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Title: Deep Learning Achieves Neuroradiologist-Level Performance in Detecting Hydrocephalus
Requiring Treatment

Abstract

Purpose: In large clinical centers a small subset of patients present with hydrocephalus that
requires surgical treatment. We aimed to develop a screening tool to detect such cases from the
head MRI with performance comparable to neuroradiologists.

Methods: We leveraged 496 clinical MRI exams collected retrospectively at a single clinical site
from patients referred for any reason. This diagnostic dataset was enriched to have 259
hydrocephalus cases. A 3D convolutional neural network was trained on 16 manually
segmented exams (ten hydrocephalus) and subsequently used to automatically segment the
remaining 480 exams and extract volumetric anatomical features. A linear classifier of these
features was trained on 240 exams to detect cases of hydrocephalus that required treatment
with surgical intervention. Performance was compared to four neuroradiologists on the
remaining 240 exams. Performance was also evaluated on a separate screening dataset of 451
exams collected from a routine clinical population to predict the consensus reading from four
neuroradiologists using images alone. The pipeline was also tested on an external dataset of 31
exams from a 2nd clinical site.

Results: The most discriminant features were the Magnetic Resonance Hydrocephalic Index
(MRHI), ventricle volume, and the ratio between ventricle and brain volume. At matching
sensitivity, the specificity of the machine and the neuroradiologists did not show significant
differences for detection of hydrocephalus on either dataset (proportions test, p > 0.05). ROC
performance compared favorably with the state-of-the-art (AUC 0.90–0.96), and replicated in
the external validation.

Conclusion: Hydrocephalus cases requiring treatment can be detected automatically from MRI
in a heterogeneous patient population based on quantitative characterization of brain anatomy
with performance comparable to that of neuroradiologists.

Keywords: hydrocephalus, deep learning, convolutional neural networks, brain MRIs
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Introduction

Hydrocephalus is a common neurological disorder resulting from abnormal accumulation of
cerebrospinal fluid (CSF) with a global prevalence of 85 per 100,000 people across all ages (1).
Hydrocephalus usually manifests with abnormal ventricular enlargement on brain imaging,
either resulting from an obstructing mass lesion in the ventricles blocking CSF outflow
(obstructive hydrocephalus) or from impaired CSF resorption (communicating hydrocephalus).
This paper focuses on heterogeneous disorders grouped in communicating hydrocephalus,
which includes normal pressure hydrocephalus (NPH) where ventricles slowly enlarge without
increased intraventricular pressure. We use the term “hydrocephalus” to refer to all forms of
communicating hydrocephalus, including but not limited to NPH. In large clinical centers
patients are referred to brain MRI for a variety of reasons. A small subset of patients present
with radiographic appearance of hydrocephalus, which may require treatment. However,
accurate detection of hydrocephalus in this heterogenous group is challenging due to the wide
spectrum of imaging results, overlap between normal and pathologically dilated ventricles, and
highly variable signs and symptoms. The correct detection often requires a combination of
imaging and clinical abnormalities with a high degree of suspicion.

Imaging attempts to standardize the diagnosis of hydrocephalus have included measurements
of ventricular size such as the callosal angle and Evans’ index (2–6). These manual 2D
measurements are unavoidably time-consuming, less precise, and potentially less accurate than
automated volumetric measurements (4,7,8). We propose that automated 3D segmentation
allows for accurate quantification of anatomical features and can assist in routine screening for
hydrocephalus requiring treatment. Unfortunately, currently available neuroimaging software
such as statistical parametric mapping (SPM) (9) and FMRIB software library (FSL) (10) are not
specifically designed for patients with substantial intracranial pathology such as brain tumors. In
our experience they have produced disappointing segmentation results in these patients.
FreeSurfer (11,12) provides adequate segmentations in the presence of abnormal ventricles, but
typically takes hours to compute (4). Recently, deep learning methods have achieved great
success in medical image segmentation, especially in applications where conventional software
fails due to atypical anatomy (13–15).

Previous machine learning efforts to diagnose hydrocephalus using MRI exams have compared
NPH with healthy volunteers or NPH within specific patient populations (e.g., Alzheimer's
Disease, AD). In these specific populations and using small datasets (< 100 patients),
accuracies of over 90% have been reported (4,7,8,16,17). However, these methods have not
been tested in a broader clinical population with heterogeneous conditions typically observed in
general neuroradiology practice. Here we focus instead on screening for hydrocephalus that
requires treatment in a broad patient population that was referred for MRI brain scans for any
reason at our cancer center. Thus, the purpose of this study was to design a machine algorithm
— with performance equivalent to neuroradiologists in a heterogeneous patient population — to
identify hydrocephalus requiring treatment versus all other conditions (i.e., normal and abnormal
brains, including mild hydrocephalus that does not require treatment). The use-case for our
automated evaluation of the head MRI is to facilitate routine quantitative screening for
hydrocephalus and to detect those patients that may require surgical intervention. Such a
screening tool could be used to triage and prioritize scans for reading by radiologists similar to
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the approach proposed for acute stroke and hemorrhage (18,19). We hypothesized that a
properly trained 3D deep convolutional neural network (CNN) will generate accurate
segmentation of the ventricles and other brain tissues, provide volumetric features and thereby
enable accurate anatomical quantification and detection of hydrocephalus. The advantage of
this approach is that detection is based on a set of readily-interpretable anatomical features
rather than relying on a black-box CNN. As such, radiologists using this automated screening
tool could readily interpret, validate and report the reasons for a given diagnosis.

Materials and Methods
Patients and Datasets

This retrospective single-center study was approved by the local Institutional Review Board and
Privacy Board and written informed consent was waived. All handling of retrospective data
complied with United States Health Insurance Portability and Accountability Act (HIPAA)
regulations. We first queried a de-identified database housing 25,595 consecutive brain MRI
exams performed over a fifteen-year period (2004-2019) in patients referred for any reason to
our institution, which is an NCI-Designated Comprehensive Cancer Center. The study leveraged
two separate datasets: an enriched Diagnosis Dataset with clinical and imaging diagnosed
hydrocephalus requiring treatment, and a Screening Dataset with imaging diagnosed
hydrocephalus. The symptoms of the patients with hydrocephalus requiring treatment in the
Diagnosis Dataset are summarized in Table 1, and the symptoms of all patients in the
Screening Dataset are summarized in Table 2.

Table 1: Symptomatology of the patients with clinical and imaging hydrocephalus requiring
treatment (N = 259) patients in the Diagnosis Dataset.
Symptom N = 259 (%)*
“Classic Triad” 52 (20.1)
Gait disturbance 163 (62.9)
Urinary urgency / incontinence 62 (23.9)
Cognitive impairment 150 (57.9)
Headaches 128 (49.4)
Nausea / vomiting 72 (27.8)
* Some patients had more than one symptom.

Table 2: Symptomatology of all patients in the Screening Dataset. None of these patients had
hydrocephalus requiring treatment.
Symptom Total N = 516 (%)*
Aseptic meningitis 1 (0.2)
Brain metastases 141 (27.3)
CNS infection 4 (0.8)
CNS lymphoma 18 (3.5)
Cognitive impairment 8 (1.6)
CNS vascular abnormality 14 (2.7)
Encephalopathy 1 (0.2)
Epilepsy 72 (14.0)
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CNS tumors 154 (29.8)
Headaches 31 (6.0)
CNS hemorrhage 6 (1.2)
Leptomeningeal disease 23 (4.5)
Multiple sclerosis 2 (0.4)
Radiation necrosis 13 (2.5)
Screening 81 (15.7)
* Some patients had more than one symptom.

Diagnostic Dataset

To train a pipeline for automated machine detection, a Diagnosis Dataset was created with
patients who underwent clinical brain MRI exams. This dataset was enriched to include a group
of 259 hydrocephalus patients requiring treatment and 237 non-hydrocephalus patients. The
age range of all patients in both groups was 2–90 years (mean, 54) for 225 men and 2–89 years
(mean, 55) for 271 women. To create this dataset, our de-identified database was searched for
all patients who underwent ventricular draining or shunting < 100 days after brain MRI from
2004–2019. From these patients, we excluded those without both a clinical diagnosis of
hydrocephalus based on chart review by an experienced neuro-oncologist (R5, 8 years of
experience, blinded to imaging results) and an imaging diagnosis of hydrocephalus based on
imaging review by an experienced neuroradiologist (R1, 7 years of experience, blinded to
clinical symptoms) using established imaging criteria (20). As a result, a total 259 patients were
found to have had clinical and imaging diagnoses of hydrocephalus who then required surgical
treatment; the age range of this patient group was 4–90 years (mean, 54) in 120 men and 2–89
years (mean, 56) in 139 women. To achieve an approximate 1:1 class balance, we next
randomly selected 237 age- and sex-matched non-hydrocephalus patients who had no
hydrocephalus or focal abnormalities on their MRI scans, had no classic clinical signs or
symptoms consistent with hydrocephalus, and did not undergo surgical treatment for
hydrocephalus; the age range of this group was 2–85 (mean, 54) in 105 men and 2–87 (mean,
54) in 132 women.

Screening Dataset

To evaluate machine performance as an automated triage tool in a more realistic patient cohort,
a Screening Dataset was created with 451 randomly selected brain MRI exams from the
remaining 25,099 exams from the same time period of 2004–2019. This excluded cases
requiring treatment to emulate a screening population where patients have not yet gone through
clinical followup to evaluate hydrocephalus. It did, however, include 15 cases who had
previously been treated with surgical shunting. The remaining N = 436 patients had no prior
clinical or imaging diagnosis of hydrocephalus. In this cohort, the reference standard (or “ground
truth”) was the majority reading from three radiologists examining the images based on
established criteria for hydrocephalus (20) (see below). Both machine and radiologists were
evaluated using this reference. The use-case for this imaging-only evaluation is rapid triage that
does not require clinical information. Currently routine imaging evaluation of volumetric features
is not feasible, but could be facilitated by an automated tool. The age range of patients in this
was 1–95 years (mean, 53) for 185 men and 4–90 years (mean, 57) for 266 women. See Fig. 1.
The Screening Dataset had a similar incidence of hydrocephalus as that expected in a general
clinical population (1–6%) (21,22).
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External Dataset

To test our pipeline, an external dataset was obtained from a 2nd clinical site. This dataset
consists of 31 brain MRI exams from 15 NPH patients (9 males; ages 56–84) and 16 healthy
controls (4 males; ages 47–78). All NPH cases here had been shunted and were confirmed to
benefit from the shuting procedure. All the NPH cases and most of the healthy controls were
previously reported in (7).

Automated Machine Detection of Hydrocephalus

Fig. 2 shows the steps of the pipeline for automated machine detection of clinical and imaging
diagnoses of hydrocephalus that then required treatment: 1) preprocessing, 2) tissue
segmentation by a deep CNN, 3) automated quantification of volumetric features, and 4) logistic
regression to detect hydrocephalus requiring treatment. Preprocessing consists of harmonizing
the resolution and orientation by resampling MRIs and aligning the tissue probability map (TPM)
to individual MRIs (Fig. S1). The deep CNN, known as MultiPrior (15) was trained with 3D
manual segmentation labels for the ventricles, extraventricular CSF, gray and white matter, air
cavities, skull, and other soft tissue (Fig. 3), using 16 MRI exams (10 hydrocephalus, 6
non-hydrocephalus; 13 female, ages 7–76) from the Diagnosis Dataset and another four scans
of normal head anatomy from our previous study (23) (for 6 exams we had separate manual
segmentations for axial scans, yielding a total of 26 manual segmentations; see Training of the
Segmentation Network in Supplement). The trained CNN was subsequently used to
automatically segment the remaining 480 exams in the Diagnosis Dataset, the 451 exams in the
Screening Dataset, and the 31 exams in the External Dataset. Subsequently, nine anatomic
features were extracted automatically from the 3D segmentation (Fig. 3, Fig. S3; see Feature
Extraction from Segmentation Data in Supplement): ventricle volume (VV), ratio of ventricle over
extraventricular CSF volume (RVC), ratio of ventricle to brain volume (RVB), volume of the
temporal horns (VH), Evans’ index (EI) (4), Magnetic Resonance Hydrocephalic Index (MRHI)
(8), and three features (E3a, E3c, E2c) generalizing the concept of callosal angle (4). Feature
selection was performed to identify the subset of ten features (nine anatomical features plus
age) providing the best training-set performance on a subset consisting of 240 exams in the
Diagnosis Dataset (see Fig. 1 and Feature Selection in Supplement). Finally, the logistic
regression classifier was tested on a separate subset of 240 exams, which were also read by
four neuroradiologists to compare performance (see below).

In the Screening Dataset, the majority consensus readings by four neuroradiologists was used
as the ground truth for training and testing (using leave-one-out). Retraining was necessary as
this population was significantly different from that of the Diagnostic Dataset, and importantly,
the labels differed significantly. Leave-one-out cross validation was necessary because there
was only a very small number of hydrocephalus cases, and splitting the data in half as we did
for the Diagnostic Dataset would have severely impacted statistical power. Due to the class
imbalance in this dataset, cost-sensitive learning by weighted maximum likelihood was applied
for training the logistic regression classifier (24), with a cost of 5 assigned to the positive cases
based on the prevalence of hydrocephalus in a clinical population (1–6%) (21,22).
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For the External Dataset, the same features were extracted from the segmentation, and the
logistic regression classifier trained with the Diagnosis Dataset was applied on this dataset to
predict the clinically confirmed NPH.

Radiologist Readings of Hydrocephalus

In order to compare the performance of the machine with that of neuroradiologists based on
imaging alone, four neuroradiologists (R1–R4 with 7, 7, 20, and 6 years of experience,
respectively) independently reviewed a subset of 240 randomly selected exams (120
hydrocephalus, 120 non-hydrocephalus; Fig. 1) from the Diagnosis Dataset while being blinded
to the clinical labels and other demographic information (e.g., age). Cases were reviewed by
each neuroradiologist over 1–2 hour periods over 2 weeks. Neuroradiologists reviewed six
different slices in the brain (Fig. 4): one sagittal midline slice; two coronal slices at the level of
the third ventricle and of the posterior commissure; and three axial slices at the level of the
body, left, and right temporal horns of the lateral ventricles. Diagnosis was based on subjective
evaluation of established imaging criteria for hydrocephalus (20) including appearance, shape
and extent of ventricles.

For the Screening Dataset, R1–R3 independently read all 451 exams. R4 provided an
independent reading only when the R1–R3 reads were not unanimous. During testing, to
prevent bias, these majority readings excluded the neuroradiologist being evaluated (e.g., to
evaluate R1, the diagnosis was the majority vote from R2–R4). With this construct, we were
able to evaluate performance by majority for each of R1–R3 while avoiding some of the biases
of consensus reads (25).
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Figure 1: Number of exams used in training and testing. Note that for the Screening Dataset
there is overlap between the training set and testing set, as the training was performed using
leave-one-out cross-validation, i.e., for each test exam a different classifier was trained on the
training data leaving out the one test exam.

Figure 2: Flowchart of the automated pipeline for machine detection of hydrocephalus.
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Figure 3: Segmentation for two patients and representative volumetric features for all
patients. (A-C) Segmentation for a non-hydrocephalus patient (NH) and hydrocephalus patients
(H) from the Diagnosis Dataset, showing a sagittal, axial and coronal views for the same two
patients. (D) Distribution of three representative features extracted from these segmentations.
Each point represents a patient (red: hydrocephalus, blue: non-hydrocephalus). Features are
ratio of ventricle over extraventricular CSF volume (RVC), volume of the temporal horns (VH),
ratio of ventricle area over area of bounding box averaged over multiple coronal slices (E2c;
boxes are white rectangle in panels C1 and C2). Correlation coefficients between each pair of
features are noted (*: p < 0.05). Histograms of each feature are shown on the diagonal, with red
and blue indicating hydrocephalus and non-hydrocephalus, respectively. Separability of each
feature measured in Cohen’s d’ is also noted on the diagonal (**: p < 0.001, Wilcoxon rank sum
test, N = 240).

Outcome Measures and Statistical Methods

Segmentation performance of the deep CNN was measured in Dice score (26). Differences of
individual volumetric features between hydrocephalus and non-hydrocephalus were measured
in Cohen’s d’ as (m1-m2)/s, where m1 and m2 are the means of the two datasets and s is the
pooled standard deviation (27). These differences were tested for significance using the
Wilcoxon rank sum test (Fig. 3D, diagonal panels). Performance of the machine and of
neuroradiologists was measured using receiver operating characteristic (ROC) curves and
precision-recall curves (Fig. 5), with 95% confidence intervals (CIs) generated using the
bootstrap method with 1,000 replications (28). Comparison of specificity between the machine
and neuroradiologists was performed by selecting a point on the ROC curves that matched
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neuroradiologist sensitivity. Difference in specificity between the machine and neuroradiologists
was then evaluated using a test of proportions (29). The same was done using the
precision-recall curves, for the comparison of precision at a given level of recall. To establish the
strength of the null hypothesis, we calculated the Bayes factor (BF) defined as
BF=P(D|M1)/P(D|M2), where M1 and M2 are the models under null and alternative hypothesis
of the test of proportions, and D is the observed data (30). This was done specifically for this
test of proportions using proportionBF() in the BayesFactor package in R (31). To quantify the
differences between neuroradiologist readings and the clinical truth labels, we computed the
inter-rater agreement using Cohen’s Kappa (32) (Fig. 6) on the 240 exams in the Diagnosis
Dataset reviewed by the neuroradiologists.

Figure 4: Representative T1-weighted post-contrast images provided to neuroradiologists to
make an imaging diagnosis of hydrocephalus requiring treatment. This is an example for a
single exam.

Results

Segmentation Network Performance

First we evaluated the performance of the segmentation with the deep CNN using 3D manual
segmentations as ground truth. 7-fold cross validation in the training set (N = 26 scans)
achieved an averaged Dice score of 0.92 for gray matter, 0.93 for white matter, 0.83 for
extraventricular CSF, 0.78 for ventricles, 0.90 for skull, 0.98 for scalp, and 0.81 for air cavities.
Representative head segmentations on two patients from the Diagnosis Dataset are shown in
Fig. 3. In the hydrocephalus patient, the deep network correctly identified the enlarged ventricles
(Fig. 3A2 and Fig. 3C2, yellow) and temporal horns (Fig. 3B2, light orange). Compared with
SPM, the CNN better captured atypical anatomy (see Fig. S5; training set average Dice score:
CNN = 0.92, SPM = 0.64, N = 16 sagittal scans).
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Statistics of Individual Volumetric Features

Three representative features extracted from volumetric segmentations of the Diagnosis
Dataset are shown in Fig. 3D. These features were significantly correlated with one another (p <
0.05, N = 240), and all differed significantly between hydrocephalus and non-hydrocephalus (p <
0.001, Wilcoxon rank sum test, N = 240). Statistics for the complete set of features are shown in
Fig. S3. The most discriminant features were the MRHI (8), ventricle volume (VV), and the ratio
of ventricle to brain volume (RVB); see Fig. 3D and Fig. S3 for the feature separability measured
by Cohen’s d’.

Feature selection revealed that the best training-set performance was achieved when these six
features from segmentation were used (see Fig. S4; Feature Selection in Supplement): ventricle
volume (VV), ratio of ventricle over extraventricular CSF volume (RVC), ratio of ventricle to brain
volume (RVB), volume of the temporal horns (VH), MRHI (8), and callosal angle (4) as
implemented by E3a. Remarkably, age in this cohort did not contribute to improving
discrimination despite known effects (22).

Machine Vs Neuroradiologist Performance Using ROC Curve Analysis

On the test set (N = 240) of the Diagnosis Dataset, the machine gave an ROC with an area
under the curve (AUC) of 0.91 (95% CI: 0.86–0.94; Fig. 5A). On these same exams, the four
neuroradiologists (stars in Fig. 5A) achieved accuracies of 85.4%, 86.3%, 82.9%, and 85.8%,
respectively (with a sensitivity of 0.83, 0.79, 0.78, and 0.78, and a specificity of 0.88, 0.93, 0.88,
and 0.94, respectively). When selecting a classification threshold with the same sensitivity as
that of each of the neuroradiologists, the machine achieved a specificity of 0.86, 0.90, 0.91, and
0.91, respectively, which were not significantly different from that of the neuroradiologists
(proportion test, p = 0.56, 0.35, 0.53, and 0.33, respectively; N = 240), although Bayes factors in
favor of the null hypothesis were weak (BF = 2.37, 1.26, 1.99, and 1.13, respectively).

On the Screening Dataset, the machine achieved an AUC of 0.92 (95% CI: 0.80–0.96), 0.92
(95% CI: 0.83–0.96), and 0.90 (95% CI: 0.81–0.94) in predicting the readings of the three
neuroradiologists, respectively (Fig. 5B). There was no significant difference in specificity
between the machine and the neuroradiologists at the same sensitivity (proportion test, p = 0.09
and BF = 0.33 for R1; p = 0.19 and BF = 0.53 for R2; p = 0.48 and BF = 2.23 for R3; N = 451).

The discrete steps of the ROC curves in Fig. 5B reflect the small number of hydrocephalus
cases in the Screening Dataset, with 31, 46, and 40 cases for R1, R2, and R3, respectively,
yielding 6.8–10.2% prevalence, which is typical for a general neuroradiology population.

On the External Dataset, the machine achieved an AUC of 0.96 (95% CI: 0.77–1.00) in
distinguishing between NPH and the healthy controls (Fig. 5C).

Machine Vs Neuroradiologist Performance Using Precision-Recall Curve Analysis

On the test set of the Diagnosis Dataset, the precision-recall curve for the machine gave an
AUC of 0.90 (95% CI: 0.84--0.94; Fig. 5D). There was no significant difference in precision
between the machine and the neuroradiologists at the same recall (proportion test, p = 0.84 and
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BF = 2.96 for R1; p = 0.80 and BF = 2.38 for R2; p = 0.84 and BF = 2.95 for R3; p = 0.79 and
BF = 2.26 for R4; N = 240).

On the Screening Dataset, the precision-recall curves for the machine gave AUCs of 0.49 (95%
CI: 0.31–0.65), 0.64 (95% CI: 0.49–0.79), and 0.57 (95% CI: 0.42–0.73) in predicting the
readings of the three neuroradiologists, respectively (Fig. 5E). Similarly, there was no significant
difference in precision between the machine and the neuroradiologists at the same recall
(proportion test, p = 0.87 and BF = 3.47 for R1; p = 0.74 and BF = 1.85 for R2; p = 0.82 and BF
= 2.59 for R3; N = 451).

On the External Dataset, the precision-recall curve for the machine gave AUC of 0.90 (95% CI:
0.79–0.95; Fig. 5F).

Figure 5: Test-set performances of the machine and neuroradiologists (R1–R4) in detecting
hydrocephalus. (A, D) Prediction of the clinical diagnosis of hydrocephalus requiring treatment
in 240 exams (120 positive) in the Diagnosis Dataset; (B, E) Prediction of the majority readings
in the 451 exams in the Screening Dataset; for each radiologist (R1–R3), a slightly different
majority diagnosis serves as “ground truth”, hence different curves; (C, F) Prediction of the
clinical diagnosis of hydrocephalus requiring treatment in 31 exams (15 positive) in the External
Dataset.

Inter-rater agreement
On the Diagnostic Dataset, neuroradiologists agreed with one another more than they agreed
with the clinical ground truth labels (Fig. 6, Cohen’s Kappa average over radiologists: κ = 0.81
vs. κ = 0.70, respectively).
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Figure 6: Inter-rater agreement on 240 exams in the Diagnosis Dataset between the four
neuroradiologists (R1–R4) and the surgical intervention truth labels (Clinical).

Discussion
Diagnosis of hydrocephalus is often difficult due to inconsistent imaging abnormalities and
gradual onset of clinical symptoms. Current methods to diagnose hydrocephalus on MRI scans
are difficult to perform accurately and reproducibly (3,4). Our goal was to train a machine to
automatically detect clinically relevant hydrocephalus that require treatment. We trained a deep
network to automatically provide volumetric segmentations of the head even in the presence of
atypical brain anatomy. The machine automatically extracted volumetric features and achieved
performance comparable to that of neuroradiologists. Because the study was designed to
specifically detect clinical and imaging diagnosed hydrocephalus requiring treatment, the
individuals without hydrocephalus included a heterogeneous population of normal brains and
abnormal brains, possibly including patients who may have a history of hydrocephalus but who
did not currently require treatment.

Several automated (7,16,17,33,34) and semi-automated methods (4,5,8) have been proposed
for detecting hydrocephalus. These studies focused on distinguishing between NPH and healthy
controls, or distinguishing hydrocephalus from specific disorders such as Alzheimer's disease.
Our clinical dataset included a much broader, unselected population of patients referred for MRI
brain scans, with variable pathologies including brain tumors, surgical cavities, and infarcts. We
found that discrimination was more challenging in this heterogeneous dataset compared with
earlier studies with smaller datasets of < 100 cases in each group (4,7,8,16,17,34). Here we
have leveraged a significantly larger dataset with a total of > 900 patients, including > 200 cases
of hydrocephalus requiring shunting and > 600 cases with imaging evaluation.
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The four neuroradiologists achieved a mean accuracy of 85.2%, in line with previous studies
reporting accuracies from 75–95% (4,7,16). The wide range of accuracies reported in previous
literature suggests that it is difficult to compare performance across studies differing in
discrimination tasks, patient samples, and data quality. Here we compared the machine with
neuroradiologists using identical tasks and datasets. The machine achieved comparable
performance to the four neuroradiologists when using surgical intervention as ground truth data.
Notably, the neuroradiologists agreed with each other more frequently than they agreed with the
surgical intervention label. This justifies our choice of training different classifiers for the two
different tasks, namely, predicting surgical intervention labels (Diagnosis Dataset & External
Dataset) and predicting majority readings (Screening Dataset). We believe that the Diagnosis
Dataset with hydrocephalus requiring treatment represents the ground truth data with highest
possible quality, since shunting provides complete confidence that hydrocephalus was present
and required treatment in that patient. This quality data is unfortunately not available for most
patients. Thus, when evaluating performance in the Screening Dataset we instead had to
re-train the classifier by leave-one-out with majority readings from neuroradiologists.

Although neuroradiologists routinely scrutinize the ventricles as part of their clinical
interpretation, explicit measurements of size are not performed and cases of clinically important
hydrocephalus requiring treatment may be missed. Completely automated quantification of
ventricle size and prediction of hydrocephalus that is significant enough to warrant treatment
may provide a useful screening tool to prioritize cases that require emergent reads, and to
provide a useful adjunct to neuroradiologists by increasing confidence in diagnosing
unsuspected hydrocephalus. In a clinical setting we envision our pipeline to aid the radiologist
by triaging cases and flagging only a small subset for a more careful evaluation. A prospective
evaluation would require traditional radiographic and clinical follow-up with actual clinical course
(i.e., patient then undergoes shunting) to determine if the machine correctly identified
hydrocephalus requiring treatment with high sensitivity.

The data for training the segmentation network only contains 16 MRI exams and another four
scans of normal head anatomy from our previous study (23). While we acknowledge that this is
a small dataset, we do note that 6,000,000 voxels are available in a typical MRI scan of size
200×200x150 for training the deep CNN which has about 684,000 parameters. We also had
neuroradiologists review the manual segmentation and 7-fold cross validation showed an
average Dice score of 0.88. A caveat to the Dice scores reported here is that the truth labels
were in part generated with a previous version of the CNN (15). Despite the complexity of the
hydrocephalus problem, our focus on "hydrocephalus requiring treatment" versus all others
greatly simplified the task for the CNN as we mostly need the accurate segmentation of the
ventricles, CSF, and brain. Nevertheless, larger datasets are recommended for training the
segmentation network if they are available. For details on the architecture of the segmentation
network and ablation study on the network parameters, one is referred to our previous work
(15).
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Clinical brain MRIs usually have anisotropic resolution with higher in-plane resolution. To
increase robustness, we resampled all images to isotropic 1 mm resolution, which allowed us to
analyze the anatomy regardless of the original scan orientation. We leveraged previous work on
segmentation of atypical head anatomy (15) to segment enlarged ventricles that are often
misclassified by conventional neuroimaging software (7,35). Compared with other recent studies
using deep learning for segmenting ventricles from hydrocephalus (35–38), our 3D deep
network achieved higher Dice scores. Nevertheless, we recommend using higher-resolution
isotropic MRIs whenever possible (4). Although both sagittal and axial scans were used for
training the deep network, we note that the six features for classifying hydrocephalus only come
from segmentation of axial scans. Extracting these features from coronal scans did not
significantly affect the classification performance in the Diagnosis Dataset. Also note that patient
age did not help to improve the performance and thus was not included as one of the features.

A single TPM obtained from adult heads (23) was used during the preprocessing using SPM.
No significant failure was found when this TPM was applied on pediatric and geriatric heads,
thanks to the non-linear registration algorithm implemented by SPM (9). Also note that in
principle, SPM allows one to globally rescale and re-normalize the TPM to account for variation
of tissue volume fractions in different individuals (9,39), and TPM can also be learnt from
labeled data by being integrated as tunable parameters of the deep network (40,41). While we
did not require these extra steps here, they could be utilized in future work for a more robust
pipeline applicable to subjects in different age groups.

In contrast to previous studies that use semi-automated methods (4,5,8), our goal was
fully-automated processing to yield a reproducible and scalable approach. Our deep CNN
provided volumetric segmentations within two minutes on a typical computer with Nvidia
GeForce GTX 1080 GPU (15). This is significantly faster than alternatives such as FreeSurfer,
which can take up to eight hours to segment the ventricles in MRI for detecting hydrocephalus
(4,8). The speedup potentially provides an efficient, fully-automated tool for hydrocephalus
detection in future population-level studies (42).

We encountered several limitations. First, the Diagnosis Dataset defined hydrocephalus as
clinical and imaging evidence of hydrocephalus requiring surgical intervention. The decision for
surgical intervention, however, is complex and multifactorial including data such as patient
symptoms, comorbidities, performance status, predicted improvement after shunting, and life
expectancy. While shunt risks are beyond the scope of this paper, we believe that these clinical,
imaging, and surgical labels provide maximal confidence of hydrocephalus, and our trained
machine would provide clinically relevant information that may affect treatment decisions. To
better simulate real-life conditions, we tested these ground truth labels against majority readings
of neuroradiologists for patients in both datasets. Second, we did not explicitly segment the
temporal horns, as their posterior margins are arbitrarily defined, instead adopting a pragmatic
estimation of their volumes (details in Supplement). We found that this estimate correlated with
the presence of hydrocephalus. Future work could train the network to explicitly segment the
temporal horns to calculate their volumes more accurately. Similarly, future work could consider
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further segmenting the ventricular system into its components (e.g., lateral, third, fourth
ventricles) as disproportional expansion of any component is a sign of hydrocephalus.

An important design choice was to break up the detection problem into segmentation,
quantification of anatomical features, and classification based on these features. This is not a
new approach (4,7,8,17,33), but it does have the benefit of straightforward interpretation of the
results. Also feature selection can be performed to extract the most relevant features from
segmentation based on the training set. More recently, the trend in the AI literature is to have a
single deep network provide a final output for the likelihood of hydrocephalus without
intermediate steps (16,43,44). This approach is algorithmically elegant and compelling in its
simplicity. It does however defy simple interpretation of results as the single network remains an
impenetrable black-box to the radiologist. In contrast, the pipeline developed here provides
segmentations that can be easily inspected, and it provides numerical values and an expected
distribution for each anatomical feature. With this the radiologist can judge the validity of the
result and can document the reason for the diagnosis. This is important if we want the machine
to aid and enhance the traditional workflow of neuroradiologists.

Conclusions
We developed an automated pipeline to rapidly diagnose hydrocephalus requiring treatment
with performance comparable to that of neuroradiologists. This model has the potential to assist
the diagnosis of unsuspected hydrocephalus, and expedite and augment neuroradiology reads.
To facilitate future studies of hydrocephalus and ventricle segmentation, we made the
pre-trained network and hydrocephalus classifier publicly available at
https://github.com/andypotatohy/hydroDetector
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Supplementary Material
Data Description and Harmonization

All brain MRI examinations were acquired on either a 1.5 or 3.0 Tesla GE scanner (GE Medical
Systems, Waukesha, WI). MRI exams that met one of the following two conditions were treated
as complete exams: (1) inclusion of a T1 post-contrast scan with isotropic resolution of 1 mm;
(2) inclusion of T1 post-contrast scans with anisotropic resolutions that were acquired in three
orthogonal planes: sagittal, coronal, axial. Exams that did not meet either of these conditions
were declared incomplete and discarded. If both conditions were met, only the isotropic scans
were used. Anisotropic scans (sagittal, coronal, and axial) have higher in-plane resolutions
(0.37–1.05 mm) and lower out-of-plane (lateral) resolutions (2.50–7.50 mm), with the ratio
between the out-of-plane and in-plane resolutions in the range of 2.84 to 12.80. To harmonize
images, all scans were resampled into 1 mm isotropic resolution in SPM using tri-linear
interpolation and normalized in intensity by dividing with the 95-percentile of pixel intensity
before entering the deep CNN individually for segmentation (Fig. S1A). Despite originating from
different orientations (sagittal, axial, or isotropic), the final images entering the network all have
the same orientation. To be clear, when three orientations were used, then three different
segmentations were generated for each exam (all at 1mm isotropic resolution), but differing
somewhat due to the varying resolution of the original scans. Note that resampling using a
different interpolation method (3rd degree B-spline) does not have significant effects on the
features extracted for detecting hydrocephalus. It achieved an AUC of 0.90 on the test set (N =
240) of the Diagnosis Dataset and specificities that are not significantly different from those of
radiologists at the same level of sensitivities.
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Figure S1: Flowchart for segmentation. (A) Preprocessing of MRI exams to align it with tissue
probability map (TPM). Scans in all three orientations are processed and aligned to the TPM.
(B) Process of generating segmentation labels for training and testing the deep CNN.

Training of the Segmentation Network

A previously developed 3D deep CNN (MultiPrior) (15) was used for segmentation of the head
tissues. The MultiPrior architecture requires a spatial prior known as the tissue probability map
(TPM). The TPM we used covers the entire head down to the neck (23) and was aligned with
individual head MRIs by the non-linear registration algorithm implemented in SPM8 (9) before
entering the CNN (Fig. S1). The network by default generates segmentation of seven classes
(background, air cavities, gray matter, white matter, CSF, skull, and scalp). Here we retrained
the network to provide an additional class for the ventricles as follows.

We used sagittal scans from 16 exams (10 hydrocephalus, 6 non-hydrocephalus) from the
Diagnosis Dataset (Fig. 1). In six of these 16 exams we also used the axial scans for training. To
further boost the robustness of the network we used another four scans of normal head
anatomy with 1 mm isotropic resolution from our previous study (23). Thus, in total, we
generated segmentations for 26 scans (16 sagittal, six axial, four isotropic) to retrain this 3D
CNN. In order to maintain input uniformity, all input scans were first resampled to 1 mm isotropic
resolution before entering the CNN for training (Fig. S1A). Segmentation labels for training were
first generated by the pretrained MultiPrior (15), and then ventricles were manually separated
out (see Generating 3D Segmentation Labels for Training). Further analysis showed that
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removing the six axial scans from the training data did not significantly affect the performance in
detecting hydrocephalus on the test set (N = 240) of the Diagnosis Dataset.

The existing network architecture was retained as in Hirsch et al. (15) with the only modification
that the output now included 8 classes (one additional class for the ventricles). The network was
trained from scratch on the 26 labeled scans. 7-fold cross-validation was performed in training
the segmentation network, with each fold having 4 scans for validation, except the last fold
having 2 validation scans. Performance was monitored in the validation scans and training was
terminated when the loss function on the validation set did not change by more than 0.01 during
four consecutive epochs, or when 100 epochs were reached, whichever occurred first. No
strong overfitting was observed (Fig. S2), so regularization was kept low, with no dropout and L2
penalty on model weights of 10-5. Learning rate was set to 5×10-5 and adapted automatically
with the Adam optimizer (45). For details on the training, see Hirsch et al. (15). The network that
performed best on the validation set was applied on the remaining 480 exams in the Diagnosis
Dataset, the separate 451 exams in the Screening Dataset, and the 31 exams in the External
Dataset. While the network was trained on resampled images originating from axial, sagittal, or
isotropic scans, when applied to the full dataset, we were able to use either axial, coronal, or
isotropic scans, all resampled to 1 mm (Fig. S1A, Fig. 2).

Generating 3D Segmentation Labels for Training

The pretrained MultiPrior CNN from Hirsch et al. (15) was first applied to the 26 scans
mentioned above (Fig. S1B), providing no mask for ventricles. To generate those ventricle labels
for retraining, we manually separated out ventricles from the extraventricular CSF. To this end,
ventricles were first drawn in the TPM (by the first author) and saved as a mask (Fig. S1B). This
mask was warped to each head by SPM8 (9), giving an initial ventricle segmentation which was
then manually improved based on the MRI intensity (Fig. S1B). Manual segmentation was
performed by the first author using ScanIP (Synopsys, Mountain View, CA) and confirmed by
neuroradiologists (R2 and R3). Finally, the manual segmentation, along with the 26 MRIs and
the aligned TPM, was used to train the CNN.

Figure S2: Loss curves of the training and validation sets during training for the network that
performed best on the validation set.
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Feature Extraction from Segmentation Data

The network produced segmentation masks for gray matter, white matter, extraventricular CSF,
ventricles, skull, scalp, and air cavities (Fig. 3). From these masks, we automatically extracted
the following anatomical and readily interpretable features:

I. Total volume of the ventricles (VV), normalized by the intracranial volume (volumes of
brain and CSF).

II. Ratio of total ventricle volume to extraventricular CSF volume (RVC).
III. Ratio of total ventricle volume to brain volume (RVB).
IV. Volume of the temporal horns (VH), normalized by the intracranial volume. As there is no

mask for temporal horns, we took an approximate approach: we identified the two horns
in the TPM and the coordinates were mapped to each individual head using the mapping
produced when the TPM is first coregistered to the individual MRI during preprocessing
(Fig. S1A). A sphere of 1 cm radius was generated at each mapped location and
intersected with the ventricle segmentation, giving us an estimate of the volume of the
horns (Fig. 3B).

V. Evans’ index (EI) as defined in Miskin et al. (4). To calculate the Evans’ index, frontal
horns were also identified in the TPM and mapped to individual axial MRIs as before.
The largest left-to-right width of the frontal horns was determined by searching through
20 axial slices in the ventricle segmentation around the registered axial location.

VI. Magnetic Resonance Hydrocephalic Index (MRHI) as defined in Quattrone et al. (8).
Likewise, collateral trigones of the lateral ventricles were mapped from the TPM to axial
MRIs and the largest left-to-right width was found by searching through 20 axial slices
around the registered axial location.

VII. Ratio of ventricular volume over volume of bounding box, evaluated on axial scans (E3a).
Posterior commissure was mapped to individual axial MRIs. Lateral ventricles above the
posterior commissure were fed into function regionprops3() in Matlab (R2017b,
MathWorks, Natick, MA) to calculate its volume as well as the volume of its bounding
box.

VIII. Ratio of ventricular volume over volume of bounding box, evaluated on coronal scans
(E3c). This is similar to E3a but was performed in the coronal scans. While the two metrics
should be identical for isotropic scans, the poor out-of-plane resolutions in each of these
scans make these numbers diverge (indeed they are highly correlated, Fig. S3). By
computing the same metric in both axial and coronal scans we obtain potentially a more
accurate assessment.

IX. Ratio of ventricular area over area of bounding box (E2c). This is similar to E3c but the
extent was calculated in 2D slice by slice across 20 coronal slices around the posterior
commissure and averaged (Fig. 3C).

Note that Features I–VII were all extracted from segmentation of the axial scans, and Features
VIII–IX were from segmentation of the coronal scans. We also used coronal scans to compute
Features I–VII and obtained similar performance as shown in the main text (Fig. 5AD) in
detecting hydrocephalus on the test set (N = 240) of the Diagnosis Dataset. The volume ratio
measures (E3a, E3c, E2c) aim to extend the notion of callosal angle (2,4), with a high volume ratio
(small callosal angle) when the ventricles are “inflated”. Motivation for this was third-fold. First, it
was not straightforward to robustly and automatically estimate the callosal angle from the
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ventricle segmentation, whereas the volumetric measures are straightforward and robust.
Second, the concept callosal angle applies to other concave portions of the ventricle anatomy.
Third, as image resolution is not uniform in the three scan orientations, the quality of these
measures may vary and thus we elected to use multiple orientations / measures for this. The
distribution of these nine features (plus age) and their ability to discriminate hydrocephalus in
isolation is shown in Fig. S3.

Figure S3: Scatter plots of all pairs of the ten features considered. Features are from a subset
of the Diagnosis Dataset that were not included in the test set, with red and blue dots
representing hydrocephalus and non-hydrocephalus patients, respectively. The correlation
coefficients of each pair of features are noted in each panel (*: p < 0.05). Histograms of each
feature are shown on the diagonal, with red and blue indicating hydrocephalus and
non-hydrocephalus, respectively (**: p < 0.001, Wilcoxon rank sum test, N = 240). The effect
size for distinguishing between hydrocephalus and non-hydrocephalus is measured as Cohen’s
d’ for each feature and shown in descending order on the right.

Feature Selection

Feature selection was performed using a subset of the Diagnosis Dataset (the 240 exams that
were not in the test set; Fig. 1) by leave-one-out cross validation, with the surgical intervention
labels as the ground truth. Features considered are the nine features mentioned above and the
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age of the patients. These ten features are plotted in Fig. S3. All features were significantly
correlated with one another (p < 0.05, N = 240) except age. The performance of the
hydrocephalus classifier measured by the area under the receiver operating characteristic curve
(AUC) as a function of different feature combinations is shown as a heat map in Fig. S4. We
found that the best AUC of 0.89 was achieved when the following six features were used:
ventricle volume (VV), ratio of ventricle over extraventricular CSF volume (RVC), ratio of ventricle
to brain volume (RVB), volume of the temporal horns (VH), MRHI (8), and callosal angle (4) as
implemented by E3a. Age did not improve the classification. We also used these six features for
the Screening Dataset and the External Dataset.

Figure S4: Selection of ten features for hydrocephalus classification. Leave-one-out AUC is
shown as a heat map for different combinations of the features. The best AUC of 0.89 was
achieved when six features from segmentation were used.

Comparing Segmentation Between Deep CNN and SPM
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Figure S5: Head segmentation on a hydrocephalus patient (panel A) and a non-hydrocephalus
patient (panel B) using SPM (A2 and B2) and deep CNN (A3 and B3). Dice scores for the
segmentation of each tissue are shown across the 16 sagittal scans in the training set (panel C).
*: p < 0.001, Wilcoxon rank sum test, N = 16.

Representative head segmentations on two subjects from the Diagnosis Dataset using SPM
and deep CNN are shown in Fig. S5. For the non-hydrocephalus subject (Fig. S5 panel B), SPM
classified ventricles as part of the CSF (light green). However, SPM incorrectly labelled
ventricles as white matter (dark green) for the hydrocephalus patient (Fig. S5 panel A2). The
trained deep CNN correctly identified ventricles for both hydrocephalus and non-hydrocephalus
patients (light orange, panels A3 and B3). The Dice scores for each tissue segmentation are
shown in panel C for the 16 sagittal scans used to train the deep CNN. A formal analysis
between SPM and deep CNNs used here is presented in Hirsch et al. (15).
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