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Abstract 12 

Shifts in trait means are widely considered as evidence for adaptive responses, but the impact 13 

on phenotypic variance remains largely unexplored. Here, we studied gene expression 14 

variance of Drosophila simulans males before and after 100 generations of adaptation to a 15 

novel hot laboratory environment. In each of the two independently evolved replicate 16 

populations the variance of about 150 genes changed significantly (mostly reduction). 17 

Although different genes were affected in both replicates, these genes are related to digestion 18 

in the gut. This non-parallel selection response on the gene level in combination with a 19 

convergent response at a higher phenotypic level reflects genetic redundancy, a characteristic 20 

hallmark of polygenic adaptation. We propose that the constant and simple food source in the 21 

laboratory resulted in selection for reduced variance in digestive genes. In natural populations 22 

adaptation to diverse types of food may be beneficial, resulting in higher phenotypic 23 

variance. This empirical evidence of phenotypic variance being the direct target of selection 24 

during adaptation has important implications for strategies to identify selection signatures. 25 

 26 

Introduction 27 

Most studies of adaptation rely on shifts in trait mean as signal of selective response 1–6 . The 28 

variance of the trait in a population, which is the prerequisite for an adaptive response 7,8, has 29 

received considerably less attention. As a result, our understanding of the evolution of 30 

phenotypic variance is still rather limited. Probably most progress has been made in 31 

quantitative genetics, describing the evolution of phenotypic variance in response to a sudden 32 

shift in trait optimum 9–12. For large populations and traits controlled by many unlinked loci 33 
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with equal effect, changes in trait optimum are not expected to affect the phenotypic variance 34 
13,14. In contrast, a much more complex picture is expected when the effect sizes are not equal, 35 

the population size is finite, or the traits have a simpler genetic basis 15–19. 36 

 37 

In addition to these indirect effects on phenotypic variance, it is also possible that not trait 38 

mean, but the variance of a trait is the target of selection. For instance, stabilizing selection 39 

may reduce the variance of a trait 20. Canalization, one potential consequence of stabilizing 40 

selection 21, describes the phenomenon that genetic and environmental perturbations can be 41 

buffered and henceforth reduce the phenotypic variance. A classic textbook example for a 42 

canalization factor is the heat shock protein Hsp70. Mutations of this chaperone gene result in 43 

increased phenotypic variance due to the unmasking of genetic variation 22. Because 44 

canalization differs between populations, it has been proposed that it may also evolve 23,24. 45 

 46 

We studied the evolution of gene expression variance after a shift in habitat and found that 47 

the variance of most genes remained unaffected, even for genes with a significant change in 48 

mean expression (Lai et al., 2021). Here, we focused on a small subset of genes, which 49 

changed their phenotypic variance during 100 generations of adaptation. We propose that 50 

selection operates directly on phenotypic variance. Because genes that evolved reduced 51 

variance were enriched in the gut and selection in natural populations may favor a high 52 

variance reflecting the diverse food sources, the constant and simple food source in the 53 

laboratory favored a single phenotype, resulting in a loss of phenotypic variance.  54 

 55 

Results and discussion 56 

Rapid changes in gene expression variance during adaptation 57 

We measured the gene expression of ~20 whole body male individuals from two replicates of 58 

hot-evolved and reconstituted ancestral populations (Lai et al., 2021). After adapting for 100 59 

generations to the high temperature regime, the transcriptomic response of hot-evolved 60 

populations was significantly diverged from their ancestors. Principle Component Analysis 61 

indicated that PC1 explained 11.9% of the total variation and separated the hot-evolved 62 

replicates from their ancestor which reflects the clear adaptive signatures to the novel, hot 63 

temperature regime (Lai et al., 2021). The variances of the expression of each gene were 64 

estimated and compared between the reconstituted ancestral populations and the two evolved 65 

populations. The usage of different lot numbers during the RNA-Seq library preparation 66 
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(Supplementary file 1), allowed to contrast only ancestral and evolved samples generated 67 

with the same lot number (See Materials and methods).  68 

 69 

In both replicates, a small number of genes (166 and 148) significantly changed the 70 

expression variance after 100 generations of adaptation (F-test, FDR < 0.05; Figure 1; 71 

Supplementary file 2). Among the 166 genes with a significant change in variance in 72 

replicate 1, the variance of 125 genes decreased while only 41 genes showed a variance 73 

increase. This is a significant difference in the directionality of phenotypic variance evolution 74 

(χ2=42.51, p-value < 7.0×10-11). A similar difference was seen in replicate 2 (χ2=14.30, p-75 

value < 1.6×10-4). 18 genes were shared between the two replicates. This suggests that the 76 

genes with significant changes in variance may be subjected to similar evolutionary 77 

processes.  78 

 79 

Digestive genes in midgut rapidly decreased their transcriptional variance 80 

In order to characterize plausible processes that could explain the significant changes in gene 81 

expression variance, we searched for gene ontology (GO) or tissue-specific expression 82 

enrichment. In both replicates genes with increased variance had no consistent enrichment in 83 

any biological processes or tissue-specific expression (Supplementary file 3 and 4). In 84 

contrast, despite mostly different genes had decreased variance in the two replicates, in both 85 

replicates a consistent enrichment for expression in the midgut was detected (Fisher’s exact 86 

test, FDR < 0.05, Figure 2, Supplementary file 3). GO enrichment analysis identified also 87 

catabolism-related processes (e.g.: “organic substance catabolic process”, “carbohydrate 88 

metabolic process” and “organonitrogen compound catabolic process”) in both replicates 89 

(Supplementary file 4). In addition to the consistent enrichment in the midgut and catabolic 90 

processes, we also observed an enrichment for digestive enzymes 25 (Fisher’s exact test, odds 91 

ratio = 4.21 and 3.53, p-value < 0.01), indicating that a different set of digestive genes in 92 

midgut rapidly decreased their transcriptional variance in the two replicates during 100 93 

generations of adaptation. The enrichment in midgut and digestive genes persisted when we 94 

lowered the significance threshold of the F-test (FDR < 0.1, supplementary file 4), indicating 95 

that our result does not depend on a specific cutoff to define the genes with reduced gene 96 

expression variance. 97 

 98 

Potential selection pressures for the reduction in expression variance in gut  99 
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Given the consistent enrichment for the same tissues and GO categories in two independent 100 

replicates, we conclude that random genetic drift is an unlikely explanation for the 101 

pronounced reduction of expression variance in these genes. Rather, we propose that the 102 

reduction in expression variance is a response to selection imposed by an altered 103 

environmental factor. Based on functional enrichment, we consider two different hypotheses 104 

that could explain the altered expression variance in the gut – microbiome and diet. 105 

 106 

It is well-established that the microbiome has a pronounced effect on gene expression in the 107 

gut, but without a strong taxon-specific signal 26. To rule out that heterogeneity in 108 

microbiome complexity explains the evolution of gene expression variance, we used all 109 

remaining flies of the same common garden experiment from one evolved replicate and the 110 

corresponding ancestral population (Supplementary file 1) to investigate the microbiome 111 

diversity. The β-diversity, which quantifies the heterogeneity in microbiome complexity 112 

within a population, was very similar for evolved and ancestral populations (Figure 3 and 113 

Table 1). Despite the limitations of a very reduced sample size, our result is consistent with 114 

previous studies 27. Similarly, the microbiome composition cannot explain the reduced 115 

variance, as we observed high heterogeneity in composition among individuals from the 116 

ancestral and evolved populations (Fig. 3). 117 

  118 

Alternatively, strong selection pressure on the phenotypic variance may have been imposed 119 

by the monotonic laboratory food. Natural Drosophila populations are feeding from different 120 

food sources in different microhabitats, that may require a broad gene expression diversity in 121 

digestive genes. We reason that such gene expression heterogeneity may be either deleterious 122 

in a simple laboratory environment or specific expression patterns may be optimal on the 123 

laboratory food (Figure 4). Either scenario imposes a strong stabilizing selection on 124 

phenotypic variance with no apparent directional effect on phenotypic mean in the novel 125 

environment for the focal populations. 126 

 127 

To illustrate our hypothesis, we simulated a quantitative trait experiencing strong stabilizing 128 

selection over 200 generations and compared the dynamic of phenotypic variance with 129 

neutrality. Our results showed substantial decrease in phenotypic variance when strong 130 

stabilizing selection is imposed (Figure 5). This provides an illustrative support that the 131 

strong stabilizing selection caused by monotonic lab food could alter the transcriptomic 132 

variation in midgut digestion rapidly.  133 
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 134 

Genetic redundancy and its regulatory basis 135 

A particularly interesting observation was that both replicates had different sets of genes with 136 

reduced variation, but both sets were enriched for genes expressed in the gut and the 137 

digestive enzymes. Such genetic redundancy is a hallmark of polygenic adaptation28 and 138 

adaptation in replicated small populations provides an excellent opportunity to study it 139 

(Figure 6a). While in large populations more parallel selection responses are expected, 140 

genetic drift, in particular during the early stage, affects the selection outcome across 141 

replicate populations of moderate size. With genetic drift, the expression variance of 142 

digestion-related genes can be pushed in either direction. Henceforth, selection will favor 143 

genes for which drift acts synergistically with selection, leading to a heterogeneous outcome 144 

across replicates if there is sufficient polygenicity (i.e. more contributing loci than needed to 145 

reach the new trait optimum).  146 

While we demonstrated genetic redundancy for genes involved in digestive function, the 147 

regulatory basis of the reduced variation is not yet clear. Gene expression can be regulated 148 

either in cis or in trans. Cis-regulation implies that independent regulatory variants are 149 

favored for each gene contributing to the selected phenotype (Figure 6b). It appears unlikely 150 

that each of the genes is independently targeted by selection. Rather, a more parsimonious 151 

explanation would be that several transcription factors (TFs) which cooperatively regulate 152 

these genes are the target of selection and reduced the expression variance of downstream 153 

genes. We explored this hypothesis and searched for trans-acting TF binding sites shared 154 

among genes with decreased expression variance and high expression in the midgut. We 155 

identified 18 and 8 TFs in replicate 1 and 2, some of which evolved their mean expression 156 

(Supplementary file 5), but none evolved a significant change in expression variance. The 157 

lack of significant variance evolution in these candidate targets of selection suggests a more 158 

complex regulation of transcriptional variance. We consider it highly likely that the 159 

expression of each redundant gene is in turn regulated by several trans-acting factors – 160 

providing a second layer of possible genetic redundancy (Figure 6b). Clearly, more work is 161 

needed to study the regulatory architecture of genetic redundancy, but the experimental 162 

framework introduced here provides an excellent starting point. 163 

 164 

Concluding remarks 165 

Previous studies on adaptive phenotypic evolution mainly focused on “population means”, to 166 

explain adaptation to different environments. Nevertheless, selection altering “phenotypic 167 
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variance within a population” (e.g.: stabilizing selection, disruptive selection…) has been 168 

largely neglected. To our knowledge our study provides the first empirical evidence that 169 

phenotypic variance can be the direct target of selection during adaptation. This has 170 

important consequences for future research on phenotypic evolution, rather than searching for 171 

changes in mean phenotype as a response to selection, it may also be important to consider 172 

that phenotypic variance may be subject to selection and can contribute to our understanding 173 

of adaptation processes in natural and experimental populations.  174 

 175 

  176 
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 177 
Figure 1.  Evolution of gene expression variance. The distribution of the change in gene 178 

expression variances (ln(F)) during the evolution experiment in the 1st (left panel) and 2nd 179 

(right panel) replicate. Boxes in salmon indicate the genes with decreased variance in both 180 

replicates (n=125 and 97) and boxes in green represent genes with increased variance (n=41 181 

and 51). Boxes in grey include the other genes without significant change in variance 182 

(n=10417 and 10435). 183 

  184 
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 185 
Figure 2. Tissue enrichment of genes with significant changes in expression variance. 186 

The bars indicates the significance (-ln(FDR)) of enrichment for genes with significant 187 

variance changes (orange: genes with decreased variance; green: genes with increased 188 

variance) among genes with tissue-specific gene expression pattern (Br-brain, Hd-head, Cr-189 

crop, Mg-midgut, Hg-hindgut, Tb-malpighian tubule, Tg-thoracoabdominal ganglion, Cs-190 

carcass, Sg-salivary gland, Fb-fat body, Ey-eye and Hr-heart). In both replicates a highly 191 

significant enrichment can be found in the midgut for genes with reduced expression 192 

variance.  193 

  194 
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 195 
Figure 3. Microbiome composition in ancestral and evolved flies. 196 

Microbiome composition on the genus level for three individuals from the ancestral 197 

population (A1-A3) and five individuals from a hot-evolved population (H1-H5).  198 

  199 
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 200 
Figure 4. Hypothesis of a simpler lab food selecting for decreased gene expression 201 

variance in the midgut. A proposed model for potential selection for decreased expression 202 

variance in midgut imposed by the drastic change in food supply. Food sources change 203 

dramatically when we bring these files from the wild into the lab. The distributions of fitness 204 

landscapes and expression value of the genes encoding digestive enzymes may change as the 205 

food sources switched. After 100 generations on a single food source, the genes encoding 206 

digestive enzymes decreased their expression variance. 207 

  208 
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 209 
Figure 5. Reduction in variance by strong stabilizing selection.  210 

a. Computer simulations of a scenario where the shift to a simpler environment results in 211 

stronger stabilizing selection. The ancestral phenotypic distribution of quantitative trait under 212 

stabilizing selection before the population was introduced to the simple environment (black). 213 
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The fitness function after the habitat shift is shown in blue. The variance of the fitness 214 

function is set to 0.5 standard deviation of the ancestral trait distribution. b. The changes in 215 

phenotypic variance under strong stabilizing selection (blue) and neutrality (grey). The 216 

change in phenotypic variance (F) is calculated as the ratio between the evolved and ancestral 217 

phenotypic variance at each generation (𝜎"#$.& 𝜎'&⁄ ) for each scenario. For each scenario, 1000 218 

runs of simulations have been performed.  219 

  220 
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 221 

 222 
 223 

Figure 6. Schematic illustration of genetic redundancy at gene level with two possible 224 

regulatory architectures explaining the reduction in expression variance. a. Genetic 225 

redundancy: six genes contribute to digestion (higher-level phenotype) and the new 226 

phenotypic optimum could be reached by expression changes of three genes. Stochastic 227 
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effects result in different gene sets (orange/yellow) responding to selection in the two 228 

replicates (replicate1/replicate2). b. Two hypotheses about a regulatory architecture that 229 

allows for the rapid decrease in variance of digestion-related genes. Either selection acts 230 

independently on the cis-regulatory variants of each gene or combinatorial changes of several 231 

TFs reduce the expression variance. 232 

 233 

 234 

235 
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Table 1. Microbiome diversity in the reconstituted ancestral and hot-evolved population 236 

based on 16S-rRNA amplicon sequencing 237 

 Ancestral Evolved 
α-diversity 23 16.7 
β-diversity 1.83 1.8 
γ-diversity 42 30 

  238 
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Materials and methods 239 

Experimental evolution 240 

The setup of populations and evolution experiment have been described by 29. Briefly, ten 241 

outbred populations seeded from 202 isofemale lines were exposed to a laboratory 242 

experiment at 28/18 °C with 12hr light/12hr dark photoperiod for more than 100 generations. 243 

Each replicate consisted of 1000 to 1250 adults at each generation.  244 

 245 

Common garden experiment 246 

The collection of samples from the evolution experiment for RNA-Seq was preceded by two 247 

generations of common garden (CGE). The common garden experiment was performed at 248 

generation 103 of the evolution in the hot environment and this CGE has been described in 249 
5,29–31. In brief, an ancestral population was reconstituted by pooling five mated females from 250 

184 founder isofemale lines 32. Two replicates of the reconstituted ancestral population and 251 

two independently evolved populations at generation 103 were reared for two generations 252 

with egg-density control (400 eggs/bottle) at the same temperature regime as in the evolution 253 

experiment. Freshly eclosed flies were transferred onto new food for mating. Sexes were 254 

separated under CO2 anesthesia at day 3 after eclosure, left to recover from CO2 for two 255 

days, and at the age of five days whole-body mated flies of each sex were snap-frozen at 2pm 256 

in liquid nitrogen and stored at -80°C until RNA extraction. In this study, more than 30 257 

individual male flies from two reconstituted ancestral populations (replicate no. 27 and no. 258 

28) and two evolved populations (replicate no. 4 and no. 9) were subjected to RNA-Seq. 259 

 260 

RNA extraction and library preparation 261 

Whole bodies of individual male flies were removed from the -80°C freezer and immediately 262 

homogenized in Qiazol lysis reagent (Qiagen, Hilden, Germany). The homogenate was 263 

treated with DNase I followed by addition of chloroform, centrifugation and mixture of the 264 

upper phase with 70% ethanol as described for the Qiagen RNeasy Universal Plus Mini Kit. 265 

The mixture was subsequently loaded onto a RNeasy MinElute Spin column as provided by 266 

the RNeasy Plus Micro Kit (Qiagen, Hilden, Germany), and all washing steps were 267 

performed according to the instructions for that kit. All resulting total RNA was used to 268 

prepare stranded mRNA libraries on the Neoprep Library Prep System (Illumina, San Diego, 269 

USA) following the manufacturer’s protocol: Neoprep runs were performed using software 270 

version 1.1.0.8 and protocol version 1.1.7.6 with default settings for 15 PCR cycles and an 271 

insert size of 200bp. All libraries for individuals of ancestral replicate no. 27 and evolved 272 
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replicate no. 4 were prepared with library cards of lot no. 20180170; all libraries for 273 

individuals of ancestral replicate no. 28 and evolved replicate no. 9 were prepared with 274 

library cards of lot no. 20178099. 50bp single-end reads were sequenced on an Illumina 275 

HiSeq 2500. All sequencing data will be available in European Nucleotide Archive (ENA) 276 

under the accession number PRJEB37011 upon publication. 277 

   278 

RNA-Seq data processing and quality check 279 

All RNA-Seq reads were trimmed using ReadTools (Gómez-Sánchez and Schlötterer, 2018) 280 

with quality score of 20 and aligned to Drosophila simulans reference genome 33 using 281 

GSNAP 34 with parameter setting -k 15 -N 1 -m 0.08. Exon-aligned reads were piped into 282 

Rsubread 35 to calculate read counts of each gene, and raw read counts of each gene were 283 

normalized with the TMM method implemented in edgeR 36. Samples with severe 3’- bias 284 

were removed based on visual inspection of the gene-body coverage plot 37,38. We observed 285 

some outlier individuals and suspected that the freezing process may have led to detachment 286 

of body parts, such as eyes or heads, in these individuals. We compared gene expression 287 

between such outliers and all other samples and performed tissue enrichment analysis for 288 

genes with at least 2-fold lower expression in the outlier samples. Samples with evidence of 289 

tissue detachment were excluded. After filtering, each population remained approximately 20 290 

individuals (Supplementary file 1). Only genes with at least 1 count per million base (CPM) 291 

were included in the analyses to avoid extremely lowly expressed genes. 292 

 293 

RNA-Seq data analysis 294 

For all RNA-Seq data we only compared samples which were prepared with library cards 295 

from the same lot number to avoid batch effects (Replicate 1: evolved replicate 4 vs. 296 

reconstituted ancestral population replicate 27; Replicate 2: evolved replicate 9 ss. 297 

reconstituted ancestral population replicate 28). 298 

For the analysis of expression variance evolution, we applied natural log transformation 39 to 299 

eliminate the strong mean-variance dependency in RNA-Seq data due to the nature of the 300 

negative binomial distribution (Lai et al., 2021). The variance of the expression of each gene 301 

(lnCPM) was estimated in each population. The change of gene expression variance was 302 

determined with the F test between the variance within the ancestral population and the 303 

variance within the evolved population of each gene. P-value adjustment was performed 304 

using the Benjamini-Hochberg false discovery rate (FDR) correction. 305 

 306 
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Gene ontology and tissue enrichment analysis 307 

We used ClueGO 40 to perform gene ontology (GO) enrichment analyses of the candidate 308 

genes have significant change on variance. To understand in which tissues the genes of 309 

interest are expressed, we made use of tissue-specific expression profiles of adult males of 310 

Drosophila melanogaster on flyatlas2 41. This data set includes 13 tissues in male flies. 311 

Genes that are expressed 2-fold higher in a given tissue than in the whole body are identified. 312 

Fisher’s exact test was performed to test if the genes of interest are enriched for genes highly 313 

expressed in one tissue. P-value adjustment was performed using the Benjamini-Hochberg 314 

false discovery rate (FDR) correction. 315 

 316 

Microbiome diversity in ancestral and evolved populations 317 

To explore the heterogeneity in gut microbiome, we performed 16S-rRNA amplicon 318 

sequencing on three remaining individual males of the ancestral and evolved populations 319 

from the same common garden experiment (Supplementary file 1).  320 

We used primers designed to amplify the V3-V4 hypervariable regions of the 16S rRNA 321 

gene. The primers had an overhang to match Nextera Index primers (Forward primer: 5’-322 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-CCTACGGGNGGCWGCAG-3’, 323 

Reverse primer: 5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-324 

GACTACHVGGGTATCTAATCC-3’). PCR products were amplified with 30 cycles at an 325 

annealing temperature of 65°C, purified using AMPure XP beads (Beckman Coulter, 326 

Carlsbad, CA) and subjected to a second PCR to introduce dual index sequences using 327 

Nextera XT Index Kits (Illumina, San Diego, CA). In the second PCR, we used 6 cycles and 328 

an annealing temperature of 55°C, and both PCRs were carried out in 5µl total volume using 329 

the NEBNext Ultra II Q5 Mastermix (New England Biolabs, Ipswich, MA). The final 330 

amplicons were again purified, quantified using the Qubit HS assay kit (Invitrogen, Carlsbad, 331 

CA), and 125 bp paired-end reads were sequenced on an Illumina HiSeq 2500. 332 

The 16S-rRNA sequence data were trimmed using ReadTools 42 with quality score of 20. 333 

Unpaired reads were removed. Owing to the variation in sequencing depths between samples, 334 

all samples were down-sampled to the lowest depth (66,625 pairs/sample, Supplementary file 335 

1). Each bam file was converted into a fastq.gz file and analyzed with Kraken2 43 following 336 

the recommended parameters and the estimation of genus abundance was corrected by 337 

Bracken 44.  338 
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Genus abundance of the microbiome community in each sample was obtained. With the 339 

filtration (read number < 5), extremely lowly abundant genera were excluded. β-diversity 45 340 

was then calculated to evaluate the heterogeneity of the microbiome complexity among the 341 

three individuals from the same population.  342 

𝛽 − 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = 	
𝛾 − 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦
𝛼 − 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 343 

where γ-diversity is the genera species richness in a population and α-diversity is the mean 344 

richness within an individual.  345 

 346 

Simulation study 347 

We performed forward simulations with MimicrEE2 46 using the qff mode to illustrate the 348 

influence of the genetic architecture on the evolution of phenotypic variance during the 349 

adaptation to a new trait optimum. With 189 founder haplotypes 29, we simulated quantitative 350 

traits under the control of 20 numbers of loci with an effective population size of 300. For 351 

each trait, we assume an additive model and the negative correlation (r=-0.7) between the 352 

effect size (𝛼~Γ(100,15)) and starting frequency (Barghi et al., 2019). We used correlate() 353 

function implemented in “fabricatr” R package 47 to generate the effect sizes with negative 354 

correlation (r=-0.7) with starting frequency. The sum of effect sizes of each trait was 355 

normalized to 1. We assumed heritability ℎ& = 0.6. To simulate strong stabilizing selection 356 

without trait optimum shift, we provided the fitness function: 𝑁A�̅�D, 0.5E𝑉DG, where �̅�D is the 357 

ancestral phenotypic mean and E𝑉D	is the ancestral genetic variance. For the neutrality case, 358 

we assumed the same fitness for each individual. For each trait under each scenario, the 359 

phenotypic variance was calculated at different generations and normalized to the ancestral 360 

phenotypic variance at generation 1 to investigate the dynamic of phenotypic variance during 361 

the evolution.  362 

 363 

Transcription factor enrichment analysis 364 

Transcription factor enrichment analysis among the genes with significant decreased variance 365 

in the midgut was done with Rcistarget (version 1.0.2) 48. First, enrichment of cis-regulatory 366 

elements (CREs) 5kb upstream and intronic sequences of the genes of interest 367 

(Supplementary file 5) was identified. The motif-search database used here was based on the 368 

latest motif ranking files of Drosophila species (“dm6-5kb-upstream-full-tx-369 

11species.mc8nr.feather”). Parameter setting used in this analysis is as following: 370 
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nesThreshold = 5 and aucMaxRank = 0.05. The predicted transcription factors (TFs) were 371 

considered as candidate TFs regulating the genes of interest. 372 

 373 

Acknowledgments 374 

We especially thank Viola Nolte for preparing all RNA-Seq and 16s-rRNA libraries, and 375 

supervising the maintenance of the evolution experiment. We thank all member of the Institut 376 

für Populationsgenetik for discussion. Ana Marija Jakšić, Neda Barghi, François Mallard and 377 

Kathrin Otte contributed to the common garden experiment. Illumina sequencing was 378 

performed at the VBCF NGS Unit (www.vbcf.ac.at). This work was support by the Austrian 379 

Science Funds (FWF, W1225) and the European Research Council (ERC, ArchAdapt). 380 

 381 

Author contribution 382 

W.Y.L and C.S. conceived the study. W.Y.L performed the data analysis. W.Y.L. and C.S. 383 

wrote the manuscript. 384 

 385 

Competing interests 386 

The authors declare no competing interests.  387 

Correspondence and requests for materials should be addressed to C.S.  388 

 389 

  390 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.19.427270doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427270
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

Reference  391 

1. Nuzhdin, S. V., Wayne, M. L., Harmon, K. L. & McIntyre, L. M. Common pattern of 392 

evolution of gene expression level and protein sequence in Drosophila. Mol. Biol. 393 

Evol. 21, 1308–1317 (2004). 394 

2. Lemos, B., Bettencourt, B. R., Meiklejohn, C. D. & Hartl, D. L. Evolution of proteins 395 

and gene expression levels are coupled in Drosophila and are independently associated 396 

with mRNA abundance, protein length, and number of protein-protein interactions. 397 

Mol. Biol. Evol. 22, 1345–1354 (2005). 398 

3. Oleksiak, M. F., Churchill, G. A. & Crawford, D. L. Variation in gene expression 399 

within and among natural populations. Nat. Genet. 32, 261–266 (2002). 400 

4. Whitehead, A. & Crawford, D. L. Recent development of the neutral theory viewed 401 

from the Wrightian tradition of theoretical population genetics. Proc. Natl. Acad. Sci. 402 

103, 5425–5430 (2006). 403 

5. Jakšić, A. M. et al. Neuronal function and dopamine signaling evolve at high 404 

temperature in Drosophila. Mol. Biol. Evol. 37, 2630–2640 (2020). 405 

6. Mallard, F., Nolte, V., Tobler, R., Kapun, M. & Schlötterer, C. A simple genetic basis 406 

of adaptation to a novel thermal environment results in complex metabolic rewiring in 407 

Drosophila. Genome Biol. 19, 119 (2018). 408 

7. Falconer, D. S. & Mackay, T. F. C. Introduction to quantitative genetics. Poultry 409 

Science 42, (1963). 410 

8. Bull, J. J. Evolution of phenotypic variance. Evolution (N. Y). 41, 303–315 (1987). 411 

9. Bulmer, M. G. The genetic variability of polygenic characters under optimizing 412 

selection, mutation and drift. Genet. Res. 19, 17–25 (1972). 413 

10. Chevalet, C. An approximate theory of selection assuming a finite number of 414 

quantitative trait loci. Genetics Selection Evolution 26, (1994). 415 

11. Kimura, M. & Crow, J. F. The number of alleles that can be maintained in a finite 416 

population. Genetics 49, 725–738 (1964). 417 

12. Turelli, M. Heritable genetic variation via mutation-selection balance: Lerch’s zeta 418 

meets the abdominal bristle. Theor. Popul. Biol. 25, 138–193 (1984). 419 

13. Lande, R. Natural selection and random genetic drift in phenotypic evoltion. Evolution 420 

(N. Y). 30, 314–334 (1976). 421 

14. Hayward, L. K. & Sella, G. Polygenic adaptation after a sudden change in 422 

environment. bioRxiv 792952 (2019). doi:10.1101/792952 423 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.19.427270doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427270
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

15. Barton, N. H. & Keightley, P. D. Understanding quantitative genetic variation. Nat. 424 

Rev. Genet. 3, 11–21 (2002). 425 

16. Barton, N. H. & Turelli, M. Adaptive landscapes, genetic distance and the evolution of 426 

quantitative characters. Genet. Res. 49, 157–173 (1987). 427 

17. Franssen, S. U., Kofler, R. & Schlötterer, C. Uncovering the genetic signature of 428 

quantitative trait evolution with replicated time series data. Heredity (Edinb). 118, 42–429 

51 (2017). 430 

18. Jain, K. & Stephan, W. Response of polygenic traits under stabilizing selection and 431 

mutation when loci have unequal effects. G3 (Bethesda). 5, 1065–74 (2015). 432 

19. Keightley, P. D. & Hill, W. G. Quantitative genetic variability maintained by 433 

mutation-stabilizing selection balance: sampling variation and response to subsequent 434 

directional selection. Genet. Res. 54, 45–58 (1989). 435 

20. I. I., S., Isadore, D. & Dobzhansy, T. Factors of evolution. The theory of stabilizing 436 

selection . Q. Rev. Biol. 26, 384–385 (1951). 437 

21. Le Rouzic, A., Álvarez-Castro, J. M. & Hansen, T. F. The evolution of canalization 438 

and evolvability in stable and fluctuating environments. Evol. Biol. 40, 317–340 439 

(2013). 440 

22. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. 441 

Nature 396, 336–342 (1998). 442 

23. Flatt, T. The evolutionary genetics of canalization. Q. Rev. Biol. 80, 287–316 (2005). 443 

24. Rice, S. H. The evolution of canalization and the breaking of von bear's laws: 444 

modeling the evolution of development with epistasis. Evolution (N. Y). 52, 647–656 445 

(1998). 446 

25. Lemaitre, B. & Miguel-Aliaga, I. The digestive tract of Drosophila melanogaster. 447 

Annu. Rev. Genet. 47, 377–404 (2013). 448 

26. Kokou, F. et al. Host genetic selection for cold tolerance shapes microbiome 449 

composition and modulates its response to temperature. Elife 7, (2018). 450 

27. Wong, C. N. A., Ng, P. & Douglas, A. E. Low-diversity bacterial community in the 451 

gut of the fruitfly Drosophila melanogaster. Environ. Microbiol. 13, 1889–1900 452 

(2011). 453 

28. Barghi, N., Hermisson, J. & Schlötterer, C. Polygenic adaptation: a unifying 454 

framework to understand positive selection. Nat. Rev. Genet. 21, 769–781 (2020). 455 

29. Barghi, N. et al. Genetic redundancy fuels polygenic adaptation in Drosophila. PLOS 456 

Biol. 17, e3000128 (2019). 457 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.19.427270doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427270
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

30. Hsu, S.-K. et al. A 24 h age difference causes twice as much gene expression 458 

divergence as 100 generations of adaptation to a novel environment. Genes (Basel). 459 

10, 89 (2019). 460 

31. Hsu, S.-K. et al. Rapid sex-specific adaptation to high temperature in Drosophila. Elife 461 

9, (2020). 462 

32. Nouhaud, P., Tobler, R., Nolte, V. & Schlötterer, C. Ancestral population 463 

reconstitution from isofemale lines as a tool for experimental evolution. Ecol. Evol. 6, 464 

7169–7175 (2016). 465 

33. Palmieri, N., Nolte, V., Chen, J. & Schlötterer, C. Genome assembly and annotation of 466 

a Drosophila simulans strain from Madagascar. Mol. Ecol. Resour. 15, 372–81 (2015). 467 

34. Wu, T. D., Reeder, J., Lawrence, M., Becker, G. & Brauer, M. J. GMAP and GSNAP 468 

for genomic sequence alignment: enhancements to speed, accuracy, and functionality. 469 

Humana Press. 283–334 (2016). doi:10.1007/978-1-4939-3578-9_15 470 

35. Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper 471 

and better for alignment and quantification of RNA sequencing reads. Nucleic Acids 472 

Res. 47, e47 (2019). 473 

36. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for 474 

differential expression analysis of digital gene expression data. Bioinformatics 26, 475 

139–140 (2010). 476 

37. Jakšić, A. M. & Schlötterer, C. The interplay of temperature and genotype on patterns 477 

of alternative splicing in Drosophila melanogaster. Genetics 204, 315–325 (2016). 478 

38. Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. 479 

Bioinformatics 28, 2184–2185 (2012). 480 

39. Heath, S. C., Bulfield, G., Thompson, R. & Keightley, P. D. Rates of change of genetic 481 

parameters of body weight in selected mouse lines. Genet. Res. 66, 19–25 (1995). 482 

40. Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene 483 

ontology and pathway annotation networks. Bioinformatics 25, 1091–3 (2009). 484 

41. Leader, D. P., Krause, S. A., Pandit, A., Davies, S. A. & Dow, J. A. T. FlyAtlas 2: a 485 

new version of the Drosophila melanogaster expression atlas with RNA-Seq, miRNA-486 

Seq and sex-specific data. Nucleic Acids Res. 46, D809–D815 (2018). 487 

42. Gómez-Sánchez, D. & Schlötterer, C. ReadTools : A universal toolkit for handling 488 

sequence data from different sequencing platforms. Mol. Ecol. Resour. 18, 676–680 489 

(2018). 490 

43. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. 491 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.19.427270doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427270
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

Genome Biol. 20, 257 (2019). 492 

44. Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: estimating species 493 

abundance in metagenomics data. PeerJ Comput. Sci. 3, e104 (2017). 494 

45. Tuomisto, H. A diversity of beta diversities: straightening up a concept gone awry. 495 

Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 496 

(Cop.). 33, 2–22 (2010). 497 

46. Vlachos, C. & Kofler, R. MimicrEE2: Genome-wide forward simulations of Evolve 498 

and Resequencing studies. PLOS Comput. Biol. 14, e1006413 (2018). 499 

47. Blair, G. et al. fabricatr: Imagine your data before you collect It. R package (2019). 500 

48. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. 501 

Methods 14, 1083–1086 (2017). 502 

 503 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.19.427270doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427270
http://creativecommons.org/licenses/by-nc-nd/4.0/

