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Fig. 4. Data collapse if plotted against torque. A. The off rate k− (open symbols) as
a function of torque per stator unit Γ, for CW (purple triangles) and CCW (orange
disks) rotating motors. The solid line is the model k− = k+e

(∆F0 −λΓ)/kBT , with
k+ = 0.0016 s−1, ∆F0 = 3.2 kBT , and λ = 0.047 kBT .pN−1.nm−1. kB and
T are the Boltzmann constant and the absolute temperature, respectively. Inset
shows the same data plotted against motor rotation speed. B. The on rate k+
(solid symbols) as a function of Γ, for CW (purple triangles) and CCW (orange
disks) rotating motors. The dashed line is k+ = 0.0016 s−1. Inset shows the same
data plotted against motor rotation speed.

molecular complexes remains a fundamental problem in bi-
ology (54–56). It often involves gene regulation, in which
a signal of interest triggers a change in the transcription or
the translation of genes encoding the assembly components.
This process takes at least several minutes and is therefore
ill suited for fast-changing environmental signals. The alter-
native approach, employed by the bacterial flagellar motor,
involves direct control of the assembly by the signal of in-
terest. The latter strategy has the advantage that the assem-
bly/disassembly can be triggered directly, allowing the cell to
quickly respond and adapt to sudden changes in mechanical
cues.

Materials and Methods
Bacterial strains and cultures. The strain used in this
study (HCB1797; JY32+pWB5+pKF131) was constructed
by Junhua Yuan and is previously described (31). Briefly, an
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Fig. 5. Torque tunes the effective free energy profile of stator binding. A. Schematic
representation of how increased torque promotes stator assembly. At low torque
(solid curve), the free energy of the bound stator units is greater than that of un-
bound units, making assembly unfavorable. Increase in torque reduces the free
energy of bound units (dashed curve), making assembly favorable. ∆F is the dif-
ference between the free energy of bound and unbound units. B. ∆F as a function
of torque per stator unit Γ, for CW (purple triangles) and CCW (orange disks) ro-
tating motors. The solid black line is linear fit to the data, and has a slope λ =
0.047 kBT .pN−1.nm−1 or 0.19 in dimensionless units. The shaded and blank
regions indicate data obtained from the electrorotation and the recovery periods,
respectively. Error bars are 1 SE in each direction.

in-frame deletion of �iC in VS149 [∆(cheR-cheZ)] yielded
JY32, which was transformed with two compatible plasmids:
pWB5 (AmpR) expressing wild-type cheYunder an IPTG-
inducible promotor, and pKAF131 (CamR) expressing sticky
�iC under the native promoter of �iC. Cells were grown at
33 ◦C in 10 mL T-broth containing 100 µg/mL ampicillin,
25 µg/mL chloramphenicol, and 0.1 mM IPTG to OD600
between 0.5 and 0.7. Cells were harvested by centrifuging
at 1,200 g for 7 min and resuspended in 1 ml electrorota-
tion buffer (20 mM TES, 0.1 mM EDTA, pH 7.5). Flagel-
lar filaments were sheared off by passing the cell suspension
through a piece of polyethylene tubing (20 cm long, inner di-
ameter 0.58 mm) 60 times. The cells were pelleted again and
resuspended in 5 ml buffer.

Electrorotation apparatus and data acquisition. The
electrorotation apparatus was as described before (28, 57).
Briefly, the cells were tethered to a sapphire window in a
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custom-built flow cell that included the tips of four tung-
sten microelectrodes a short distance from the surface. Sap-
phire was used for its high thermal conductivity. The elec-
trodes were driven in quadrature using custom-built electron-
ics. This applied a tunable external torque on the cells teth-
ered on the sapphire surface. The temperature of the sapphire
window was sensed by a small thermistor and held at 20 ◦C
by a circular Peltier element driven by a proportional con-
troller. The flow cell together with the electrode assembly
was fixed to a 20X objective of a phase contrast microscope.
The light diffracted from the cell was split into two parts,
one was imaged onto a high-speed sCMOS camera and the
other onto a pair of photomultipliers via a linear-graded filter
setup (57). The photomultiplier signal was used for live mea-
surement of the motor speed (same as the rotation speed of
the cell body) during the experiment and the sCMOS images
were used for offline analysis using custom-written MAT-
LAB scripts.

Data analysis. The data analysis procedure was as described
before (28). Angular displacement of the cell between frames
was multiplied by the frame rate to obtain the rotation speed,
which was filtered by a median filter of order 15. The rota-
tion speed was fitted with steps using a custom algorithm de-
scribed before (25, 28). The distribution of fitted step heights
had two peaks - the first dominant peak due to the addition
of a single stator unit, and the second smaller peak due to the
addition of two units within a short time interval. We used the
unitary step height obtained from the first peak for estimating
the number of active stator units from the speed traces.

Torque-speed (T-S) curve for HCB1797 at 20 ◦C. The
CW T-S curve lacks the characteristic “knee” of the CCW
T-S curve, and torque decreases linearly from stall to the
zero-torque (31). Additionally, the stall torque and the zero-
torque speed of HCB1797 (a derivative of RP437) are smaller
than those of the strain HCB986 (a derivative of AW405)
that was used in the experiments on CCW rotating motors.
The numerical factor for scaling the torque and speed from
AW405 to RP437 is 285/350 (31). We therefore derived the
T-S curve for HCB1797 by scaling down the stall torque and
zero-torque speed for HCB986 (1,260 pN nm and 272 Hz,
respectively (28)) and linearly interpolating between those
points.

Hill-Langmuir model for stator assembly. The average
kinetics of changes in the number of stator units bound to
the motor can be represented by the differential equation,

d〈n〉
dt

= k+(N −〈n〉)−k−〈n〉, (1)

where 〈n〉 is the ensemble averaged number of stator units
bound to the motor at time t, k+ and k− are the on rate and
the off rate for the binding of a single stator unit to the motor,
and N is the number of binding sites, assumed to be 11 (14).
The time-dependent solution for an initial condition 〈n〉(0)=
n0 is

〈n〉(t) = 〈n〉ss + (n0−〈n〉ss)e− t
τ . (2)

where 〈n〉ss = Nk+
k++k−

is the steady state number of stator

units and τ = 1
k−+k+

is the time constant for the exponen-
tial approach to steady state. We fitted Eq. 2 to the experi-
mentally determined number of stator units, obtaining 〈n〉ss
and τ . Each experimental condition required two separate
fits – one for the dissociation of stator units during electro-
rotation and another for their assembly after electrorotation
was switched off (Fig. 3). From each pair of 〈n〉ss and τ we
calculated k+ and k− for the given value of torque per stator
unit Γ specified by the torque-speed curve.

Model for torque dependence. We developed a model for
including torque dependence in the dynamics of stator as-
sembly (28). We assume that at zero torque, the binding
of a single stator unit to the motor decreases its free energy
by an amount ∆F0. An increase in motor toque decreases
the free energy of a bound stator unit further by an amount
εT that depends on torque. Thus, the effective free energy
difference between the bound and unbound states of a stator
unit at a given torque is ∆F = ∆F0− εT, where the torque
dependence is fully contained in εT. From equilibrium sta-
tistical mechanics, we can get ∆F in terms of k− and k+
as ∆F = kBT log k−

k+
, where kB and T are the Boltzmann

constant and the absolute temperature, respectively. We fit-
ted a linear model on the measured value of ∆F , given by
∆F = ∆F0−λΓ, where λ is the constant of proportional-
ity. A linear fit on ∆F against Γ gave the intercept ∆F0
as well as the slope λ. Assuming that k+ remains con-
stant, k− could be modeled from the linear fit on ∆F as
k− = k+e

∆F/kBT = k+e
(∆F0 −λΓ)/kBT .
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