature spaces 397 
can capture these different components of language and predict BOLD responses in cortex(de 398 
Heer et al., 2017; Huth et al., 2016; Jain & Huth, 2018). We fit separate encoding models with 399 
each feature space using 5.4 hours of BOLD responses recorded while subjects listened to 26 400 
different natural narrative stories taken from The Moth Radio Hour. Then, each model was used 401 
to predict responses to a different 10-minute story, and model performance was quantified as 402 
the correlation between the predicted and actual BOLD responses (R2). Figure 2A shows the 403 
prediction performance values for each feature space in one subject projected onto the SUIT 404 
cerebellar surface as well as prediction performance of each model in the cortex (similar maps 405 
for other subjects are in Supplemental Figure 1).  406 
 407 
The spectral model uses a 256-dimensional, modality-specific feature space representing a mel-408 
frequency spectrogram. This feature space is highly predictive of the primary auditory cortex 409 
along the transverse temporal gyrus. It does not significantly predict any voxel in the cerebellum 410 
(one-sided permutation test, q(FDR)<0.05), but it does appear to have diffuse low prediction 411 
performance across lobules VIIA, VIIB, and VIIIA. Of note, this is similar to previous results that 412 
showed cerebellar response to auditory stimulus along the medial portion of these 413 
lobules(Snider & Stowell, 1944). However, there appears to be no clustering of spectrally-414 
selective voxels in the cerebellum, as is seen in the auditory cortex. This suggests that the 415 
cerebellum has no homologous area to the primary auditory cortex. 416 
 417 
The articulatory model uses a 22-dimensional binary, language-specific feature space with each 418 
dimension representing one of the 22 articulations used in English (e.g. bilabial, back)(Levelt, 419 
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1993). In cortex, the articulatory space best predicts lateral, posterior temporal cortex along 420 
superior temporal gyrus. In the cerebellum, this feature space has diffuse prediction 421 
performance across lobules VIIIA and VIIIB, and significantly predicts a limited number of voxels 422 
in the medial posterior cerebellum (one-sided permutation test, q(FDR)<0.05). These areas are 423 
not traditionally considered motor speech areas(Callan et al., 2006; Manto et al., 2012) and thus 424 
this is unlikely to be due to covert rehearsal. This suggests that the cerebellum is not merely 425 
representing the articulations required to produce speech, and the lack of spatial clustering of 426 
well-predicted voxels further supports a lack of a homologous area to the auditory cortex. 427 
 428 
The part-of-speech model uses a 17-dimensional binary, language-specific feature space, 429 
where each dimension represents one of 17 lexical classes (e.g. noun, verb, adjective). This 430 
feature space weakly but significantly predicts voxels covering a wide area of the cortex (one-431 
sided permutation test, q(FDR)<0.05), including much of the frontal, temporal, and parietal 432 
lobes, with peak performance along the superior temporal lobe and near the intraparietal sulcus 433 
(IPS). In the cerebellum, this model significantly predicts voxels in many areas of the posterior 434 
lobe, with the highest model prediction performance in Crus I and II. This is a mid-level, 435 
language-specific feature space and its performance suggests that the cerebellum is largely 436 
representing information at a higher level than sound or articulations.  437 
 438 
The word-level semantic model uses a 985-dimensional conceptual feature space that is based 439 
on word co-occurrence statistics across a large corpus of written English(de Heer et al., 2017; 440 
Deniz et al., 2019; Huth et al., 2016). This feature space captures semantic information under 441 
the assumption that words that frequently occur in similar contexts carry similar meaning(FIRTH 442 
& R, 1957). The word-level semantic model predicts cortical voxels across regions in the frontal, 443 
parietal, and temporal lobes beyond core language-specific regions(Fedorenko et al., 2011, 444 
2013). In the cerebellum, this model significantly predicts voxels in Crus I and II and lobules 445 
VIIIA and VIIIB. This conceptual model predicts much more response variance in the cerebellum 446 
and cortex than do lower-level models. 447 
 448 
The best model in both the cerebellum and cortex is the context-level semantic model. This 449 
model builds on the word-level conceptual model by combining information across words. It 450 
uses the hidden state of a neural language model (LM) as a feature space. Neural LMs are 451 
artificial neural networks that learn to predict the next word in a sequence from past words. As a 452 
consequence, they learn a word’s meaning in context, improving upon the word-level model 453 
which is context-invariant(Lin et al., 2019; Radford et al., 2019; Tenney et al., 2019). Here, we 454 
used GPT(Jain & Huth, 2018; Radford et al., 2018), which is a popular neural LM. The feature 455 
space is 768-dimensional and the features are extracted from a middle layer of the LM that has 456 
previously been shown to be highly effective at predicting brain responses(Toneva & Wehbe, 457 
2019). For each word, the past 25 words are used as context in the model. The context-level 458 
semantic model significantly predicts the largest number of voxels and most total variance 459 
across cortex, with peak prediction performance in frontal, parietal and temporal cortex. In the 460 
cerebellum, this model yields very high prediction performance across most of the posterior 461 
cerebellum, including Crus I and II and lobules VIIIA and VIIIB. 462 
 463 
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To compare model performance between the cerebellum and cortex directly, we computed the 464 
average performance of each model in the cerebellum and cortex for each subject. Figure 2B 465 
shows that there is a linear relationship between model performance in the cerebellum and 466 
cortex, suggesting that language might be represented similarly in these two structures. To 467 
account for the possibility that BOLD signal-to-noise varies systematically between cortex and 468 
cerebellum, we also adjusted the estimated correlation for each voxel using a standard 469 
technique(Schoppe et al., 2016).  Figure 2C shows these results when accounting for the 470 
difference in signal-to-noise variance between cortex and cerebellum. Here, the pattern of 471 
results is largely the same, but prediction performance in the cerebellum is more similar to that 472 
of cortex. In both cases however, cerebellar voxels that are well predicted by each feature 473 
space are highly overlapping. This could be caused by the feature spaces carrying overlapping 474 
information with each other, making it difficult to interpret the results from each feature space 475 
independently. To disentangle these representations and explore the differences between 476 
cortex and cerebellum in more detail, we next performed a variance partitioning analysis. 477 

 

Figure 3. Unique variance explained by each feature space. To determine how much variance is 
uniquely explained by each feature space, six new encoding models were fit: a union model containing 
a concatenation of all feature spaces, and five encoding models each containing a concatenation of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2021. ; https://doi.org/10.1101/2021.01.18.427158doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.18.427158
http://creativecommons.org/licenses/by-nc-nd/4.0/


LeBel et al. Language encoding models of the cerebellum 

14/39 

four of the five feature spaces. The unique contribution of each feature space was then determined by 
subtracting the variance explained by the four-way concatenation model without that feature space 
from the union model. This shows how much variance can be explained by each feature space above 
and beyond the other four. Additionally, the amount of non-unique variance—i.e., any that can be 
explained by more than one feature space—was determined by subtracting the 5 unique variances 
from the union. (A) The voxelwise partial correlation (√𝑅 !) for each feature space for subject UT-S-
02, projected onto the cortical and cerebellar surfaces (similar maps for other subjects are in 
Supplemental Figure 3). Only voxels that were significantly predicted (one-sided permutation test, 
q(FDR)<0.05) by the 5-way union model are displayed. (B) Mean correlations for significant voxels in 
the cerebellum and cortex across all subjects. The non-unique partition contains the most variance in 
both cortex (darker) and cerebellum (lighter), but is significantly smaller in cerebellum than cortex (two-
sided permutation test, q(FDR)<0.05). The modality-specific spectral feature space explains 
significantly less variance in the cerebellum as compared to the cortex. Additionally, the modality-
specific feature spaces do not uniquely explain any significant variance (one-sided permutation test, 
q(FDR)<0.05), while the context-level semantic space uniquely explains the most variance. This further 
supports the hypothesis that the cerebellum is largely representing language at a high, conceptual 
level. 

 478 
Variance Partitioning. The previous model comparison found that many voxels in the cerebellum 479 
can be significantly predicted by multiple feature spaces. These voxels might genuinely 480 
represent information from multiple feature spaces. Indeed, the increased neuronal density of 481 
cerebellum compared to cortex(Herculano-Houzel, 2010) raises the chance that individual 482 
cerebellar voxels contain information from multiple feature spaces. However, this effect could 483 
also be a consequence of correlations, or shared information, between the feature spaces. To 484 
disentangle possible overlaps in information across the five feature spaces within each voxel we 485 
used variance partitioning, a statistical technique for determining how much variance can be 486 
uniquely explained by each set of features(de Heer et al., 2017; Lescroart et al., 2015). This 487 
enables us to distinguish between overlapping but distinct representations and seemingly 488 
overlapping representations that actually reflect correlations between features. For example, 489 
variance partitioning would allow us to disentangle if say 50% of the voxel responds to 490 
conceptual information and another 50% to auditory information, or if 100% of the voxel 491 
response is to some feature that is correlated with both auditory and conceptual information. 492 
Our first variance partitioning analysis shows how much variance each feature space uniquely 493 
explains above all other feature spaces for each voxel, and the second shows how much 494 
overlap there is between each feature space and the context-level semantic feature space. 495 
 496 
Unique Variance Explained. The results in Figure 2a showed negligible, localized prediction 497 
performance of low-level models in the cerebellum, suggesting that little low-level language 498 
processing was occurring there. However, that result did not account for the possibility that 499 
higher-level feature spaces could also capture some low-level information. To test for this, we 500 
used variance partitioning to find the unique variance explained of each feature space in order 501 
to test whether the lower level models have any unique contribution to representations in the 502 
cerebellum. This was done by first fitting a five-way union encoding model with a concatenation 503 
of all the feature spaces. Variance explained by any of the five feature spaces should be 504 
explained by this five-way union model. Then we fit five additional encoding models, each 505 
combining four of the five feature spaces. Each of these models should explain all the variance 506 
captured by the five-way union model except for variance that is uniquely explained by the 507 
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feature space that was left out. To estimate the unique variance explained by each feature 508 
space, we then subtracted the variance explained in the four-way model excluding that feature 509 
space from the five-way union model (for additional details, see Methods). We also used these 510 
models to estimate the size of the non-unique partition, which contains any variance that can be 511 
explained by more than one of the five feature spaces. The size of this partition was calculated 512 
by subtracting each of the unique variance partitions from the five-way union model. For this 513 
analysis, we only considered voxels that were significantly predicted by the five-way union 514 
model (one-sided permutation test, q(FDR)<0.05).  515 
 516 
Figure 3A shows the unique variance explained by each feature space as well the non-unique 517 
partition for each voxel in the cerebellum and cortex projected onto the flattened surface for one 518 
subject (other subjects can be seen in Supplemental Figure 3). The non-unique partition is the 519 
largest partition overall, suggesting that much of the variance explained by these feature spaces 520 
cannot be specifically allocated to one feature space. It is important to note that this category 521 
includes all possible combinations of the feature spaces and does not mean that the variance is 522 
explained equally well by each of the five feature spaces. Among the unique partitions, both the 523 
context-level semantic model and spectral feature space explain variance significantly greater 524 
than zero (one-sided permutation test, q(FDR)<0.05). However, the spectral model explains 525 
significantly (two-sided permutation test, q(FDR)<0.05) more variance in cortex than in the 526 
cerebellum. Figure 3B shows the unique variance explained for each feature space averaged 527 
across voxels for all subjects (only including voxels that were significantly predicted by the union 528 
model). We compared mean partial correlations (√𝑅() between cerebellum and cortex for each 529 
partition using a permutation test. The result shows that the spectral feature space and non-530 
unique partitions explain significantly less variance in the cerebellum than in cortex. When 531 
correcting for differences in signal-to-noise (Supplemental Figures 4 & 5), the context-level 532 
semantic and word-level semantic feature spaces uniquely explain significantly more variance in 533 
the cerebellum than cortex, and the spectral feature space uniquely explains significantly less. 534 
Both of these results suggest that the cerebellum is primarily representing language at a 535 
conceptual level and that these results are not simply due to neuronal pooling within voxels or 536 
shared representations. However, the fact that the largest proportion of variance is in the non-537 
unique partition means that this analysis alone can not rule out the possibility for low-level 538 
language representations in the cerebellum.  539 
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Figure 4. Variance partitioning between the context-level semantic feature space and each of the 
other feature spaces. To quantify the amount of overlap between the context-level semantic feature 
space and each of the four other feature spaces, three models were fit for each pair of feature spaces, 
including the concatenation of both feature spaces and each feature space individually. (A) For each 
pair feature spaces, the variance uniquely explained by the context-level feature space, that uniquely 
explained by the second feature space, and the intersection between the two is compared between the 
cerebellum and cortex, averaged over all subjects. The intersection—variance that could be explained 
by either feature space—for every pair is smaller in the cerebellum than in the cortex (two-sided 
permutation test, q(FDR)<0.05). Additionally, the unique partition for the spectral feature space is 
significantly smaller in the cerebellum than in cortex. This shows that the high prediction performance 
of the context-level semantic feature space in cerebellum is not merely due to correlations with 
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modality- and language-specific information. Instead, the context-level features uniquely explain a large 
amount of variance that the other features cannot. (B) For each pair of models, the variance in each 
partition in each voxel was projected onto cortical and cerebellar flatmaps (Supplemental Figures 8, 9, 
& 10, noise-ceiling corrected version to account for differences in signal-to-noise across the brain). 
Only voxels that were significantly predicted by each union model (one-sided permutation test, 
q(FDR)<0.05) are shown. There is substantially lower variance explained by the intersection between 
the context-level semantic feature space and the language and modality-specific feature spaces in the 
cerebellum than in cortex. Additionally, the unique contributions for these feature spaces in the 
cerebellum is near zero and is not spatially localized. This lack of spatial localization further suggests 
that there is no hierarchy of language processing in the cerebellum, and these results provide strong 
support for the hypothesis that the cerebellum only represents high level, conceptual features of 
language, rather than low-level features. 

Pairwise partitioning. In the first variance partitioning analysis, we found that the context-level 540 
semantic feature space explains the most unique variance explained and that the spectral 541 
model explains significantly less variance in the cerebellum than in cortex. This suggests that 542 
the cerebellum may not be representing information at modality and language-specific levels. 543 
However, the largest partition in both the cerebellum and cortex was the non-unique partition, 544 
which contains variance that could be explained by more than one feature space. Thus, that 545 
analysis alone cannot rule out the possibility that low-level features are represented in 546 
cerebellum. To test the hypothesis that the cerebellum is exclusively representing language at a 547 
conceptual level, we performed a second variance partitioning analysis where each feature 548 
space was separately compared to the context-level semantic feature space. We fit four union 549 
models by concatenating the context-level semantic features with each one of the four other 550 
feature spaces. The variance explained by each union model was then compared to models fit 551 
with each feature space individually in order to determine both the unique contribution of each 552 
feature space and the size of their intersection. For each pair of feature spaces, analyses were 553 
restricted to voxels that were significantly predicted by the union model. If the cerebellum was 554 
only representing information at the conceptual level, we would expect to find low unique 555 
variance explained by the modality- and language-specific feature spaces and a high shared 556 
intersection with the word-level semantic feature space.  557 
 558 
The results of this pairwise variance partitioning analysis replicate previous results(de Heer et 559 
al., 2017) showing that in cortex there is a unique contribution of both the spectral and 560 
articulatory feature spaces in different cortical areas. However, this does not appear to be true 561 
in the cerebellum. Figure 4 shows the results of pairwise variance partitioning between the 562 
context-level semantic feature space and each of the other four feature spaces. Figure 4A 563 
shows the mean partial correlation for each pair of feature spaces in both the cerebellum and 564 
cortex across voxels and subjects. The variance explained by the intersection of each pair of 565 
models is significantly less in the cerebellum than in cortex (two-sided permutation test, 566 
q(FDR)<0.05). This shows that the information present in the lower level feature spaces 567 
contributes less to the explainable variance in the cerebellum and supports the hypothesis that 568 
the cerebellum is primarily representing high level, conceptual information. Additionally, the 569 
unique contribution from the modality- and language-specific feature spaces are negligible; the 570 
spectral feature space explains significantly less variance in the cerebellum, while the 571 
articulatory feature spaces explain significantly more variance in the cerebellum, although this 572 
partition is small in both the cerebellum and cortex. When accounting for differences in signal-573 
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to-noise (Supplemental Figures 8, 9, & 10), all of the unique contributions from the secondary 574 
models become significantly less in the cerebellum than in cortex. Additionally, the differences 575 
in the intersections between the cerebellum and cortex are no longer significant. However, the 576 
unique contribution from the context-level semantic feature space is significantly larger in all 577 
cases in the cerebellum and cortex. While the noise-ceiling corrected results are different due to 578 
the differences in BOLD signal in the cerebellum as compared to cortex, the significantly larger 579 
variance explained by the context-level semantic feature space in the cerebellum still supports 580 
the hypothesis that the cerebellum is uniquely representing highly conceptual semantic 581 
information. Figure 4B shows these results for one subject projected onto the corresponding 582 
cortical and cerebellar surfaces (cortical maps for all other subjects can be found in 583 
Supplemental Figures 6 and 7). Only voxels that were significantly predicted by the union 584 
model (one-sided permutation test, q(FDR)<0.05) are displayed. 585 
 586 
Very little variance in the cerebellum is explained uniquely by any features other than the 587 
context-level semantic space. In both the cerebellum and cortex, there is a high amount of 588 
variance explained by the context-level semantic feature space and in the intersection with the 589 
word-level semantic feature space. This is not surprising, given that the context-level semantic 590 
space has the highest predictive performance of any of the feature spaces and that the word-591 
level and context-level semantic spaces contain related semantic information. However, there is 592 
very little overlap of variance explained between the context-level semantic feature space and 593 
the three modality- and language-specific feature spaces. This demonstrates that the high 594 
performance of the conceptual feature spaces is not merely due to this feature space being 595 
correlated with low-level information. The negligible unique contribution of the modality- and 596 
language-specific features in the cerebellum further supports the hypothesis that the cerebellum 597 
is primarily representing conceptual representations. Finally, any variance explained by the 598 
modality- and language-specific feature spaces is not anatomically localized within cerebellum, 599 
which suggests that the cerebellum does not contain localized low-level language processing 600 
areas. The reduced representation of language specific feature spaces in the cerebellum further 601 
suggests that the cerebellum does not participate in language processing per se, but supports 602 
cognition more generally. 603 
 604 
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Figure 5. Word-level semantic model weight interpretation. Post hoc analysis of encoding models 
enables us to interpret what type of semantic information is represented in each voxel. Here we used 
the word-level semantic feature space to interpret one individual voxel and to broadly map semantic 
representations across the cerebellum. (While the context-level semantic space is more predictive, we 
lack tools for interpreting its representations.) In the word-level space, encoding models predict the 
response of each voxel to each word. We used the model to find words with the largest predicted 
response in one voxel (voxel 1685 in subject UT-S-02), which were “voice”, “silence”, and “shout”, 
suggesting that this voxel represents concepts related to social communication. To visualize 
representations across many voxels, we reduced the encoding model weights to three dimensions by 
projecting them onto a low-dimensional semantic space identified in a previous experiment(Huth et al., 
2016), and then mapping these projections to RGB color channels. (A) The RGB values for each voxel 
are projected onto the SUIT cerebellar surface for subject UT-S-02. Different colors correspond to 
selectivity for different concepts in the semantic space (illustrated by the legend, right). This map 
suggests that the cerebellum contains representations of many different concepts. This histogram (B) 
shows the range of correlations for each voxel in this subject, with the example voxel marked in blue, 
and null distribution in gray. 

Semantic selectivity within the cerebellum. Our results thus far suggest that the cerebellum is 605 
not involved with language-specific processing, as there is little or no unique variance explained 606 
in cerebellum by the part-of-speech, articulatory, or spectral feature spaces. Instead, language 607 
representations in the cerebellum appear to be dominated by conceptual semantic features. Yet 608 
all semantic representations are not alike: in cortex, earlier work revealed a patchwork tiling of 609 
areas that represent different semantic categories across much of prefrontal, parietal, and 610 
temporal cortex(Jeffrey R. Binder et al., 2009; Huth et al., 2016; Noppeney & Price, 2004). It is 611 
possible that the cerebellum represents a different range of semantic categories than cortex, 612 
and it seems likely that different categories are represented in distinct areas within the 613 
cerebellum. Following the procedure detailed in Huth et al. (2016), we used the word-level 614 
semantic feature space to analyze and interpret the model weights and thus reveal the semantic 615 
selectivity of each voxel in the cerebellum. Due to the lack of tools currently available for 616 
interpreting context-level semantic models, we chose to use the word-level model, which also 617 
explains a large proportion of response variance in the cerebellum.  618 
 619 
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To demonstrate how encoding models can be analyzed per voxel, Figure 5A shows the word 620 
level semantic regression weights projected into a three-dimensional semantic space that was 621 
previously constructed from a group of subjects using principal components analysis 622 
(PCA)(Huth et al., 2012). This lower-dimensional space is purely used for visualization 623 
purposes. Here projections on the first, second, and third principal components (PCs) are 624 
mapped into the red, green, and blue color channels respectively, for each voxel and then 625 
projected onto the SUIT cerebellar surface. The color wheel shows approximately which 626 
semantic category each color on the maps represents. Figure 5A shows the posterior view of 627 
one subject’s (UT-S-02) cerebellum as well as the flattened cerebellar surface in SUIT space. 628 
Within the SUIT space, functional regions of interest are mapped out which include anterior foot 629 
(AF), hand(AH), and mouth (AM); posterior foot(PF), hand(PH) and mouth (PM); and anterior 630 
and posterior eye movement areas (AE and PE) that are active during saccades. A histogram of 631 
correlations for all voxels in subject UT-S-02 is shown in Figure 5B. This histogram shows a 632 
distribution with a long tail, with the example well-predicted voxel (voxel 1685) marked in blue. 633 
Additionally, Figure 5A lists the five words that the word-level semantic encoding model 634 
predicts will elicit the largest response in this example voxel, which are “voice”, “silence”, 635 
“shout”, and “aloud”. These words were found by taking the dot product of the voxel weight 636 
vector with the word-level semantic feature matrix (see Methods for details). This voxel seems 637 
selective for concepts related to social communication and sound. Similar analysis could be 638 
performed for each voxel, but would be large and difficult to interpret. However, by representing 639 
semantic weights as a color we can better understand large-scale patterns of semantic 640 
information. For example, Crus I and Crus II seem to be selective for many different semantic 641 
categories, such as social and violence which can be found in medial Crus I. 642 
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Figure 6. Differences in semantic representations between cerebellum and cortex. To check for 
differences in semantic representations between the cerebellum and cortex, word-level encoding model 
weights from both cerebellum and cortex in all subjects were concatenated, including only the top 20% 
best-predicted voxels. This matrix was then clustered using spherical k-means into 5 clusters, which fell 
at the inflection point in the inertia graph (Supplemental Figure 11). For visualization, the centroid for 
each cluster was transformed into the same RGB space used in Figure 5, and each voxel in that 
cluster was assigned that color. (A) shows the cluster distribution for one subject, UT-S-02, across the 
cerebellum and (B) cortex. Voxels falling into each cluster are found in both the cerebellum and cortex 
in every subject. (C) To test for differences in representation between cortex and cerebellum, the 
percentage of cortical and cerebellar voxels in each cluster were compared across all subjects. Each 
cluster was named qualitatively according to the most similar words to the cluster centroid. The four 
most similar words to each cluster centroid are listed below the label name. Significantly more voxels in 
the cerebellum were highly responsive to social categories (two-sided permutation test, q(FDR)<0.05), 
i.e. the “social” and “people” clusters, than in cortex. Conversely, significantly fewer voxels in the 
cerebellum were responsive to the “mental”, “concrete”, or “place” clusters than in the cortex. This 
shows that the cerebellum is largely representing the same semantic categories as cortex, but that 
there is a slight bias towards social categories. 

 643 
 644 
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 645 
Comparing semantic representations between cerebellum and cortex. The semantic map in 646 
Figure 5A shows that different areas in the cerebellum represent different categories of words. 647 
Yet it is not clear from this map whether semantic representations in the cerebellum are similar 648 
to those found in cortex. To quantify the semantic categories represented in the cerebellum and 649 
cortex, we compared the fraction of voxels that represent different semantic categories using a 650 
cluster analysis. We concatenated model weights for the top 20% best predicted voxels in 651 
cerebellum and cortex from each subject, then clustered the voxels into 5 discrete categories 652 
using spherical k-means clustering (5 clusters was the elbow point of the inertia curve, see 653 
Supplemental Figure 11; similar results are also obtained with different numbers of clusters). 654 
Figure 6A and B show cerebellar and cortical flatmaps with the clustered voxels colored 655 
according to their assigned cluster in one subject (similar maps for other subjects can be found 656 
in Supplemental Figure 12). The label for each cluster was determined qualitatively from the 657 
most similar words to each cluster centroid (Figure 6C lists the clusters, their top words, and 658 
their assigned label).  659 
 660 
Voxels belonging to every semantic cluster were found in both the cerebellum and cortex. 661 
Figure 6C shows the percentage of cerebellar voxels in each cluster as compared to the 662 
percentage of cortical voxels in each cluster, averaged across subjects. The category with the 663 
highest percentage of voxels in the cerebellum is the “people” category and the category with 664 
the lowest percentage is the “place” category. 665 
 666 
Because voxels in all clusters are found in both the cerebellum and cortex, it is possible that the 667 
cerebellum is receiving input from all areas of cortex. If this was true, we would expect to find an 668 
equal percentage of well-predicted cerebellar voxels in each cluster as there are in cortex. 669 
However, all clusters had significantly different percentages of voxels in the cerebellum as 670 
compared to cortex (two-sided permutation test, q(FDR)<0.05). The “social” and “people” 671 
clusters have a higher percentage of voxels in the cerebellum than in cortex, and the “mental”, 672 
“concrete”, and “place” clusters have a lower percentage of voxels in cerebellum than in cortex. 673 
This suggests that there is not a one-to-one mapping from cortex to the cerebellum and that the 674 
cerebellum is more responsive to social semantic information.  675 

 676 
Discussion 677 
This study examined how language is represented in the human cerebellum. Using voxelwise 678 
encoding models trained within each subject using large amounts of fMRI data, we found that 679 
high-level language feature spaces–context-level and word-level semantics–were better able to 680 
predict cerebellar BOLD responses than low-level language feature spaces, such as part-of-681 
speech and articulations. Additionally, the low-level feature spaces do not uniquely predict any 682 
voxel in the cerebellum above the context-level semantic model, which is not true in the cortex. 683 
Lastly, using the model weights from the word-level semantic model, we found that there is an 684 
overrepresentation of social and people semantic categories in the cerebellum as compared to 685 
cortex. These results suggest that the cerebellum is (1) representing language at a conceptual 686 
level, and not at modality- or language-specific levels, (2) that there is not a homologous area to 687 
auditory cortex in the cerebellum, and (3) that the cerebellum is more responsive to social 688 
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semantic components of language than cortex. As has been seen previously(King et al., 2019), 689 
there does not appear to be any functional relevance to lobule boundaries as we do not observe 690 
any pattern of language processing that corresponds to the lobule boundaries. 691 
 692 
One complication in interpreting the results of this study is due to the use of BOLD fMRI, in 693 
particular in relation to the cerebellum. The cerebellum has a significantly different metabolic 694 
demand than cortex(Vaishnavi et al., 2010) due to its cellular architecture. This changes the 695 
demand for oxygenated blood and thus the BOLD signal. It has previously been demonstrated 696 
that only activity in granule cells and mossy fibers affects the BOLD signal(Caesar et al., 2003; 697 
Mathiesen et al., 2000) in the cerebellum, but not activity in the Purkinje cells which are the sole 698 
output from the cerebellum to cortex. This implies that our models do not include 699 
representations of what the cerebellum is outputting back to the cortex and thus may not directly 700 
address the computation the cerebellum is performing. However, the input to the cerebellum–701 
granule cells and mossy fibers– is still an important half of the equation and this work furthers 702 
our understanding of what kinds of representations are being sent to the cerebellum.  703 
 704 
One point of contention with our methodology is using a natural stimulus. While natural stimuli 705 
can make interpretation of the results more difficult, it is a much richer stimulus set for analysis. 706 
Additionally, it is less biased than other experimental methods that preselect a small number of 707 
categories or stimuli. And while we have few subjects, we have collected a large amount of data 708 
per subject. This amount of data allows for the regression models to theoretically account for 709 
most stimulus correlations. Additionally, by using a prediction methodology we are able to 710 
compute the variance explained by each feature space which allows us to quantify how well 711 
each model does at prediction which few other methods allow for.  712 
 713 
Many theories exist for how the cerebellum represents cognitive information based on the 714 
uniformity of its cellular architecture. This architecture is believed to suggest that the cerebellum 715 
is performing a similar function throughout the structure. Additionally, the cerebellum has long 716 
been considered a major region in motor response and motor learning(Manto et al., 2012). Yet 717 
since the 1980s, the cerebellum has been known to reliably respond during cognitive 718 
tasks(Leiner et al., 1986) such as language processing(Petersen et al., 1988) and that lesions to 719 
the posterior lobe of the cerebellum results in language deficits(Schmahmann & Sherman, 720 
1998). The fact that both fine motor control processing and cognitive processing elicit strong 721 
responses from the same architecture has long been considered a contradiction. In an effort to 722 
reconcile the cerebellum as both a cognitive area and a motor area, previous reports have 723 
speculated that the cerebellum is involved in some low-level component of cognitive tasks such 724 
as low-level auditory processing(Petacchi et al., 2005) or motor planning in speech(Jürgens, 725 
2002).  726 
 727 
Surprisingly, our results show that low level spectral and articulatory feature spaces do not 728 
uniquely predict any area of the cerebellum better than high-level feature spaces. However, the 729 
spectral and articulatory models best predict areas around auditory cortex and the STG. This 730 
shows that these feature spaces successfully capture auditory information and that this 731 
information does not appear to be present in the cerebellum. The cerebellum is very likely 732 
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involved with motor components of speech production. However, we found no evidence of 733 
receptive articulatory representations in the cerebellum, suggesting it must be involved in more 734 
than just motor components of speech perception. Our results imply that the cerebellum lacks 735 
any form of localized low-level auditory processing area and that the role of the cerebellum in 736 
language processing is at a higher level than previously thought. 737 
 738 
An important future step is to clarify the relationship between language representations in the 739 
cerebellum and existing theories of cerebellar function. The universal cerebellar transform 740 
(UCT) theory is the predominant theory of cerebellar computation(Diedrichsen et al., 2019), 741 
positing that the cerebellum performs a single computation across all tasks, both cognitive and 742 
motor. A commonly proposed computation is prediction error(Kawato & Gomi, 1992; Mariën & 743 
Manto, 2018). One way to look at whether the cerebellum is involved in prediction is through 744 
surprisal which is a measure of the probability of a word occurring in a sentence given the 745 
previous word. Thus a word with a high surprisal is likely to have a high prediction error. Since 746 
the context-level semantic model is using a neural network based language model, it inherently 747 
captures some elements of surprisal(Berger et al., 1996). However, the context-level semantic 748 
model best predicts both the cerebellum and cortex which suggests that the cerebellum is not 749 
uniquely computing surprisal.  750 
 751 
In language processing, many processes are specific to auditory communication such as the 752 
spectral and articulatory features spaces. However, the higher order semantic features seem to 753 
be more broadly used by the default mode network. Given that the cerebellum does not appear 754 
to be involved in the lower level language processing, this implies that the cerebellum is not 755 
participating in language processing per se, and is likely only involved in cognitive processing. 756 
This theory could explain many of the language deficits seen in patients with CCAS and autism. 757 
Both of these disorders are associated with cerebellar damage or morphological changes and 758 
both often see deficits in language processing(Stoodley & Schmahmann, 2009). However, the 759 
deficits are not specifically related to speech production or the ability to interpret sound into 760 
phonemes and words, which are low-level language-specific processes. Rather, the language 761 
deficits in CCAS and autism more often present as conceptual deficits, with a loss of 762 
understanding of fine-tuned semantic specificity and social dynamics(Kelley et al., 2006), such 763 
as understanding sarcasm and non-explicit language. Much like the cerebellum being involved 764 
in the fine-tuning of motor commands over a continuous three-dimensional space, it is possible 765 
that the cerebellum is similarly involved in the fine-tuning of a conceptual cognitive space.  766 
 767 
  768 
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Supplemental Figures 952 
 953 
 954 

 

Supplemental Figure 1. Prediction performance of encoding models based on five language 
feature spaces in cortex and cerebellum. Encoding models fit with 5.4 hours of BOLD data were 
tested against a held out story (10 minutes). The correlation between predicted and actual BOLD 
response is plotted on flattened cerebellar (A) and cortical (B) surfaces for each subject. Significance 
testing for each model was done using a one-sided FDR-corrected permutation test with a threshold of 
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𝑝 < 0.05. The higher level models have better prediction performance in both cerebellum and cortex. In 
cortex, the areas best predicted by each of the three categories of feature spaces are spatially distinct. 
However, in the cerebellum the areas best predicted by each of the feature spaces is highly 
overlapping. This suggests that there is a hierarchy of language processing in cortex but not in the 
cerebellum.  
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Supplemental Figure 2. Prediction performance of encoding models based on five language 
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feature spaces correcting for difference in signal-to-noise in cerebellum and cortex. Encoding 
models fit with 5.4 hours of BOLD data were tested against a held out story (10 minutes). The 
correlation between predicted and actual BOLD response is plotted on flattened cerebellar (A) and 
cortical (B) surfaces for one subject (UT-S-02).The correlations were noise-ceiling corrected using 
standard techniques to account for differences in BOLD signal-to-noise ratio in the cerebellum and 
cortex. Significance testing for each model was done using a one-sided FDR-corrected permutation 
test with a threshold of 𝑝 < 0.05. The higher level models have better prediction performance in both 
cerebellum and cortex. In cortex, the areas best predicted by each of the three categories of feature 
spaces are spatially distinct. However, in the cerebellum the areas best predicted by each of the 
feature spaces is highly overlapping. This suggests that there is a hierarchy of language processing in 
the cortex and not in the cerebellum 

 956 

 

Supplemental Figure 3. Unique variance explained for each feature space. To determine the 
unique variance explained by each feature space, a union encoding model was fit with a concatenation 
of all feature spaces in addition to five other encoding models - each a concatenation of four of the 
feature spaces. The unique contribution of a model can be determined by the subtraction of the four 
way concatenation model without that feature space from the five way union model. Additionally, the 
amount of overlap between the feature spaces can be characterized by the non unique partition. (A) 
The unique variance explained by each feature space in each additional subject were projected onto 
the cortical and cerebellar surfaces. Only significant voxels (one-sided permutation test, q(FDR)<0.05) 
from the 5-way joint model are displayed. The partition that explains the most variance in both cortex 
and cerebellum is the nonunique partition, which shows that there is overlap in the information in the 
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feature spaces. The largest unique partition in the cerebellum and cortex is the context-level semantic 
feature spaces which shows that both areas likely represent conceptual information. The largest 
difference in unique partitions between the cerebellum and cortex is the spectral feature space, which 
does not uniquely explain any region of the cerebellum.  

 957 
 958 

 

Supplemental Figure 4. Unique variance explained by each feature space adjusted for 
differences in signal-to-noise in cerebellum and cortex. To determine the unique variance 
explained by each feature space, six new encoding models were fit: a union encoding model containing 
a concatenation of all feature spaces, and five encoding models each containing a concatenation of 
four of the five feature spaces. The unique contribution of each feature space was then determined by 
subtracting the variance explained by the four-way concatenation model without that feature space 
from the union model. This shows how much variance can be explained by each feature space above 
and beyond the other four. Additionally, the amount of non-unique variance—i.e., that which can be 
explained by more than one feature space—was determined by subtracting the 5 unique variances 
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from the union. To account for differences in signal-to-noise between cerebellum and cortex, the 
correlations were corrected using standard noise-ceiling correction techniques. (A) The voxelwise 
partial correlation (√𝑅 !) for each feature space for subject UT-S-02 was projected onto the cortical 
and cerebellar surfaces (Similar maps for additional subjects can be found in Supplemental figure 5). 
Only voxels that were significantly predicted (one-sided permutation test, q(FDR)<0.05) by the 5-way 
union model are displayed. (B) Mean correlations for significant voxels in the cerebellum and cortex 
across all subjects. The non-unique partition explains the most variance in both cortex (darker) and 
cerebellum (lighter), although the variance explained by the non-unique partition is significantly (two-
sided permutation test, q(FDR)<0.05) larger in cerebellum. The modality-specific spectral feature space 
explains significantly less variance in the cerebellum as compared to the cortex. Additionally, the 
modality-specific and language-specific feature spaces explain a negligible amount of variance in the 
cerebellum and the context-level semantic space explains the most variance among the unique 
partitions in cerebellum.This further supports the hypothesis that the cerebellum is largely representing 
language at a high, conceptual level. 

 959 

 

Supplemental Figure 5. Unique variance explained for each feature space for additional subjects 
adjusted for differences in signal-to-noise in Cerebellum and Cortex. To determine the unique 
variance explained by each feature space, a union encoding model was fit with a concatenation of all 
feature spaces in addition to five other encoding models - each a concatenation of four of the feature 
spaces. The unique contribution of a model can be determined by the subtraction of the four way 
concatenation model without that feature space from the five way union model. Additionally, the amount 
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of overlap between the feature spaces can be characterized by the non unique partition. The unique 
variance explained by each feature space in each additional subject were projected onto the cortical 
and cerebellar surfaces. Only significant (one-sided permutation test, q(FDR)<0.05) voxels from the 5-
way joint model are displayed. 
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Supplemental Figure 6. Shared explained variance of the context-level semantic feature space 
with each of the other feature spaces for each additional subject. To quantify the amount of 
overlap between the context-level semantic feature space with each of the four other feature spaces, 
three models for each pair of feature spaces were fit which included the concatenated feature space 
and each feature space individually. For each pair of models, the variance explained by each partition 
in each voxel was projected onto the corresponding cortical flatmaps (Supplemental Figure 9, noise-
ceiling corrected version to account for differences in signal-to-noise across the brain) Only voxels that 
were significantly predicted (one-sided permutation test, q(FDR)<0.05) by each union model are 
shown.There is substantially lower variance explained by the intersection between the context-level 
semantic model and the language and modality-specific feature spaces in the cerebellum than in 
cortex. The results are largely consistent across subjects. 
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Supplemental Figure 7. Shared explained variance of the context-level semantic feature space 
with each of the other feature spaces. To quantify the amount of overlap between the context-level 
semantic feature space with each of the four other feature spaces, three models for each pair of feature 
spaces were fit which included the concatenated feature space and each feature space individually. For 
each pair of models, the variance explained by each partition in each voxel was projected onto the 
corresponding cerebellar flatmaps (Supplemental Figure 8, noise-ceiling corrected version to account 
for differences in signal-to-noise across the brain) Only voxels that were significantly predicted (one-
sided permutation test, q(FDR),0.05) by each union model are shown.There is substantially lower 
variance explained by the intersection between the context-level semantic model and the language and 
modality-specific feature spaces in the cerebellum than in cortex. Additionally the unique contributions 
for these models in the cerebellum is approaching zero and is not spatially localized. This lack of spatial 
localization further supports that there is no hierarchy of language processing in the cerebellum and 
these results provide strong support for the hypothesis that the cerebellum only represents high level, 
conceptual features of language, rather than low level features. This pattern of results appears 
consistent across subjects 
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Supplemental Figure 8. Shared explained variance of the context-level semantic feature space 
with each of the other feature spaces after correcting for signal-to-noise differences. To quantify 
the amount of overlap between the context-level semantic feature space with each of the four other 
feature spaces, three models for each pair of feature spaces were fit which included the concatenated 
feature space and each feature space individually. (A) For each pair models, the variance uniquely 
explained by the context-level feature space, uniquely explained by the second feature space, and the 
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intersection between the two for all subjects is compared between the cerebellum and cortex. The 
unique context-level partition is larger in the cerebellum than in the cortex for all feature spaces (two-
sided permutation test, q(FDR)<0.05). Additionally, the unique partition for each second feature space 
is significantly smaller in cerebellum than in cortex for every space. This shows that the lower level 
feature spaces predict less unique variance in the cerebellum than cortex and further supports the 
hypothesis that the cerebellum is not representing modality-specific or language-specific information. 
(B) For each pair of models, the variance explained by each partition in each voxel was projected onto 
the corresponding cortical and cerebellar flatmaps. These results are noise-ceiling corrected to account 
for differences in signal-to-noise ratios across the brain. Only voxels that were significantly predicted 
(one-sided permutation test, q(FDR)<0.05) by each union model are shown.There is substantially lower 
variance explained by the intersection between the context-level semantic model and the language and 
modality-specific feature spaces in the cerebellum than in cortex. Additionally the unique contributions 
for these models in the cerebellum is approaching zero and is not spatially localized. This lack of spatial 
localization further supports that there is no hierarchy of language processing in the cerebellum and 
these results provide strong support for the hypothesis that the cerebellum only represents high level, 
conceptual features of language, rather than low level features. 

 964 
 965 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2021. ; https://doi.org/10.1101/2021.01.18.427158doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.18.427158
http://creativecommons.org/licenses/by-nc-nd/4.0/


LeBel et al. Language encoding models of the cerebellum 

43/39 

 

Supplemental Figure 9. Shared explained variance of the context-level semantic feature space 
with each of the other feature spaces corrected for differences in signal-to-noise in cerebellum. 
To quantify the amount of overlap between the context-level semantic feature space with each of the 
four other feature spaces, three models for each pair of feature spaces were fit which included the 
concatenated feature space and each feature space individually. Correlations were corrected using 
standard noise-ceiling correction techniques to account for differences in signal-to-noise in cerebellum 
and cortex. For each pair of models, the variance explained by each partition in each voxel was 
projected onto the corresponding cerebellar flatmaps. Only voxels that were significantly predicted 
(one-sided permutation test, q(FDR)<0.05) by each union model are shown.There is substantially lower 
variance explained by the intersection between the context-level semantic model and the language and 
modality-specific feature spaces in the cerebellum than in cortex. Additionally the unique contributions 
for these models in the cerebellum is approaching zero and is not spatially localized. This lack of spatial 
localization further supports that there is no hierarchy of language processing in the cerebellum and 
these results provide strong support for the hypothesis that the cerebellum only represents high level, 
conceptual features of language, rather than low level features. 
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Supplemental Figure 10. Shared explained variance of the context-level semantic feature space 
with each of the other feature spaces corrected for differences in signal-to-noise in cortex. To 
quantify the amount of overlap between the context-level semantic feature space with each of the four 
other feature spaces, three models for each pair of feature spaces were fit which included the 
concatenated feature space and each feature space individually. For each pair of models, the variance 
explained by each partition in each voxel was projected onto the corresponding cortical flatmaps. 
Correlations were corrected using standard noise-ceiling correction techniques to account for variance 
in the signal-to-noise ration. Only voxels that were significantly predicted (one-sided permutation test, 
q(FDR)<0.05) by each union model are shown. 
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Supplemental Figure 11. Inertia of spherical K-means clustering 
with increasing number of clusters. To determine the ideal number 
of clusters to use when clustering the model weights of word-level 
semantic models, we calculated the inertia at each cluster amount from 
1 to 20. There is a clear “elbow point” where the slope of the inertia 
changes from exponential to linear at 5 clusters, thus that is what we 
chose to use. However, we did not find any differences in the results 
using a different number of clusters.  
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Supplemental Figure 12. Semantic Clustering of Model Weights. To check for differences in 
semantic representations between the cerebellum and cortex, word-level encoding model weights from 
both cerebellum and cortex in all subjects were concatenated, including only the top 20% best-
predicted voxels. This matrix was then clustered using spherical k-means into 5 clusters, which fell at 
the inflection point in the inertia graph (Supplemental Figure 11). For visualization, the centroid for 
each cluster was transformed into the same RGB space used in Figure 5, and each voxel in that 
cluster was assigned that color. The cluster distribution for each subject across the cerebellum and 
cortex are shown.  
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