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 2 

Abstract 12 

Most traits are polygenic and the contributing loci can be identified by GWAS. Their 13 

adaptive architecture is, however, poorly characterized. Here, we propose a new approach to 14 

study the adaptive architecture, which does not depend on genomic data. Relying on 15 

experimental evolution we measure the phenotypic variance in replicated populations during 16 

adaptation to a new environment. Extensive computer simulations show that the evolution of 17 

phenotypic variance in a replicated experimental evolution setting is a powerful approach to 18 

distinguish between oligogenic and polygenic adaptive architectures. We apply this new 19 

method to gene expression variance in male Drosophila simulans before and after 100 20 

generations of adaptation to a novel hot environment. The variance change in gene 21 

expression was indistinguishable for genes with and without a significant change in mean 22 

expression after 100 generations of evolution. We conclude that adaptive gene expression 23 

evolution is best explained by a highly polygenic adaptive architecture. We propose that the 24 

evolution of phenotypic variance provides a powerful approach to characterize the adaptive 25 

architecture, in particular when combined with genomic data. 26 

  27 
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Introduction 28 

It is widely accepted that most complex traits have a polygenic or even infinitesimal basis 29 

(Ayroles et al., 2009; Boyle et al., 2017; Liu et al., 2019). Nevertheless, it is difficult to 30 

predict which of these loci are responding to selection when a population is exposed to a new 31 

selection regime. If pleiotropic constraints are strong, only a small subset of the genes 32 

constituting are free to respond to respond to selection. Hence, the genetic basis of the 33 

adaptive response of a complex trait (i.e. adaptive architecture (Barghi et al., 2020)) may 34 

differ substantially from the genetic architecture. Since even for large phenotypic changes the 35 

genetic basis of an adaptive response is difficult to study when more than a handful of genes 36 

are contributing, we introduce a new approach to study the complexity of the adaptive 37 

architecture. Rather than aiming to map the contributing loci, we propose to study the 38 

evolution of phenotypic variance in an experimental evolution framework. 39 

 40 

The phenotypic variance of a quantitative trait is a key determinant for its response to 41 

selection. It can be decomposed into genetic and environmental components (Falconer and 42 

Mackay, 1963). Over the past years, mathematical models have been developed which 43 

describe the expected genetic variance of a quantitative trait under selection and its 44 

maintenance in evolving populations (Bulmer, 1972; Chevalet, 1994; Kimura and Crow, 45 

1964; Turelli, 1984). For infinitely large populations and traits controlled by many 46 

independent loci with infinitesimal small effect, changes in trait optimum are not expected to 47 

affect the phenotypic variance (Lande, 1976). A much more complex picture is expected 48 

when the effect sizes are not equal, the population size is finite, or the traits have a simpler 49 

genetic basis (Barton and Keightley, 2002; Barton and Turelli, 1987; Franssen et al., 2017; 50 

Hayward and Sella, 2019; Jain and Stephan, 2015; Keightley and Hill, 1989). For instance, 51 

for a trait with oligogenic architectures, the genetic variance could drop dramatically during 52 
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 4 

adaptation, while with polygenic architectures, only minor effects on the variance are 53 

expected (Barton et al., 2017; Franssen et al., 2017; Jain and Stephan , 2015). These studies 54 

suggest that a time-resolved analysis of phenotypic variance has the potential to shed light 55 

onto the complexity of the underlying adaptive architecture.  56 

 57 

Despite its potential importance for the understanding of adaption, we are faced with the 58 

situation that very few empirical data are available for the evolution of phenotypic variance. 59 

The use of natural populations to study changes in phenotypes and even more so phenotypic 60 

variances is limited, as the environmental heterogeneity cannot be controlled. A 61 

complementary approach to study the evolution of phenotypic variance is experimental 62 

evolution (Kawecki et al., 2012). With replicated populations starting from the same founders 63 

and evolving under tightly controlled environmental conditions, experimental evolution 64 

provides an enormous potential to study the evolution of phenotypic variance. 65 

 66 

Most experimental evolution studies in sexual populations focused on the evolution of 67 

phenotypic means, rather than variance (Burke et al., 2010; Chippindale et al., 1996; Jakšić et 68 

al., 2020; Mallard et al., 2018). A notable exception is a study which applied fluctuating, 69 

stabilizing and disruptive selection to a small number of traits (wing shape) and observed a 70 

change of the phenotypic variance (Pélabon et al., 2010). Instead of looking at a preselected 71 

subset of phenotypes which limits the generality, we will focus on gene expression, a set of 72 

molecular phenotypes, which can be easily quantified since microarrays and, more recently, 73 

RNA-Seq have become available. Importantly, the expression levels of genes exhibit the 74 

same properties (e.g.: continuality and normality) as other complex quantitative traits 75 

(Mackay et al., 2009). Thus, gene expression has also been widely employed to search for 76 

putative adaptive traits of locally adapted populations (Romero et al., 2012; Signor and 77 
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Nuzhdin, 2018; Sork, 2017) or ancestral and evolved populations in the context of 78 

experimental evolution (Ferea et al., 1999; Huang and Agrawal, 2016; Lenski et al., 1994; 79 

Mallard et al., 2018). 80 

 81 

In this study, we used forward simulations that match not only essential design features of 82 

typical experimental evolution studies, but also incorporate realistic parameters of the genetic 83 

architecture. We recapitulate the classic expectations that even a moderately polygenic 84 

architecture is associated with a high stability of the phenotypic variance of a selected trait 85 

across different phases of adaptation. Applying this insight to a real dataset (Barghi et al., 86 

2019; Hsu et al., 2020; Jakšić et al., 2020), we show that a considerable set of genes changed 87 

their mean expression, but their expression variance was indistinguishable from genes 88 

without changes in mean expression. We propose that this pattern reflects that adaptive gene 89 

expression evolution generally has a polygenic basis.  90 

 91 

Results 92 

The central idea of this study is that the complexity of an adaptive trait can be estimated from 93 

the trajectory of the phenotypic variance during adaptation: the phenotypic variance remains 94 

relative stable for a trait with polygenic (infinitesimal) architecture while it changes across 95 

generations for a trait with oligogenic architecture. Although this prediction has been 96 

illustrated in multiple theoretical and simulation studies (e.g.: Barton et al., 2017; Franssen et 97 

al., 2017; Jain and Stephan, 2015), as the first step of this study, we explored to what extent it 98 

can be generalized to a typical E&R setting considering a broader parameter space. Assuming 99 

additivity and a negative correlation between ancestral allele frequency and effect size (Otte 100 

et al., 2020) (Figure 1b), we simulated traits adapting to a mild/distant shift in trait optimum 101 

with weak/intermediate/strong stabilizing selection (Figure 1a and Figure 1 – Figure 102 
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supplement 1). With three different distributions of effect size (Figure 1c) we investigate how 103 

the number of contributing loci affects the phenotypic variance.  104 

 105 

We monitored the change in phenotypic variance over 200 generations, which was sufficient 106 

to reach the trait optimum for most parameter combinations (Figure 2 – Figure supplement 4 107 

and 5). We compared the change in variance relative to the start of the experiment in 108 

populations with and without selection. First, we studied a mild (one standard deviation of 109 

the ancestral phenotypic distribution) shift in trait optimum (Figure 2 and Figure 2 – Figure 110 

supplement 2). As expected for a founder population derived from a substantially larger 111 

natural population, we find that even under neutrality the phenotypic variance does not 112 

remain constant, but gradually decreases during 200 generations of experimental evolution 113 

(Figure 2). This loss of variance is best explained by the fixation of variants segregating in 114 

the founder population and we did not simulate new mutations, as they do not contribute to 115 

adaptation in such short time scales (Burke et al., 2010). Our simulations show that even 116 

experimental evolution studies with moderate population sizes and linkage very nicely 117 

recapitulate the patterns from previous studies (Barton et al., 2017; Franssen et al., 2017; Jain 118 

and Stephan , 2015). A pronounced drop in phenotypic variance is observed while a trait is 119 

approaching a shifted optimum with few contributing loci (Figure 2). When more loci are 120 

contributing to the selected phenotype, the difference to neutrality becomes very small 121 

(Figure 2 and Figure 2 - Figure supplement 2). In addition to the number of contributing loci, 122 

also the heterogeneity in effect size among loci and the shape of the fitness function have a 123 

major impact. The larger the difference in effect size is, the more pronounced was the 124 

influence of the number of contributing loci (Figure 2). The opposite effect was seen for the 125 

width of the fitness function – a larger variance decreased the influence of the number of 126 

contributing loci (Figure 2). Importantly, these patterns were not affected by the duration of 127 
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 7 

the experiment-qualitatively identical patterns were seen at different time points until 128 

generation 200.  129 

 130 

For a more distant trait optimum (three standard deviations of the ancestral phenotypic 131 

distribution), we noticed some interesting dynamics that were not apparent for a closer trait 132 

optimum (Figure 2 – Figure supplement 1 and 3). The most striking one was the temporal 133 

heterogeneity of the phenotypic variance for few contributing loci of unequal effects. During 134 

the early stage of adaptation, the variance increased and dropped later below the variance in 135 

the founder population. With an increasing number of contributing loci, this pattern 136 

disappeared and closely matched the neutral case (Figure 2 – Figure supplement 1). 137 

Modifying dominance did not change the overall patterns-with a large number of contributing 138 

loci the variance fitted the neutral pattern best (Figure 2 – Figure supplement 6). Overall, our 139 

simulations indicate that only for a small set of parameters, the variance will increase during 140 

the early stage of adaptation - in particular scenarios based on a few contributing loci with 141 

very different effect sizes. The large influence of key parameters of the adaptive architecture, 142 

in particular the number of contributing loci and their effect sizes on the temporal phenotypic 143 

variance dynamics, suggest that it should be possible to exploit this for a test of polygenic 144 

adaptation, which is independent from genomic data.  145 

 146 

As a proof of principle, we studied the evolution of gene expression variance in replicated 147 

populations evolving in a new hot temperature regime (Barghi et al., 2019; Hsu et al., 2020; 148 

Jakšić et al., 2020). The evolved populations were derived from the same ancestral 149 

population, but evolved independently for 100 generations in a novel temperature regime 150 

with daily temperature fluctuations between 18 and 28°C (Figure 3a). Rather than relying on 151 

pooled samples that allow only to estimate means, we quantified gene expression of 152 
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individuals from reconstituted ancestral populations and two evolved populations in a 153 

common garden setup. Similar to previous studies (Ayroles et al., 2009; Huang et al., 2015), 154 

we estimated a heritability of around 60% across the transcriptome among individual flies 155 

from different families, which demonstrates the robustness of our experimental setup to 156 

estimate expression variances (Method – Figure supplement 1; See Materials and methods). 157 

Principle Component Analysis (PCA) indicated that 11.9% of the variation in gene 158 

expression can be explained by the first PC which separates evolved and ancestral 159 

populations, reflecting clear adaptive gene expression changes in response to the novel, hot 160 

temperature regime (Figure 3b). The means and variances of the expression of each gene 161 

were estimated and compared between the reconstituted ancestral populations and the two 162 

evolved populations (Method – Figure supplement 2 and 3; See Materials and methods). Due 163 

to the usage of different lot numbers for the RNA-Seq library preparation (Supplementary file 164 

1), we only contrasted ancestral and evolved samples generated with the same lot number 165 

(See Materials and methods) to avoid any unnecessary confounding results.  166 

 167 

The comparison of ancestral and evolved populations identified 2,812 genes in the first 168 

replicate and 2,704 genes in the second replicate which significantly changed mean 169 

expression in the evolved flies (FDR<0.05, Supplementary file 2). With about 20% of the 170 

genes changing mean expression, it is apparent that both populations evolved during 100 171 

generations of exposure to a novel environment. 93.8% of the genes with a significant mean 172 

expression change in both populations changed in the same direction, more than expected by 173 

chance (Figure 4a, 𝜒" = 896.34, p-value < 2.2 × 10./0). This concordance suggests that 174 

most of the altered expression means are mainly driven by selection, rather than by drift. We 175 

quantified the expression change by relating the change in gene expression to the standard 176 

deviation in the ancestral population. The differentially expressed genes in both replicates 177 
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 9 

showed a broad distribution of expression change, but the mean expression changed by one 178 

standard deviation (Figure 4b). Assuming that all expression phenotypes reached trait 179 

optimum, this reflects on average a moderate shift in trait optimum. 180 

 181 

Consistent with computer simulations, the analysis of gene expression variance showed a 182 

slight decrease in evolved populations relative to the ancestral ones (median F-value = 0.84 in 183 

both replicates). Only a small subset of gene (n=125 and 97 in each replicate) experienced a 184 

substantial reduction in variance. Because this reduction in variance is probably driven by a 185 

different evolutionary force, we discuss them elsewhere (Lai et al., 2021). For the remaining 186 

genes, we related the changes in gene expression variance of selected genes to non-selected 187 

ones, we tested whether the variance changes in expression differ between the genes with 188 

significant mean expression changes and those without. Hence, we assume that genes with 189 

significant mean expression changes are under selection and the rest of the transcriptome has 190 

no large effect on the fitness (neutral). Remarkably, the changes in variance of putative 191 

adaptive genes with significant mean expression changes are indistinguishable from the genes 192 

that do not change their mean expression (Figure 4c). This suggests that the selection on 193 

mean expression is independent from the change in variance during adaptation in the focal 194 

populations. While variance estimates from two time points do not provide sufficient power 195 

to estimate the number of contributing loci in absence of more information about the adaptive 196 

architecture, our computer simulations (Figure 2), suggest in line with previous theoretical 197 

work (Barton et al., 2017; Jain and Stephan, 2015) that the observed stability in variance 198 

evolution reflects a polygenic architecture underlying the adaptive gene expression evolution. 199 

 200 

Since we only explored two time points rather than a full time series, it may be possible that 201 

an oligogenic basis could also result in a similar phenotypic variance change as a polygenic 202 
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architecture (Figure 2 – Figure supplement 1 and 3). This can be seen in an intuitive case 203 

when a single/few major effect allele(s) starts at a low frequency and becomes fixed (Yoo et 204 

al., 1980). Because an oligogenic basis results in a highly parallel genomic selection response 205 

(Figure 2 – Figure supplement 7), it is possible to distinguish polygenic and oligogenic 206 

architectures with phenotypes from two time points only, when genomic data are available. 207 

Because the genomic signature in the same experiment uncovered a highly heterogeneous 208 

selection response (Barghi et al., 2019), we can exclude the unlikely explanation of an 209 

oligogenic architecture resulting in a similar expression variance as non-selected genes. 210 

Rather, we conclude that the adaptive response in gene expression is best explained by a 211 

highly polygenic architecture.   212 
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Discussion 213 

Population genetics has a long tradition to characterize adaptation based on the genomic 214 

signature of selected loci (Nielsen, 2005). Nevertheless, for selected phenotypes with a 215 

polygenic architecture, the contribution of individual loci to phenotypic change may be too 216 

subtle to be detected with classic population genetic methods (Pritchard et al., 2010). Even 217 

with an oligogenic basis, the identification of the selection targets with classic population 218 

genetic tests can be challenging.  219 

 220 

Here, we used a conceptually different approach, which does not build on the genomic 221 

signature, to infer the adaptive architecture. Reasoning that experimental evolution is 222 

probably the best approach to obtain phenotypic time series, we performed computer 223 

simulations specifically tailored to typical experimental evolution studies with Drosophila. 224 

We showed that the temporal dynamics of the phenotypic variance is strongly affected by the 225 

number of contributing loci and other parameters of the adaptive architecture, such as the 226 

distribution of effect size and the underlying fitness function. Similar to the classic 227 

Castle-Wright estimator (Castle, 1921) that estimates the number of loci contributing to a 228 

quantitative trait from the phenotypic variance of the F2, we propose that the temporal 229 

heterogeneity of the phenotypic variance can be used to estimate the number of loci 230 

contributing to the adaptive response of a phenotype as well as other parameters of the 231 

adaptive architecture. Hence, unlike other approaches to characterize polygenic adaptation, 232 

the proposed estimator does not require genetic data when phenotypic time series data are 233 

available.  234 

 235 

Because gene expression changes are constituting a major component of adaptation to a novel 236 

environment (Romero et al., 2012; Signor and Nuzhdin, 2018; Sork, 2017), it provides an 237 
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 12 

excellent model to evaluate a variance-based test for polygenicity. Gene expression is 238 

modified by many trans-acting factors and some cis-regulatory variation. Adaptive gene 239 

expression changes can be either driven by polymorphism in cis-regulatory elements or by 240 

trans-acting variants. While interspecific differences in gene expression are predominantly 241 

caused by cis-regulation (Wittkopp et al., 2004), intraspecific variation is mostly driven by 242 

trans regulatory changes (Suvorov et al., 2013; Wittkopp et al., 2008). Adaptive gene 243 

expression changes which are well-characterized on the molecular level typically have a 244 

cis-regulatory basis that is not only frequently associated with the insertion of a transposable 245 

element (e.g.: (Daborn et al., 2002)) but also sometimes with multiple regulatory variants 246 

(Endler et al., 2018). Two lines of evidence suggest that cis-regulatory variation cannot be the 247 

driver of adaptive gene expression changes observed in this study. First, the mutational target 248 

size is too small to harbor a sufficiently large number of alleles segregating in the founder 249 

population. Second, too few recombination events occur during the experiment to uncouple 250 

regulatory variants located on a given haplotype such that they could generate a signal of 251 

polygenic adaptation. More likely, the polygenic adaptive architecture of gene expression 252 

change reflects the joint effects of many trans-acting variants.  253 

 254 

Because we could only analyze phenotypic data from two time points, the founder population 255 

and replicate populations evolved for 100 generations, we were not able to obtain a more 256 

quantitative estimate of the number of contributing loci, in particular as other parameters of 257 

the adaptive architecture are not known and need to be co-estimated. For the distinction 258 

between an oligogenic and polygenic basis, we additionally relied on the heterogeneity of 259 

genomic selection signatures among replicates, because for some parameter combinations the 260 

oligogenic response can also result in a similar phenotypic variance as a polygenic one, but 261 

with a much higher parallel response of genomic markers (Figure 2 – Figure supplement 7). 262 
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Hence, not only more time points describing the phenotypic trajectory, but also some 263 

genomic data could contribute to infer the adaptive architecture in experimental evolution 264 

studies. The extension of this approach to natural populations faces several challenges. First, 265 

phenotypic time series over evolutionary relevant time scales are rare (but see (Clutton-Brock 266 

and Pemberton, 2004)) and second, the distinction of environmental heterogeneity from 267 

genetic changes is considerably more challenging than under controlled laboratory 268 

conditions.  269 

 270 

  271 
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 272 

Figure 1. Simulating polygenic adaptation to a shift in trait optimum with different 273 

parameter combinations. a. For the computer simulations we consider a quantitative trait 274 

(in black) experiencing a sudden shift in trait optimum under stabilizing selection. The 275 

underlying fitness functions are illustrated in red. The new trait optimum is shifted from the 276 

ancestral trait mean by one/three standard deviation of the ancestral trait distribution. The 277 

strength of stabilizing selection is modified by changing the variance of the fitness function: 278 

1.8, 3.6 and 5.4 standard deviations of the ancestral trait distribution. b. The negative 279 

correlation between the allele frequencies and the effect sizes (r = -0.7, estimated in Barghi et 280 
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al., 2019). We consider such negative correlation when assigning the effect sizes to variants 281 

underlying a simulated trait. c. The distribution of effect sizes of the contributing loci is 282 

determined by the shape parameter (𝛼) of gamma sampling process (α = 0.5, 2.5 and 100).  283 

  284 
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 285 

Figure 2. The trajectory of changes in phenotypic variance during adaptation to a mild 286 

optimum shift. The changes in phenotypic variance within 200 generations adapting to a 287 

moderate optimum shift (orange) are compared to the changes under neutrality (grey) on y 288 

axis. The change in variance (F) is calculated as the ratio of phenotypic variance between 289 

each evolved time point (generation x) and the ancestral state (𝜎3" 𝜎4"⁄ ). The simulations cover 290 

traits controlled by varying numbers of loci underlying the adaptation with three different 291 

distributions of effect sizes (columns) under different strength of stabilizing selection (rows). 292 

For each scenario, 1000 runs of simulations have been performed. Only traits with the most 293 
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(dotted lines, 1000 loci), intermediate (dash lines, 50 loci) and the least (solid lines, 5 loci) 294 

polygenic architectures are shown. In all scenarios, the variance of the trait decreases 295 

drastically when the adaptation is controlled by a small number of loci (orange solid lines; 5 296 

loci). While, for traits with extremely polygenic basis, the phenotypic variance stays stable 297 

over time (orange dotted lines).  298 

  299 
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 300 

Figure 3. Schematic overview of the experimental procedures (a) and the divergence in 301 

gene expression during experimental evolution (b).  a. Experimental evolution: starting 302 

from one common founder population, two replicate populations evolved for 100 generations 303 

in a hot laboratory environment fluctuating between 18 and 28°C. Common garden 304 

Experiment: after 100 generations, the two evolved replicate populations were maintained 305 

together with the reconstituted ancestral population for two generations in a hot laboratory 306 

environment fluctuating between 18 and 28°C. After this common garden procedure, about 307 

30 males from each population were subjected to RNA-Seq. b. Principle Component 308 

Analysis (PCA) of the transcriptomic profiles of individuals from the ancestral population 309 

(blue) and the hot-evolved population (red). Circles indicate individuals of the first replicate 310 

(Anc. No. 27 and Evo. No. 4). Triangles represent individuals of the second replicate (Anc. 311 

No. 28 and Evo. No. 9). The two replicates were made with two different batches of library 312 

cards for RNA-Seq library preparation.  313 

  314 
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 315 

Figure 4. Evolution of phenotypic mean and variance over 100 generations of 316 

adaptation in empirical data. a. The evolution of gene expression mean during adaptation 317 

in the two replicates. For the genes with significant changes (DE, in orange), the changes are 318 

correlated between replicates (Spearman’s rho = 0.53). For the genes without significant 319 

changes (non-DE, in grey), the correlation between replicates is much lower (Spearman’s rho 320 

= 0.2). b. The evolution of gene expression mean scaled by the ancestral variation. For the 321 

DE genes (in orange), the median change falls around 1 standard deviation of the ancestral 322 

expression value, suggesting mild shift in trait optimum in the novel environment. For the 323 
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non-DE genes (in grey), the changes in expression are mostly negligible. The same pattern is 324 

seen in the second replicate. c. The change in expression variance during adaptation for DE 325 

and non-DE genes. In both replicates, the distribution of variance changes is 326 

indistinguishable between DE genes (orange) and non-DE genes (grey) (Wilcoxon’s rank 327 

sum test, p > 0.1 for both replicates). 328 

  329 
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Materials and Methods 330 

Computer simulations 331 

We performed forward simulations with MimicrEE2 (Vlachos and Kofler, 2018) using the 332 

qff mode to illustrate the influence of the genetic architecture on the evolution of phenotypic 333 

variance during the adaptation to a new trait optimum. With 189 founder haplotypes (Barghi 334 

et al., 2019), we simulated quantitative traits under the control of different numbers of loci (5, 335 

25, 50, 100, 200 and 1000) with an effective population size of 300. For each trait, we 336 

assume an additive model and a negative correlation (r = -0.7, estimated in Barghi et al., 337 

2019) between the effect size and starting frequency (Figure 1b). The effect sizes of each 338 

locus can disperse in different levels which depend on the shape parameter of gamma 339 

sampling process (shape = 0.5, 2.5 and 100, Figure 1c). We used correlate() function 340 

implemented in “fabricatr” R package (Blair et al., 2019) to generate the effect sizes. The 341 

sum of effect sizes of each trait was normalized to 1. We assumed a heritability h2 = 0.6 342 

(from a family-based estimation in this study). To simulate stabilizing selection with trait 343 

optimum shift, we provided the Guassian fitness functions with mean of 𝑋789.:::::: + 𝑎=𝑉789. 344 

and standard deviation of	𝑏=𝑉789., where 𝑋789.:::::: is the ancestral phenotypic mean and 𝑉789. 345 

is the ancestral genetic variance (Figure 1a). Parameter “a” determines the distance of 346 

optimum shift, which is set to one (similar to the empirical case, Figure 4b) or three (Adopted 347 

from Sella et al., 2019). Parameter “b” indicates how strong the phenotypic constrain would 348 

be when the trait optimum is reached. The value 3.6 is adopted from Sella et al., 2019. In this 349 

study, we increase and decrease it by 50% to explore its impact (1.8 or 5.4). For the neutrality 350 

case, we assumed uniform fitness for all individuals. For each trait under each scenario, the 351 

phenotypic variance was estimated at different generations and compared to the ancestral 352 

phenotypic variance at generation 1 to illustrate the dynamic of phenotypic variance during 353 

the evolution. We note that we do not assume that the ancestral population has reached an 354 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.19.427260doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427260
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

equilibrium, because the ancestral population in this study was phenotyped in the new 355 

environment. 356 

 357 

Experimental evolution 358 

The setup of populations and evolution experiment have been described by (Barghi et al., 359 

2019). Briefly, ten outbred populations seeded from 202 isofemale lines were exposed to a 360 

laboratory experiment at 28/18 °C with 12hr light/12hr dark photoperiod for more than 100 361 

generations. Each replicate consisted of 1000 to 1250 adults at each generation.  362 

 363 

Common garden experiment 364 

The collection of samples from the evolution experiment for RNA-Seq was preceded by two 365 

generations of common garden (CGE). The common garden experiment was performed at 366 

generation 103 of the evolution in the hot environment and this CGE has been described in 367 

(Barghi et al., 2019; Hsu et al., 2020, 2019; Jakšić et al., 2020). In brief, an ancestral 368 

population was reconstituted by pooling five mated females from 184 founder isofemale lines 369 

(Nouhaud et al., 2016). No significant allele frequency differences are expected between the 370 

reconstituted ancestral populations and the original ancestral populations initiating the 371 

experiment (Nouhaud et al., 2016). Because we evaluated phenotypes on the population 372 

level, deleterious mutations will have a very limited impact. The reason is that they occur 373 

only in a single isofemale line, which represents a very small fraction of the total population. 374 

Two replicates of the reconstituted ancestral population and two independently evolved 375 

populations at generation 103 were reared for two generations with egg-density control (400 376 

eggs/bottle) at the same temperature regime as in the evolution experiment. Freshly eclosed 377 

flies were transferred onto new food for mating. Sexes were separated under CO2 anesthesia 378 

at day 3 after eclosure, left to recover from CO2 for two days, and at the age of five days 379 
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whole-body mated flies of each sex were snap-frozen at 2pm in liquid nitrogen and stored at 380 

-80°C until RNA extraction. In this study, more than 30 individual male flies from two 381 

reconstituted ancestral populations (replicate no. 27 and no. 28) and two evolved populations 382 

(replicate no. 4 and no. 9) were subjected to RNA-Seq.  383 

 384 

RNA extraction and library preparation 385 

Whole bodies of individual male flies were removed from the -80°C freezer and immediately 386 

homogenized in Qiazol lysis reagent (Qiagen, Hilden, Germany). The homogenate was 387 

treated with DNase I followed by addition of chloroform, centrifugation and mixture of the 388 

upper phase with 70% ethanol as described for the Qiagen RNeasy Universal Plus Mini Kit. 389 

The mixture was subsequently loaded onto a RNeasy MinElute Spin column as provided by 390 

the RNeasy Plus Micro Kit (Qiagen, Hilden, Germany), and all washing steps were 391 

performed according to the instructions for that kit. All resulting total RNA was used to 392 

prepare stranded mRNA libraries on the Neoprep Library Prep System (Illumina, San Diego, 393 

USA) following the manufacturer’s protocol: Neoprep runs were performed using software 394 

version 1.1.0.8 and protocol version 1.1.7.6 with default settings for 15 PCR cycles and an 395 

insert size of 200bp. All libraries for individuals of ancestral replicate no. 27 and evolved 396 

replicate no. 4 were prepared with library cards of lot no. 20180170; all libraries for 397 

individuals of ancestral replicate no. 28 and evolved replicate no. 9 were prepared with 398 

library cards of lot no. 20178099. 50bp single-end reads were sequenced on an Illumina 399 

HiSeq 2500. All sequencing data will be available in European Nucleotide Archive (ENA) 400 

under the accession number PRJEB37011 upon publication. 401 

   402 

RNA-Seq data processing and quality control 403 
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All RNA-Seq reads were trimmed using ReadTools (Gómez-Sánchez and Schlötterer, 2018) 404 

with quality score of 20 and aligned to Drosophila simulans reference genome (Palmieri et 405 

al., 2015) using GSNAP (Wu et al., 2016) with parameter setting -k 15 -N 1 -m 0.08. 406 

Exon-aligned reads were piped into Rsubread (Liao et al., 2019) to calculate read counts of 407 

each gene, and raw read counts of each gene were normalized with the TMM method 408 

implemented in edgeR (Robinson et al., 2010). Samples with severe 3’- bias were removed 409 

based on visual inspection of the gene-body coverage plot (Jakšić and Schlötterer, 2016; 410 

Wang et al., 2012).  411 

 412 

Genetic variance in gene expression across F1 families 413 

We evaluated how much of the expression variance can be explained by genetic variation by 414 

performing RNA-Seq on individual flies, with 3-4 individuals each from three isofemale lines 415 

maintained at the same density and culturing conditions.  416 

Six out of 184 founder isofemale lines from the evolution experiment and were maintained 417 

for one generation with controlled egg density (400 eggs/bottle) in the same environment as 418 

the main experiment (12h 28°C with light followed by 12h 18 °C with dark conditions). 419 

Using the offspring, we generated three crosses between two of the six lines each: FL 138 x 420 

FL 137, FL 157 x FL 112, FL 123 x FL 127: we combined 50 virgin females from one of the 421 

lines with 50 males from the other line, let them lay eggs under density control as above and 422 

maintained and froze their F1 offspring in the same way as in the main CGE: sexes were 423 

separated after mating at the age of three days and snap-frozen at the age of five days at 2pm. 424 

From each cross, we used four F1 males to prepare individual RNA-Seq libraries as described 425 

above. 426 
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Assuming no environmental heterogeneity, we decomposed the total variance of the 427 

expression of each gene measured in these individuals into the genetic difference among 428 

three different F1 families and random error. The data were analyzed as follows:  429 

Natural log-transformation was applied to CPMs of all genes to improve data normality 430 

(Rocke and Durbin, 2003). Principal component and principal variance component analysis 431 

(Bushel, 2019) was performed to the whole transcriptome to decompose the variance 432 

components. We found that around 60% of the gene expression variance can be explained by 433 

the genetic difference among the three F1 families (method – Figure supplement 1a and b).  434 

This implies that the within-population gene expression variance is largely contributed by the 435 

genetic components. Because we only used offspring from single vials, we may have 436 

overestimated the heritability if the environment in the vials differs. Nevertheless, since our 437 

heritability estimates are very similar to previous ones (Ayroles et al., 2009), we consider our 438 

estimates reliable.  439 

 440 

In addition to general analysis across all genes, we also tested for the genetic variance of each 441 

gene separately using analysis of variance (ANOVA):  442 

𝑦BC = 𝜇 + 𝜏B + 𝜀BC, 443 

Where i=1, 2, 3, …, n (the ith genes); j =1, 2, 3, 4 (the jth individuals in each cross). 𝑦BC  is the 444 

observed expression level of a gene in a given sample, 𝜇	is the overall mean;  𝜏B is the 445 

effect of genetic background and 𝜀BC	is the random noise. We calculated the proportion of 446 

total variance explained by random error using the following equation: 447 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒	𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑	𝑏𝑦	𝑟𝑎𝑛𝑑𝑜𝑚	𝑒𝑟𝑟𝑜𝑟 = 	
𝑠𝑢𝑚	𝑠𝑞𝑢𝑎𝑟𝑒𝑠	𝑜𝑓	𝑒𝑟𝑟𝑜𝑟	(𝑆𝑆𝐸)
𝑠𝑢𝑚	𝑠𝑞𝑢𝑎𝑟𝑒𝑠	𝑜𝑓	𝑡𝑜𝑡𝑎𝑙	(𝑆𝑆𝑇)  448 
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Genes were binned based on their average expression value (lnCPM) which ranged from -0.8 449 

to 4.1, by bin size of 0.1. The average proportion of variance explained by random error of 450 

each bin was calculated.  451 

The expression variance of genes with less than 1 count per million bases (CPM) is 452 

dominated by technical errors (method – Figure supplement 1c).  Thus, genes with less than 453 

1 count per million base (CPM) were excluded for subsequent analysis. 454 

 455 

RNA-Seq data analysis 456 

We observed some outlier individuals and suspected that the freezing process may have led 457 

to detachment of body parts, such as eyes or heads, in these individuals. We compared gene 458 

expression between such outliers and all other samples and performed tissue enrichment 459 

analysis for genes with at least 2-fold lower expression in the outlier samples. Samples with 460 

evidence of tissue detachment were excluded. After filtering, each population remained 461 

approximately 20 individuals (Supplementary file 1). Only genes with at least 1 count per 462 

million base (CPM) were included in the analyses to avoid extremely lowly expressed genes.  463 

For all RNA-Seq data we only compared samples which were prepared with library cards 464 

from the same lot number to avoid batch effects (Replicate 1: evolved replicate 4 vs. 465 

reconstituted ancestral population replicate 27; Replicate 2: evolved replicate 9 ss. 466 

reconstituted ancestral population replicate 28). 467 

For differential expression analysis on mean expression, we used the generalized linear 468 

modeling function implemented in edgeR (Robinson et al., 2010) to fit the expression to the 469 

model (𝑌 = 𝐸 + 𝜀) in which Y stands for gene expression, E is the effect of evolution and 𝜀 470 

is the random error. The likelihood ratio test was performed to test the effect of evolution. 471 

P-value adjustment was performed using the Benjamini-Hochberg false discovery rate (FDR) 472 

correction. 473 
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For the analysis of expression variance evolution, we applied natural log transformation 474 

(Rocke and Durbin, 2003) to eliminate the strong mean-variance dependency in RNA-Seq 475 

data due to the nature of the negative binomial distribution (method – Figure supplement 2). 476 

The variance of the expression of each gene (lnCPM) was estimated in each population. With 477 

the moderate sample size, we needed to estimate the uncertainty of variance estimates. 478 

Jackknifing was applied to measure the uncertainty of estimator (Fukunaga and Hummels, 479 

1989). The procedure was conducted independently on four replicates and we calculated the 480 

95% confidence interval of the estimated variance (method – Figure supplement 3). The 481 

change of gene expression variance was determined by the F statistics calculated as the ratio 482 

between the variance within the ancestral population and the variance within the evolved 483 

population of each gene. To test whether selection alter the expression variance, a 484 

comparison was made between the F statistics of genes with significant changes in mean 485 

expression and the ones without. 486 

  487 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.19.427260doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427260
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

Acknowledgments 488 

Special thanks to David Houle, who provided fantastic support during the collection and 489 

establishment of the isofemale lines in Florida. We thank all member of the Institut für 490 

Populationsgenetik for discussion. We are grateful to Reinhard Bürger and David Houle for 491 

helpful comments on earlier versions of the manuscript. Neda Barghi, François Mallard and 492 

Kathrin Otte contributed to the common garden experiment. Illumina sequencing was 493 

performed at the VBCF NGS Unit (www.vbcf.ac.at). This work was support by the Austrian 494 

Science Funds (FWF, W1225) and the European Research Council (ERC, ArchAdapt). 495 

 496 

Author contribution 497 

W.Y.L and C.S. conceived the study. V.N. prepared all RNA-Seq and supervised the 498 

maintenance of the evolution experiment. A.M.J supervised the common garden experiment. 499 

W.Y.L performed the simulation and data analysis. W.Y.L. and C.S. wrote the manuscript. 500 

 501 

Competing interests 502 

The authors declare no competing interests. 503 

  504 

Correspondence and requests for materials should be addressed to C.S.  505 

  506 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.19.427260doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427260
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

 507 

References 508 

Ayroles JF, Carbone MA, Stone EA, Jordan KW, Lyman RF, Magwire MM, Rollmann SM, 509 

Duncan LH, Lawrence F, Anholt RRH, Mackay TFC. 2009. Systems genetics of 510 

complex traits in Drosophila melanogaster. Nat Genet 41:299–307. doi:10.1038/ng.332 511 

Barghi N, Hermisson J, Schlötterer C. 2020. Polygenic adaptation: a unifying framework to 512 

understand positive selection. Nat Rev Genet 21:769–781. 513 

doi:10.1038/s41576-020-0250-z 514 

Barghi N, Tobler R, Nolte V, Jakšić AM, Mallard F, Otte KA, Dolezal M, Taus T, Kofler R, 515 

Schlötterer C. 2019. Genetic redundancy fuels polygenic adaptation in Drosophila. 516 

PLOS Biol 17:e3000128. doi:10.1371/journal.pbio.3000128 517 

Barton NH, Etheridge AM, Véber A. 2017. The infinitesimal model: Definition, derivation, 518 

and implications. Theor Popul Biol 118:50–73. doi:10.1016/J.TPB.2017.06.001 519 

Barton NH, Keightley PD. 2002. Understanding quantitative genetic variation. Nat Rev Genet 520 

3:11–21. doi:10.1038/nrg700 521 

Barton NH, Turelli M. 1987. Adaptive landscapes, genetic distance and the evolution of 522 

quantitative characters. Genet Res 49:157–173. doi:10.1017/S0016672300026951 523 

Boyle EA, Li YI, Pritchard JK. 2017. An expanded view of complex traits: From polygenic 524 

to omnigenic. Cell 169:1177–1186. doi:10.1016/J.CELL.2017.05.038 525 

Bulmer MG. 1972. The genetic variability of polygenic characters under optimizing 526 

selection, mutation and drift. Genet Res 19:17–25. doi:10.1017/S0016672300014221 527 

Burke MK, Dunham JP, Shahrestani P, Thornton KR, Rose MR, Long AD. 2010. 528 

Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature 529 

467:587–590. doi:10.1038/nature09352 530 

Bushel P. 2019. pvca: Principal variance component analysis (PVCA). R Packag version 531 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.19.427260doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427260
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

1240. 532 

Castle WE. 1921. An improved method of estimating the number of genetic factors 533 

concerned in the cases of blending inheritance. Science 54:223. 534 

doi:10.1126/science.54.1393.223 535 

Chevalet C. 1994. An approximate theory of selection assuming a finite number of 536 

quantitative trait loci. Genet Sel Evol. 26:379. doi:10.1186/1297-9686-26-5-379 537 

Chippindale AK, Chu TJF, Rose MR. 1996. Complex trade-offs and the evolution of 538 

starvation resistance in Drosophila melanogaster. Evolution (N Y) 50:753–766. 539 

doi:10.1111/j.1558-5646.1996.tb03885.x 540 

Clutton-Brock TH, Pemberton JM (Josephine M). 2004. Soay sheep : population dynamics 541 

and selection on St. Kilda. Cambridge University Press. 542 

Daborn PJ, Yen JL, Bogwitz MR, Le Goff G, Feil E, Jeffers S, Tijet N, Perry T, Heckel D, 543 

Batterham P, Feyereisen R, Wilson TG, ffrench-Constant RH. 2002. A single p450 544 

allele associated with insecticide resistance in Drosophila. Science 297:2253–6. 545 

doi:10.1126/science.1074170 546 

Endler L, Gibert J-M, Nolte V, Schlötterer C. 2018. Pleiotropic effects of regulatory variation 547 

in tan result in correlation of two pigmentation traits in Drosophila melanogaster. Mol 548 

Ecol 27:3207–3218. doi:10.1111/mec.14781 549 

Falconer DS, Mackay TFC. 1963. Introduction to quantitative genetics, Poultry Science. 550 

CreateSpace Independent Publishing Platform. doi:10.3382/ps.0420547 551 

Ferea TL, Botstein D, Brown PO, Rosenzweig RF. 1999. Systematic changes in gene 552 

expression patterns following adaptive evolution in yeast. Proc Natl Acad Sci U S A 553 

96:9721–6. doi:10.1073/pnas.96.17.9721 554 

Franssen SU, Kofler R, Schlötterer C. 2017. Uncovering the genetic signature of quantitative 555 

trait evolution with replicated time series data. Heredity (Edinb) 118:42–51. 556 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.19.427260doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427260
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

doi:10.1038/hdy.2016.98 557 

Fukunaga K, Hummels DM. 1989. Leave-one-out procedures for nonparametric error 558 

estimates. IEEE Trans Pattern Anal Mach Intell 11:421–423. doi:10.1109/34.19039 559 

Gómez-Sánchez D, Schlötterer C. 2018. ReadTools : A universal toolkit for handling 560 

sequence data from different sequencing platforms. Mol Ecol Resour 18:676–680. 561 

doi:10.1111/1755-0998.12741 562 

Hayward LK, Sella G. 2019. Polygenic adaptation after a sudden change in environment. 563 

bioRxiv 792952. doi:10.1101/792952 564 

Hsu S-K, Jakšić AM, Nolte V, Barghi N, Mallard F, Otte KA, Schlötterer C, Hsu S-K, Jakšić 565 

AM, Nolte V, Barghi N, Mallard F, Otte KA, Schlötterer C. 2019. A 24 h age difference 566 

causes twice as much gene expression divergence as 100 generations of adaptation to a 567 

novel environment. Genes (Basel) 10:89. doi:10.3390/genes10020089 568 

Hsu S-K, Jakšić AM, Nolte V, Lirakis M, Kofler R, Barghi N, Versace E, Schlötterer C. 569 

2020. Rapid sex-specific adaptation to high temperature in Drosophila. Elife 9. 570 

doi:10.7554/eLife.53237 571 

Huang W, Carbone MA, Magwire MM, Peiffer JA, Lyman RF, Stone EA, Anholt RRH, 572 

Mackay TFC. 2015. Genetic basis of transcriptome diversity in Drosophila 573 

melanogaster. Proc Natl Acad Sci U S A 112:E6010–E6019. 574 

doi:10.1073/pnas.1519159112 575 

Huang Y, Agrawal AF. 2016. Experimental evolution of gene expression and plasticity in 576 

alternative selective regimes. PLOS Genet 12:e1006336. 577 

doi:10.1371/journal.pgen.1006336 578 

Jain K, Stephan W. 2015. Response of polygenic traits under stabilizing selection and 579 

mutation when loci have unequal effects. G3 (Bethesda) 5:1065–74. 580 

doi:10.1534/g3.115.017970 581 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.19.427260doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427260
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

Jakšić AM, Karner J, Nolte V, Hsu S-K, Barghi N, Mallard F, Otte KA, Svečnjak L, Senti 582 

K-A, Schlötterer C. 2020. Neuronal function and dopamine signaling evolve at high 583 

temperature in Drosophila. Mol Biol Evol 37:2630–2640. doi:10.1093/molbev/msaa116 584 

Jakšić AM, Schlötterer C. 2016. The interplay of temperature and genotype on patterns of 585 

alternative splicing in Drosophila melanogaster. Genetics 204:315–325. 586 

doi:10.1534/GENETICS.116.192310 587 

Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC. 2012. Experimental 588 

evolution. Trends Ecol Evol 27:547–560. doi:10.1016/J.TREE.2012.06.001 589 

Keightley PD, Hill WG. 1989. Quantitative genetic variability maintained by 590 

mutation-stabilizing selection balance: sampling variation and response to subsequent 591 

directional selection. Genet Res 54:45–58. doi:10.1017/S0016672300028366 592 

Kimura M, Crow JF. 1964. The number of alleles that can be maintained in a finite 593 

population. Genetics 49:725–738. 594 

Lai W.-Y. & Schlötterer, C. 2021. Evolution of gene expression variance during adaptation to 595 

high temperature in Drosophila. BioRxiv. 596 

Lande R. 1976. Natural selection and random genetic drift in phenotypic evoltion. Evolution 597 

(N Y) 30:314–334. doi:10.1111/j.1558-5646.1976.tb00911.x 598 

Lenski RE, Travisano M, Larison B, Moritz C. 1994. Dynamics of adaptation and 599 

diversification: a 10,000-generation experiment with bacterial populations. Proc Natl 600 

Acad Sci 91:6808–6814. doi:10.1073/pnas.91.15.6808 601 

Liao Y, Smyth GK, Shi W. 2019. The R package Rsubread is easier, faster, cheaper and 602 

better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res 603 

47:e47–e47. doi:10.1093/nar/gkz114 604 

Liu X, Li YI, Pritchard JK. 2019. Trans effects on gene expression can drive omnigenic 605 

inheritance. Cell 177:1022-1034.e6. doi:10.1016/J.CELL.2019.04.014 606 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.19.427260doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427260
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

Mackay TFC, Stone EA, Ayroles JF. 2009. The genetics of quantitative traits: challenges and 607 

prospects. Nat Rev Genet 10:565–577. doi:10.1038/nrg2612 608 

Mallard F, Nolte V, Tobler R, Kapun M, Schlötterer C. 2018. A simple genetic basis of 609 

adaptation to a novel thermal environment results in complex metabolic rewiring in 610 

Drosophila. Genome Biol 19:119. doi:10.1186/s13059-018-1503-4 611 

Nielsen R. 2005. Molecular signatures of natural selection. Annu Rev Genet 39:197–218. 612 

doi:10.1146/annurev.genet.39.073003.112420 613 

Nouhaud P, Tobler R, Nolte V, Schlötterer C. 2016. Ancestral population reconstitution from 614 

isofemale lines as a tool for experimental evolution. Ecol Evol 6:7169–7175. 615 

doi:10.1002/ece3.2402 616 

Otte KA, Nolte V, Mallard F, Schlötterer C. 2020. The adaptive architecture is shaped by 617 

population ancestry and not by selection regime. bioRxiv 2020.06.25.170878. 618 

doi:10.1101/2020.06.25.170878 619 

Palmieri N, Nolte V, Chen J, Schlötterer C. 2015. Genome assembly and annotation of a 620 

Drosophila simulans strain from Madagascar. Mol Ecol Resour 15:372–81. 621 

doi:10.1111/1755-0998.12297 622 

Pélabon C, Hansen TF, Carter AJR, Houle D. 2010. Evolution of variation and variability 623 

under fluctuating, stabilizing, and disruptive selection. Evolution (N Y) 64:1912–25. 624 

doi:10.1111/j.1558-5646.2010.00979.x 625 

Pritchard JK, Pickrell JK, Coop G. 2010. The genetics of human adaptation: Hard sweeps, 626 

soft sweeps, and polygenic adaptation. Curr Biol 20:R208–R215. 627 

doi:10.1016/J.CUB.2009.11.055 628 

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for 629 

differential expression analysis of digital gene expression data. Bioinformatics 26:139–630 

140. doi:10.1093/bioinformatics/btp616 631 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.19.427260doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427260
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

Rocke DM, Durbin B. 2003. Approximate variance-stabilizing transformations for 632 

gene-expression microarray data. Bioinformatics 19:966–72. 633 

Romero IG, Ruvinsky I, Gilad Y. 2012. Comparative studies of gene expression and the 634 

evolution of gene regulation. Nat Rev Genet 13:505–516. doi:10.1038/nrg3229 635 

Signor SA, Nuzhdin S V. 2018. The evolution of gene expression in cis and trans. Trends 636 

Genet 34:532–544. doi:10.1016/j.tig.2018.03.007 637 

Sork VL. 2017. Genomic studies of local adaptation in natural plant populations. J Hered 638 

109:3–15. doi:10.1093/jhered/esx091 639 

Suvorov A, Nolte V, Pandey RV, Franssen SU, Futschik A, Schlötterer C. 2013. 640 

Intra-specific regulatory variation in Drosophila pseudoobscura. PLoS One 8:e83547. 641 

doi:10.1371/journal.pone.0083547 642 

Turelli M. 1984. Heritable genetic variation via mutation-selection balance: Lerch’s zeta 643 

meets the abdominal bristle. Theor Popul Biol 25:138–193. 644 

doi:10.1016/0040-5809(84)90017-0 645 

Wang L, Wang S, Li W. 2012. RSeQC: quality control of RNA-seq experiments. 646 

Bioinformatics 28:2184–2185. doi:10.1093/bioinformatics/bts356 647 

Wittkopp PJ, Haerum BK, Clark AG. 2008. Regulatory changes underlying expression 648 

differences within and between Drosophila species. Nat Genet 40:346–350. 649 

doi:10.1038/ng.77 650 

Wittkopp PJ, Haerum BK, Clark AG. 2004. Evolutionary changes in cis and trans gene 651 

regulation. Nature 430:85–88. doi:10.1038/nature02698 652 

Wu TD, Reeder J, Lawrence M, Becker G, Brauer MJ. 2016. GMAP and GSNAP for 653 

genomic sequence alignment: Enhancements to speed, accuracy, and functionality. 654 

Humana Press, New York, NY. pp. 283–334. doi:10.1007/978-1-4939-3578-9_15 655 

Yoo BH, Nicholas FW, Rathie KA. 1980. Long-term selection for a quantitative character in 656 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.19.427260doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427260
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

large replicate populations of Drosophila melanogaster. Theor Appl Genet 57:113–117. 657 

doi:10.1007/BF00253881 658 

  659 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.19.427260doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427260
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

Figure supplements 660 

 661 

Figure 1 – Figure supplement 1. The evolutionary scenario for distant optimum shift. 662 

We consider the case when a quantitative trait (in black) experiences a sudden shift in trait 663 

optimum under stabilizing selection. The imposed fitness functions (F.F.) are illustrated in 664 

red. The new trait optimum is set away from the ancestral trait mean by three standard 665 

deviation of the ancestral trait distribution for distal shift. To vary the strength of stabilizing 666 

selection, the variance of the fitness function is set as 1.8, 3.6 and 5.4 standard deviation of 667 

the ancestral trait distribution. 668 
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 670 

 671 

Figure 2 – Figure supplement 1. The trajectory of expected changes in phenotypic 672 

variance when adapting to a distant optimum shift. The changes in phenotypic variance 673 

within 200 generations adapting to a distant optimum shift (orange) are compared to the 674 

changes under neutrality (grey) on y axis. The change in variance (F) is calculated as the ratio 675 

of phenotypic variance between each evolved time point (generation x) and the ancestral state 676 

(𝜎"44" 𝜎4"⁄ ). The simulations cover traits controlled by varying numbers of loci underlying the 677 

adaptation with three different distributions of effect sizes (columns) and under different 678 
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strength of stabilizing selection (rows). For each scenario, 1000 runs of simulations have 679 

been performed. Only traits with the most (dotted lines, 1000 loci), intermediate (dash lines, 680 

50 loci) and the least (solid lines, 5 loci) polygenic architectures are shown. Unlike the 681 

continuous decreasing pattern in the cases with moderate optimum shifts, the variance of 682 

traits controlled by a few loci (5 loci) with largely dispersed effects would increase first and 683 

then decrease when the effect sizes of contributing loci are dispersed (orange solid lines). 684 

Nevertheless, for traits with extremely polygenic basis, the phenotypic variance always stays 685 

stable over time (orange dotted lines). 686 
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 688 

Figure 2 – Figure supplement 2. The expected changes in phenotypic variance and the 689 

number of contributing loci. The changes in phenotypic variance after 200 generations 690 

adapting to a mild optimum shift (orange) are compared to the changes under neutrality (grey) 691 

on y axis. The change in variance (F) is calculated as the ratio between the evolved and 692 

ancestral phenotypic variance (𝜎"44" 𝜎4"⁄ ). The simulations cover traits controlled by varying 693 

numbers of loci underlying the adaptation (x-axes) with three different distributions of effect 694 

sizes (columns) and under different strength of stabilizing selection (rows). For each scenario, 695 

1000 runs of simulations have been performed. In all scenarios, the variance of the trait 696 
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decreases drastically when the adaptation is controlled by a small number of loci. As the 697 

number of contributing loci increases, the phenotypic variance becomes more stable. 698 
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 700 

Figure 2 – Figure supplement 3. The expected changes in phenotypic variance and the 701 

number of contributing loci. The changes in phenotypic variance after 200 generations 702 

adapting to a distant optimum shift (orange) are compared to the changes under neutrality 703 

(grey) on y axis. The change in variance (F) is calculated as the ratio between the evolved 704 

and ancestral phenotypic variance (𝜎"44" 𝜎4"⁄ ). The simulations cover traits controlled by 705 

varying numbers of loci underlying the adaptation (x-axes) with three different distributions 706 

of effect sizes (columns) and under different strength of stabilizing selection (rows). For each 707 

scenario, 1000 runs of simulations have been performed. In most scenarios, the variance of 708 
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the trait decreases drastically when the adaptation is controlled by a small number of loci. As 709 

the number of contributing loci increases, the phenotypic variance becomes more stable. 710 

However, exceptions can be observed when the effect sizes of the contributing loci are 711 

largely dispersed. In these cases, shift in optimum does not have the strong impact on the 712 

variance of traits under simple genetic control (5 contributing loci). In the extreme case, 713 

highly dispersed effect sizes in combination with a relaxed phenotypic constraint removes the 714 

relationship between the number of loci and the changes in phenotypic variance. 715 
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 717 

 718 

Figure 2 – Figure supplement 4. The changes in phenotypic mean when adapting to a 719 

mild optimum shift. The changes in phenotypic mean after 200 generations adapting to a 720 

mild optimum shift (orange) are compared to the changes under neutrality (grey) on y axis. 721 

The changes in phenotypic mean are scaled by the standard deviation of the ancestral trait 722 

distribution. The simulations cover traits controlled by varying numbers of loci underlying 723 

the adaptation (x axes) with three different distributions of effect sizes (columns) and under 724 

different strength of stabilizing selection (rows). For each scenario, 1000 runs of simulations 725 
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have been performed. In most cases, the traits under selection (orange) shift their means by 726 

one standard deviation of the ancestral trait distribution (i.e. reaching the new trait optimum) 727 

while the neutral traits (grey) stay unchanged. 728 
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 730 

Figure 2 – Figure supplement 5. The changes in phenotypic mean when adapting to a 731 

distant optimum shift. The changes in phenotypic mean after 200 generations adapting to a 732 

distant optimum shift (orange) are compared to the changes under neutrality (grey) on y axis. 733 

The changes in phenotypic mean are scaled by the standard deviation of the ancestral trait 734 

distribution. The simulations cover traits controlled by varying numbers of loci underlying 735 

the adaptation (x axes) with three different distributions of effect sizes (columns) and under 736 

different strength of stabilizing selection (rows). For each scenario, 1000 runs of simulations 737 

have been performed. In most cases, the traits under selection (orange) shift their means by 738 
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three standard deviation of the ancestral trait distribution (i.e. reaching the new trait optimum) 739 

while the neutral traits (grey) stay unchanged. 740 
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 742 

Figure 2 – Figure supplement 6. The expected changes in phenotypic variance for traits 743 

controlled by dominant and recessive alleles. The changes in phenotypic variance after 200 744 

generations adapting to a mild optimum shift (orange) are compared to the changes under 745 

neutrality (grey) on y axis. The change in variance (F) is calculated as the ratio between the 746 

evolved and ancestral phenotypic variance (𝜎"44" 𝜎4"⁄ ). This simulation covers traits controlled 747 

by varying numbers of loci underlying the adaptation (x axes) with recessive, additive and 748 

dominant effects. For each scenario, 1000 runs of simulations have been performed. No 749 

matter how the dominance varies, the variance of the trait decreases drastically when the 750 

adaptation is controlled by a small number of loci. As the number of contributing loci 751 

increases, the phenotypic variance becomes more stable.  752 
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 754 

Figure 2 – Figure supplement 7. Parallelism in genomic response across 10 evolved 755 

replicates for traits under the control of five loci and 100 loci. For the loci with allele 756 

frequency change of at least 10% in 200 generations, the average Pearson’s correlation 757 

coefficient of the frequency change between all pairs of two evolved replicates was 758 

calculated to describe the parallelism of the evolution at these loci. An average across loci is 759 

used to obtain a general parallelism. 100 runs of simulations with 10 evolution replicates 760 

have been performed for each scenario. With five contributing loci, the genomic evolution of 761 
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the contributing loci is more parallel across the 10 evolved replicates compared to the case 762 

when with 100 contributing loci. 763 
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 765 

Method – Figure supplement 1. Genetic variance in gene expression across F1 families. 766 

(A) Principal component analysis (PCA) on the transcriptomes of F1 individuals from three 767 

different crosses between the founder iso-female lines. Individuals from different families 768 

clustered nicely based on the first two PCs. (B) Principal variance component analysis 769 

(PVCA) on the transcriptomes of F1 individuals. 67% of the total variance in gene expression 770 

was explained by the genetic difference between the individuals. (C) Gene-wise analysis of 771 
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variance (ANOVA) in gene expression. Genes were binned based on their average expression 772 

value (lnCPM) which ranged from -0.8 to 4.1, by bin size of 0.1. The average proportion of 773 

variance explained by random error of each bin was visualized. The expression variance of 774 

genes with less than 1 count per million bases (CPM) is dominated by residuals. 775 

  776 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.19.427260doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427260
http://creativecommons.org/licenses/by-nc-nd/4.0/


 52 

 777 

Method – Figure supplement 2. Log-transformation eliminates the positive relationship 778 

between the changes in mean and variance of gene expression. In each panel, the changes 779 

in mean expression, log(FC) (𝐹𝐶 =	 abcd.:::::::
aefg.:::::::

) and in variance before (A) and after (B) the natural 780 

log-transformation of each gene were visualized (𝐹h = 	 i7j(abcd.)
i7j(aefg.)

  and 𝐹 = i7j(kl	(abcd.))
i7j(kl	(aefg.))

). 781 

The positive correlation (r = 0.45) due to the positive mean-variance dependency of negative 782 

binomial distribution is removed by the log-transformation (r = -0.05) on gene expression 783 

level. 784 
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 786 

Method – Figure supplement 3. Robustness of the variance estimation using individual 787 

sequencing data. Jackknife method was applied to measure the uncertainty of variance 788 

estimation. Given a sample size of K, the procedure is to estimate the variance of each gene 789 

for K times, each time leaving one sample out. The procedure was conducted independently 790 

on 4 populations (anc.27, anc.28, evo.4 and evo.9). In each panel, we visualize Jackknife 791 

approximated 95% confidence interval for the variance estimates of each gene. The genes are 792 

ordered based on the average variance estimates (black dash line) on the x-axis. The upper 793 

and lower limits of the 95% confidence interval are indicated with grey curves. The salmon 794 
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line denotes the observed value of the variance estimates. In most cases, the estimates lie in 795 

the confidence interval, suggesting robust estimation. 796 
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Titles and legend for supplementary files 798 

Supplementary file 1. Library information of the sample in this study. This file provides 799 

a list of all sequenced samples and the library information. 800 

 801 

Supplementary file 2. Differential gene expression analysis of two contrasts between 802 

ancestral and evolved populations. This file reports the results of DE analysis between anc. 803 

27 and evo. 4 (Table S2A) and between anc. 28 and evo. 9 (Table S2B).  804 

 805 

Supplementary file 3. F value on the gene expression of two contrasts between ancestral 806 

and evolved populations. This file reports the results of gene expression variance 807 

comparisons between anc. 27 and evo. 4 (Table S3A) and between anc. 28 and evo. 9 (Table 808 

S3B). 809 
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