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Abstract

Bespoke microscopes often require control of multiple hardware devices and pre-
cise hardware coordination. It is also desirable to have a control solution that is scalable
to more complex systems and translatable between components from different manu-
facturers. Here we report Python-Microscope, a free and open source Python library
for high performance control of arbitrarily complex and scalable bespoke microscopes.
Python-Microscope offers an elegant pythonic software platform to control microscopes,
abstracting differences between physical devices by providing a defined interface for
different device types. These include cameras, filter wheels, light sources, deformable
mirrors, and stages. Concrete implementations are provided for a range of specific hard-
ware and a framework is in place for further expansion. Python-Microscope supports
the distribution of devices over multiple computers while maintaining synchronisation
via highly precise hardware triggers. We discuss the architecture choices of Python-
Microscope that overcome the performance problems often raised against Python and
demonstrate the different use cases that drove its design: its integration in user facing
projects, namely in the Microscope-Cockpit project; in controlling complex microscopes
at high speed while using the Python programming language; and as a microscope sim-
ulation tool for software development.

Introduction

The most advanced methods and applications in modern microscopy methods often re-
quire the assembly of bespoke specialised microscope systems. Such one-off systems may
range from an off-the-shelf microscope stand with a range of specialised devices attached,
to an advanced engineering project built from bespoke optical components. There are
many unique examples in the literature of such systems. When building most such sys-
tems, software development to control a specific combination of hardware devices forms
a large portion of the effort. Other than developing bespoke software from scratch, there
are currently three popular routes for controlling bespoke microscopes: individual device
vendor software unique to each manufacturer; microscope specific control software with
the most popular being Micro-manager (1Manager), a general Java based framework with
a GUI that has the lowest barrier to use; and LabVIEW, a proprietary visual programming
language that is commonly used for building instruments in the physical sciences.

The solution requiring the least specialist knowledge is to use the device vendor soft-
ware for the individual microscope components and run them in parallel. For example, one
would open the light source, the camera, and the stage programs separately, and place their
individual windows side by side on the monitor to easily access all the controls. This solu-
tion is very convenient for simpler microscopes but lacks flexibility and scalability. Because
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the individual devices are being controlled on separate programs that do not communicate
with each other, control of the microscope is effectively manual. This limits microscope
usage to experiments that do not require synchronisation between devices. It also becomes
extremely unwieldy; as more devices are used each inevitably requires its own separate
program and window. Finally, with very rare exceptions, although these programs are
often distributed at no cost they are not open source software.

puManager is a general free and open source program for control of microscopes (Edel-
stein et al., 2010). It is written in the Java programming language as a plugin for Image]
(Schneider et al., 2012) and has a C++ core for hardware control that supports a wide range
of hardware. More recently, Pycro-Manager has also been developed to provide control
of uManager from Python and provide different hooks into a data acquisition pipeline for
integration with image analysis (Pinkard et al., 2020). Having started in 2005, pManager
continues under active development with a very wide and engaged user base, especially in
the life sciences microscopy field. Its enduring development and widespread use is a testa-
ment to its quality and usefulness. But as discussed on Chhetri et al. (2020), uManager has
limitations in setups with multiple cameras, its integration with hardware triggers, and
more complex imaging modalities. It can also be difficult to create scripts, especially in
complex configurations. The combination of C++ and Java with an old tool chain required
to build the software adds to the complexity of developing and debugging device adaptors,
and of extending functionality. The migration of many scientists towards the Python pro-
gramming language increases these issues. However, the widespread success of pManager
means it has extensive hardware support and is often a good choice, especially for simpler
systems.

LabVIEW is a visual programming language and development environment that is
widely used in physical sciences for prototyping instruments. It has very wide hard-
ware support with many manufacturers providing LabVIEW modules (known as virtual
instruments or VIs) to control their devices. Moreover, it allows very rapid development
of graphic user interfaces with no previous programming knowledge. LabVIEW is propri-
etary and requires a commercial license for every computer it is used on, likely with asso-
ciated cost. As each LabVIEW module is written by the equipment manufacturer there is
little consistency in how to interface different hardware. The visual nature of the program-
ming environment makes simple projects easy but systems with a large number of hard-
ware components or complicated control architecture can rapidly become extremely hard
to understand, reproduce, and maintain and it is not uncommon to outsource such work
to a commercial company (Chhetri et al., 2020). Even once automatic control is achieved,
new functionality, such as novel experimental protocols, will likely require extensive code
changes as there is no mechanism to include embedded scripts or similar. Additionally,
although there are visual diff and patch tools available for LabVIEW, it is hard to work
with a modern distributed software development environment without extensive manual
intervention for each and every modification.

In order to provide an alternative route that mitigates against these limitations, we have
developed Python-Microscope (referred to hereon simply as Microscope), a Python library
that provides an abstracted high level environment to control microscope devices. Beyond
the defined interface for each device type, Microscope is designed to support arbitrarily
complex microscopes with multiple devices spread across any number of computers. Being
written in Python, a simple yet very powerful language, it enables complex and novel
experimental approaches to be rapidly scripted and easily implemented.

Use Cases

The design of Microscope was based around a series of use cases derived from the experi-
ence of microscope hardware and software developers.

* Device independence
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* Experiments as programs
» Easy implementation of complex systems and scalability
* High performance

+ Simple development tool

Here we describe these use cases and how Microscope addresses them with the imple-
mentation details being described later.

Write once, run with any device

A major design consideration is the ability to reuse code upon modification or reimplemen-
tation of a given microscope. This happens frequently: when replacing a specific device
with a different model, either because the device failed or to get new features such as faster
acquisition rates; when building a copy of the microscope on another site which has ac-
cess to different devices; or as part of a larger improvement to an existing system, such as
addition of a second light path with another camera. The ability to reuse the code after
such changes to the system is critical because it accelerates microscope development by
eliminating or reducing the software development work, which is incidental to the main
purpose of the microscope.

At its core, Microscope is a Python package that provides a defined interface for the
different device types that may be used on a microscope. This means that code written
for a specific device type, such a camera or light source, will work for all devices of that
type. For example, to control the power output of a light source manufacturer-supplied
control software for different devices not only uses different commands and names — such
as power, intensity, or flux — but also different values — such as percentage, 0-1 range, or
intensity in milliwatts. In Microscope, the interface for light sources specifies the “power”
attribute with a value in the 0-1 range for all light sources no matter what the underlying
device implements.

A simple example of Microscope being used in this way is the BeamDelta program
(Hall et al., 2019) for alignment of optical systems that uses Microscope to interface to any
supported camera. Similarly, Microscope-AOtools (Hall et al., 2020) implements different
methods of adaptive optics and exploits Microscope to handle the control and specifics
of different cameras and deformable mirrors to provide virtual devices. Microscope is also
used to interface hardware in Cockpit (https://micronoxford.com/python-microscope-cockpit)
and PYME (https://www.python-microscopy.org/), programs that provide a graphical
user interface for complete microscopes and support a wide range of imaging modalities
and a number of devices.

Experiments as programs

The ability to write programs that are effectively microscopy experiments was an important
goal. There are three reasons for this: First, to provide as much flexibility as possible, since
graphical user interfaces are inherently limited by specific predesigned experiment types;
Second, to enable feedback of arbitrary image analysis into any step of the experiment
control; Third, to simplify the sharing of even extremely complex experiments. The ability
to write experiments as programs provides all these features.

As Microscope is a software library for controlling individual devices, it automatically
supports the ability to create programs that are experiments. We have developed Micro-
scope so that such programs are easy to read and write, and even complex experiments
can be encoded in easy to understand code (Figure 1). We have developed the software
in Python, a programming language with which many researchers are already familiar,
reducing the barriers to entry. Additionally, Python is a scripting language distributed as
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import time

from queue import Queue

from microscope import TriggerMode, TriggerType
from microscope.cameras.pvcam import PVCamera

from microscope.lights.toptica import TopticaiBeam
from tifffile import TiffWriter

n_repeats = 10

interval_seconds = 15
exposure_seconds
power_level = .5

1
(8]

camera = PVCamera()
laser = TopticaiBeam(port="COM1")
image_buffer = Queue()

camera.set_client(image_buffer)

camera.exposure_time = exposure_seconds
camera.set_trigger(TriggerType.SOFTWARE, TriggerMode.ONCE)
camera.enable()

laser.power = power_level
laser.set_trigger(TriggerType.HIGH, TriggerMode.BULB)
laser.enable()

for i in range(n_repeats):
camera.trigger()
time.sleep(interval_seconds)

laser.shutdown()
camera.shutdown()

writer = TiffWriter("data.tif")

for i in range(n_repeats):
writer.save(image_buffer.get())

writer.close()

Figure 1: Example code for a time-series experiment with hardware triggers. In the hard-
ware, this experiment requires the camera digital output line to be connected to the laser
digital input line, so that the camera emits a high TTL signal while its sensor is being ex-
posed. In the code, the laser is configured as to emit light only while receiving a high TTL
input signal. The example triggers the camera a specific number times with a time interval
between exposures. The acquired images are put in the buffer asynchronously. The images
are taken from the queue at the end of the experiment and saved to a file.

human readable plain text files, is cross platform, and does not require complex tool chains
with compilation and linking steps, making it easier to share and reuse. Python also has
a wide range of freely distributed packages for image analysis, which reduces the cost and
complexity of integrating analysis with the control software. Python also provides an inter-
active environment, making development and debugging of systems as well as prototyping
of experiments easily accessible.
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Arbitrarily complex microscopes

Many novel microscopes require a large number of devices, sometimes reaching a point
where it is not feasible to keep all devices connected to the same computer. This can hap-
pen either because many devices require too many resources, such as multiple cameras
overloading the data bandwidth of the system, or because different devices have incompat-
ible system requirements, such as requiring different operating systems.

For such situations, Microscope was designed to support remote procedural calls and
includes a device-server program which turns each individual device into a resource acces-
sible over the network. A program can then access remote resources as if they were local
Python objects. This design effectively makes the microscope a distributed system with
a client-server model where each device is a server and the control program, typically a
graphical user interface, is the client (Figure 2). This happens even if all devices are con-
nected on the same computer since the client can connect to the server either locally or
remotely.

CryoSIM (Phillips et al., 2020) and Aurox AO (Hussain et al., 2020) are two example se-
tups that use the Microscope device-server for hardware control in different ways. CryoSIM
incorporates four lasers and two filter wheels on one computer, a spatial light modula-
tor on a second computer, two cameras on a third computer, and a fourth computer for
overall system control, utilising the device-server to distribute many devices over several
computers. The Aurox AO setup has all the device servers on a single computer, however
the device-server model allows the integration of the Aurox Clarity module and a camera
into a single composite device. Allowing the image processing to produce a widefield or
confocal image from the raw image data to be integrated with image capture.

Fast and furious

Microscopy often requires strict timing. This is true even when imaging at low speeds be-
cause synchronisation is needed between multiple devices in order to have consistent ex-
posure time at the expected moment. For example, exposure of a sample to the light source
should be minimised to reduce photobleaching and photodamage so exposure should only
happen while the camera sensor is active. Similarly, it is important to ensure that the time
between start and end of light exposure is constant for reliable comparison between ex-
periments. Controlling these devices with commands from a program, especially one run-
ning on a modern multi-tasking operating system, adds delay (latency) and reduces perfor-
mance. In addition to the delay caused by the communication itself, there is unpredictable
delay (jitter) introduced by the operating system context switching and asynchronous com-
munication protocols, such as networks and USB. In total, these unpredictable timing is-
sues can introduce changes of tens of milliseconds, higher than some experimental camera
exposure times, making software control impossible for such demanding experiments.

Many devices can be configured to act on receipt of an electrical signal, often a TTL sig-
nal voltage, referred to as a hardware trigger. This hardware-based control is deterministic
as it does not depend on any software. For instance a laser only emits light while receiving
a high TTL input signal, a camera starts an image acquisition after receipt of a TTL rising
edge signal, or a deformable mirror applies the next queued pattern. A device may also
generate a trigger signal. For instance, cameras and light sources can often be configured
to output TTL signals while exposing or emitting light respectively.

The microscope interface was designed with the concept of triggers that activate the
individual devices and software triggers are handled as simply another trigger type. This
approach provides an interface that supports software triggers but is easily upgraded to
hardware triggers. The source of such hardware triggers can be other devices — typically
a camera — or a dedicated triggering device. The recommended procedure is to prepare
an experiment template that is then loaded on a dedicated timing device which triggers all
other devices, as described in Carlton et al. (2010).
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Figure 2: The device server: A client-server model enables the distribution of devices over
multiple computers (a) and does not exclude the simpler case of having all devices con-
trolled from the same computer (b).

Development tool

Finally, Microscope is a useful tool during the system development phase. There are two
sides of system development: the development of the actual optical setup, and the devel-
opment of the software to control that optical setup.

To support development of optical systems, Microscope includes a simple GUI program
for the different device types (Figure 3). These are purposely kept simple as their aim
is to test the basic functionality of the device without the added complexity that a full
microscope control GUI brings.

To support development of user facing software, Microscope provides simulated de-
vices that enable software development without physical access to the hardware. For ex-
ample, the simulated camera device can be configured to return images with specific fea-
tures such as 2D Gaussian spots (Figure 3(a)) which were used during development of
BeamDelta (Hall et al., 2019). Interaction between devices enables simulation of complex
behaviour. For example, Microscope provides a set of test devices to model sample nav-
igation: a simulated camera uses the position of a simulated stage to “acquire” an image
which is a subsection of a larger image. Focal position is simulated by blurring the image
based on the position of the z axis of the simulated stage, and a “channel” is selected based
on the position of the simulated filter wheel.

With hardware and software development happening concurrently, it is practical for
one person to build the optical system and connect hardware while another is building the
software. In doing so, total build time and costs can be reduced.
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Figure 3: The microscope-gui windows provide a minimal GUI for the different device types
to be used as development utilities. (a) GUI for a simulated camera that acquires single
Gaussian shaped spots at random locations. (b) GUI for a deformable mirror provides a
slider for each individual actuator. (c) GUI for a filter wheel displays a group of push
buttons for the different filter wheel positions. (d) GUI for a simulated stage displays the
different axis limits and positions.

Implementation

Documentation for the software and usage examples are available online at https://
python-microscope.org. Here we include an overview of the design and implementation
details as well as suggested workflows for hardware control using Microscope.

Abstract Base Classes

Microscope interfaces for the different device types are implemented as Abstract Base
Classes using Python’s abc standard library. These device ABCs are incomplete implemen-
tations with concrete methods that handle input validation and provide software fallbacks,
and abstract methods for the individual device operations.

Currently, ABCs have been implemented for cameras, light sources, filter wheels, stages,
and deformable mirrors, as well as integrated controllers that can control multiple pieces
of hardware. All these ABCs inherit from a Device ABC, which defines core operations
such as device settings and shutdown. The interface to support hardware triggers is im-
plemented via an ABC mixin, named TriggerTargetMixin, which is mixed with the indi-
vidual device type ABCs.

Concrete Implementations

The implementation of a concrete class, i.e., support for a specific physical device, is device
dependent but typically it either wraps a vendor-provided C library or a direct communi-
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cation link to the hardware. In the case of a C library, these are dynamically loaded with
Python’s ctypes standard library which removes the need for a compilation step or de-
pendence on other tools. Direct communication is typically performed via RS-232 serial
connections using Python’s pySerial package (https://github.com/pyserial/pyserial),
frequently over USB to serial bridges in connected hardware.

Concrete implementations have been created for multiple devices. The full list is ex-
panding with each new release and is part of the Microscope documentation available on-
line (https://python-microscope.org).

Device Server

The device-server program creates a Pyro4 daemon (https://pyro4.readthedocs.io/) for
each device. The Microscope device instance is created and then registered with its Pyro
daemon. There is only one Microscope device instance per physical device. The Python
multiprocessing standard library is used to place each Pyro daemon in its own python
process, effectively sidestepping Python’s Global Interpreter Lock (GIL). The device server
can be configured to serve a set of devices on the same process in order to simplify inter-
device communication, typically in the case of composite virtual devices. Other instances
that provide control of the hardware, such as individual stage axis and devices behind a
controller, are registered with the Pyro daemon at initialisation. With Pyro’s autoproxy
feature, these other instances are automatically replaced by a Pyro proxy on the client side.

While the use of device server is recommended, its implementation is decoupled from
the device classes themselves and its use is entirely optional. This allows simple actions
like debugging or testing partial systems to be performed directly via an interactive Python
shell.

GUI

The microscope-gui program makes use of the QtPy package (https://pypi.org/project/
0tPy/) which abstracts the difference between PyQt5, PyQt4, PySide2, and PySide, all
different Python wrappers to Qt, thus making the dependency a choice of the user. The
dependency on QtPy itself is optional, making Microscope easier to install if the GUI is
not required.

For each device ABC there is a corresponding QWidget class. This widget is the central
and only widget of the microscope-gui program window. The widget classes are public, so
they can be incorporated in other programs.

Device specific features

An inherent limitation of defining an interface for different device types is the use of spe-
cialised device features which are specific to single device model or range of models. For
example, some cameras have the option of applying denoising filters during acquisition,
or provide control over amplifiers in the different stages of the camera readout. These
features are exposed via a general “settings” mode, effectively a map of feature names to
values. Microscope provides such settings even when they clash with properties that are
part of Microscope’s interface. For example, Microscope’s camera interface has a binning
property but instances of PVCamera might also have the BINNING_SER and BINNING_PAR
settings. Direct use of such settings, instead of the defined interface, ties the resulting
code to the specific device, reducing potential for reuse hence we recommend against such
practice if possible.
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Requirements

Microscope has simple computational requirements. It requires Python 3.6 or later, and the
Python packages NumPy (Harris et al., 2020), Pillow, Pyro4, hidapi, and pySerial. These are
all free software and widely available for all operating systems, ensuring that Microscope is
truly cross platform. We have run Microscope on different versions of Microsoft Windows,
different GNU/Linux distributions, and macOS, on a multitude of computers from high-
end workstation computers and rack servers, to touchscreen notebooks and single-board
Raspberry Pi computers.

Despite the simple requirements that Microscope itself has, individual devices often
have their own more demanding requirements. Some devices require specific hardware
connectors such as PCle slots of a specific mode or size which can limit the motherboard
or computer chassis used — for example, laptops and all-in-one computers very rarely
contain any PCle slots which are required for high speed and resolution cameras. Other
devices may require a serial port or USB of a specific version. Similarly, use of devices
at high speed will add further system requirements — e.g., acquiring many images at a
fast rate will require faster data transfer and more computer memory. Finally, some of the
device SDKs which Microscope wraps are only available for one operating system, usually
specific versions of Microsoft Windows. Note though that by using a network connection to
the device-server, a controlling client program can be on another computer with a different
operating system from the device-server.

Workflow

Microscope provides an API to microscope devices of different types. Their documentation
is included as part of the class docstrings. While any program can easily instantiate the
class of their specific hardware, our recommendation is to use the device-server program to
create the devices and have programs control the devices via Pyro proxies. This removes
the need for device specific code on the program, replacing it with configuration files that
only need the device type and Pyro URI, both of which are strings that can be encoded
on a plain text file. In the specific case of camera devices, the program needs to register
the data client with a Pyro daemon and pass its URI to the camera device instance. This
enables asynchronous transfer of images back to the controlling process.

The microscope-gui works as a simple example of the use of Microscope in a program
for microscope control. The program is called with two arguments, the device type and its
URI, a simpler form of configuration. Its CameraWidget class is also a minimal example of
instantiating a queue object and serving it on its own dedicated Pyro daemon to be used as
data client for the camera device.

Discussion

Microscope is a library to enable builders of bespoke microscope systems to fully exploit
the power of the increasingly popular Python programming language. It interfaces with a
growing range of hardware classes such as cameras, filter wheels, light sources, deformable
mirrors, and stages with defined APIs, while still allowing access to device specific features.
Microscope provides simple access to complex devices for Python programs, and a defined
protocol for accessing devices either locally or over network connections via the device-
server. The device-server deals transparently with hardware restarts through reinitialisa-
tion and other issues, providing a reliable and robust interface to hardware in complex
systems and environments.

Python is a free, modern, open source, portable programming language. It has wide
support and a large developer community, it is relatively easy to learn, and has a wide
ecosystem for scientific computing. However, Python is not without its drawbacks. In the
context of hardware control, namely the coordination of multiple hardware devices, the



https://doi.org/10.1101/2021.01.18.427171
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.18.427171; this version posted January 19, 2021. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY 4.0 International license.

most commonly mentioned issue is Python’s performance and lack of “true” multithread-
ing due to a Global Interpreter Lock (GIL).

Python has the reputation for being slow when compared to C, C++, or even Java, ap-
parently making it an odd choice for microscope control where multiple physical devices
have to be controlled at high speed in an orchestrated manner. However, multi-threaded
operating systems simply do not have reliable enough timing for the triggering of critical
components, whichever programming language is used. For these applications, we rec-
ommend the use of hardware trigger modes that many devices have (or are available as
options). This approach was one of the main design considerations for Microscope, as it
makes Python’s performance mostly irrelevant to the overall performance of the micro-
scope system. Moreover, we recommend the use of Microscope in a client-server model
to access the different devices, each of them with a dedicated Python process, thus side
stepping the GIL.

Even if hardware triggers and a client-server model are not used, our experience is that
Python’s reputation as being slow is unjust. At least in the case of scientific computing,
the core processing steps in Python are often implemented in C or Fortran. In Micro-
scope, most of the hardware controllers are simply wrappers to vendor provided libraries
themselves written in C. In addition, calls to functions in those C libraries are done with
Python’s ctypes which also releases the GIL.

Python has become the de facto standard in the field of data science. CellProfiler,
Ilastik, NumPy, PyTorch, SciPy, and TensorFlow are well known examples of Python pro-
grams and libraries. Novel advances in the field of machine learning are increasingly hap-
pening first in the Python programming language. By using the Python language, Micro-
scope can harness all of these and bring new developments into the field of microscope
control more quickly and easily, accelerating the advancement of the field to what we see
as the next logic step (Waithe et al., 2020).

Conclusion

We have developed Microscope to sit at the foundation of a microscope control software
stack. The foundation is formed by abstracting the differences between individual devices
which dramatically reduces the differences in software between microscopes. By using
Python, which has a large user base in the scientific community, we are able exploit the
existing expertise in the field and leverage a vast range of scientific libraries for image
analysis. The design and features simplify the reuse and sharing of software components
between bespoke microscopes. We expect that it will ultimately accelerate and expand
microscopy developments.

Software Availability

Microscope is distributed under the GNU General Public License version 3.0 or later.
Source releases are available for download from the Python Package Index (https://pypi.
org/project/microscope/). Development sources are available from GitHub (https://
github.com/python-microscope/microscope). Documentation is included in the source
releases as well as HTML on the project website (https://python-microscope.org/).
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