COVID-19 viral RNA in circulation cells

SARS-CoV-2 infection of circulating immune cells is not responsible for virus dissemination in severe COVID-19 patients

Authors: Nicole L. Rosin^{1,+}, Arzina Jaffer¹, Sarthak Sinha¹, Rory P. Mulloy², Carolyn Robinson², Elodie Labit¹, Luiz G. Almeida^{3,4}, Antoine Dufour^{3,4}, Jennifer A. Corcoran², Bryan Yipp^{5,6,+}, Jeff Biernaskie^{1,7,8,+}

Affiliations:

¹ Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary;

² Department of Microbiology, Immunology and Infectious Diseases, University of Calgary

³ Department of Physiology & Pharmacology;

⁴ Department of Biochemistry & Molecular Biology, University of Calgary

⁵ Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary

⁶ Department of Critical Care, Cumming School of Medicine, University of Calgary

⁷ Hotchkiss Brain Institute, University of Calgary;

⁸ Alberta Children's Hospital Research Institute, University of Calgary

⁺ Corresponding authors

Jeff Biernaskie – <u>jeff.biernaskie@ucalgary.ca</u> Bryan Yipp – <u>bgyipp@ucalgary.ca</u> Nicole Rosin – <u>nicole.rosin@ucalgary.ca</u>

COVID-19 viral RNA in circulation cells

1 Summary

2	In late 2019 a novel coronavirus (SARS-CoV-2) emerged, and has since caused a global
3	pandemic. Understanding the pathogenesis of COVID-19 disease is necessary to inform
4	development of therapeutics, and management of infected patients. Using scRNAseq of blood
5	drawn from SARS-CoV-2 patients, we asked whether SARS-CoV-2 may exploit immune cells
6	as a 'Trojan Horse' to disseminate and access multiple organ systems. Our data suggests that
7	circulating cells are not actively infected with SARS-CoV-2, and do not appear to be a source of
8	viral dissemination.
9	
10	[Main Text]
11	Introduction
12	Coronavirus 2019 (COVID-19), the disease caused by Severe Acute Respiratory Syndrome
13	Coronavirus 2 (SARS-CoV-2) was first identified in late 2019, but by December 9, 2020 has
14	spread to 220 countries, with over 67 million confirmed cases and over 1.5 million confirmed
15	deaths ¹ . Patients with COVID-19 present with a diverse range of symptoms from asymptomatic,
16	mild (cough, fatigue), moderate (non-mild pneumonia), severe (dyspnea, low oxygen saturation)
17	to critical (respiratory failure, septic shock and/or multiple organ dysfunction or failure) ^{2,3} . In
18	addition to this range of respiratory symptoms, there are emerging reports of thromboembolism ⁴ ,
19	neural defects (both central and peripheral, ie. anosmia and ageusia 5,6), and Kawasaki-like
20	symptoms in children ⁷ . Currently, the pathophysiology of COVID-19, and more specifically
21	how the immune response to SARS-CoV-2 contributes to clinical disease progression, remains
22	poorly understood.

23

COVID-19 viral RNA in circulation cells

24	Coronaviruses are enveloped, non-segmented, positive-sense RNA viruses that can infect both
25	humans and many other mammals ³ . Of those that infect humans, some cause only mild
26	symptoms, such as hCoV-OC43 ⁸ . This 'common cold' coronavirus shares only 56% genomic
27	sequence homology with SARS-CoV-2 (using BLAST search:
28	https://blast.ncbi.nlm.nih.gov/Blast.cgi). However, other coronaviruses cause severe respiratory
29	diseases; Severe acute respiratory syndrome coronavirus (SARS-CoV) was discovered in 2003
30	and causes SARS, while Middle East respiratory syndrome coronavirus (MERS-CoV) was
31	discovered in 2012 and causes MERS. SARS-CoV and MERS-CoV infection have 10% and
32	37% mortality rates respectively 9,10 and share 79% and 50% genomic sequence homology to
33	SARS-CoV-2, respectively ¹¹ .
34	
35	SARS-CoV-2 has been identified in the blood of infected patients ¹² , as have SARS-CoV ^{13,14} and
36	MERS-CoV ^{15,16} . Conflicting reports exist regarding viremia (infectious virus in the circulation)
37	in COVID-19, ^{17,18} versus the presence of viral RNA in blood samples ³ and the clinical
38	significance of this nuance. Indeed, previous reports of viremia in COVID-19 patients include
39	those using bulk RNAseq 19,20, which fail to convincingly show that individual cells of the
40	circulation contain SARS-CoV-2 genetic material.
41	
42	A recent pre-print reported SARS-CoV-2 nucleoprotein in CD68+/CD169+ macrophages in the
43	lungs of severe COVID-19 patients ²¹ , supporting a previous report of SARS-CoV-2 RNA
44	containing macrophages in the bronchoalveolar lavage fluid (BALF) ²² . Furthermore, multiple
45	organ systems beyond the lung are also affected in severe COVID-19 disease ²³ , and multiorgan

46 tropism has been reported ²⁴, which raises the possibility that visceral organ infection may be

COVID-19 viral RNA in circulation cells

47	contributing to disease severity, though a causal link has not yet been demonstrated. In light of
48	this, a review by Abassi and colleagues recently questioned whether SARS-CoV-2 dissemination
49	to distal organs is facilitated by infected macrophages re-entering the circulation ²⁵ . Here, our
50	objective was to understand the potential for circulating immune cell infection as a mode of viral
51	dissemination to distal organs.
52	
53	Results
54	Viral Protein Circulates in Severe COVID-19 Patients
55	Five patients with severe acute respiratory distress syndrome (ARDS) and PCR confirmed
56	SARS-CoV-2 infection (severe COVID-19 disease) were enrolled and had blood drawn within
57	72 h of admission to the ICU (Supplementary Table 1). We detected one or more viral proteins in
58	the plasma of each of the five patients (Table 1). NSP3 (encoded by the ORF1ab gene) was
59	detected in all samples, while NSP3, the spike protein S1 and RNA-directed RNA polymerase
60	were found in three of the plasma samples. One sample, from patient UC_5, contained 5 SARS-
61	CoV-2 specific proteins.

62

63 SARS-CoV-2 Does Not Infect Circulating Immune Cells

From whole blood, we isolated leukocytes and enriched for the lymphocyte population to ensure that enough lymphocytes would be collected/assessed due to reported lymphocytopenia ²⁶. The leukocytes and lymphocytes were mixed in equal ratios prior to conducting scRNAseq using the 10X Genomics Single Cell 3' NextGEM (v3.1) technology. The resulting sequences were aligned with the human genome (GRCh38) appended with the SARS-CoV-2 genome. Two versions of the SARS-CoV-2 reference genome were used to account for potential shifting in the

COVID-19 viral RNA in circulation cells

70	sequence over time and possibility of the predominant variant differing based on geographical
71	locations. MT412228 was isolated in Seattle, USA and MN908947.3 was isolated in Shenzhen,
72	China. Because our study was conducted in Calgary, Alberta, Canada, MT412228 is reported
73	here unless specified, as at the time of publication this reference genome was the closest
74	available geographically to Calgary. This method of SARS-CoV-2 RNA detection in the
75	peripheral blood cell samples was confirmed by aligning a control group of publicly available
76	bronchoalveolar lavage fluid (denoted by BALF_) sample sequences to the same custom
77	reference genome. These BALF samples were isolated from three healthy control patients, three
78	mild COVID-19 patients, and six patients with severe COVID-19 from Shenzhen, China 27.
79	
80	All UC_ and BALF_ samples were aggregated together using CellRanger, and processed using
81	the Seurat workflow ²⁸ . Supplementary Table 2 outlines the number of cells aggregated from
82	each sample after quality control. The peripheral immune cells clustered together, but did not
83	overlap with the BALF samples, as expected. Distinct cell types were annotated based on
84	established cell type markers, with UC_ denoting cell types found only within the peripheral
85	immune cell samples (Figure 1).
86	
87	We found that none of the five mixed leukocyte/lymphocyte samples (denoted by UC_)
00	

88 contained any SARS-CoV-2 RNA (Figure 1, Supplementary Table 3). However, as discussed by

89 Bost et al, the BALF samples contained SARS-CoV-2 RNA, which was located primarily in

90 macrophages and epithelial cells ²². Using our custom genome as a reference, six of the nine

91 COVID-19 BALF samples (two mild and four severe) contain SARS-CoV-2 RNA (Figure 1,

92 Supplementary Table 3), again in concordance with the *Bost et al* study. The same samples were

COVID-19 viral RNA in circulation cells

93	positive when aligned to the control reference genome containing MN908947.3 (Figure 2). This
94	suggests that aligning to our custom SARS-CoV-2 reference genome is a robust method of
95	detecting SARS-CoV-2, and taken together supports that peripheral immune cells do not contain
96	SARS-CoV-2 RNA. Of note, we examined one additional SARS-CoV-2 positive patient who
97	presented with a thrombotic stroke, but no respiratory symptoms or ARDS (and subsequently
98	was not included in the aggregated data presented here), who also lacked any detectable SARS-
99	CoV-2 RNA in the isolated circulating immune cells. While anecdotal, given we studied only
100	one patient exhibiting clotting symptoms, it does suggest that this divergent clinical presentation
101	is also not due to direct infection of circulating platelets or other immune cells.
102	
103	Immune Cells in the Lung Contain SARS-CoV-2 RNA
104	SARS-CoV-2 was detected in cell types harboring surface receptors that facilitate SARS-CoV-2
105	entry into human cells. Epithelial cells, macrophages and neutrophils were the three most
106	common cell types in which SARS-CoV-2 was detected (Figure 1, Supplementary Table 4).
107	Unsurprisingly, the spike protein cell surface processing protease transmembrane protease serine
108	2 (TMPRSS2) and surface receptor (for host cell entry) angiotensin-converting enzyme 2 (ACE2
109) ²⁹ were highly expressed in epithelial cells (Figure 1). Macrophages expressed neuropilin-1

110 (NRP1), which has also been reported as a means of host cell entry (Figure 1)^{30,31}. Neutrophils do

111 not express ACE2, TMPRSS2 or NRP1, suggesting that they phagocytosed viral particles or

112 their products without being actively infected, and raises the possibility that macrophages may

113 do the same.

114

COVID-19 viral RNA in circulation cells

115	It is also important to note that the BALF samples were isolated using 10X Genomics 5'
116	technology, whereas the peripheral immune cells presented here, were isolated using 10X
117	Genomics 3' technology. Identification of SARS-CoV-2 RNA should theoretically be captured
118	using either technology. However, to ensure that coronavirus RNA could be detected in the
119	peripheral cells, we also prepared a control sample of hCoV-OC43 (a 'common cold'
120	coronavirus)-infected primary Human Umbilical Vein Endothelial Cells (HUVECs, Lonza) as a
121	control for 3' capture of viral RNA. OC43-infected HUVECs were processed identically to the
122	peripheral cells. We aligned the resulting sequences with a custom reference genome, again
123	based on GRCh38, with the hCoV-OC43 genome (NC_006213.1) appended, and were able to
124	reliably detect hCoV-OC43 RNA using our analysis pipeline (Figure 2), suggesting that the
125	inability to detect SARS-CoV-2 in the circulating immune cells was not due to the 3' sequencing
126	approach.

127

128 Discussion

129 We identified viral protein in the plasma of all five of the patients in this study, which raises the 130 question of whether the viral load is correlated with the patient's clinical outcome. As 131 mentioned, we detected five viral proteins in the plasma from patient UC_5, more than in the 132 other four patients. Patient UC_5 was the only participant enrolled in our study that died while in 133 the ICU. This recapitulates a recently published association between viral RNA load and 134 COVID-19 severity and mortality, in which approximately a third of plasma samples contained 135 detectable SARS-CoV-2 RNA³². While our sample size is limited, the fact that we identified 136 viral proteins in the plasma from all five participants suggests that either, our participants had

COVID-19 viral RNA in circulation cells

137	more severe disease and/or the LC-MS/MS method used here may be a more sensitive detection
138	method for SARS-CoV-2 in plasma. In either case, this warrants further investigation.
139	
140	Our study was not designed to determine if there is a causal link between viral tropism and
141	disease severity or symptoms in distal organs, and there is still no direct evidence of such in
142	literature. Causality of a direct viral effect in distal organs is difficult to parse out, partly due to
143	the systemic effects of the immune response to severe lung infection. However, this remains an
144	important concern that could directly affect treatment options for patients with severe COVID-
145	19.
146	
147	While immune cells in the lung are likely infected based on previous reports, our data suggests
148	that the circulation of free virus, but not SARS-CoV-2 infected circulating immune cells, is the

149 primary route of viral dissemination to visceral organs.

COVID-19 viral RNA in circulation cells

150 Methods

151

152 Enrolment and consent/REB approval

- 153 Peripheral blood samples were obtained from consenting ICU patients, recovered COVID-19,
- and healthy donors in Calgary, Canada. All experiments involving or human samples received
- approval from the Conjoint Health Ethics Review Board at the University of Calgary.

156

157 *Lymphocyte preparation*

158 Whole blood (2mL) was collected into 5mL polystyrene round-bottom tubes. Tubes were spun

159 (15min, 3000rpm, Room Temperature [RT]), plasma removed, and stored at -80°C for plasma

160 proteomic analysis. 100µL of Isolation Cocktail and 100µL of Rapid Spheres (Easy Sep[™] Direct

- 161 Human Total Lymphocytes Isolation Kit: 19655, StemCell Technologies) were added to the
- 162 remaining whole blood. After mixing and 5min incubation at RT, the sample volumes of \leq
- 163 2.5mL blood were topped up to 5mL with D-PBS+2%FBS + 1mM EDTA. The diluted sample
- 164 was incubated in the magnet without lid for 5min, at RT. This last step was repeated twice before
- 165 cell resuspension in 5mL of PBS+0.04% BSA. After 2 washes in PBS+0.04% BSA, and
- 166 centrifugation for 5 min at 2000rpm, 7500 lymphocytes were resuspended in 25µL of
- 167 PBS+0.04% BSA.
- 168

169 Leukocyte preparation

- 170 Whole blood was collected in heparin containing vacuutubes and 12µL of 0.5M EDTA with
- 171 1mL of PBS+2% FBS and 50µL of RBC of EasySep RBC Depletion spheres (EasySep [™] RBC
- 172 Depletion Reagent: 18170, Stem Cell Technologies) were added. After 5 min of magnet

173	incubation, at RT, tubes were inverted and poured into a new tube. 50μ L of RBC depletion
174	spheres were added. 5 min after incubation on the magnet, the tube was inverted and cell
175	suspension was poured into a new 15mL tube. After 2 washes in 5mL of PBS+0.04% BSA and
176	centrifugation at 2000rpm for 5 min at 20°C, cells were resuspended in 25μ L of PBS+0.04%
177	BSA.
178	
179	A mixture of 7500 total leukocytes and 7500 lymphocytes were loaded for each patient into the
180	10X chip for scRNAseq.
181	
182	
183	hCoV-OC43 preparation and HUVEC transduction
184	Stocks of hCoV-OC43 (ATCC) were propagated in Vero E6 cells (ATCC). To produce viral
185	stocks, Vero E6 cells were infected at an MOI of 0.01 for 1h in serum-free DMEM (Thermo
186	Fisher) at 33°C in a humidified incubator with 5% CO ₂ . Following infection, the viral inoculum
187	was removed and replaced with DMEM supplemented with 2% heat-inactivated FBS (Thermo
188	Fisher) and 100 units/mL penicillin/streptomycin/glutamine (Thermo Fisher). After 6 days, the
189	supernatant was harvested and centrifuged at 2000 RPM for 5 mins to isolate cell-free virus.
190	Virus stocks were stored at -80°C. Viral titres were enumerated using Reed and Muench tissue-
191	culture infectious dose 50% (TCID50) in Vero E6 cells ³³ .
192	
193	Pooled human umbilical cord vein endothelial cells (HUVECs, Lonza, Basal, Switzerland) were
194	cultured using endothelial growth media (EGM-2; Lonza). To passage cells, cell culture plates
195	were pre-coated with 0.1% (w/v) porcine gelatine (Sigma, St. Louis, Missouri, US) in 1X PBS

196	for 30 min at 37°C in a humidified incubator with 5% CO_2 . For infection, HUVECs were seeded
197	into a pre-coated plate to achieve $\sim 80\%$ confluency after 24 hours. The following day, the
198	growth media was removed and replaced with 100mL of hCoV-OC43 inoculum and incubated at
199	37°C for one hour, shaking the plate every 10 minutes to distribute viral inoculum. Following
200	incubation, the virus inoculum was removed and replaced with fresh EGM-2 for 12 or 24 hours
201	before cells were prepared for scRNAseq.
202	
203	Reference genome construction, alignment and aggregation
204	Raw sequencing reads (BCL files) were converted to FASTQs using the CellRanger mkfastq
205	pipeline (version 3.0.1). Transcript alignment was performed against a modified human reference
206	transcriptome generated using CellRanger's mkref pipeline by appending either MT412228
207	(https://www.ncbi.nlm.nih.gov/nuccore/MT412228) or MN908947.3
208	(https://www.ncbi.nlm.nih.gov/nuccore/MN908947) sequence to a pre-built GRCh38-3.0.0
209	reference. SARS-CoV-2 GTF files were generated with the feature type marked as "exon" which
210	were concatenated with GRCh38-3.0.0 GTF annotation files. Likewise, the SARS-CoV-2
211	FASTAs containing raw sequences were concatenated with the genome.fa file in GRCh38-3.0.0
212	reference. FASTA and GTF outputs following concatenation were provided as inputs to "fasta"
213	and "genes" arguments for cellranger mkref. Note that this approach did not generate a conjoined
214	genome containing both human and SARS-CoV-2 sequences as separate genomes. Instead this
215	approach added a new pseudogene called "SARS-CoV-2" to the human genome, as SARS-CoV-
216	2 is expected to generate transcripts in infected human cells. Reads from individual libraries
217	were processed using Cellranger count and were then concatenated into a single feature-barcode
218	matrix using Cellranger aggr, with "mapped" normalization mode to subsample reads from

- 219 higher-depth GEMs to ensure each library received equivalent read count (Supplementary Table
- 220 2).
- 221
- 222 Publicly available control samples and re-alignment
- 223 Raw single-cell BALF samples isolated in Shenzhen, China, as described in Liao, Liu, Yuan, et
- al. and accessioned under SRP250732 were downloaded using the SRA-Toolkit's prefetch
- function ²⁷. The following samples were downloaded: SRR11181959 (severe COVID),
- 226 SRR11181956 (severe COVID), SRR11181958 (severe COVID), SRR11537947 (healthy
- 227 control), SRR11181954 (mild COVID), SRR11181955 (mild COVID), SRR11537946 (healthy
- control), SRR11181957 (mild COVID), SRR11537948 (healthy control), SRR11537949 (severe
- 229 COVID), SRR11537951 (severe COVID), and SRR11537950 (severe COVID). SRA files were
- 230 converted to FASTQs using the fastq-dump --split-files function in SRA Toolkit 2.10.5. FASTQs
- 231 were aligned and aggregated with peripheral blood scRNA-Seq samples by mapping to our
- custom (SARS-CoV-2-appended to GRCh38-3.0.0) assembly, as described above.
- 233
- 234 Dimensionality reduction, clustering and gene expression
- 235 Output aggregated, filtered feature matrix files were imported into a SeuratObject using Seurat
- V3.1.5 and R Version 3.6.1, using default parameters ^{28,34}. Data was subsetted on
- 237 'nCount_RNA', 'nFeature_RNA', and 'percent.mt' values of 30,000, 5,000 and 10%
- 238 respectively. Normalization and scaling were done using default parameters followed by
- 239 principle component analysis (PCA). The first 20 PCA were used for UMAP multi-dimensional
- 240 reduction, based on the limited standard deviation in any further PCA. Graph based clustering
- 241 with resolution of 1.0 was first used to identify clusters that also differentiated amongst sample

- types, before being annotated by grouping related clusters. Gene expression for ACE2,
- 243 TMPRSS2, NRP1, and SARS-CoV-2 were assessed across samples as called by the Seurat
- 244 function AverageExpression(). Comparison across samples and clusters was illustrated using
- 245 VlnPlot() and DimPlot() functions.
- 246
- 247 Shotgun proteomics of COVID-19 patient samples
- 248 The plasma of severe COVID-19 patients (N = 5) shown in Table 1 were collected and subjected
- to quantitative proteomics. Samples were lysed in 1% SDS, 100mM ammonium bicarbonate,
- 250 1mM EDTA, and 1X protease inhibitors. Samples were sonicated on ice, centrifuged at 10,000g
- and stored at -80°C until TMT-6plex[™] Isobaric Labeling. Protein concentrations were
- determined by a NanoDrop 2000 spectrophotometer at 280nm. 200µg of protein was mixed with
- 253 lysis buffer (1% SDS, 100mM ammonium bicarbonate, 1mM EDTA, and 1X protease inhibitors)
- to a final volume of 100µL. Samples were subjected to a quantitative proteomics workflow as
- 255 per supplier (Thermo Fisher) recommendations. Samples were reduced in 200mM tris(2-
- 256 carboxyethyl)phosphine (TCEP), for 1h at 55°C, reduced cysteines were alkylated by incubation
- with iodoacetamide solution (50mM) for 20min at room temperature. Samples were precipitated
- 258 by acetone/methanol, and 600µL ice-cold acetone was added followed by incubation at -20°C
- overnight. A protein pellet was obtained by centrifugation (8,000*g*, 10min, 4°C) followed by
- acetone drying (2min). Precipitated pellet was resuspended in100 µL of 50mM
- triethylammonium bicarbonate (TEAB) buffer followed by tryptase digestion (5µg trypsin per
- 262 100µg of protein) overnight at 37°C. TMT-6plex[™] Isobaric Labeling Reagents (90061, Thermo
- 263 Fisher) were resuspended in anhydrous acetonitrile and added to each sample (41µL TMT-
- 264 6plex[™] per 100µL sample) and incubated at room temperature for 1h. The TMT labeling

COVID-19 viral RNA in circulation cells

265	reaction was quenched by 2.5% hydroxylamine for 15min at room temperature. TMT labeled
266	samples were combined and acidified in 100% trifluoroacetic acid to $pH < 3.0$ and subjected to
267	C18 chromatography (Sep-Pak) according to manufacturer recommendations. Samples were
268	stored at -80°C before lyophilization, followed by resuspension in 1% formic acid before liquid
269	chromatography and tandem mass spectrometry analysis.

270

271 Liquid Chromatography and Mass Spectrometry (LC-MS/MS)

272 Tryptic peptides were analyzed on an Orbitrap Fusion Lumos Tribrid mass spectrometer

273 (Thermo Scientific) operated with Xcalibur (version 4.0.21.10) and coupled to a Thermo

274 Scientific Easy-nLC (nanoflow liquid chromatography) 1200 System. Tryptic peptides (2µg)

were loaded onto a C18 trap (75µm x 2cm; Acclaim PepMap 100, P/N 164946; ThermoFisher)

at a flow rate of 2μ L/min of solvent A (0.1% formic acid in LC-MS grade H2O). Peptides were

eluted using a 120min gradient from 5 to 40% (5% to 28% in 105min followed by an increase to

40% B in 15min) of solvent B (0.1% formic acid in 80% LC-MS grade acetonitrile) at a flow

rate of 0.3µL/min and separated on a C18 analytical column (75µm x 50cm; PepMap RSLC

280 C18; P/N ES803A; ThermoScientific). Peptides were then electrosprayed using 2.1kV voltage

281 into the ion transfer tube (300°C) of the Orbitrap Lumos operating in positive mode. The

282 Orbitrap first performed a full MS scan at a resolution of 120,000 FWHM to detect the precursor

ion having a m/z between 375 and 1,575 and a +2 to +4 charge. The Orbitrap AGC (Auto Gain

284 Control) and the maximum injection time were set at 4×10^5 and 50ms, respectively. The

285 Orbitrap was operated using the top speed mode with a 3 second cycle time for precursor

selection. The most intense precursor ions presenting a peptidic isotopic profile and having an

intensity threshold of at least 2×10^4 were isolated using the quadrupole (Isolation window (m/z)

288	of 0.7) and fragmented using HCD (38% collision energy) in the ion routing multipole. The
289	fragment ions (MS2) were analyzed in the Orbitrap at a resolution of 15,000. The AGC and the
290	maximum injection time were set at $1 \ge 10^5$ and 105 ms, respectively. The first mass for the MS2
291	was set at 100 to acquire the TMT reporter ions. Dynamic exclusion was enabled for 45 seconds
292	to avoid of the acquisition of same precursor ion having a similar m/z (plus or minus 10ppm).
293	
294	Data and code availability
295	The analysis scripts and reference genomes can be accessed at
296	https://github.com/BiernaskieLab/scRNA-seq-SARS-CoV2-Viremia. All scRNAseq datasets generated
297	in this study have been deposited in GEO under the following accession numbers.
298	
299	To review GEO accession GSE151969 (Defining the global peripheral blood leukocyte response
300	in severe COVID-19 patients admitted to the ICU with lung failure using single cell
301	transcriptomics, 10 samples):
302	Go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE151969
303	To be released, please contact the authors to request early access.
304	
305	To review GEO accession GSE156639 (HUVEC response to SARS-CoV-2 and OC43 gene
306	expression, 3 samples):
307	Go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156639
308	To be released, please contact the authors to request early access.

COVID-19 viral RNA in circulation cells

Supplementary Materials

- Table S1. Patient demographics
- Table S2. Single cell RNAseq sample data
- Table S3. Average gene expression per cell for each sample
- Table S4. SARS-CoV-2 positivity across cell types

COVID-19 viral RNA in circulation cells

<u>References</u>

- 1. WHO. Coronavirus disease (COVID-19) outbreak situation. Vol. 2020 (November 19, 2020).
- 2. Wu, Z. & McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. *JAMA* (2020).
- 3. Huang, C., *et al.* Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet* **395**, 497-506 (2020).
- 4. Klok, F.A., *et al.* Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. *Thromb Res* **191**, 148-150 (2020).
- 5. Ellul, M.A., et al. Neurological associations of COVID-19. Lancet Neurol (2020).
- 6. Koralnik, I.J. & Tyler, K.L. COVID-19: A Global Threat to the Nervous System. *Ann Neurol* **88**, 1-11 (2020).
- 7. Viner, R.M. & Whittaker, E. Kawasaki-like disease: emerging complication during the COVID-19 pandemic. *Lancet* **395**, 1741-1743 (2020).
- 8. V'Kovski, P., Kratzel, A., Steiner, S., Stalder, H. & Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. *Nat Rev Microbiol* (2020).
- 9. WHO. Middle East respiratory syndrome coronavirus (MERS-CoV). Vol. 2020 (November 30, 2019).
- 10. WHO. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. Vol. 2020 (December 31, 2003).
- 11. Lu, R., *et al.* Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. *Lancet* **395**, 565-574 (2020).
- 12. Duan, K., *et al.* Effectiveness of convalescent plasma therapy in severe COVID-19 patients. *Proc Natl Acad Sci U S A* **117**, 9490-9496 (2020).
- 13. Chen, W., *et al.* Antibody response and viraemia during the course of severe acute respiratory syndrome (SARS)-associated coronavirus infection. *J Med Microbiol* **53**, 435-438 (2004).
- 14. Ng, L.F., *et al.* Detection of severe acute respiratory syndrome coronavirus in blood of infected patients. *J Clin Microbiol* **42**, 347-350 (2004).
- 15. Spanakis, N., *et al.* Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen. *Int J Antimicrob Agents* **44**, 528-532 (2014).
- 16. Eickmann, M., *et al.* Inactivation of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene blue plus visible light, respectively. *Transfusion* **58**, 2202-2207 (2018).
- 17. Wolfel, R., *et al.* Virological assessment of hospitalized patients with COVID-2019. *Nature* (2020).
- 18. Wang, X., et al. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. *Cell Mol Immunol* (2020).

- 19. Xiong, Y., *et al.* Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. *Emerg Microbes Infect* **9**, 761-770 (2020).
- 20. Moustafa, A., R. K. Aziz. Traces of SARS-CoV-2 RNA in the Blood of COVID-19 Patients. *medRxiv* (2020).
- 21. Chen, Y., et al. The Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Directly Decimates Human Spleens and Lymph Nodes. *medRxiv*, 2020.2003.2027.20045427 (2020).
- 22. Bost, P., et al. Host-Viral Infection Maps Reveal Signatures of Severe COVID-19 Patients. *Cell* **181**, 1475-1488.e1412 (2020).
- 23. Wadman, M., Couzin-Frankel, J., Kaiser, J. & Matacic, C. A rampage through the body. *Science* **368**, 356-360 (2020).
- 24. Puelles, V.G., *et al.* Multiorgan and Renal Tropism of SARS-CoV-2. *New England Journal of Medicine* **383**, 590-592 (2020).
- 25. Abassi, Z., Knaney, Y., Karram, T. & Heyman, S.N. The Lung Macrophage in SARS-CoV-2 Infection: A Friend or a Foe? *Frontiers in Immunology* **11**(2020).
- 26. Huang, I. & Pranata, R. Lymphopenia in severe coronavirus disease-2019 (COVID-19): systematic review and meta-analysis. *Journal of Intensive Care* **8**, 36 (2020).
- 27. Liao, M., *et al.* Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. *Nat Med* (2020).
- 28. Stuart, T., *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-1902.e1821 (2019).
- 29. Hoffmann, M., *et al.* SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. *Cell* **181**, 271-280 e278 (2020).
- 30. Cantuti-Castelvetri, L., *et al.* Neuropilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system. *bioRxiv*, 2020.2006.2007.137802 (2020).
- 31. Daly, J.L., *et al.* Neuropilin-1 is a host factor for SARS-CoV-2 infection. *Science*, eabd3072 (2020).
- 32. Fajnzylber, J., *et al.* SARS-CoV-2 viral load is associated with increased disease severity and mortality. *Nature Communications* **11**, 5493 (2020).
- 33. Ramakrishnan, M.A. Determination of 50% endpoint titer using a simple formula. *World J Virol* **5**, 85-86 (2016).
- 34. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. *Nature Biotechnology* **36**, 411-420 (2018).

COVID-19 viral RNA in circulation cells

Author Contributions

NR – conceived of the study, processed samples for 10X genomics, analysed scRNAseq, wrote the manuscript

AJ – pre-processed all scRNAseq data

CR, RPM, JAC – provided hCov-OC43, and conducted HUVEC transductions, and provided critical virology expertise

EL - processed samples for 10X genomics

SS – constructed all custom reference genomes

LGA, AD - conducted proteomics and analysis

BY - enrolled patients, collected samples, cowrote the manuscript

JB - supervised experiments, cowrote the manuscript

Competing Interests

The authors declare that they have no competing interests.

Funding Sources

This work was generously funded by the Calgary Firefighter's Burn Treatment Society and the Thistledown Foundation.

COVID-19 viral RNA in circulation cells

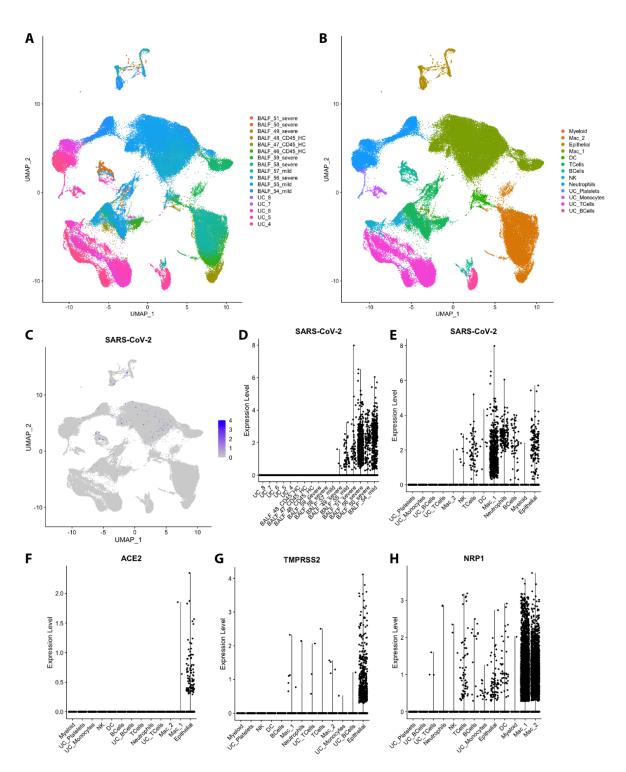
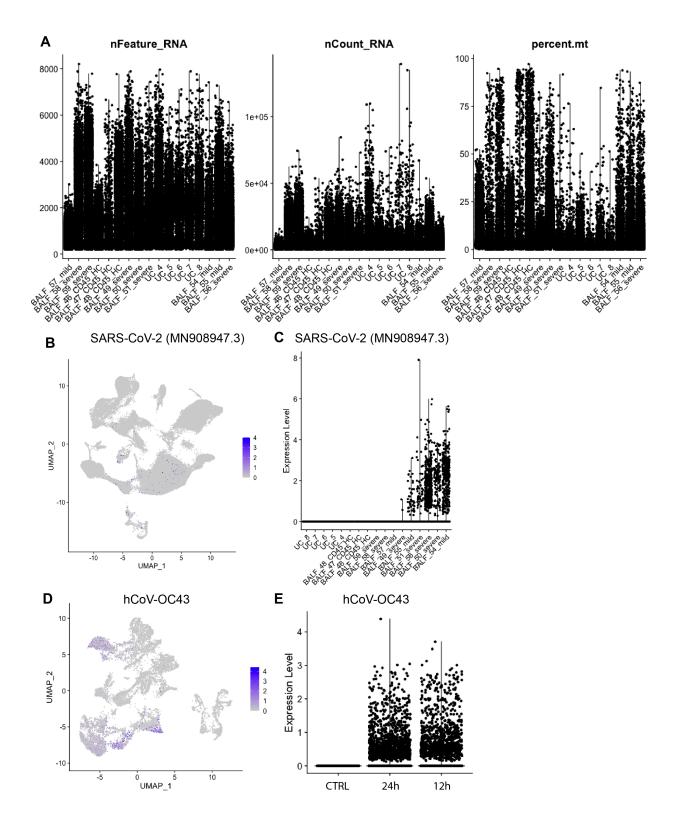
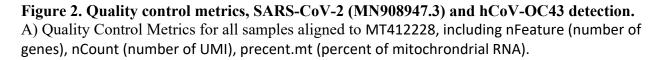


Figure 1. SARS-CoV-2 RNA (MT412228) is detected in BALF but not circulating immune cells.

A) UMAP of all sample sequences coloured by sample ID (BALF or UC denoting origin of sample)


B) UMAP of all sample sequences coloured by sample type


COVID-19 viral RNA in circulation cells

C) UMAP illustrating the detection of SARS-CoV-2 RNA

D and E) Violin plots illustrating detection of SARS-CoV-2 RNA according to sample ID and cell type

F, G and H) Violin plots denoting expression of ACE2, TMPRSS2 and NRP1 expression according to cell type

COVID-19 viral RNA in circulation cells

All of the samples were aligned to a custom reference genome consisting of GRCh38-3.0.0 with MN908947.3 appended B) UMAP illustrating the detection of SARS-CoV-2 RNA (aligned to MN908947.3), and C) Violin plot illustrating detection of SARS-CoV-2 RNA (aligned to MN908947.3) according to sample ID.

A second dataset was generated from HUVECs infected with hCoV-OC43 at a titre of 3.5×10^4 TCID50/mL for either 12h or 24h. D) UMAP illustrating the detection of hCoV-OC43 RNA in aggregated samples, and E) Violin plot illustrating detection of hCoV-OC43 RNA according to length of infection.

SARS-CoV-2		Reporter Ion Intensity				
Sequence	Protein	UC_4	UC_5	UC_6	UC_7	UC_8
EFVFKNIDGYFK	Spike protein S1	0	20977	12262	21872	0
SYELQTPFEIKLAK	non-structural protein 2	0	34243	0	0	0
AFKQIVESCGNFK	non-structural protein 2	0	5898.9	0	0	0
VTFGDDTVIEVQGYK	non-structural protein 2	0	15652	0	0	0
NLYDKLVSSFLEMK	non-structural protein 3	23313	56518	44610	73525	18845
GFFKEGSSVELK	RNA-directed RNA polymerase	0	8380.8	0	0	0
SVLYYQNNVFMSEAK	RNA-directed RNA polymerase	0	26229	21261	19505	0
NVATLQAENVTGLFK	proofreading exoribonuclease	0	16095	0	0	0
PPPGDQFKHLIPLMYK	proofreading exoribonuclease	0	13779	0	0	0

Table 1. Proteomics of SARS-CoV-2 in patient plasma